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In this paper, we aim to segment an image degraded by blur and Poisson noise.

We adopt a smoothing-and-thresholding (SaT) segmentation framework that finds

a piecewise-smooth solution, followed by k-means clustering to segment the

image. Specifically for the image smoothing step, we replace the least-squares

fidelity for Gaussian noise in the Mumford-Shah model with a maximum posterior

(MAP) term to deal with Poisson noise and we incorporate the weighted difference

of anisotropic and isotropic total variation (AITV) as a regularization to promote the

sparsity of image gradients. For such a nonconvex model, we develop a specific

splitting scheme and utilize a proximal operator to apply the alternating direction

method of multipliers (ADMM). Convergence analysis is provided to validate the

efficacy of the ADMM scheme. Numerical experiments on various segmentation

scenarios (grayscale/color and multiphase) showcase that our proposed method

outperforms a number of segmentation methods, including the original SaT.
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1. Introduction

Image segmentation partitions an image into multiple, coherent regions, where pixels

of one region share similar characteristics such as colors, textures, and edges. It remains

an important yet challenging problem in computer vision that has various applications,

including magnetic resonance imaging (Duan et al., 2015; Tongbram et al., 2021; Li et al.,

2022) and microscopy (Zosso et al., 2017; Bui et al., 2020). One of the most fundamental

models for image segmentation is the Mumford-Shah model (Mumford and Shah, 1989)

because of its robustness to noise. Given an input image f :� → R defined on an open,

bounded, and connected domain � ⊂ R
2, the Mumford-Shah model is formulated as

min
u,Ŵ

EMS(u,Ŵ) : =
λ

2

∫

�

(f − u)2 dx+ µ

2

∫

�\Ŵ
|∇u|2 dx+ Length(Ŵ), (1)

where u :� → R is a piecewise-smooth approximation of the image f , Ŵ ⊂ � is a compact

curve representing the region boundaries, and λ,µ > 0 are the weight parameters. The

first term in (1) is the fidelity term that ensures that the solution u approximates the image

f . The second term enforces u to be piecewise smooth on � \ Ŵ. The last term measures

the perimeter, or more mathematically the one-dimensional Haussdorf measure in R
2 (Bar

et al., 2011), of the curve Ŵ. However, (1) is difficult to solve because the unknown set of

boundaries needs to be discretized. One common approach involves approximating the

objective function in (1) by a sequence of elliptic functionals (Ambrosio and Tortorelli,

1990).
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Alternatively, Chan and Vese (2001) (CV) simplified (1) by

assuming the solution u to be piecewise constant with two phases

or regions, thereby making the model easier to solve via the level-

set method (Osher and Sethian, 1988). Let the level-set function φ

be Lipschitz continuous and be defined as follows:















φ(x) > 0 if x is inside Ŵ,

φ(x) = 0 if x is at Ŵ,

φ(x) < 0 if x is outside Ŵ.

By the definition of φ, the curve Ŵ is represented by φ(x) = 0. The

image region can be defined as either inside or outside the curve Ŵ.

In short, the CV model is formulated as

min
c1 ,c2 ,φ

ECV (c1, c2,φ) : = λ

(∫

�

|f − c1|2H(φ) dx

+
∫

�

|f − c2|2(1−H(φ)) dx

)

+ ν

∫

�

|∇H(φ)| dx, (2)

where λ, ν are weight parameters, the constants c1, c2 are the mean

intensity values of the two regions, and H(φ) is the Heaviside

function defined by H(φ) = 1 if φ ≥ 0 and H(φ) = 0 otherwise. A

convex relaxation (Chan et al., 2006) of (2) was formulated as

min
c1 ,c2 ,u∈[0,1]

λ

(∫

�

|f − c1|2u dx+
∫

�

|f − c2|2(1− u) dx

)

+ν

∫

�

|∇u| dx,

where an image segmentation ũ is obtained by thresholding u, that

is

ũ(x) =
{

1 if u(x) > τ ,

0 if u(x) ≤ τ ,

for some value τ ∈ (0, 1). It can be solved efficiently by convex

optimization algorithms, such as the alternating direction method

of multipliers (ADMM) (Boyd et al., 2011) and primal-dual hybrid

gradient (Chambolle and Pock, 2011). A multiphase extension of

(2) was proposed in Vese and Chan (2002), but it requires that the

number of regions to be segmented is a power of 2. For segmenting

into an arbitrary number of regions, fuzzy membership functions

were incorporated (Li et al., 2010).

Cai et al. (2013) proposed the smoothing-and-thresholding

(SaT) framework that is related to the model (1). In the smoothing

step of SaT, a convex variant of (1) is formulated as

u∗ = argmin
u

λ

2

∫

�

(f − Au)2 dx+ µ

2

∫

�

|∇u|2 dx+
∫

�

|∇u| dx,

(3)

yielding a piecewise-smooth solution u∗. The blurring operatorA is

included in the case when the image f is blurred. The total variation

(TV) term
∫

�
|∇u| dx is a convex approximation of the length

term in (2) by the coarea formula (Chan et al., 2006). After the

smoothing step, a thresholding step is applied to the smooth image

u∗ to segment it into multiple regions. The two-stage framework

has many advantages. First, the smoothing model (3) is strongly

convex, so it can be solved by any convex optimization algorithm

to obtain a unique solution u∗. Second, the user can adjust the

number of thresholds to segment u∗ and the threshold values to

obtain a satisfactory segmentation result, thanks to the flexibility

of the thresholding step. Furthermore, the SaT framework can be

adapted to color images by incorporating an intermediate lifting

step (Cai et al., 2017). Before performing the thresholding step,

the lifting step converts the RGB space to Lab (perceived lightness,

red- green and yellow-blue) color space and concatenates both

RGB and Lab intensity values into a six-channel image. The multi-

stage framework for color image segmentation is called smoothing,

lifting, and thresholding (SLaT).

One limitation of (3) lies in the ℓ2 fidelity term that is

statistically designed for images corrupted by additive Gaussian

noise, and as a result, the smoothing step is not applicable to

other types of noise distribution. In this paper, we aim at Poisson

noise, which is commonly encountered when an image is taken by

photon-capturing devices such as in positron emission tomography

(Vardi et al., 1985) and astronomical imaging (Lantéri and Theys,

2005). By using the data fidelity term of Au − f logAu (Le et al.,

2007), we obtain a smoothing model that is appropriate for Poisson

noise (Chan et al., 2014):

min
u

λ

∫

�

(Au− f logAu) dx+ µ

2

∫

�

|∇u|2 dx+
∫

�

|∇u| dx. (4)

As a convex approximation of the length term in (1), the TV term

in (4) can be further improved by nonconvex regularizations. The

TV regularization is defined by the ℓ1 norm of the image gradient.

Literature has shown that nonconvex regularizations often yield

better performance than the convex ℓ1 norm in identifying sparse

solutions. Examples of nonconvex regularization include ℓp, 0 <

p < 1 (Chartrand, 2007; Xu Z. et al., 2012; Cao et al., 2013),

ℓ1 − αℓ2,α ∈ [0, 1] (Lou et al., 2015a,b; Ding and Han, 2019; Li P.

et al., 2020; Ge and Li, 2021), ℓ1/ℓ2 (Rahimi et al., 2019;Wang et al.,

2020; Xu et al., 2021), and an error function (Guo et al., 2021). Lou

et al. (2015c) designed a TV version of ℓ1−αℓ2 called the weighted

difference of anisotropic–isotropic total variation (AITV), which

outperforms TV in various imaging applications, such as image

denoising (Lou et al., 2015c), image reconstruction (Lou et al.,

2015c; Li P. et al., 2020), and image segmentation (Bui et al., 2021,

2022; Wu et al., 2022b).

In this paper, we propose an AITV variant of (4) to improve the

smoothing step of the SaT/SLaT framework for images degraded

by Poisson noise and/or blur. Incorporating AITV regularization

is motivated by our previous works (Park et al., 2016; Bui et al.,

2021, 2022), where we demonstrated that AITV regularization is

effective in preserving edges and details, especially under Gaussian

and impulsive noise. To maintain similar computational efficiency

as the original SaT/SLaT framework, we propose an ADMM

algorithm that utilizes the ℓ1 − αℓ2 proximal operator (Lou and

Yan, 2018). The main contributions of this paper are as follows:

• We propose an AITV-regularized variant of (4) and prove the

existence of a minimizer for the model.

• We develop a computationally efficient ADMM algorithm and

provide its convergence analysis under certain conditions.
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• We conduct numerical experiments on various

grayscale/color images to demonstrate the effectiveness

of the proposed approach.

