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Difference of anisotropic and
Isotropic TV for segmentation
under blur and Poisson noise

Kevin Bui'*, Yifei Lou?, Fredrick Park® and Jack Xin!

!Department of Mathematics, University of California, Irvine, Irvine, CA, United States, 2Department of
Mathematical Sciences, University of Texas at Dallas, Richardson, TX, United States, *Department of
Mathematics & Computer Science, Whittier College, Whittier, CA, United States

In this paper, we aim to segment an image degraded by blur and Poisson noise.
We adopt a smoothing-and-thresholding (SaT) segmentation framework that finds
a piecewise-smooth solution, followed by k-means clustering to segment the
image. Specifically for the image smoothing step, we replace the least-squares
fidelity for Gaussian noise in the Mumford-Shah model with a maximum posterior
(MAP) term to deal with Poisson noise and we incorporate the weighted difference
of anisotropic and isotropic total variation (AITV) as a regularization to promote the
sparsity of image gradients. For such a nonconvex model, we develop a specific
splitting scheme and utilize a proximal operator to apply the alternating direction
method of multipliers (ADMM). Convergence analysis is provided to validate the
efficacy of the ADMM scheme. Numerical experiments on various segmentation
scenarios (grayscale/color and multiphase) showcase that our proposed method
outperforms a number of segmentation methods, including the original SaT.
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1. Introduction

Image segmentation partitions an image into multiple, coherent regions, where pixels
of one region share similar characteristics such as colors, textures, and edges. It remains
an important yet challenging problem in computer vision that has various applications,
including magnetic resonance imaging (Duan et al., 2015; Tongbram et al., 2021; Li et al.,
2022) and microscopy (Zosso et al., 2017; Bui et al., 2020). One of the most fundamental
models for image segmentation is the Mumford-Shah model (Mumford and Shah, 1989)
because of its robustness to noise. Given an input image f : 2 — R defined on an open,
bounded, and connected domain  C R2, the Mumford-Shah model is formulated as

[Vul? dx 4 Length(I"), (1)

A
min Eyis(,T) =f/‘(f—u)2 dx+ﬁ/
ul 2 Ja 2 Jar

where u: Q2 — R s a piecewise-smooth approximation of the image f, I' C € is a compact
curve representing the region boundaries, and A, 4 > 0 are the weight parameters. The
first term in (1) is the fidelity term that ensures that the solution u approximates the image
f. The second term enforces u to be piecewise smooth on  \ I'. The last term measures
the perimeter, or more mathematically the one-dimensional Haussdorf measure in R? (Bar
et al., 2011), of the curve I'". However, (1) is difficult to solve because the unknown set of
boundaries needs to be discretized. One common approach involves approximating the
objective function in (1) by a sequence of elliptic functionals (Ambrosio and Tortorelli,
1990).
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Alternatively, Chan and Vese (2001) (CV) simplified (1) by
assuming the solution u to be piecewise constant with two phases
or regions, thereby making the model easier to solve via the level-
set method (Osher and Sethian, 1988). Let the level-set function ¢
be Lipschitz continuous and be defined as follows:

¢(x) >0 ifxisinside T,
¢(x) =0 ifxisatl,
¢(x) <0 ifxisoutsideT.

By the definition of ¢, the curve I" is represented by ¢(x) = 0. The
image region can be defined as either inside or outside the curve I.
In short, the CV model is formulated as

min Ecy(er, e, #): = ( fg If — a1l H(@) dx
+fQ I — P — Hg) dx)
+v / |[VH(¢)| dx, (2)
Q

where A, v are weight parameters, the constants ¢y, ¢; are the mean
intensity values of the two regions, and H(¢) is the Heaviside
function defined by H(¢) = 1if ¢ > 0 and H(¢p) = 0 otherwise. A
convex relaxation (Chan et al., 2006) of (2) was formulated as

min A (/ [f—cl|2u dx—}—/ [f—cz|2(1 —u) dx)
c1,62,u€[0,1] Q Q
+v / |Vu| dx,
Q
where an image segmentation # is obtained by thresholding u, that

is

() = {1 if u(x) > 7,
0

for some value T € (0,1). It can be solved efficiently by convex

ifu(x) <,

optimization algorithms, such as the alternating direction method
of multipliers (ADMM) (Boyd et al., 2011) and primal-dual hybrid
gradient (Chambolle and Pock, 2011). A multiphase extension of
(2) was proposed in Vese and Chan (2002), but it requires that the
number of regions to be segmented is a power of 2. For segmenting
into an arbitrary number of regions, fuzzy membership functions
were incorporated (Li et al., 2010).

Cai et al. (2013) proposed the smoothing-and-thresholding
(SaT) framework that is related to the model (1). In the smoothing
step of SaT, a convex variant of (1) is formulated as

A
u"‘:argminf/(f—Au)2 dx—}—ﬁ/ [Vul? dx—‘f-/ |Vu| dx,
u 2 Jg 2 Ja Q
3)

yielding a piecewise-smooth solution u*. The blurring operator A is
included in the case when the image f is blurred. The total variation
(TV) term [, |Vu| dx is a convex approximation of the length
term in (2) by the coarea formula (Chan et al., 2006). After the
smoothing step, a thresholding step is applied to the smooth image
u* to segment it into multiple regions. The two-stage framework
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has many advantages. First, the smoothing model (3) is strongly
convex, so it can be solved by any convex optimization algorithm
to obtain a unique solution u*. Second, the user can adjust the
number of thresholds to segment »* and the threshold values to
obtain a satisfactory segmentation result, thanks to the flexibility
of the thresholding step. Furthermore, the SaT framework can be
adapted to color images by incorporating an intermediate lifting
step (Cai et al., 2017). Before performing the thresholding step,
the lifting step converts the RGB space to Lab (perceived lightness,
red- green and yellow-blue) color space and concatenates both
RGB and Lab intensity values into a six-channel image. The multi-
stage framework for color image segmentation is called smoothing,
lifting, and thresholding (SLaT).

One limitation of (3) lies in the ¢, fidelity term that is
statistically designed for images corrupted by additive Gaussian
noise, and as a result, the smoothing step is not applicable to
other types of noise distribution. In this paper, we aim at Poisson
noise, which is commonly encountered when an image is taken by
photon-capturing devices such as in positron emission tomography
(Vardi et al., 1985) and astronomical imaging (Lantéri and Theys,
2005). By using the data fidelity term of Au — flog Au (Le et al,
2007), we obtain a smoothing model that is appropriate for Poisson
noise (Chan et al., 2014):

mink/(Au — flog Au) dx—i—ﬁ/ [Vul? dx—i—f |Vu| dx. (4)
u Q 2 Q Q

As a convex approximation of the length term in (1), the TV term
in (4) can be further improved by nonconvex regularizations. The
TV regularization is defined by the ¢; norm of the image gradient.
Literature has shown that nonconvex regularizations often yield
better performance than the convex £; norm in identifying sparse
solutions. Examples of nonconvex regularization include £,,0 <
p < 1 (Chartrand, 2007; Xu Z. et al., 2012; Cao et al., 2013),
41 — afy, a0 € [0,1] (Lou et al,, 2015a,b; Ding and Han, 2019; Li P.
etal., 2020; Ge and Li, 2021), £; /£, (Rahimi et al., 2019; Wang et al,,
2020; Xu et al.,, 2021), and an error function (Guo et al., 2021). Lou
etal. (2015c¢) designed a TV version of £1 — af, called the weighted
difference of anisotropic-isotropic total variation (AITV), which
outperforms TV in various imaging applications, such as image
denoising (Lou et al., 2015c), image reconstruction (Lou et al,
2015¢; Li P. et al., 2020), and image segmentation (Bui et al., 2021,
2022; Wu et al., 2022b).