The rest of the paper is organized as follows. Section 2 describes

the background information such as notations, Poisson noise, and

the SaT/SLaT framework. In Section 3, we propose a simplified

Mumford-Shah model with AITV and a MAP data fidelity term

for Poisson noise. In the same section, we show that the model

has a global minimizer and develop an ADMM algorithm with

convergence analysis. In Section 4, we evaluate the performance of

the AITV Poisson SaT/SLaT framework on various grayscale and

color images. Lastly, we conclude the paper in Section 5.

2. Preliminaries

2.1. Notation

Throughout the rest of the paper, we represent images and

mathematical models in discrete notations (i.e., vectors and

matrices). An image is represented as anM × N matrix, and hence

the image domain is denoted by � = {1, 2, . . . ,M} × {1, 2, . . . ,N}.
We define two inner product spaces: X : = R

M×N and Y : = X×X.

Let u ∈ X. For shorthand notation, we define u ≥ 0 if ui,j ≥ 0 for

all (i, j) ∈ �. The discrete gradient operator ∇ :X → Y is defined

by (∇u)i,j =
[

(∇xu)i,j, (∇yu)i,j
]

, where

(∇xu)i,j =
{

ui,j − ui,j−1 if 2 ≤ j ≤ N,

ui,1 − ui,N if j = 1,

and

(∇yu)i,j =
{

ui,j − ui−1,j if 2 ≤ i ≤ M,

u1,j − uM,j if i = 1.

The spaceX is equipped with the standard inner product 〈·, ·〉X , and
Euclidean norm ‖ · ‖2. The space Y has the following inner product

and norms: for p = (p1, p2) ∈ Y and q = (q1, q2) ∈ Y ,

〈p, q〉Y = 〈p1, q1〉X + 〈p2, q2〉X ,

‖p‖1 =
M
∑

i=1

N
∑

j=1

|(p1)i,j| + |(p2)i,j|,

‖p‖2 =

√

√

√

√

M
∑

i=1

N
∑

j=1

|(p1)i,j|2 + |(p2)i,j|2,

‖p‖2,1 =
M
∑

i=1

N
∑

j=1

√

(p1)
2
i,j + (p2)

2
i,j.

For brevity, we omit the subscript X or Y in the inner product when

its context is clear.

2.2. AITV regularization

There are two popular discretizations of total variation:

the isotropic TV (Rudin et al., 1992) and the anisotropic TV

(Choksi et al., 2011), which are defined by

‖∇u‖2,1 =
M
∑

i=1

N
∑

j=1

√

|(∇xu)i,j|2 + |(∇yu)i,j|2,

‖∇u‖1 =
M
∑

i=1

N
∑

j=1

|(∇xu)i,j| + |(∇yu)i,j|,

respectively. This work is based on the weighted difference between

anisotropic and isotropic TV (AITV) regularization (Lou et al.,

2015c), defined by

‖∇u‖1 − α‖∇u‖2,1 =
M
∑

i=1

N
∑

j=1

(

|(∇xu)i,j| + |(∇yu)i,j|

−α

√

|(∇xu)i,j|2 + |(∇yu)i,j|2
)

, (5)

for a weighting parameter α ∈ [0, 1]. The range of α

ensures the non-negativity of the AITV regularization. Note that

anisotropic TV is defined as the ℓ1 norm of the image gradient

[(∇xu)i,j, (∇yu)i,j] at the pixel location (i, j) ∈ �, while isotropic

TV is the ℓ2 norm on the gradient vector. As a result, AITV

can be viewed as the ℓ1 − αℓ2 regularization on the gradient

vector at every pixel, thereby enforcing sparsity individually at each

gradient vector.

2.3. Poisson noise

Poisson noise follows the Poisson distribution with mean and

variance η, whose probability mass function is given by

Pη(n) =
e−ηηn

n!
, n ≥ 0. (6)

For a clean image g ∈ X, its intensity value at each pixel gi,j serves

as the mean and variance for the corresponding noisy observation

f ∈ X defined by

fi,j ∼ Poisson(gi,j) ∀(i, j) ∈ �.

To recover the image g from the noisy image f , we find its

maximum a posteriori (MAP) estimation u, which maximizes the

probability P(u|f ). By Bayes’ theorem, we have

P(u|f ) = P(f |u)P(u)
P(f )

.

It further follows from the definition (6) that

P(fi,j|ui,j)P(ui,j) = Pui,j (fi,j)P(ui,j) =
e−ui,ju

fi,j
i,j

(fi,j)!
P(ui,j).

Since Poisson noise is i.i.d. pixelwise, we have

P(u|f ) =
∏

(i,j)∈�

P(fi,j|ui,j)
P(ui,j)

P(fi,j)
=

∏

(i,j)∈�

e−ui,ju
fi,j
i,j

(fi,j)!

P(ui,j)

P(fi,j)
.
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The MAP estimate of P(u|f ) is equivalent to its negative logarithm,

thus leading to the following optimization problem:

min
u≥0

∑

(i,j)∈�

ui,j − fi,j log ui,j − logP(ui,j). (7)

The last term − logP(ui,j) can be regarded as an image prior

or a regularization. For example, Le et al. (2007) considered the

isotropic total variation as the image prior and proposed a Poisson

denoising model

min
u≥0

〈u− f log u, 11〉 + ‖∇u‖2,1, (8)

where log is applied pixelwise and 11 is the matrix whose entries are

all 1’s. The first term in (8) is a concise notation that is commonly

used as a fidelity term for Poisson denoising in various imaging

applications (Le et al., 2007; Chan et al., 2014; Wen et al., 2016;

Chang et al., 2018; Chowdhury et al., 2020a,b).

2.4. Review of Poisson SaT/SLaT

A Poisson SaT framework (Chan et al., 2014) consists of two

steps. Given a noisy grayscale image f ∈ X corrupted by Poisson

noise, the first step is the smoothing step that finds a piecewise-

smooth solution u∗ from the optimization model:

u∗ = argmin
u≥0

λ〈Au− f logAu, 11〉 + µ

2
‖∇u‖22 + ‖∇u‖2,1. (9)

Then in the thresholding step, K − 1 threshold values τ1 ≤ τ2 ≤
. . . ≤ τK−1 are appropriately chosen to segment u∗ into K regions,

where the kth region is given by

�k = {(i, j) ∈ � : τk−1 ≤ u∗i,j < τk},

with τ0 : = infx∈� u∗(x). The thresholding step is typically

performed by k-means clustering.

The Poisson smoothing, lifting, and thresholding (SLaT)

framework (Cai et al., 2017) extends the Poisson SaT framework

to color images. For a color image f = (f1, f2, f3) ∈ X × X × X,

the model (9) is applied to each color channel fi for i = 1, 2, 3,

thus leading to a smoothed color image u∗ = (u∗1 , u
∗
2 , u

∗
3). An

additional lifting step (Luong, 1993) is performed to transform u∗

to (u′1, u
′
2, u

′
3) in the Lab space (perceived lightness, red-green, and

yellow-blue). The channels in Lab space are less correlated than in

RGB space, so they may have useful information for segmentation.

The RGB image and the Lab image are concatenated to form

the multichannel image û : = (u∗1 , u
∗
2 , u

∗
3 , u

′
1, u

′
2, u

′
3), followed by

the thresholding stage. Generally, k-means clustering yields K

centroids c1, . . . , cK as constant vectors, which are used to form

the region

�k =
{

(i, j) ∈ � : ‖ûi,j − ck‖2 = min
1≤κ≤K

‖ûi,j − cκ‖2
}

for k = 1, . . . ,K such that �k’s are disjoint and
⋃K

k=1 �k = �.

1 Input:

• image f = (f1, . . . , fd)

• blurring operator A

• fidelity parameter λ > 0

• smoothing parameter µ ≥ 0

• AITV parameter α ∈ [0, 1]

• the number of regions in the image K

2 Output: Segmentation f̃

3 Stage one: Compute uℓ by solving (11) separately

for ℓ = 1, . . . , d.

4 Stage two: if f is a grayscale image, i.e., d = 1 then

5 Go to stage three.

6 else if f is a color image, i.e., d = 3 then

7 Transfer the solution u∗ = (u∗1 , u
∗
2 , u

∗
3) into Lab

space to obtain (u′1, u
′
2, u

′
3) and concatenate to

form û = (u∗1 , u
∗
2 , u

∗
3 , u

′
1, u

′
2, u

′
3).

8 Stage three: Apply k-means to obtain {(ck,�k)}Kk=1

and compute f̃ by (10).

Algorithm 1. AITV Poisson SaT/SLaT.

After the thresholding step for both SaT/SLaT, we define a

piecewise-constant approximation of the image f by

f̃ = (f̃1, . . . , f̃d) such that f̃ℓ =
K
∑

k=1

ck,ℓ11�k
∀ℓ = 1, . . . , d, (10)

where ck,ℓ is the ℓth entry of the constant vector ck and

11�k
=
{

1 if (i, j) ∈ �k,

0 if (i, j) 6∈ �k.

Recall that d = 1 when f is grayscale, and d = 3 when f is color.

3. Proposed approach

To improve the Poisson SaT/SLaT framework, we propose to

replace the isotropic TV in (9) with AITV regularization. In other

words, in the smoothing step, we obtain the smoothed image u∗

from the optimization problem

u∗ = argmin
u

F(u) : = λ〈Au− f logAu, 11〉 + µ

2
‖∇u‖22

+‖∇u‖1 − α‖∇u‖2,1, (11)

for α ∈ [0, 1]. We establish that this model admits a global

solution. We then develop an ADMM algorithm to find a solution

and provide the convergence analysis. The overall segmentation

approach is described in Algorithm 1.

3.1. Model analysis

To establish the solution’s existence of the proposedmodel (11),

we start with Lemma 1, a discrete version of Poincaré’s inequality
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(Evans, 2010). In addition, we prove Lemma 2 and Proposition 3,

leading to the global existence theorem (Theorem 4).

Lemma 1. There exists a constant C > 0 such that

‖u− ū11‖2 ≤ C‖∇u‖2,1, (12)

for every u ∈ X and ū : = 1

MN

M
∑

i=1

N
∑

j=1

ui,j.

Proof. We prove it by contradiction. Suppose there exists a

sequence {uk}∞k=1
such that

‖uk − ūk11‖2 > k‖∇uk‖2,1, (13)

where ūk = 1

MN

M
∑

i=1

N
∑

j=1

(uk)i,j. For every k, we normalize each

element in the sequence by vk = uk−ūk11
‖uk−ūk11‖2 . It is straightforward

that

v̄k =
1

MN

M
∑

i=1

N
∑

j=1

(vk)i,j = 0, ‖vk‖2 = 1 ∀k ∈ N. (14)

By (13), we have

‖∇vk‖2,1 <
1

k
. (15)

As {vk}∞k=1
is bounded, there exists a convergent subsequence

{vkj }∞j=1 such that vkj → v∗ for v∗ ∈ X. It follows from (15) that

‖∇v∗‖2,1 = 0. Since ker(∇) = {c11 : c ∈ R}, then v∗ is a constant

vector. However, (14) implies that v̄∗ = 0 and ‖v∗‖2 = 1. This

contradiction proves the lemma.

Lemma 2. Suppose ‖f ‖∞ < ∞ and mini,j fi,j > 0. There exists a

scalar u0 > 0 such that we have 2(x− fi,j log x) ≥ x for any x ≥ u0
and (i, j) ∈ �.

Proof. For each (i, j) ∈ �, we want to show that there exists ui,j > 0

such that H(x) : = x − 2fi,j log x ≥ 0 for x ≥ ui,j. Since H(x) is

strictly convex and it attains a global minimum at x = 2fi,j, it is

increasing on the domain x > 2fi,j. Additionally as x dominates

log(x) as x → +∞, there exists ui,j > 2fi,j > 0 such that
ui,j

log ui,j
≥

2fi,j, which implies that H(ui,j) = ui,j − 2fi,j log ui,j ≥ 0. As a result,

for x ≥ ui,j > 2fi,j, we obtain x − 2fi,j log x = H(x) ≥ H(ui,j) ≥ 0.

Define u0 : = maxi,j ui,j, and hence we have 2(x − fi,j log x) ≥ x for

x ≥ u0 ≥ ui,j, ∀(i, j) ∈ �.

Proposition 3. Suppose ker(A) ∩ ker(∇) = {0} and {uk}∞k=1
⊂ X.

If {(Auk,∇uk)}∞k=1
is bounded, then {uk}∞k=1

is bounded.

Proof. Since ker(A) ∩ ker(∇) = {0}, we have A11 6= 0. Simple

calculations lead to

|ūk|‖A11‖2 = ‖A(ūk11)‖2 ≤ ‖A(ūk11− uk)‖2 + ‖Auk‖2
≤ ‖A‖‖uk − ūk11‖2 + ‖Auk‖2
≤ C‖A‖‖∇uk‖2,1 + ‖Auk‖2,

(16)

where the last inequality is due to Lemma 1. The boundedness of

{Auk}∞k=1
and {∇uk}∞k=1

implies that {ūk}∞k=1
is also bounded by

(16). We apply Lemma 1 to obtain

‖uk‖2 ≤ ‖uk − ūk11‖2 + ‖ūk11‖2 < C‖∇uk‖2,1 + ‖ūk11‖2 < ∞,

which thereby proves that {uk}∞k=1
is bounded.

Finally, we adapt the proof in Chan et al. (2014) to establish that

F has a global minimizer.

Theorem 4. Suppose ‖f ‖∞ < ∞ and mini,j fi,j > 0. If λ > 0,µ ≥
0,α ∈ [0, 1), and ker(A) ∩ ker(∇) = {0}, then F has a global

minimizer.

Proof. It is straightforward that ‖∇u‖2,1 ≤ ‖∇u‖1, thus ‖∇u‖1 −
α‖∇u‖2,1 ≥ 0 for α ∈ [0, 1). As a result, we have

F(u) ≥ λ〈Au− f logAu, 11〉 = λ

M
∑

i=1

N
∑

j=1

(Au)i,j − fi,j log(Au)i,j.

Given a scalar f > 0, the function G(x) = x − f log(x) attains

its global minimum at x = f . Therefore, we have x − fi,j log x ≥
fi,j − fi,j log fi,j for all x > 0 and (i, j) ∈ �, which leads to a lower

bound of F(u), i.e.,

F(u) ≥ λ

M
∑

i=1

N
∑

j=1

(Au)i,j − fi,j log(Au)i,j

≥ λ

M
∑

i=1

N
∑

j=1

fi,j − fi,j log fi,j =: F0. (17)

As F(u) is lower bounded by F0, we can choose a minimizing

sequence {uk}∞k=1
and hence F(uk) has a uniform upper bound,

denoted by B1, i.e., F(uk) < B1 for all k ∈ N. It further follows

from (17) that

B1 ≥ F(uk) ≥ λ〈Auk − f logAuk, 11〉 ≥ F0,

which implies that {|〈Auk − f logAuk, 11〉|}∞k=1
is uniformly

bounded, i.e., there exists a constant B2 > 0 such that
∣

∣〈Auk − f logAuk, 11〉
∣

∣ < B2, ∀k. Using these uniform bounds, we

derive that

(1− α)‖∇uk‖1 ≤
µ

2
‖∇uk‖22 + ‖∇uk‖1 − α‖∇uk‖2,1

= F(uk)− λ〈Auk − f logAuk, 11〉 ≤ B1 + λB2.

As α < 1, the sequence {∇uk}∞k=1
is bounded.

To prove the boundedness of {Auk}∞k=1
, we introduce the

notations of x+ = max(x, 0) and x− = −min(x, 0) for any x ∈ R.
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Then x = x+ − x−. By Lemma 2, there exists u0 > 0 such that

2(x− fi,j log x) ≥ x, ∀x ≥ u0 and (i, j) ∈ �. We observe that

‖Auk‖1 =
M
∑

i=1

N
∑

j=1

|(Auk)i,j|

≤
M
∑

i=1

N
∑

j=1

max{2((Auk)i,j − fi,j log(Auk)i,j), u0}

≤ 2

M
∑

i=1

N
∑

j=1

(

(Auk)i,j − fi,j log(Auk)i,j
)+ +MNu0

= 2

M
∑

i=1

N
∑

j=1

[

(

(Auk)i,j − fi,j log(Auk)i,j
)

+
(

(Auk)i,j − fi,j log(Auk)i,j
)−]+MNu0

= 2〈Auk − f logAuk, 11〉

+ 2

M
∑

i=1

N
∑

j=1

(

(Auk)i,j − fi,j log(Auk)i,j
)− +MNu0

≤ 2B2 + 2

M
∑

i=1

N
∑

j=1

∣

∣fi,j − fi,j log fi,j
∣

∣+MNu0 < ∞.

(18)

This shows that {Auk}∞k=1
is bounded.