In this paper, we propose an AITV variant of (4) to improve the
smoothing step of the SaT/SLaT framework for images degraded
by Poisson noise and/or blur. Incorporating AITV regularization
is motivated by our previous works (Park et al., 2016; Bui et al,,
2021, 2022), where we demonstrated that AITV regularization is
effective in preserving edges and details, especially under Gaussian
and impulsive noise. To maintain similar computational efficiency
as the original SaT/SLaT framework, we propose an ADMM
algorithm that utilizes the ¢; — €, proximal operator (Lou and
Yan, 2018). The main contributions of this paper are as follows:

e We propose an AITV-regularized variant of (4) and prove the
existence of a minimizer for the model.

e We develop a computationally efficient ADMM algorithm and
provide its convergence analysis under certain conditions.
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e We
grayscale/color images to demonstrate the effectiveness

conduct numerical experiments on  various

of the proposed approach.

The rest of the paper is organized as follows. Section 2 describes
the background information such as notations, Poisson noise, and
the SaT/SLaT framework. In Section 3, we propose a simplified
Mumford-Shah model with AITV and a MAP data fidelity term
for Poisson noise. In the same section, we show that the model
has a global minimizer and develop an ADMM algorithm with
convergence analysis. In Section 4, we evaluate the performance of
the AITV Poisson SaT/SLaT framework on various grayscale and
color images. Lastly, we conclude the paper in Section 5.

2. Preliminaries
2.1. Notation

Throughout the rest of the paper, we represent images and
mathematical models in discrete notations (i.e., vectors and
matrices). An image is represented as an M x N matrix, and hence
the image domain is denoted by @ = {1,2,..., M} x {1,2,...,N}.
We define two inner product spaces: X : = RN and Y: = X x X.
Let u € X. For shorthand notation, we define u > 0 if u;; > 0 for
all (i,j) € Q. The discrete gradient operator V: X — Y is defined
by (Vu),-,j = [(Vx”)i,j) (Vyu),"j], where

Ujj — Ujj—1 if 2 §j§N,
(Vit)ij=1 7 ! .
wip —uin  ifj=1,
and
uij—uj—1j if2<i<M,
(Vyw)ij = v s
uyj — Upm,j ifi=1.

The space X is equipped with the standard inner product (-, -) x, and
Euclidean norm || - ||2. The space Y has the following inner product
and norms: for p = (p1,p2) € Yand g = (q1,q2) € Y,

P9y = (p1,91)x + (P2, 32) %>

M N
ol =D > 10l + 1(p2)ijls

i=1 j=1
M N
ol = [ DD 10ifl® + 1(p2)ijl%,
i=1 j=1
M N
Ipllza =D Y /@0 + 02

For brevity, we omit the subscript X or Y in the inner product when
its context is clear.

2.2. AITV regularization

There are two popular discretizations of total variation:
the isotropic TV (Rudin et al, 1992) and the anisotropic TV
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(Choksi et al., 2011), which are defined by

M N
1Vl = 305 1Tl + ()2,

i=1 j=1
M N

IVally =" " [(Vawigl + 1(Vyu)ijl,

i=1 j=1

respectively. This work is based on the weighted difference between
anisotropic and isotropic TV (AITV) regularization (Lou et al,
2015c), defined by

M N

IVully — el Vully =D > <|(vxu>,»,j| + (V)i

i=1 j=1

o/ |(Vawyl2 + |<vyu),-,j|2> . )

for a weighting parameter o € [0,1]. The range of «
ensures the non-negativity of the AITV regularization. Note that
anisotropic TV is defined as the £; norm of the image gradient
[(Vxw)ij, (Vyu)ij] at the pixel location (i,j) € €, while isotropic
TV is the £, norm on the gradient vector. As a result, AITV
can be viewed as the £; — «f, regularization on the gradient
vector at every pixel, thereby enforcing sparsity individually at each

gradient vector.

2.3. Poisson noise

Poisson noise follows the Poisson distribution with mean and
variance 7, whose probability mass function is given by

, n>0. (6)

For a clean image g € X, its intensity value at each pixel g;; serves
as the mean and variance for the corresponding noisy observation
f € X defined by

fij ~ Poisson(g;;) V(i,j) € Q.

To recover the image g from the noisy image f, we find its
maximum a posteriori (MAP) estimation u, which maximizes the
probability P(u|f). By Bayes’ theorem, we have

P(f1u)P(u)
P(f)

It further follows from the definition (6) that

P(ulf) =

—iij i

P(fijluip)P(uij) = Pu,, (fij)P(uij) = T),l]
i)

P(uy).
Since Poisson noise is i.i.d. pixelwise, we have

P(u;;
Pulh) = [] p(ﬁ,ﬂu,-,j)%: [1
(i,)eQ b ij)eQ
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The MAP estimate of P(u|f) is equivalent to its negative logarithm,
thus leading to the following optimization problem:

115121{)1 Z Ui —fi,j log ujj — log]P’(u,-,j). (7)
(i,j)eQ

The last term —logP(u;;) can be regarded as an image prior
or a regularization. For example, Le et al. (2007) considered the
isotropic total variation as the image prior and proposed a Poisson
denoising model

min{u — flogu, 1) + | Vull2,1, ®)
uz

where log is applied pixelwise and 1 is the matrix whose entries are
all I’s. The first term in (8) is a concise notation that is commonly
used as a fidelity term for Poisson denoising in various imaging
applications (Le et al., 2007; Chan et al., 2014; Wen et al., 2016;
Chang et al., 2018; Chowdhury et al., 2020a,b).

2.4. Review of Poisson SaT/SLaT

A Poisson SaT framework (Chan et al.,, 2014) consists of two
steps. Given a noisy grayscale image f € X corrupted by Poisson
noise, the first step is the smoothing step that finds a piecewise-
smooth solution u* from the optimization model:

u* = argmin A{Au — flog Au, 1) + %||Vu||% + |Vull21. (9)

u=>0

Then in the thresholding step, K — 1 threshold values 7; < 1, <
. < tg—1 are appropriately chosen to segment u* into K regions,
where the kth region is given by
Q= {(i) € Qimp1 < ujy < T
with 79: = infyequ*(x). The thresholding step is typically
performed by k-means clustering.

The Poisson smoothing, lifting, and thresholding (SLaT)
framework (Cai et al., 2017) extends the Poisson SaT framework
to color images. For a color image f = (fi,f2,f3) € X x X x X,
the model (9) is applied to each color channel f; for i = 1,2,3,
thus leading to a smoothed color image u* = (uj,u},u}). An
additional lifting step (Luong, 1993) is performed to transform u*
to (u), uy, u}) in the Lab space (perceived lightness, red-green, and
yellow-blue). The channels in Lab space are less correlated than in
RGB space, so they may have useful information for segmentation.
The RGB image and the Lab image are concatenated to form
the multichannel image &1: = (u},u5, u3, u, u), u}), followed by
the thresholding stage. Generally, k-means clustering yields K
centroids ci,...,cx as constant vectors, which are used to form
the region

Q=101 e Q:|tj; —cxll, = min ||#;; — ¢
k {( 7 ll2tij kll2 S ll2i, 2

fork =1,...,K such that ;s are disjoint and U1k<=1 Q= Q.
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1 Input:
o image f=(fi,....fa)
e blurring operator A
e fidelity parameter A >0
e smoothing parameter pu >0
e AITV parameter « € [0,1]

e the number of regions in the image K

2 Output: Segmentation f
3 Stage one: Compute uy by solving
for £=1,...,d.

(11) separately

4 Stage two: if fisagrayscaleimage, i.e., d =1 then

5 LGO to stage three.

6 elseif f isa colorimage,ie,d =3 then

7 Transfer the solution u* = (uj,u},uj) into Lab
space to obtain (u},u},u}) and concatenate to
form & = (u},u}, uf, u}, uy, u}).