Since both {∇uk}∞k=1
and {Auk}∞k=1

are bounded, then {uk}∞k=1

is bounded due to Proposition 3. Therefore, there exists a

subsequence {ukn}∞n=1 that converges to some u∗ ∈ X. As F is

continuous and thus lower semicontinuous, we have

F(u∗) ≤ lim inf
n→∞

F(ukn ),

which means that u∗ minimizes F.

3.2. Numerical algorithm

To minimize (11), we introduce two auxiliary variables v ∈ X

and w = (wx,wy) ∈ Y , leading to an equivalent constrained

optimization problem:

min
u,v,w

λ〈v− f log v, 11〉 + µ

2
‖∇u‖22 + ‖w‖1 − α‖w‖2,1

s.t. Au = v, ∇u = w.
(19)

The corresponding augmented Lagrangian is expressed as

Lβ1 ,β2 (u, v,w, y, z)

= λ〈v− f log v, 11〉 + µ

2
‖∇u‖22 + ‖w‖1 − α‖w‖2,1

+ 〈y,Au− v〉 + β1

2
‖Au− v‖22 + 〈z,∇u− w〉

+ β2

2
‖∇u− w‖22,

(20)

where y ∈ X and z = (zx, zy) ∈ Y are Lagrange multipliers

and β1,β2 are positive parameters. We then apply the alternating

direction method of multipliers (ADMM) to minimize (19) that

consists of the following steps per iteration k:

uk+1 = argmin
u

Lβ1,k ,β2,k (u, vk,wk, yk, zk), (21a)

vk+1 = argmin
v

Lβ1,k ,β2,k (uk+1, v,wk, yk, zk), (21b)

wk+1 = argmin
w

Lβ1,k ,β2,k (uk+1, vk+1,w, yk, zk), (21c)

yk+1 = yk + β1,k(Auk+1 − vk+1), (21d)

zk+1 = zk + β2,k(∇uk+1 − wk+1), (21e)

(β1,k+1,β2,k+1) = σ (β1,k,β2,k), (21f)

where σ > 1.

Remark 1. The scheme presented in (21) slightly differs from the

original ADMM (Boyd et al., 2011), the latter of which has σ =
1 in (21f). Having σ > 1 increases the weights of the penalty

parameters β1,k,β2,k in each iteration k, thus accelerating the

numerical convergence speed of the proposed ADMM algorithm.

A similar technique has been used in Cascarano et al. (2021), Gu

et al. (2017), Storath and Weinmann (2014), Storath et al. (2014),

and You et al. (2019).

All the subproblems (21a)–(21c) have closed-form solutions. In

particular, the first-order optimality condition for (21a) is

[β1,kA
⊤A− (µ + β2,k)1]uk+1 = A⊤(β1,kvk − yk)− ∇⊤(zk − β2,kwk),

(22)

where 1 = −∇⊤∇ is the Laplacian operator. If ker(A) ∩ ker(∇) =
{0}, then β1,kA

⊤A − (µ + β2,k)1 is positive definite and thereby

invertible, which implies that (22) has a unique solution uk+1.

By assuming periodic boundary condition for u, the operators 1

and A⊤A are block circulant (Wang et al., 2008), and hence (22)

can be solved efficiently by the 2D discrete Fourier transform F .

Specifically, we have the formula

uk+1

= F
−1

(

F(A)∗ ◦ F(β1,kvk − yk)− F(∇)∗ ◦ F(zk − β2,kwk)

β1,kF(A)∗ ◦ F(A)− (µ + β2,k)F(1)

)

,

(23)

whereF−1 is the inverse discrete Fourier transform, the superscript

∗ denotes complex conjugate, the operation ◦ is componentwise

multiplication, and division is componentwise. By differentiating

the objective function of (21b) and setting it to zero, we can get a

closed-form solution for vk+1 given by

vk+1

=
(

β1,kAuk+1 + yk − λ11
)

+
√

(

β1,kAuk+1 + yk − λ11
)2 + 4λβ1,kf

2β1,k
,

(24)

where the square root, squaring, and division are performed

componentwise. Lastly, the w-subproblem (21c) can be

decomposed componentwise as follows:

(wi,j)k+1 = argmin
wi,j

‖wi,j‖1 − α‖wi,j‖2

+ β2,k

2

∥

∥

∥

∥

∥

wi,j −
(

(∇uk+1)i,j +
(zk)i,j

β2,k

)
∥

∥

∥

∥

2

2

= prox

(

(∇uk+1)i,j +
(zk)i,j

β2,k
,α,

1

β2,k

)

,

(25)
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where the proximal operator for ℓ1 − αℓ2 on x ∈ R
n is given by

prox(x,α,β) = argmin
y

‖y‖1 − α‖y‖2 +
1

2β
‖x− y‖22. (26)

The proximal operator for ℓ1 − αℓ2 has a closed form solution

summarized by Lemma 5.

Lemma 5. (Lou and Yan, 2018) Given x ∈ R
n, β > 0, and α ∈

[0, 1], the optimal solution to (26) is given by one of the following

cases:

1. When ‖x‖∞ > β , we have

x∗ = (‖ξ‖2 + αβ)
ξ

‖ξ‖2
,

where ξ = sign(x) ◦max(|x| − β , 0).

2. When (1 − α)β < ‖x‖∞ ≤ β , then x∗ is a 1-sparse vector

such that one chooses i ∈ argmax
j

(|xj|) and defines x∗i =
(

|xi| + (α − 1)β
)

sign(xi) and the remaining elements equal to

0.

3. When ‖x‖∞ ≤ (1− α)β , then x∗ = 0.

In summary, we describe the ADMM scheme to solve (11) in

Algorithm 2.

3.3. Convergence analysis

We establish the subsequential convergence of ADMM

described in Algorithm 2. The global convergence of ADMM

(Wang et al., 2019) is inapplicable to our model as the gradient

operator ∇ is non-surjective, which will be further investigated in

future work. For the sake of brevity, we set β = β1 = β2 and denote

Lβ (u, v,w, y, z) : = Lβ ,β (u, v,w, y, z).

In addition, we introduce definitions of subdifferentials

(Rockafellar and Wets, 2009), which defines a stationary point of a

non-smooth objective function.

Definition 6. For a proper function h :Rn → R ∪ {+∞}, define
dom(h) : = {x ∈ R

n
: h(x) < +∞}.

(a) The regular subdifferential at x ∈ dom(h) is given by

∂̂h(x) : =
{

w : lim inf
x′→x,x′ 6=x

h(x′)− h(x)− 〈w, x′ − x〉
‖x′ − x‖ ≥ 0

}

.

(b) The (limiting) subdifferential at x ∈ dom(h) is given by

∂h(x) : =

{

w : ∃ xk → x and wk ∈ ∂̂h(xk) with wk → w and h(xk) → h(x)
}

.

An important property of the limiting subdifferential is its

closedness: for any (xk, vk) → (x, v) with vk ∈ ∂h(xk), if h(xk) →
h(x), then v ∈ ∂h(x).

Lemma 7. Suppose that ker(A) ∩ ker(∇) = {0} and 0 ≤ α < 1.

Let {(uk, vk,wk, yk, zk)}∞k=1
be a sequence generated by Algorithm 2.

Then, we have

Lβk+1
(uk+1, vk+1,wk+1, yk+1, zk+1)− Lβk (uk, vk,wk, yk, zk)

≤ −ν

2
‖uk+1 − uk‖22 −

β0

2
‖vk+1 − vk‖22

+ 1

σ k−1β0

(

∥

∥yk+1 − yk
∥

∥

2

2
+
∥

∥zk+1 − zk
∥

∥

2

2

)

,

(28)

for some constant ν > 0.

Proof. If ker(A) ∩ ker(∇) = {0}, then β0A
⊤A + (β0 + µ)∇⊤∇ is

positive definite, and hence there exists ν > 0 such that

βk‖Au‖22 + (βk + µ)‖∇u‖22 ≥ β0‖Au‖22 + (β0 + µ)‖∇u‖22
≥ ν‖u‖22 ∀k ∈ N,

which implies that Lβk (u, vk,wk, yk, zk) is strongly convex with

respect to u with parameter ν. Additionally, Lβk (uk+1, v,wk, yk, zk)

is strongly convex with respect to v with parameter β0 ≤ βk. It

follows from Beck (2017), Theorem 5.25, that we have

Lβk (uk+1, vk,wk, yk, zk)− Lβk (uk, vk,wk, yk, zk)

≤ −ν

2
‖uk+1 − uk‖22, (29)

Lβk (uk+1, vk+1,wk, yk, zk)− Lβk (uk+1, vk,wk, yk, zk)

≤ −β0

2
‖vk+1 − vk‖22. (30)

Aswk+1 is the optimal solution to (21c), it is straightforward to have

Lβk (uk+1, vk+1,wk+1, yk, zk)− Lβk (uk+1, vk+1,wk, yk, zk) ≤ 0.