8 Stage three: Apply k-means to obtain {(ck,Qk)}kK:l

and compute f by (10).

Algorithm 1. AITV Poisson SaT/SLaT.

After the thresholding step for both SaT/SLaT, we define a
piecewise-constant approximation of the image f by

K

Ja)suchthatfy = > " cllq Ve =1,...,d, (10)
k=1

f={...

where ¢y is the £th entry of the constant vector ¢ and

1 if(i,)) € 2

1 =
o i) ¢ 2

Recall that d = 1 when f is grayscale, and d = 3 when f is color.

3. Proposed approach

To improve the Poisson SaT/SLaT framework, we propose to
replace the isotropic TV in (9) with AITV regularization. In other
words, in the smoothing step, we obtain the smoothed image u*
from the optimization problem

u* = argmin F(u): = A(Au — flog Au, 1) + %||Vu||§

u

+HIVuly — [ Vullz;,  (11)

for « € [0,1]. We establish that this model admits a global
solution. We then develop an ADMM algorithm to find a solution
and provide the convergence analysis. The overall segmentation

approach is described in Algorithm 1.

3.1. Model analysis

To establish the solution’s existence of the proposed model (11),
we start with Lemma 1, a discrete version of Poincarés inequality
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(Evans, 2010). In addition, we prove Lemma 2 and Proposition 3,
leading to the global existence theorem (Theorem 4).

Lemma 1. There exists a constant C > 0 such that
lu—ulll, < CllVull2,1,

1 M N
ZWZZ”IKJ‘-

i=1 j=1

foreveryu € Xand u:

Proof. We prove it by contradiction. Suppose there exists a
sequence {uy} | such that

g — wellly > k| Vugll2,1, (13)

M N
where o, = —— Z Z(”k)i j- For every k, we normalize each

element in the sequence by vy = %. It is straightforward

that

M N
1
~ MN DY ij=0, Inla=1 VkeN.  (14)

i=1 j=1

By (13), we have

9%l < - (15)
k

As {w ]2, is bounded, there exists a convergent subsequence

{ij }]‘?:01 such that vk, = v* for v* € X. It follows from (15) that

IVv*|l2,1 = 0. Since ker(V) = {cl:c € R}, then v* is a constant

= 0 and [v*[] = 1. This

contradiction proves the lemma. O

vector. However, (14) implies that ¥*

Lemma 2. Suppose |[f|lcc < oo and min;;f;; > 0. There exists a
scalar uy > 0 such that we have 2(x
and (i,]) € Q.

— fijlogx) > x forany x > ug

Proof. For each (i, j) € 2, we want to show that there exists u;; > 0
such that H(x): = x — 2fj;jlogx > 0 for x > w;;. Since H(x) is
strictly convex and it attains a global minimum at x = 2f;, it is

increasing on the domain x > 2f;;. Additionally as x dominates

log(x) as x — 00, there exists u;; > 2f;; > 0 such that Togu; =
2f; j, which implies that H(u;;) = u;j — 2fijlogu;j > 0. As a result,
for x > u;j > 2f;;, we obtain x — 2f;jlogx = H(x) > H(u;;) > 0.
Define ug : = max;; u;j, and hence we have 2(x — f;;logx) > x for

x> uo = uij V(i j) € Q.

Proposition 3. Suppose ker(A) Nker(V) = {0} and {ux}72, C X
If {(Aug, Vup)}2 | is bounded, then {uy ]2 | is bounded.

Proof. Since ker(A) N ker(V) =
calculations lead to

{0}, we have A1 # 0. Simple

lue[|AL|l2 = [[AGu L) |2 < |AGu D — u)ll2 + |Augll2
< NAllllug — w2 + [[Augll2
< CllANIVugli21 + lAugll2,

(16)
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where the last inequality is due to Lemma 1. The boundedness of
{Au}p2, and {Vuy}p2 | implies that {u}72, is also bounded by
(16). We apply Lemma 1 to obtain

luklla < Nuk — wedllz 4 el < Cll Vgl + [lugllz < oo,

which thereby proves that {u}72 | is bounded.

Finally, we adapt the proofin Chan et al. (2014) to establish that
F has a global minimizer.

Theorem 4. Suppose ||f|lcc < oo and min;jf;; > 0.IfA > 0, >
0,a € [0,1), and ker(A) N ker(V) = {0}, then F has a global
minimizer.

Proof. Tt is straightforward that [|Vu|l,; < [[Vu|l;, thus |[Vul|; —
a||Vull2,1 > 0 for a € [0, 1). As a result, we have

F(u) > 2(Au — flog Au, 1) =

Given a scalar f > 0, the function G(x) = x — flog(x) attains
its global minimum at x = f. Therefore, we have x — f;;jlogx >
fij — fijlogfij forall x > 0 and (i,j) € €2, which leads to a lower

bound of F(u), i.e.,

F(u) >AZZ (Au);,

i=1 j=1

N
>2.) Y fij—fijlogfij = Fo.

i=1 j=1

— fijlog(Au);;

17)

As F(u) is lower bounded by Fy, we can choose a minimizing
sequence {”k}l?;l and hence F(uy) has a uniform upper bound,
denoted by By, i.e., F(ux) < Bj for all k € N. It further follows
from (17) that

By = F(u) = AMAuy — flog Auy, ) = Fo,

which implies that {|(Aux — flogAuy, ﬂ)l}i‘;l is uniformly
0 such that
|(Auk — flog Auy, ]1)’ < By, Vk. Using these uniform bounds, we
derive that

bounded, i.e., there exists a constant B, >

“w
(1 =)l Vuglli < E”V’/lk”% + I Vuglls — el Vg2

= F(ug) — M(Aug — flog Auy, 1) < By + AB,.

Asa < 1, the sequence {Vuy} 2 | is bounded.
To prove the boundedness of {Aux}p?,, we introduce the

notations of xT = max(x, 0) and x~ = — min(x, 0) for any x € R.
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Then x = xT — x™. By Lemma 2, there exists uy > 0 such that
2(x — fijlogx) > x, Vx > ug and (i, j) € 2. We observe that

M=
M=

lAul = [(Aug)ijl
i=1 j=1
M N
< Z Z maX{Z((Auk),;j _fi,j 10g(A”k)i,j), uo}
i1 j=1
M N
<2) > ((Aug)ij — fijlog(Aug)ij) ™ + MNug

Il
—
~.
Il
—

Il
.ME

I
-
~.
I
—

M=

[((Auk)i,j — fijlog(Auy)ij) (18)

+ ((Aug)ij — fij log(Auk)i,j)i] + MNug

= 2(Auy — flog Auy, 1)
M N

+2 Z Z ((Auk)i,j _fi,j log(Auk)i,j)_ + MNuyg

i=1 j=1

M N
< 2B, +ZZZ [f,] —f,-,]-logf,-,j‘ + MNuj < oo.
i=1 j=1

This shows that {Au;}7° | is bounded.

Since both {Vu}72 | and {Aug}P2 | are bounded, then {uy}P2
is bounded due to Proposition 3. Therefore, there exists a
subsequence {uy, }5°, that converges to some u* € X. As F is

continuous and thus lower semicontinuous, we have
F(u*) < liminf F(u
(") < lim inf Fu, ),

which means that 4* minimizes F.