(31)

Simple calculations by using (21d)–(21e) lead to

Lβk (uk+1,vk+1,wk+1, yk+1, zk+1)− Lβk (uk+1, vk+1,wk+1, yk, zk)

=
(

Lβk (uk+1, vk+1,wk+1, yk+1, zk+1)

−Lβk (uk+1, vk+1,wk+1, yk+1, zk)
)

+
(

Lβk (uk+1, vk+1,wk+1, yk+1, zk)

−Lβk (uk+1, vk+1,wk+1, yk, zk)
)

=〈zk+1 − zk,∇uk+1 − wk+1〉 + 〈yk+1 − yk,Auk+1 − vk+1〉

= 1

βk

(

‖yk+1 − yk‖22 + ‖zk+1 − zk‖22
)

.

(32)

Lastly, we have

Lβk+1
(uk+1,vk+1,wk+1, yk+1, zk+1)

− Lβk (uk+1, vk+1,wk+1, yk+1, zk+1)

=βk+1 − βk

2

(

‖Auk+1 − vk+1‖22 + ‖∇uk+1 − wk+1‖22
)

=βk+1 − βk

2β2
k

(

∥

∥yk+1 − yk
∥

∥

2

2
+
∥

∥zk+1 − zk
∥

∥

2

2

)

.

(33)
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1 Input:

• image f

• blurring operator A

• fidelity parameter λ > 0

• smoothing parameter µ ≥ 0

• AITV parameter α ∈ [0, 1]

• penalty parameters β1,0,β2,0 > 0

• penalty multiplier σ > 1

• relative error ǫ > 0

2 Output:uk

3 Initialize u0,w0, z0.

4 Set k = 0.

5 while
‖uk−uk−1‖2

‖uk‖2 > ǫ do

6

uk+1 = F
−1

(

F (A)∗ ◦F (β1,kvk − yk)−F (∇)∗ ◦F (zk − β2,kwk)

β1,kF (A)∗ ◦F (A)− (µ + β2,k)F (1)

)

vk+1 =
(

β1,kAuk+1 + yk − λ11
)

+
√

(

β1,kAuk+1 + yk − λ11
)2 + 4λβ1,kf

2β1,k

(wk+1)i,j = prox

(

(∇uk+1)i,j +
(zk)i,j

β2,k
,α,

1

β2,k

)

∀(i, j) ∈ �

yk+1 = yk + β1,k(Auk+1 − vk+1)

zk+1 = zk + β2,k(∇uk+1 − wk+1)

(β1,k+1,β2,k+1) = σ (β1,k,β2,k)

k : = k+ 1

Algorithm 2. ADMM for the AITV-regularized smoothing model with Poisson fidelity (Equation 11).

Combining (29)–(33) together with the fact that βk = σ kβ0 for

σ > 1, we obtain

Lβk+1
(uk+1,vk+1,wk+1, yk+1, zk+1)− Lβk (uk, vk,wk, yk, zk)

≤− ν

2
‖uk+1 − uk‖22 −

β0

2
‖vk+1 − vk‖22

+ βk+1 + βk

2β2
k

(

∥

∥yk+1 − yk
∥

∥

2

2
+
∥

∥zk+1 − zk
∥

∥

2

2

)

=− ν

2
‖uk+1 − uk‖22 −

β0

2
‖vk+1 − vk‖22

+ σ + 1

2σ kβ0

(

∥

∥yk+1 − yk
∥

∥

2

2
+
∥

∥zk+1 − zk
∥

∥

2

2

)

≤− ν

2
‖uk+1 − uk‖22 −

β0

2
‖vk+1 − vk‖22

+ 1

σ k−1β0

(

∥

∥yk+1 − yk
∥

∥

2

2
+
∥

∥zk+1 − zk
∥

∥

2

2

)

.

This completes the proof.

Lemma 8. Suppose that ker(A) ∩ ker(∇) = {0} and 0 ≤ α < 1.

Let {(uk, vk,wk, yk, zk)}∞k=1
be generated by Algorithm 2. If {yk}∞k=1

bounded, then the sequence {(uk, vk,wk, yk, zk)}∞k=1
is bounded,

uk+1 − uk → 0, and vk+1 − vk → 0.

Proof. First we show that {zk}∞k=1
is bounded. Combining (21e)

with the first-order optimality condition of (25), we have

(zk+1)i,j = (zk)i,j + βk

(

(∇uk+1)i,j − (wk+1)i,j
)

∈ ∂
(

‖(wk+1)i,j‖1 − α‖(wk+1)i,j‖2
)

⊆ ∂
(

‖(wk+1)i,j‖1
)

− α∂
(

‖(wk+1)i,j‖2
)

,

(34)

which implies that there exist ξ1 ∈ ∂‖(wk+1)i,j‖1 and ξ2 ∈
∂‖(wk+1)i,j‖2 such that (zk+1)i,j = ξ1 − αξ2 for each (i, j) ∈ �.

Recall that for x ∈ R
2 the subgradients of the two norms are

∂‖x‖1 =
{

ξ ∈ R
2
: ξi =

{

sign(xi) if xi 6= 0

ξi ∈ [−1, 1] if xi = 0
for i = 1, 2

}

,

(35)

∂‖x‖2 =
{

ξ ∈ R
2
: ξ =

{

x
‖x‖2 if x 6= 0

∈ {ξ ∈ R
2
: ‖ξ‖2 ≤ 1} if x = 0

}

.

(36)

Therefore, we have ‖ξ1‖∞ ≤ 1, ‖ξ2‖∞ ≤ 1, and hence

‖(zk+1)i,j‖∞ ≤ 1 + α (by the triangle inequality), i.e., {zk}∞k=1

is bounded.

By the assumption {(yk)}∞k=1
is bounded. There exist two

constants C1,C2 > 0 such that ‖yk+1 − yk‖22 ≤ C1, ‖zk+1 − zk‖22 ≤
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C1, ‖yk‖22 ≤ C2, and ‖zk‖22 ≤ C2 for all k ∈ N. Hence, we have from

(28) that

Lβk+1
(uk+1, vk+1,wk+1, yk+1, zk+1) ≤

Lβk (uk, vk,wk, yk, zk)−
ν

2
‖uk+1 − uk‖22

− β0

2
‖vk+1 − vk‖22 +

2C1

σ k−1β0
.

(37)

A telescoping summation of (37) leads to

Lβk+1
(uk+1, vk+1,wk+1, yk+1, zk+1) ≤

Lβ0 (u0, v0,w0, y0, z0)+
2C1

β0

k
∑

i=0

1

σ i−1

− ν

2

k
∑

i=0

‖ui+1 − ui‖22 −
β0

2

k
∑

i=0

‖vi+1 − vi‖22.

(38)

By completing two least-squares terms, we can rewrite Lβk+1
as

Lβk+1
(uk+1, vk+1,wk+1, yk+1, zk+1)

=λ〈vk+1 − f log vk+1, 11〉 +
µ

2
‖∇uk+1‖22

+ ‖wk+1‖1 − α‖wk+1‖2,1

+ βk+1

2

∥

∥

∥

∥

Auk+1 − vk+1 +
yk+1

βk+1

∥

∥

∥

∥

2

2

− ‖yk+1‖22
2βk+1

+ βk+1

2

∥

∥

∥

∥

∇uk+1 − wk+1 +
zk+1

βk+1

∥

∥

∥

∥

2

2

− ‖zk+1‖22
2βk+1

.

(39)

Combining (38) and (39), we have

λ〈f − f log f , 11〉 + (1− α)‖wk+1‖1 −
C2

β0

≤Lβk+1
(uk+1, vk+1,wk+1, yk+1, zk+1)

≤Lβ0 (u0, v0,w0, y0, z0)+
2C1

β0

k
∑

i=0

1

σ i−1

− ν

2

k
∑

i=0

‖ui+1 − ui‖22 −
β0

2

k
∑

i=0

‖vi+1 − vi‖22

≤Lβ0 (u0, v0,w0, y0, z0)+
2C1

β0

∞
∑

i=0

1

σ i−1
.

(40)

Since σ > 1, the infinite sum is finite, and hence we have ∀k ∈ N,

‖wk+1‖1 ≤
1

1− α

(

Lβ0 (u0, v0,w0, y0, z0)

−λ〈f − f log f , 11〉 + 2C1

β0

∞
∑

i=0

1

σ i−1
+ C2

β0

)

< ∞,

which implies that {wk}∞k=1
is bounded. Also from (38) and (39),

we have

λ〈f − f log f , 11〉 − C2

β0
≤ λ〈vk+1 − f log vk+1, 11〉 −

C2

β0

≤ λ〈vk+1 − f log vk+1, 11〉 −
‖yk+1‖22
2βk+1

− ‖zk+1‖22
2βk+1

≤ Lβk+1
(uk+1, vk+1,wk+1, yk+1, zk+1)

≤ Lβ0 (u0, v0,w0, y0, z0)+
2C1

β0

∞
∑

i=0

1

σ i−1
< ∞.

This shows that {〈vk− f log vk, 11〉}∞k=1
is bounded. By emulating the

computation in (18), it can be shown that {vk}∞k=1
is bounded.

It suffices to prove that {(Auk,∇uk)}∞k=1
is bounded in order to

prove the boundedness of {uk}∞k=1
by Proposition 3. Using (21d),

we have

‖Auk+1‖2 ≤
‖yk+1 − yk‖2

βk
+ ‖vk+1‖2 ≤

√
C1

β0
+ ‖vk+1‖2.

As {vk}∞k=1
is proven to be bounded, then {Auk}∞k=1

is also bounded. We can prove {∇uk}∞k=1
is bounded

similarly using (21e). Altogether, {(uk, vk,wk, yk, zk)}∞k=1

is bounded.

It follows from (40) that

ν

2

k
∑

i=0

‖ui+1 − ui‖22 +
β0

2

k
∑

i=0

‖vi+1 − vi‖22 ≤ Lβ0 (u0, v0,w0, y0, z0)

+ 2C1

β0

k
∑

i=0

1

σ i−1
− λ〈f − f log f , 11〉 + C2

β0
.

As k → ∞, we see the right-hand side is finite, which

forces the infinite summations on the left-hand side to converge,

and hence we have uk+1 − uk → 0 and vk+1 − vk →
0.

Theorem 9. Suppose that ker(A) ∩ ker(∇) = {0} and 0 ≤ α < 1.

Let {(uk, vk,wk, yk, zk)}∞k=1
be generated by Algorithm 2. If

{yk}∞k=1
bounded, βk(vk+1 − vk) → 0,βk(wk+1 − wk) →

0, yk+1 − yk → 0, and zk+1 − zk → 0, then there

exists a subsequence whose limit point (u∗, v∗,w∗, y∗, z∗)
is a stationary point of (19) that satisfies the following:

0 = −µ1u∗ + A⊤y∗ +∇⊤z∗, (41a)

0 = λ

(

11− f

v∗

)

− y∗, (41b)

z∗ ∈ ∂
(

‖w∗‖1 − α‖w∗‖2,1
)

, (41c)

Au∗ = v∗, (41d)

∇u∗ = w∗. (41e)

Proof. By Lemma 8, the sequence {(uk, vk,wk, yk, zk)}∞k=1
is

bounded, so there exists a subsequence {(ukn , vkn ,wkn , ykn , zkn )}∞n=1

that converges to a point (u∗, v∗,w∗, y∗, z∗). Additionally, we have
uk+1 − uk → 0 and vk+1 − vk → 0. Since {(yk, zk)}∞k=1

is bounded,

there exists a constant C > 0 such that ‖yk+1 − yk‖2 < C and

‖zk+1 − zk‖2 < C for each k ∈ N. By (21e), we have

‖wk+1 − wk‖2 ≤ ‖wk+1 −∇uk+1‖2 + ‖∇uk+1 −∇uk‖2
+ ‖∇uk − wk‖2

= ‖zk+1 − zk‖2
βk

+ ‖∇uk+1 −∇uk‖2

+ ‖zk − zk−1‖2
βk−1
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≤ 2C

βk−1
+ ‖∇uk+1 −∇uk‖2.

As k → ∞, we have wk+1 − wk → 0. Altogether, we can derive the

following results:

lim
n→∞

(ukn+1, vkn+1,wkn+1) = lim
n→∞

(ukn , vkn ,wkn ) = (u∗, v∗,w∗).

(42)

Furthermore, the assumptions give us

lim
n→∞

βkn (vkn+1 − vkn ) = 0,

lim
n→∞

βkn (wkn+1 − wkn ) = 0,

lim
n→∞

ykn+1 − ykn = 0,

lim
n→∞

zkn+1 − zkn = 0.

By (21d)–(21e), we have

‖Au∗ − v∗‖2 = lim
n→∞

‖Aukn+1 − vkn+1‖2

= lim
n→∞

‖ykn+1 − ykn‖2
βkn

≤ lim
n→∞

C

βkn

= 0,

‖∇u∗ − w∗‖2 = lim
n→∞

‖∇ukn+1 − wkn+1‖2

= lim
n→∞

‖zk+1 − zk‖2
βkn

≤ lim
n→∞

C

βkn

= 0.

Hence, we have Au∗ = v∗ and ∇u∗ = w∗.
The optimality conditions at iteration kn are the following:

− µ1ukn+1 + A⊤ykn + βknA
⊤(Aukn+1 − vkn )

+∇⊤zkn + βkn∇⊤(∇ukn+1 − wkn ) = 0, (43a)

λ

(

11− f

vkn+1

)

− ykn − βkn (Aukn+1 − vkn+1) = 0, (43b)

zkn + βkn (∇ukn+1 − wkn+1) ∈ ∂(‖wkn+1‖1 − α‖wkn+1‖2,1).
(43c)

Expanding (43a) by substituting in (21d)–(21e) and taking the

limit, we have

0 = lim
n→∞

−µ1ukn+1 + A⊤ykn + βknA
⊤(Aukn+1 − vkn )

+∇⊤zkn + βkn∇⊤(∇ukn+1 − wkn )

= lim
n→∞

−µ1ukn+1 + A⊤ykn + βknA
⊤(Aukn+1 − vkn+1)

+ βknA
⊤(vkn+1 − vkn )+∇⊤zkn

+ βkn∇⊤(∇ukn+1 − wkn+1)

+ βkn∇⊤(wkn+1 − wkn )

= lim
n→∞

−µ1ukn+1 + A⊤ykn + A⊤(ykn+1 − ykn )

+ βknA
⊤(vkn+1 − vkn )+∇⊤zkn

+∇⊤(zkn+1 − zkn )+ βkn∇⊤(wkn+1 − wkn )

=− µ1u∗ + A⊤y∗ +∇⊤z∗.

Substituting in (21d) into (43b) and taking the limit give us

0 = lim
n→∞

λ

(

11− f

vkn+1

)

− ykn − βkn (Aukn+1 − vkn+1)

= lim
n→∞

λ

(

11− f

vkn+1

)

− ykn − (ykn+1 − ykn )

= λ

(

11− f

v∗

)

− y∗.

Lastly, by substituting (21e) into (43c), we have

zkn+1 ∈ ∂(‖wkn+1‖1 − α‖wkn+1‖2,1).

By continuity, we have ‖wkn+1‖1 − α‖wkn+1‖2,1 → ‖w∗‖1 −
α‖w∗‖2,1. Together with the fact that (wkn+1, zkn+1) → (w∗, z∗),
we have z∗ ∈ ∂

(

‖w∗‖1 − α‖w∗‖2,1
)

by closedness of the

subdifferential.

Therefore, (u∗, v∗,w∗, y∗, z∗) is a stationary point.

Remark 2. It is true that the assumptions in Theorem 9 are rather

strong, but they are standard in the convergence analyses of other

ADMM algorithms for nonconvex problems that fail to satisfy

the conditions for global convergence in Wang et al. (2019). For

example, Jung (2017), Jung et al. (2014), Li et al. (2016) and Li Y.

et al. (2020) assumed convergence of the successive differences of

the primal variables and Lagrange multipliers. Instead, we modify

the convergence of the successive difference of the primal variables,

i.e., βk(vk+1 − vk) → 0,βk(wk+1 − wk) → 0. Boundedness of

the Lagrange multiplier (i.e., {yk}∞k=1
) was also assumed in Liu

et al. (2022) and Xu Y. et al. (2012), which required a stronger

assumption than ours regarding the successive difference of the

Lagrange multipliers.