3.2. Numerical algorithm

To minimize (11), we introduce two auxiliary variables v € X
and w = (wx,wy) € Y, leading to an equivalent constrained
optimization problem:

min A{v—flogv, 1)

u,v,w

m
+ EIIVuH% +lwlh — allwliz

st. Au=v, Vu=w.

The corresponding augmented Lagrangian is expressed as

Lg,.p, (v, W, ¥, 2)
"
= A(v—flogw, 1) + 5 IVull3 + llwlh — alwllz,

Bi 5 (20)
+ (y, Au—v) + 7||Au — V|5 + (2, Vu —w)
B2
+ VU= wi,
where y € X and z = (zy,2y) € Y are Lagrange multipliers

and By, B, are positive parameters. We then apply the alternating
direction method of multipliers (ADMM) to minimize (19) that
consists of the following steps per iteration k:

Uy = argmin Lg, g, (4, Vi, Wi, Vi 2k)s (21a)
u

Frontiersin Computer Science

06

10.3389/fcomp.2023.1131317

Vip1 = argmin Lg g, (Ui 1, Vs Wi Yk 2k), - (21b)
v

Wiyl = arg min ‘Cﬂ]yk,ﬁzyk(ukJrl) Vik+1> W Vi Zk)s (21C)
w

YVir1 = Yk + Bri(Atgr — Vi), (21d)
Zkp1 = 2k + Bok (Vi1 — wigr)s (21e)
(Brk+15 Boi+1) = 0 (Brks Bok)s (211)

where o > 1.

Remark 1. The scheme presented in (21) slightly differs from the
original ADMM (Boyd et al,, 2011), the latter of which has o
1 in (21f). Having o0 > 1 increases the weights of the penalty

parameters S, B in each iteration k, thus accelerating the
numerical convergence speed of the proposed ADMM algorithm.
A similar technique has been used in Cascarano et al. (2021), Gu
et al. (2017), Storath and Weinmann (2014), Storath et al. (2014),
and You et al. (2019).

All the subproblems (21a)-(21c) have closed-form solutions. In
particular, the first-order optimality condition for (21a) is

BirATA — (u + o) ALk = AT (Bive — yi) — VT (2 — Bogwi)s
(22)

where A = —V TV is the Laplacian operator. If ker(A) Nker(V) =
{0}, then ,BLkATA — (u + Box)A is positive definite and thereby
invertible, which implies that (22) has a unique solution uf*!.
By assuming periodic boundary condition for u, the operators A
and AT A are block circulant (W ang et al,, 2008), and hence (22)
can be solved efficiently by the 2D discrete Fourier transform F.

Specifically, we have the formula

Uk+1
=F! (

where F~! is the inverse discrete Fourier transform, the superscript

F(A)* o F(Brivk — yi) — F(V)* o Flzk — Baxwk)
BrxF(A)* o F(A) — (1 + Brp) F(A)

)

(23)

+ denotes complex conjugate, the operation o is componentwise
multiplication, and division is componentwise. By differentiating
the objective function of (21b) and setting it to zero, we can get a
closed-form solution for v given by

Vik+1

2
(BusAusr + v — 21) + 1 (BLidugss +y — 21)° + 438y if
2Bk ’

(24)

where the square root, squaring, and division are performed

componentwise. Lastly, the w-subproblem (21c) can be
decomposed componentwise as follows:
(Wij)kg1 = argmin [[wij[l1 — allwijl2
W,',j
Bk @i\ |I°
+ 25wy — | (V)i + — 2 (25)
ﬁZ,k 2
(21)ij 1
= prox ((Vuk+1)i,j + ),
Bk Bk
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where the proximal operator for £; — «f, on x € R" is given by

. 1
prox(x,, B) = argmin ||y, — «|lyl> + ﬁux —yI3.  (26)
Y

The proximal operator for £; — af, has a closed form solution
summarized by Lemma 5.

Lemma 5. (Lou and Yan, 2018) Given x € R", 8 > 0,and @ €
[0, 1], the optimal solution to (26) is given by one of the following
cases:

1. When ||x||c > B, we have

. 5
K = (€l + ap)

where & = sign(x) o max(|x| — 8,0).
2. When (1 — @) < |lxlloc < B, then x* is a 1-sparse vector

such that one chooses i € argmax(|xj|) and defines x; =
j
(Iin + (ax — 1),3) sign(x;) and the remaining elements equal to
0.
3. When ||x]|co < (1 — ), then x* = 0.
In summary, we describe the ADMM scheme to solve (11) in
Algorithm 2.

3.3. Convergence analysis

We establish the subsequential convergence of ADMM
described in Algorithm 2. The global convergence of ADMM
(Wang et al,, 2019) is inapplicable to our model as the gradient
operator V is non-surjective, which will be further investigated in
future work. For the sake of brevity, we set § = ;1 = B, and denote

Lp(u,v,w,y,2): = Lg g(u, v, w,y, 2).

In addition, we introduce definitions of subdifferentials
(Rockafellar and Wets, 2009), which defines a stationary point of a

non-smooth objective function.

Definition 6. For a proper function h:R" — R U {400}, define
dom(h): = {x € R": h(x) < 4o00}.

(a) The regular subdifferential at x € dom(h) is given by

lim inf
X' —x,x' #x

éh(x) L= {W: h(x/) - h(x) - (W,x/ — _x) > 0}

flx" — xll

(b) The (limiting) subdifferential at x € dom(h) is given by
oh(x): =

{w: dx;p — xand wy € 3h(xk) with wy — wand h(x;) — h(x)} .

An important property of the limiting subdifferential is its

closedness: for any (xg, v) — (x,v) with vy € dh(xy), if h(xy) —
h(x), then v € dh(x).
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Lemma 7. Suppose that ker(A) Nker(V) = {0} and 0 < o < 1.
Let {(uk, Vi, Wi Vi 2k) } oo | be a sequence generated by Algorithm 2.
Then, we have

Ly Uk 15 Vi1 Whe 1> Vi 15 Zk1) — L (thies Vis Wi Vi 2k)

v 2 Po 2
< —E||Uk+1 —ugll; — 7||Vk+1 — vl (28)
1

=y (et =l + i = =l3)

for some constant v > 0.

Proof. If ker(A) N ker(V) = {0}, then BoATA + (Bo + )V TV is
positive definite, and hence there exists v > 0 such that

BelAull3 + Bk + wIVull? = BollAul3 + (Bo + )l Vull3

>vlul5 VkeN,

which implies that Elgk(u, V> Wk Vk» 2k) 18 strongly convex with
respect to u with parameter v. Additionally, £,3k(uk+1, Vs Wi Vi Zk)
is strongly convex with respect to v with parameter By < Bi. It
follows from Beck (2017), Theorem 5.25, that we have

L (Uiq15 V> Wi Vi 2k) — L (Uies Vies W Vie> 2k)
v
2
< —Elluk+1 — ugll3, (29)
Lp (Uit 15 Vs 1> Who Vi 2k) — L (Ui 15 Vi Wi Yio 2k)

Bo
= =5 vk = w3, (30)
As wy 1 is the optimal solution to (21c), it is straightforward to have

L (ks 15 Viy 1> Wt 1> Vio 2) — L8 (Ut 15 Vier 1, Wi Yo 2k) < 0.
(31)

Simple calculations by using (21d)-(21e) lead to

L Uy 1:Vk 1> Wit 15 Yk 15 2kt 1) — L Uk 15 Vet 1 Whe 1> Vi 2k)
= (L, (Ukt1> Vit 1> Wi 1 Vit 1> Zh 1)
— L (U 15 Vi1 Wi 1> Ykt 15 25))
+ (Lo (Ui 1> Vig 1 Wh 15 Yk 15 25)
— L (U 15 Vir 1 Wi 1> Yoo 26))

=(Zk 1 — 2k Vg1 — Wip1) + k1 — Yo Al — Vig1)

1
=— (Ilykr1 — yell3 + 2k — zll3) -

Bk
(32)

Lastly, we have

L) Uk 15Vk 15 Wi 15 Vit 15 2 1)

- £5k(uk+1, Vit 1 Wkt 1 Ve 1o 2k 1)

=w (1At — visr I3 + 1 Visger — wies 12)
Bt 2By 2+ s - =)
287

(33)
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1 Input:
e image f
e blurring operator A
e fidelity parameter A >0
e smoothing parameter pu >0
e AITV parameter « € [0,1]
e penalty parameters fig,f20 >0
e penalty multiplier o >1

e relative error € >0

2 Output : uy

3 Initialize ug, wp,2-

4 Set k=0.

5 while tioile o o gq
g ll2

6

10.3389/fcomp.2023.1131317

vt = F-1 (J:(A)* o F(Brivk — yi) — F(V)* o Flz — /32,ka)>
o BirF (A)* o F(A) — (1 + Pop) F(A)
(Busdugar + yi — 21) 4+ (BLauger +yx — 11)° + 43Buif
Vk+1 =
2Bk
ij 1 ..
(Wkt1)ij = prox ((Vuk+1)i,j + %,m E) V(i,j) € Q

Vi1 = Yk + Bra(Augyr — viy1)

Z1 = 2k + ok (Vi1 — Wig1)

(Bii+1> Bokr1) = 0 (Bris Bok)
k:i=k+1

Algorithm 2. ADMM for the AITV-regularized smoothing model with Poisson fidelity (Equation 11).

Combining (29)-(33) together with the fact that g, = ok B, for
o > 1, we obtain

L, Ui 15Vk 1> W1 Vi 15 2 1) — L8, (ies Vies W Vi 2k)

v > Bo 2
<- 5||”k+1 —ull; — 7||Vk+1 —vll3

Bi+1 + Bk

+
28}

(bt =3l + s = l3)

v Bo
2 2
= — g1 — vkl — = Vit — vellz
2 2
o—+1

2o, (e =l + e = =l3)

v Bo
2 2
=<- 5||Hk+1 —ully — 7||Vk+1 —vll3

1 2 2
=y (Hyk+1 =yl + aen = Zk”z) :
This completes the proof.

Lemma 8. Suppose that ker(A) Nker(V) = {0} and 0 < o < 1.
Let {(ur, vio Wk i 21) 1 oo, be generated by Algorithm 2. Tf {y;}72
bounded, then the sequence {(”k’vk’wk))’k»zk)}iil is bounded,
U1 — g — 0,and vgpp — v — 0.
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Proof. First we show that {z}7, is bounded. Combining (21e)
with the first-order optimality condition of (25), we have

(zk41)ij = (@0)ij + B (Vig)ij — Wis1)i)
€9 (IwirDijlh — ll(wis1)igll2) (34)
C 3 (IOwrg2)iglln) — @d (Iwrs1)igll2) »

which implies that there exist & € 8|(wiy1)ijlli and & €
Oll(Wi1)ijll2 such that (zx41)ij = & — & for each (i,j) € Q.

Recall that for x € R? the subgradients of the two norms are

Dl = |6 e R2:g = |80 a0 ol
&el-1,1] ifx;=0
(35)
= ifx #0
Il — R2: & = | Tl ! ,
S R {e{seRZ:nsnzsl} ifx=o}
(36)

Therefore, we have |&1]lcc =< L |&llc < 1, and hence
l(zrr1)ijllc < 1 + a (by the triangle inequality), ie., {z}72,
is bounded.

By the assumption {(yx)}7, is bounded. There exist two

constants Cy, C; > 0 such that ||y, —yk||% < Cy, |zgy1 — zkII% <
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Ci, ||}’k||§ < (C;,and ||zk||% < G, for all k € N. Hence, we have from
(28) that

L Ukt 1 Vi 1 Whet 1 Ykt 1> 2k 1) <

v 2
L g, (Ujes Vies Wi Yie> 2k) — 5||“k+1 — ukll3

(37)
ﬂO 2 2C1
— — vk =l + /.
> IVkr1 — vkl ok18,
A telescoping summation of (37) leads to
Lp Ukt 15 Vi 1 Wht 1 Ykt 1> Zkg 1) <
k
20, 1
Lg, (1o, vo, o5 Y0, 20) + -
’ Bo ; ot (38)

v k k
S i — il = S s — il
2 4 2 4
i=0 i=0

By completing two least-squares terms, we can rewrite Lg, | as
L1 Ukt 15 Ve 1> Wit 1 Yk 1> 2kt 1)
K 2
=Mvierr — flogvisr, 1) + — Vit I3

+ IWkg1ll — allwggllzn

5 pr | a3
k+1 k+1 k+112
+— A1 = Ve + o — || — =
2 * T Bl 2Bk
Bri1 Zerr |° lzrga I3
+— |V — W1 +——| — .
2 Brrilly  2Bksr
Combining (38) and (39), we have
C
Mf —flogf, 1) + (1 — a)[[wigill1 — o
<L Uk 1 Vi 1> Wi 1> Ykt 15 Zkt-1)
k
2Cy 1
<Lg, (1o, vo, o, y0, 20) + 137 Z p
0 im0 (40)

k

2 Bo 2

i = will3 = = 3 vis = vil3
i=0

N <

k
2
i=0
0

2C 1
SL,BO (UO,V(), WO))’O»ZO) + =L Z

i1
bo iz o

Since o > 1, the infinite sum is finite, and hence we have Vk € N,

1
Wkt1llh < ——

= R <£ﬂo(“0>1’0a W05 Y0» 20)

1 n C
. — ] < o0,
o=t Bo

which implies that {wk}]fo:1 is bounded. Also from (38) and (39),
we have

[e.¢]

2

i=0

2Cy

—M{f —flogf, 1) +
Bo

C C
AMf —flogf, 1) — cl < AMVkp1 — flogveyr, 1) — cl
Bo Bo
il lzesr 3
< AMwvgpr —flogvgy, 1) — ——= — ———=
+1 = Sl0gVin 2fk+1 2By+1

< Lpy (g 15 Vi 1> Wit 1 Vi 1> Zk 1)
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o]

1
> o

i=0

2Cy

Bo

< Lg, (1o, vo, Wos Y0, 20) + < 00.

This shows that {(v; —f log v, 1)} | is bounded. By emulating the
computation in (18), it can be shown that {v;}?2 | is bounded.

It suffices to prove that {(Aug, Vug)}2 | is bounded in order to
prove the boundedness of {u};2, by Proposition 3. Using (21d),

we have
Iyes1 — yll2 VG
MAugerllz < 272l < 22 vl
Bk Bo
As (w2, is proven to be bounded, then {Au}P?,

is also bounded. We can prove {Vuk},f‘;l is bounded

similarly ~ using  (21e).  Altogether,  {(ug, vk, Wi yio 2i)}oe
is bounded.
It follows from (40) that
b B k
2 0 )
3 ZO luisr = willy + = ZO Vi1 = vill3 < Ly s, v0, w0, 70, 20)

1
oi—1

A~ flogfi1) + 2.
Bo

k

2C;
P2y
Bo ‘=
As k — oo, we see the right-hand side is finite, which
forces the infinite summations on the left-hand side to converge,
and hence we have wupy; — uy —

0.