4. Numerical experiments

In this section, we apply the proposed method of AITV

Poisson SaT/SLaT on various grayscale and color images for image

segmentation. For grayscale images, we compare our method

with the original TV SaT (Chan et al., 2014), thresholded-Rudin-

Osher-Fatemi (T-ROF) (Cai et al., 2019), and the Potts model

(Potts, 1952) solved by either Pock’s algorithm (Pock) (Pock et al.,

2009) or Storath andWeinmann’s algorithm (Storath) (Storath and

Weinmann, 2014). For color images, we compare with TV SLaT

(Cai et al., 2017), Pock’s method (Pock et al., 2009), and Storath’s

method (Storath and Weinmann, 2014). We can solve (9) for

TV SaT/SLaT via Algorithm 2 that utilizes the proximal operator

corresponding to the ‖ · ‖2,1 norm. The code for T-ROF is provided

by the respective author1 andwe can adapt it to handle blur by using

a more general data fidelity term. Pock’s method is implemented

by the lab group2. Storath’s method is provided by the original

author3. Note that T-ROF, Pock’s method, and Storath’s method

are designed for images corrupted with Gaussian noise. We apply

the Anscombe transform (Anscombe, 1948) to the test images,

after which the Poisson noise becomes approximately Gaussian

noise. Since Storath’s method is not for segmentation, we perform a

1 https://xiaohaocai.netlify.app/download/

2 Python code is available at https://github.com/VLOGroup/pgmo-

lecture/blob/master/notebooks/tv-potts.ipynb and a translated MATLAB

code is available at https://github.com/kbui1993/MATLAB_Potts.

3 https://github.com/mstorath/Pottslab
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FIGURE 1

The entire DRIVE dataset (Staal et al., 2004) for binary segmentation. The image size is 584× 565 with background value of 200 and the pixel value for

vessels to be 255.

post-processing step of k-means clustering to its piecewise-constant

output. For the SLaT methods, we parallelize the smoothing step

separately for each channel.

To quantitatively measure the segmentation performance, we

use the DICE index (Dice, 1945) and peak signal-to-noise ratio

(PSNR). Let S ⊂ � be the ground-truth region and S′ ⊂ � be

a region obtained from the segmentation algorithm corresponding

to the ground-truth region S. The DICE index is formulated by

DICE = 2|S ∩ S′|
|S| + |S′| .

To compare the piecewise-constant reconstruction f̃ according to

(10) with the original test image f , we compute PSNR by

PSNR = 20 log10
(M × N)× P
∑

i,j(fi,j − f̃i,j)2
,

whereM × N is the image size and P = maxi,j fi,j.

Poisson noise is added to the test images by the MATLAB

command poissrnd. To ease parameter tuning, we scale each

test image to [0, 1] after its degradation with Poisson noise and/or

blur. We set σ = 1.25 and β1,0 = β2,0 = 1.0, 2.0 in Algorithm 2

for grayscale and color images, respectively. The stopping criterion

is either 300 iterations or when the relative error of uk is below

ǫ = 10−4. We tune the fidelity parameter λ and the smoothing

parameter µ for each image, which will be specified later. For

T-ROF, Pock’s method, and Storath’s method, their parameters

are manually tuned to give the best DICE indices for binary

segmentation (Section 4.1) and the PSNR values for multiphase

segmentation (Sections 4.2-4.3). All experiments are performed in

MATLAB R2022b on a Dell laptop with a 1.80 GHz Intel Core

i7-8565U processor and 16.0 GB RAM.

4.1. Grayscale, binary segmentation

We start with performing binary segmentation on the entire

DRIVE dataset (Staal et al., 2004) that consists of 20 images shown

in Figure 1. Each image has size 584 × 565 with modified pixel

values of either 200 for the background or 255 for the vessels.

Before adding Poisson noise, we set the peak value of the image

to be P/2 or P/5, where P = 255. Note that a lower peak value

indicates stronger noise in the image, thus more challenging for

denoising. We examine three cases: (1) P/2 no blur, (2) P/5 no blur,

and (3) P/2 with Gaussian blur specified by MATLAB command

fspecial(“gaussian,” [10 10], 2). For the TV SaT

method, we set λ = 14.5, µ = 0.5 for case (1), λ = 8.0, µ = 0.5

for case (2), and λ = 22.5, µ = 0.25 for case (3). For the AITV SaT

method, the parameters λ andµ are set the same as TV SaT, and we

have α = 0.3 for cases (1)–(2) and α = 0.8 for case (3).

Table 1 records the DICE indices and the computational time

in seconds for the competing methods, averaged over 20 images.

We observe that AITV SaT attains the best DICE indices for all

three cases with comparable computational time to TV SaT and T-

ROF, all of which are much faster than Pock and Storath. As visually

illustrated in Figure 2, AITV SaT segments more of the thinner

vessels compared to TV SaT and T-ROF in five images, thereby

having the higher average DICE indices.
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TABLE 1 DICE and computational time in seconds of the binary segmentation methods averaged over 20 images in Figure 1 with standard deviations in

parentheses.

TV SaT AITV SaT T-ROF Pock Storath

P/2 no blur DICE
0.9464

(0.0091)

0.9501

(0.0076)

0.9463

(0.0073)

0.8466

(0.0301)

0.8855

(0.0181)

Time (sec.)
4.2401

(0.3618)

5.7342

(0.5251)

4.9206

(1.4281)

24.7376

(3.2454)

19.9456

(1.8875)

P/5 no blur DICE
0.8714

(0.0134)

0.8735

(0.0125)

0.8570

(0.0170)

0.6504

(0.0910)

0.8277

(0.0191)

Time (sec.)
4.7076

(0.6937)

6.4027

(0.8441)

5.4943

(0.7935)

46.9346

(9.4969)

21.8734

(2.7660)

P/2 with Gaussian Blur DICE
0.7244

(0.0254)

0.7411

(0.0220)

0.7322

(0.0251)

0.5473

(0.0398)

0.6944

(0.0217)

Time (sec.)
7.4495

(1.0983)

9.2523

(1.5959)

11.7337

(2.1252)

47.3911

(10.9191)

19.9444

(2.4142)

Bold indicates best result.

FIGURE 2

Binary segmentation results of Figure 1 with peak P/2 under Gaussian blur and Poisson noise.

4.2. Grayscale, multiphase segmentation

We examine the multiphase segmentation on the entire

BrainWeb dataset (Aubert-Broche et al., 2006) that consists of 20

grayscale images as shown in Figure 3. Each image is of size 104 ×
87 and has four regions to segment: background, cerebrospinal

fluid (CSF), gray matter (GM), and white matter (WM). The

pixel values are 10 (background), 48 (CSF), 106 (GM), and 154

(WM). The maximum intensity P = 154. We consider two

cases: (1) P/2 no blur and (2) P/2 with motion blur specified by

fspecial(“motion,” 5, 225). For the SaT methods, we

have µ = 1.0, α = 0.6, 0.7, and λ = 4.0, 5.0 for case (1) and case

(2), respectively.

Across all 20 images of the BrainWeb dataset, Table 2 reports

the average DICE indices for CSF, GM, and WM and average

computational times in seconds of the segmentation methods.

For both cases (1) and (2), AITV SaT attains the highest

average DICE indices for segmenting CSF, GM, and WM.

AITV SaT is comparable to TV SaT and T-ROF in terms of

computational time.

Figure 4 shows the segmentation results of the first image in

Figure 3 for case (1). When segmenting CSF, the methods (TV

SaT, AITV SaT, and Storath) yield similar visual results, while Pock

fails to segment roughly half of the region. In addition, AITV

SaT segments the most GM region with the least amount of noise

artifacts than the other methods. Lastly, for WM segmentation,

AITV SaT avoids the “holes” or “gaps” and segments fewer regions

outside of the ground truth, thus outperforming TV SaT and

Storath. For the three regions, T-ROF has the most noise artifacts

in its segmentation results.
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FIGURE 3

The entire BrainWeb dataset (Aubert-Broche et al., 2006) for grayscale, multiphase segmentation. Each image is of size 104× 87. The pixel values are

10 (background), 48 (cerebrospinal fluid), 106 (gray matter), and 154 (white matter).

TABLE 2 DICE and computational time in seconds of the multiphase segmentation methods averaged over 20 images in Figure 3 with standard

deviations in parentheses.