— 0 and gy — vk

Theorem 9. Suppose that ker(A) Nker(V) = {0}and 0 < o < 1.
Let {(uk vio Wi Yio 2k)} 5., be generated by Algorithm 2. If
e, bounded, Bi(virr — vi) — O Bk(wepr — wp) —
0,%k+1 — ¥ — 0, and zy; — zx — 0, then there
exists a subsequence whose limit point (u*,v*, w*, y*, z¥)
is a stationary point of (19) that satisfies the following:

0=—uAu* +ATy* +VTz, (41a)

f
0=/\<n—ﬁ o (41b)
e d (1wl —alwz21), (41c)
Au® = v, (41d)
Vu* =w". (41e)

Proof. By Lemma 8, the sequence {(uk, Vi Wk i 2k)lpe, s
bounded, so there exists a subsequence {(u, , Vi, > Wk, > Vk,» Zk, )} et
that converges to a point (u*, v*, w*, y*, z*). Additionally, we have
Uy — g — 0and v — vg — 0. Since {(yx, zx) 12, is bounded,
there exists a constant C > 0 such that |[yx11 — yll2 < Cand
llzk+1 — 2zkll2 < C for each k € N. By (21e), we have

W1 — willz < IWkr1 — Vuggrllz + 1 Vg — Vugll2
+ Vg — will2
1z — 2zl

B Bk

llzx — zk—1ll2

Bk—1

+ IVt — Vgl

—+
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2C
< — + (Vg1 — Vgl
Br-1

As k — 00, we have wy, | — wy — 0. Altogether, we can derive the
following results:

. T (R kL
nll)n;o(ukn+1>vkn+l>wkn+l) = nli)ngo(ukn’vkn)wkn) = (", v, w).

(42)
Furthermore, the assumptions give us
lim B, (vk,+1 — v,) =0,
n— o0
lim By, (W, 41 — wk,) =0,
n—oo
nlglolo)’knﬂ ~ Vi, =0,
li —z, =0.
Jim 2z, 41 — 2, =0
By (21d)-(21e), we have
* K — TG _
JAu* = v lla = Tim [lAug, 11— Vil
— C
- lim 1Yky+1 — Yio ll2 < 1im C —o,
n— 00 ﬂkn n— 00 ﬁkn
Vu* —w*|, = li v —
IVu™ —w*l2 Jim Vug, 1 — wi,41ll2
z — z C
= fim e zal €
n—00 ,Bk,, n— 00 ﬁkn
Hence, we have Au® = v* and Vu* = w*.
The optimality conditions at iteration k,, are the following:
T T
— uAug, 1+ A Y, + B, A (Aug, 1 — vi,)
+V Tz, 4 B,V (Vg 41 — wi,) =0, (43a)
/
A (11 - = Yk, — Br, (At 41 — Vi, 11) = 0, (43b)
Vikn+1
Zk, + Br, (Vg 41 — Wi, 1) € 0(Iwi, 11l — @llwg, 111l2,1)-
(43¢)

Expanding (43a) by substituting in (21d)-(21e) and taking the
limit, we have

0= lim —pAug, 1 +A i, + B, A (Aug, 11 — vi,)
n—oo

+ V2, + B, V' (Vg1 — wi,)
— Tim — T T _
= lm —pAug, 1+ A yr, + B, A (Aug, 11 = Vi, 41)

+ B AT Va1 — vi,) + V2,
+ B,V (Vidg, 41 — Wiy 1)
+ B,V (W1 — Wi,)
= lim —pAug, +AT)’k,l +AT()’k,,+1 = Yk,)

n—0oQ0

+ B AT Va1 — vi,) + V2,

+ V(21 — 2k,) + B, V! (Wi 1 — Wi,
=—uAuF + ATy + VT

Substituting in (21d) into (43b) and taking the limit give us

0= lim A(]l— f

n—00 Vi, +1

) — Ykn — Br, (At 11 — Vi, 11)
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n—00

= lim A (Il — ) — Vky — Whyt1 — Vi)
Vin+1

(i)

Lastly, by substituting (21e) into (43c), we have

Zi,+1 € (w11l — ellwe,+1l12,1)-

By continuity, we have [|wy, 111 — allwi,1ll21 — w1 —
allw*|l2,1. Together with the fact that (wy, 41,2k, +1) — (W*,z%),
we have z* €
subdifferential.
Therefore, (u*, v*, w*, y*, z*) is a stationary point.

3 (Iw*lly — allw*|l2,1) by closedness of the

Remark 2. It is true that the assumptions in Theorem 9 are rather
strong, but they are standard in the convergence analyses of other
ADMM algorithms for nonconvex problems that fail to satisfy
the conditions for global convergence in Wang et al. (2019). For
example, Jung (2017), Jung et al. (2014), Li et al. (2016) and Li Y.
et al. (2020) assumed convergence of the successive differences of
the primal variables and Lagrange multipliers. Instead, we modify
the convergence of the successive difference of the primal variables,
ie, Bk(kr1 — vk) — 0, Br(Wkp1 — wx) — 0. Boundedness of
the Lagrange multiplier (i.e, {yc}p2,) was also assumed in Liu
et al. (2022) and Xu Y. et al. (2012), which required a stronger
assumption than ours regarding the successive difference of the
Lagrange multipliers.

4. Numerical experiments

In this section, we apply the proposed method of AITV
Poisson SaT/SLaT on various grayscale and color images for image
segmentation. For grayscale images, we compare our method
with the original TV SaT (Chan et al., 2014), thresholded-Rudin-
Osher-Fatemi (T-ROF) (Cai et al., 2019), and the Potts model
(Potts, 1952) solved by either PocK’s algorithm (Pock) (Pock et al.,
2009) or Storath and Weinmann’s algorithm (Storath) (Storath and
Weinmann, 2014). For color images, we compare with TV SLaT
(Cai et al., 2017), Pock’s method (Pock et al., 2009), and Storath’s
method (Storath and Weinmann, 2014). We can solve (9) for
TV SaT/SLaT via Algorithm 2 that utilizes the proximal operator
corresponding to the || - ||2,; norm. The code for T-ROF is provided
by the respective author! and we can adapt it to handle blur by using
a more general data fidelity term. Pock’s method is implemented
by the lab group?. Storath’s method is provided by the original
author®. Note that T-ROF, Pock’s method, and Storath’s method
are designed for images corrupted with Gaussian noise. We apply
the Anscombe transform (Anscombe, 1948) to the test images,
after which the Poisson noise becomes approximately Gaussian
noise. Since Storath’s method is not for segmentation, we perform a

1 https://xiaohaocai.netlify.app/download/

2 Python code is available at https://github.com/VLOGroup/pgmo-
lecture/blob/master/notebooks/tv-potts.ipynb and a translated MATLAB
code is available at https://github.com/kbui1993/MATLAB_Potts.

3 https://github.com/mstorath/Pottslab
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FIGURE 1

vessels to be 255

The entire DRIVE dataset (Staal et al., 2004) for binary segmentation. The image size is 584 x 565 with background value of 200 and the pixel value for

post-processing step of k-means clustering to its piecewise-constant
output. For the SLaT methods, we parallelize the smoothing step
separately for each channel.

To quantitatively measure the segmentation performance, we
use the DICE index (Dice, 1945) and peak signal-to-noise ratio
(PSNR). Let S C € be the ground-truth region and § C € be
a region obtained from the segmentation algorithm corresponding
to the ground-truth region S. The DICE index is formulated by

21SN Y|
DICE= ——.
[S] + 18]

To compare the piecewise-constant reconstructionf according to
(10) with the original test image f, we compute PSNR by

(M x N) x P
PSNR = 20log,g ————=—,
Zi,j(fiJ —fij))?
where M x N is the image size and P = max;j f; .

Poisson noise is added to the test images by the MATLAB
command poissrnd. To ease parameter tuning, we scale each
test image to [0, 1] after its degradation with Poisson noise and/or
blur. We set 0 = 1.25 and B1,9 = B0 = 1.0,2.0 in Algorithm 2
for grayscale and color images, respectively. The stopping criterion
is either 300 iterations or when the relative error of uy is below
€ = 107*. We tune the fidelity parameter A and the smoothing
parameter p for each image, which will be specified later. For
T-ROF, Pock’s method, and Storath’s method, their parameters
are manually tuned to give the best DICE indices for binary
segmentation (Section 4.1) and the PSNR values for multiphase

Frontiersin Computer Science

segmentation (Sections 4.2-4.3). All experiments are performed in
MATLAB R2022b on a Dell laptop with a 1.80 GHz Intel Core
i7-8565U processor and 16.0 GB RAM.

4.1. Grayscale, binary segmentation

We start with performing binary segmentation on the entire
DRIVE dataset (Staal et al., 2004) that consists of 20 images shown
in Figure 1. Each image has size 584 x 565 with modified pixel
values of either 200 for the background or 255 for the vessels.
Before adding Poisson noise, we set the peak value of the image
to be P/2 or P/5, where P = 255. Note that a lower peak value
indicates stronger noise in the image, thus more challenging for
denoising. We examine three cases: (1) P/2 no blur, (2) P/5 no blur,
and (3) P/2 with Gaussian blur specified by MATLAB command
fspecial (“gaussian,” [10 10], 2). For the TV SaT
method, we set A = 14.5, u = 0.5 for case (1), A = 8.0, u = 0.5
for case (2), and A = 22.5, u = 0.25 for case (3). For the AITV SaT
method, the parameters A and p are set the same as TV SaT, and we
have a = 0.3 for cases (1)-(2) and « = 0.8 for case (3).

Table 1 records the DICE indices and the computational time
in seconds for the competing methods, averaged over 20 images.
We observe that AITV SaT attains the best DICE indices for all
three cases with comparable computational time to TV SaT and T-
ROE all of which are much faster than Pock and Storath. As visually
illustrated in Figure 2, AITV SaT segments more of the thinner
vessels compared to TV SaT and T-ROF in five images, thereby
having the higher average DICE indices.
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TABLE 1 DICE and computational time in seconds of the binary segmentation methods averaged over 20 images in Figure 1 with standard deviations in

parentheses.
TV SaT
272 00 blur DICE (g:ggg?)
Time (sec.) (3:246“1);)
P/5 no blur DICE (gzgi)
Time (sec.) (3:2(9);76)
P/2 with Gaussian Blur DICE (ggiéi)
Time (sec.) gﬁgz;

Bold indicates best result.

AITV SaT T-ROF Pock Storath
0.9501 0.9463 0.8466 0.8855
(0.0076) (0.0073) (0.0301) (0.0181)
5.7342 4.9206 24.7376 19.9456
(0.5251) (1.4281) (3.2454) (1.8875)
0.8735 0.8570 0.6504 0.8277
(0.0125) (0.0170) (0.0910) (0.0191)
6.4027 5.4943 46.9346 21.8734
(0.8441) (0.7935) (9.4969) (2.7660)
0.7411 0.7322 0.5473 0.6944
(0.0220) (0.0251) (0.0398) (0.0217)
9.2523 11.7337 47.3911 19.9444
(1.5959) (2.1252) (10.9191) (2.4142)

TV SaT

Noisy and Blurry AITV SaT

FIGURE 2

Binary segmentation results of Figure 1 with peak P/2 under Gaussian blur and Poisson noise.

Storath

4.2. Grayscale, multiphase segmentation

We examine the multiphase segmentation on the entire
BrainWeb dataset (Aubert-Broche et al., 2006) that consists of 20
grayscale images as shown in Figure 3. Each image is of size 104 x
87 and has four regions to segment: background, cerebrospinal
fluid (CSF), gray matter (GM), and white matter (WM). The
pixel values are 10 (background), 48 (CSF), 106 (GM), and 154
(WM). The maximum intensity P 154. We consider two
cases: (1) P/2 no blur and (2) P/2 with motion blur specified by
fspecial (“motion,” 5, 225). For the SaT methods, we
have u = 1.0, = 0.6,0.7, and A = 4.0, 5.0 for case (1) and case
(2), respectively.

Across all 20 images of the BrainWeb dataset, Table 2 reports
the average DICE indices for CSE GM, and WM and average
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computational times in seconds of the segmentation methods.
For both cases (1) and (2), AITV SaT attains the highest
average DICE indices for segmenting CSE GM, and WM.
AITV SaT is comparable to TV SaT and T-ROF in terms of
computational time.

Figure 4 shows the segmentation results of the first image in
Figure 3 for case (1). When segmenting CSE the methods (TV
SaT, AITV SaT, and Storath) yield similar visual results, while Pock
fails to segment roughly half of the region. In addition, AITV
SaT segments the most GM region with the least amount of noise
artifacts than the other methods. Lastly, for WM segmentation,
AITYV SaT avoids the “holes” or “gaps” and segments fewer regions
outside of the ground truth, thus outperforming TV SaT and
Storath. For the three regions, T-ROF has the most noise artifacts
in its segmentation results.
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FIGURE 3
The entire BrainWeb dataset (Aubert-Broche et al., 2006) for grayscale, multiphase segmentation. Each image is of size 104 x 87. The pixel values are
10 (background), 48 (cerebrospinal fluid), 106 (gray matter), and 154 (white matter).

TABLE 2 DICE and computational time in seconds of the multiphase segmentation methods averaged over 20 images in Figure 3 with standard

deviations in parentheses.

P/8 no blur CSF DICE (8:32%)
0.8097

GM DICE 0.0258)

WM DICE (8:3?2,2)

Time (sec.) (8322;

P/8 with Motion Blur CSF DICE (gg;z;
GM DICE (gigigj)

7757

WM DICE (8'0 127)

Time (sec.) ((0)3191;4,)

Bold indicates best result.

4.3. Color segmentation

We perform color image segmentation on 10 images shown
in Figure 5, which are selected from the PASCAL VOC 2010
dataset (Everingham et al., 2009). Each image has six different color
regions. Figure 5A is of size 307 x 461; Figure 5B is of 500 x 367;
Figures 5C, H, T are of 500 x 375; and Figures 5D-G, | are of
375 x 500. Before adding Poisson noise to each channel of each
image, we set the peak value P = 10. We choose the parameters of
the SLaT methods to be A = 1.5, & = 0.05, and o« = 0.6.

Figures 6, 7 present the piecewise-constant approximations
via (10), showing similar segmentation results obtained by

Frontiersin Computer Science

0.8396 0.7398 0.4572 0.8041
(0.0262) (0.1316) (0.1474) (0.0244)
0.8477 0.7904 0.7507 0.7900
(0.0157) (0.0422) (0.0719) (0.0344)
0.8694 0.8221 0.8459 0.8138
(0.0101) (0.0132) (0.0283) (0.0196)
0.2863 0.2202 2.6139 0.3383
(0.0470) (0.0324) (0.6690) (0.0948)
0.6260 0.6174 0.3772 0.4964
(0.0483) (0.0460) (0.0561) (0.0468)
0.7138 0.6528 0.6345 0.6544
(0.0262) (0.0358) (0.0590) (0.0399)
0.7935 0.7686 0.7529 0.7382
(0.0110) (0.0164) (0.0185) (0.0140)
0.2854 0.3647 2.5782 0.3052
(0.0279) (0.0693) (0.4683) (0.1399)

TV SLaT, AITV SLaT, and Storath. Quantitatively in Table 3,
AITV SLaT has better PSNRs than TV SLaT and Pock for
all the images and outperforms Storath for seven. Overall, the
proposed AITV SLaT has the highest PSNR on average over 10
images with the lowest standard deviation and comparable speed
as Storath.