TV SaT AITV SaT T-ROF Pock Storath

P/8 no blur CSF DICE
0.8208

(0.0270)

0.8396

(0.0262)

0.7398

(0.1316)

0.4572

(0.1474)

0.8041

(0.0244)

GM DICE
0.8097

(0.0258)

0.8477

(0.0157)

0.7904

(0.0422)

0.7507

(0.0719)

0.7900

(0.0344)

WMDICE
0.8449

(0.0125)

0.8694

(0.0101)

0.8221

(0.0132)

0.8459

(0.0283)

0.8138

(0.0196)

Time (sec.)
0.2607

(0.0625)

0.2863

(0.0470)

0.2202

(0.0324)

2.6139

(0.6690)

0.3383

(0.0948)

P/8 with Motion Blur CSF DICE
0.6196

(0.0385)

0.6260

(0.0483)

0.6174

(0.0460)

0.3772

(0.0561)

0.4964

(0.0468)

GM DICE
0.6809

(0.0304)

0.7138

(0.0262)

0.6528

(0.0358)

0.6345

(0.0590)

0.6544

(0.0399)

WMDICE
0.7757

(0.0127)

0.7935

(0.0110)

0.7686

(0.0164)

0.7529

(0.0185)

0.7382

(0.0140)

Time (sec.)
0.2494

(0.0443)

0.2854

(0.0279)

0.3647

(0.0693)

2.5782

(0.4683)

0.3052

(0.1399)

Bold indicates best result.

4.3. Color segmentation

We perform color image segmentation on 10 images shown

in Figure 5, which are selected from the PASCAL VOC 2010

dataset (Everingham et al., 2009). Each image has six different color

regions. Figure 5A is of size 307 × 461; Figure 5B is of 500 × 367;

Figures 5C, H, I are of 500 × 375; and Figures 5D–G, J are of

375 × 500. Before adding Poisson noise to each channel of each

image, we set the peak value P = 10. We choose the parameters of

the SLaT methods to be λ = 1.5, µ = 0.05, and α = 0.6.

Figures 6, 7 present the piecewise-constant approximations

via (10), showing similar segmentation results obtained by

TV SLaT, AITV SLaT, and Storath. Quantitatively in Table 3,

AITV SLaT has better PSNRs than TV SLaT and Pock for

all the images and outperforms Storath for seven. Overall, the

proposed AITV SLaT has the highest PSNR on average over 10

images with the lowest standard deviation and comparable speed

as Storath.

4.4. Parameter analysis

The proposed smoothing model (11) involves the following

parameters:
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FIGURE 4

Segmentation result of the first image of Figure 3 with peak P/8 under Poisson noise with no blur. From top to bottom are segmentation results for

CSF, GM, and WM.

FIGURE 5

Test images from the PASCAL VOC 2010 dataset (Everingham et al., 2009) for color, multiphase segmentation. Each image has six regions. The image

sizes are (A) 307× 461, (B) 500× 367, (C) 500× 375, (D–G) 375× 500, (H, I) 500× 375, and (J) 375× 500.

• The fidelity parameter λ weighs how close the approximation

Au∗ is to the original image f . For a larger amount of noise,

the value of λ should be chosen smaller.

• The smoothing parameter µ determines how smooth the

solution u∗ should be. A larger value of µ may improve

denoising, but at a cost of smearing out the edges between
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FIGURE 6

Color image segmentation results of Figures 5A–E.

FIGURE 7

Color image segmentation results of Figures 5F–J.

adjacent regions, which may be segmented together if they

have similar colors.

• The sparsity parameter α ∈ [0, 1] determines how sparse

the gradient vector at each pixel should be. More specifically,
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the closer the value α is to 1, the more ‖∇u‖1 − α‖∇u‖2,1
resembles ‖∇u‖0.

We perform sensitivity analysis on these parameters to

understand how they affect the segmentation quality of AITV

SaT/SLaT. We consider two types of tests in the case of P/8 with

motion blur in Figure 3. In the first case (Figure 8), we fix µ = 1.0

and vary α, λ. In the second case (Figure 9), we fix λ = 5.0 and vary

α,µ. Figure 8 reveals a concave relationship of the DICE index of

each region with respect to the parameter λ, which implies there

exists the optimal choice of λ. Additionally, when λ is small, a

large value for α can improve the DICE indices. According to

Figure 9, the DICE indices of the GM and WM regions decrease

with respect to µ, while the DICE index of the CSF region is

approximately constant. For α = 0.8, the DICE indices of the GM

and WM regions are the largest when µ ≥ 1, but the large α is

not optimal for CSF. Hence, an intermediate value of α, such as

0.6, is preferable to attain satisfactory segmentation quality for all

three regions.

Lastly, in Figure 10, we conduct sensitive analysis for the case

of P = 10 of Figure 5. We fix µ = 0.05, while varying λ,α in

Figure 10A, which indicates that the optimal value for α is in the

range of 0.5 ≤ α ≤ 0.7. Then we fix λ = 1.5 to examine µ and α

in Figure 10B. For 0.2 ≤ α ≤ 0.7, PSNR decreases as µ increases.

Again, α = 0.6 generally yields the best PSNR.

5. Conclusion and future work

In this paper, we developed the AITV Poisson SaT/SLaT

framework for image segmentation. In particular, we proposed

a simplified Mumford-Shah model with the AITV regularization

and Poisson fidelity for the smoothing step. The model was

proven to have a global minimizer. Our numerical algorithm

incorporated a specific splitting scheme for ADMM and the

ℓ1 − αℓ2 proximal operator for solving a subproblem. Convergence

analysis established that the sequence generated by ADMM has

a convergent subsequence to a stationary point of the nonconvex

model. In our numerical experiments, the AITV Poisson SaT/SLaT

yielded high-quality segmentation results within seconds for

various grayscale and color images corrupted with Poisson noise

and/or blur. For future directions, we are interested in other

nonconvex regularization, such as ℓ1/ℓ2 on the gradient (Wang

et al., 2021, 2022; Wu et al., 2022a), ℓp, 0 < p < 1, on the gradient

(Hintermüller and Wu, 2013; Li Y. et al., 2020; Wu et al., 2021b),

and transformed total variation (Huo et al., 2022), as alternatives

to AITV. On the other hand, we can develop AITV variants of

weighted TV (Li and Li, 2022) or adaptive TV (Wu et al., 2021a;

TABLE 3 PSNR and computation time in seconds for color image

segmentation of the images in Figure 5.

TV SLaT AITV
SLaT

Pock Storath

PSNR Figure 5A 29.0337 30.4619 19.2306 28.7141

Figure 5B 31.8673 31.7055 17.3512 30.9703

Figure 5C 30.9605 33.4217 18.0389 32.2217

Figure 5D 29.5265 32.5505 21.4873 34.7881

Figure 5E 29.8903 31.0656 19.7646 28.3456

Figure 5F 33.2308 34.7619 17.9788 34.4106

Figure 5G 28.1136 30.6237 22.5048 31.2439

Figure 5H 33.2682 33.4250 18.9390 31.9377

Figure 5I 30.0659 31.7937 20.0856 29.3905

Figure 5J 31.4164 34.0610 20.3185 34.3599

Avg.

(Std.)

30.7373

(1.7266)
32.3870

(1.4905)

19.5700

(1.6147)

31.6383

(2.3686)

Time (sec.) Figure 5A 7.1992 8.2455 148.9232 4.9410

Figure 5B 12.2238 11.8890 321.0637 9.9533

Figure 5C 5.6775 7.4494 384.6998 10.1785

Figure 5D 4.9511 7.2061 128.4236 7.0026

Figure 5E 6.2380 7.0719 275.0501 7.9808

Figure 5F 6.0509 7.2392 398.1339 10.0982

Figure 5G 7.2821 7.6919 165.2142 7.9315

Figure 5H 6.0269 9.7018 385.3311 7.9389

Figure 5I 7.0375 8.0875 250.3698 9.7501

Figure 5J 6.1873 10.6472 334.8662 7.2176

Avg.

(Std.)

6.8874

(2.0088)
8.5230

(1.6610)

279.2076

(102.7063)

8.2993

(1.7031)

Bold indicates best result.

FIGURE 8

Sensitivity analysis on λ for the P/8 with motion blur case of Figure 3. The parameter µ = 1.0 is fixed. DICE indices averaged over 20 images for each

brain region are plotted with respect to λ.
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FIGURE 9

Sensitivity analysis on µ for the P/8 with motion blur case of Figure 3. The parameter λ = 5.0 is fixed. DICE indices averaged over 20 images for each

brain region are plotted with respect to µ.

FIGURE 10

Sensitivity analysis of parameters for P = 10 case of Figure 5. (A) Sensitivity analysis on λ when µ = 0.05 fixed. (B) Sensitivity analysis on µ when

λ = 1.5 fixed. Average PSNR is plotted.

Zhang et al., 2022). Moreover, we plan to determine how to make

the sparsity parameter α in AITV adaptable to each image. In future

work, we will adapt other segmentation algorithms (Li et al., 2010,

2016; Jung et al., 2014; Jung, 2017; Cai et al., 2019; Yang et al., 2022;

Pang et al., 2023) designed for Gaussian noise or impulsive noise to

Poisson noise.
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