4.4. Parameter analysis

The proposed smoothing model (11) involves the following
parameters:
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AITV SaT T-ROF

FIGURE 4
Segmentation result of the first image of Figure 3 with peak P/8 under Poisson noise with no blur. From top to bottom are segmentation results for
CSF, GM, and WM.

i Tk

H 1
F G ! ‘ .
FIGURE 5

Test images from the PASCAL VOC 2010 dataset (Everingham et al., 2009) for color, multiphase segmentation. Each image has six regions. The image
sizes are (A) 307 x 461, (B) 500 x 367, (C) 500 x 375, (D-G) 375 x 500, (H, 1) 500 x 375, and (J) 375 x 500

o The fidelity parameter A weighs how close the approximation e The smoothing parameter |1 determines how smooth the
Au* is to the original image f. For a larger amount of noise, solution u* should be. A larger value of p may improve
the value of A should be chosen smaller. denoising, but at a cost of smearing out the edges between

Frontiers in Computer Science 14 frontiersin.org
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Original Noisy TV SLaT AITV SLaT Pock Storath

FIGURE 6
Color image segmentation results of Figures 5A—E.

Original Noisy TV SLaT AITV SLaT Pock Storath

FIGURE 7
Color image segmentation results of Figures 5F-J.

adjacent regions, which may be segmented together if they e The sparsity parameter o € [0,1] determines how sparse
have similar colors. the gradient vector at each pixel should be. More specifically,

Frontiersin Computer Science 15 frontiersin.org
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the closer the value « is to 1, the more [|Vull; — a||Vull21
resembles ||Vul|o.

We perform sensitivity analysis on these parameters to
understand how they affect the segmentation quality of AITV
SaT/SLaT. We consider two types of tests in the case of P/8 with
motion blur in Figure 3. In the first case (Figure 8), we fix u = 1.0
and vary o, A. In the second case (Figure 9), we fix A = 5.0 and vary
o, 1. Figure 8 reveals a concave relationship of the DICE index of
each region with respect to the parameter A, which implies there

10.3389/fcomp.2023.1131317

nonconvex regularization, such as €;/€; on the gradient (Wang
et al., 2021, 2022; Wu et al., 2022a), £,,0 <p < 1,0n the gradient
(Hintermiiller and Wu, 2013; Li Y. et al., 2020; Wu et al., 2021b),
and transformed total variation (Huo et al., 2022), as alternatives
to AITV. On the other hand, we can develop AITV variants of
weighted TV (Li and Li, 2022) or adaptive TV (Wu et al., 2021a;

TABLE 3 PSNR and computation time in seconds for color image
segmentation of the images in Figure 5.

) . . i ; TVSLaT AITV  Pock  Storath
exists the optimal choice of A. Additionally, when X is small, a SLaT
large value for « can improve the DICE indices. According to PSR Fioaresa | 200337 | 304619 | 192306 S804l
. . . . gure . B . .
Figure 9, the DICE indices of the GM and WM regions decrease ¢
with respect to p, while the DICE index of the CSF region is Figure 5B | 31.8673 | 317055 | 17.3512 30.9703
approximately constant. For « = 0.8, the DICE indices of the GM Figure 5C | 30.9605 | 33.4217 | 18.0389 322217
and WM regions are the largest when > 1, but the large « is FiguresD | 295265 | 325505 | 214873 347881
not optimal for CSF. Hence, an intermediate value of «, such as
. . . . . Figure 5E | 29.8903 | 31.0656 |  19.7646 28.3456
0.6, is preferable to attain satisfactory segmentation quality for all e
three regions. Figure 5F 332308 | 347619 | 17.9788 34.4106
Lastly, in Figure 10, we conduct sensitive analysis for the case Figure 5G 28.1136 306237 | 22.5048 31.2439
_ Fi ' —o. . . .
O.f P 10 of .lgu.re? We fix u 0 95’ while VaerS ’\.’a n Figure 5H 332682 | 33.4250 | 18.9390 31.9377
Figure 10A, which indicates that the optimal value for « is in the
range of 0.5 < @ < 0.7. Then we fix A = 1.5 to examine p and « Figure 51 300659 | 31.7937 | 20.0856 293905
in Figure 10B. For 0.2 < a < 0.7, PSNR decreases as (. increases. Figure 5] 31.4164 34.0610 20.3185 34.3599
Again, o = 0.6 generally yields the best PSNR. Avg. 30.7373 19.5700 31.6383
' (std.) a7ee) | 220 g1ay) (2.3686)
(1.4905)
. Time (sec.) | Figure 5A 7.1992 82455 | 1489232 4.9410
5. Conclusion and future work
Figure 5B 122238 | 11.8890 | 321.0637 9.9533
In this paper, we developed the AITV Poisson SaT/SLaT Figure 5C 5.6775 7.4494 | 384.6998 10.1785
framework for image segmentation. In particular, we proposed Figure 5D 49511 72061 | 128.4236 70026
a simplified Mumford-Shah model with the AITV regularization
. : . Figure 5E 6.2380 7.0719 | 275.0501 7.9808
and Poisson fidelity for the smoothing step. The model was
proven to have a global minimizer. Our numerical algorithm Figure 5F 6.0509 72392 | 398.1339 10.0982
incorporated a specific splitting scheme for ADMM and the Figure 5G 7.2821 7.6919 | 1652142 7.9315
€1 — al, proximal operator for solving a subproblem. Convergence Figure SH 6.0269 07018 | 3853311 79389
analysis established that the sequence generated by ADMM has
. . Figure 51 7.0375 8.0875 | 250.3698 9.7501
a convergent subsequence to a stationary point of the nonconvex
model. In our numerical experiments, the AITV Poisson SaT/SLaT Figure 5] 6.1873 10.6472 | 334.8662 7.2176
yielded high-quality segmentation results within seconds for (‘;"j‘) (g'zg;;) 8.5230 (?g;igé; (??(9)2?)
various grayscale and color images corrupted with Poisson noise (1.6610)
and/or blur. For future directions, we are interested in other  Bold indicates best result.
CSF . GM . WM
0.6 0.7}
0.8]
0.55 0.65]
w w w 0.75)
O os O oy )
a a a
0.7}
0.45 0.55
0.65
04 0.5]
55 2 4 6 8 10 045 2 4 6 8 10 % 2 4 6 8 10
A A A
FIGURE 8
Sensitivity analysis on A for the P/8 with motion blur case of Figure 3. The parameter 1 = 1.0 is fixed. DICE indices averaged over 20 images for each
brain region are plotted with respect to A.
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CSF

GM

0795/

0.79

0785,
—

—a=02
—a =03
—a=04
—a=0.5
076 | ——a = 0.6
—a=07
—a =08

FIGURE 9

brain region are plotted with respect to p.

Sensitivity analysis on u for the P/8 with motion blur case of Figure 3. The parameter » = 5.0 is fixed. DICE indices averaged over 20 images for each

FIGURE 10

A = 1.5 fixed. Average PSNR is plotted.

Sensitivity analysis of parameters for P = 10 case of Figure 5. (A) Sensitivity analysis on A when p = 0.05 fixed. (B) Sensitivity analysis on u when

PSNR

3051

Zhang et al., 2022). Moreover, we plan to determine how to make
the sparsity parameter « in AITV adaptable to each image. In future
work, we will adapt other segmentation algorithms (Li et al., 2010,
2016; Jung et al., 2014; Jung, 2017; Cai et al., 2019; Yang et al., 2022;
Pang et al., 2023) designed for Gaussian noise or impulsive noise to
Poisson noise.
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