
j. differential geometry

122 (2022) 223-258

SPACETIME HARMONIC FUNCTIONS AND THE
MASS OF 3-DIMENSIONAL ASYMPTOTICALLY FLAT

INITIAL DATA FOR THE EINSTEIN EQUATIONS

Sven Hirsch, Demetre Kazaras† & Marcus Khuri‡

Abstract

We give a lower bound for the Lorentz length of the ADM
energy-momentum vector (ADM mass) of 3-dimensional asymp-
totically flat initial data sets for the Einstein equations. The
bound is given in terms of linear growth ‘spacetime harmonic
functions’ in addition to the energy-momentum density of mat-
ter fields, and is valid regardless of whether the dominant energy
condition holds or whether the data possess a boundary. A corol-
lary of this result is a new proof of the spacetime positive mass
theorem for complete initial data or those with weakly trapped
surface boundary, and includes the rigidity statement which as-
serts that the mass vanishes if and only if the data arise from
Minkowski space. The proof has some analogy with both the
Witten spinorial approach as well as the marginally outer trapped
surface (MOTS) method of Eichmair, Huang, Lee, and Schoen.
Furthermore, this paper generalizes the harmonic level set tech-
nique used in the Riemannian case by Bray, Stern, and the second
and third authors, albeit with a different class of level sets. Thus,
even in the time-symmetric (Riemannian) case a new inequality is
achieved.

1. Introduction

Let (M, g, k) be a smooth connected 3-dimensional initial data set
for the Einstein equations. This represents an embedded spacelike hy-
persurface in spacetime, so that g is a Riemannian metric and k is a
symmetric 2-tensor denoting the extrinsic curvature. These objects sat-
isfy the constraint equations

(1.1) µ =
1

2

(
Rg + (Trgk)2 − |k|2g

)
, J = divg (k − (Trgk)g) ,
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where Rg is the scalar curvature and µ and J represent the energy and
momentum density of the matter fields. It will be assumed that the data
are asymptotically flat. This means that there is a compact set C ⊂M
such that M \ C = ∪`0`=1M

`
end where the ends M `

end are pairwise disjoint
and diffeomorphic to the complement of a ball R3 \B1, and there exists
in each end a coordinate system satisfying

|∂l(gij − δij)(x)| = O(|x|−q−l), l = 0, 1, 2,(1.2)

|∂lkij(x)| = O(|x|−q−1−l), l = 0, 1,(1.3)

for some q > 1
2 . The energy and momentum densities will be taken to be

integrable µ, J ∈ L1(M) so that the ADM energy and linear momentum
of each end is well-defined [4, 9, 27] and given by

E = lim
r→∞

1

16π

∫
Sr

∑
i

(gij,i − gii,j) υjdA,(1.4)

Pi = lim
r→∞

1

8π

∫
Sr

(kij − (Trgk)gij) υ
jdA,(1.5)

where υ is the unit outer normal to the coordinate sphere Sr of ra-
dius r = |x| and dA denotes its area element. The ADM mass m =√
E2 − |P |2 is the Lorentz length of the ADM energy-momentum vec-

tor (E,P ). If the dominant energy condition is satisfied µ ≥ |J |g,
then the spacetime positive mass theorem asserts that the ADM energy-
momentum is nonspacelike, and characterizes Minkowski space as the
unique spacetime having asymptotically flat initial data with vanishing
mass.

Theorem 1.1. Let (M, g, k) be a complete and asymptotically flat
initial data set for the Einstein equations satisfying the dominant energy
condition. Then in each end E ≥ |P |, and E = |P | in some end if and
only if E = |P | = 0 and the data arise from an isometric embedding
into Minkowski space.

Slightly less general incarnations of this theorem were first established
in the early 1980’s by Schoen and Yau [29, 30, 31], and independently
by Witten [28, 35]. The later approach of Witten utilized the hypersur-
face Dirac operator and generalized Lichnerowicz formula to establish
the positive mass inequality E ≥ |P |. In [35] an outline was given for
the rigidity statement in vacuum, and under various stronger hypothe-
ses this was established by Ashtekar and Horowitz [3], and Yip [36].
A complete and rigorous proof was then given by Beig and Chruściel [5]

with the asymptotic assumption that µ, |J |g = O(|x|−q−5/2), instead of
integrability. In [29] Schoen and Yau proved the time-symmetric case,
when k = 0, via a contradiction argument employing stable minimal
hypersurfaces. The non-time-symmetric case was then reduced to the
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previous result by solving Jang’s equation [30]. This established non-
negativity of the energy E ≥ 0 along with the case of equality, under the
additional asymptotic hypothesis [14] that Trgk = O(|x|−q−3/2). Non-
negativity of the energy in fact implies the inequality E ≥ |P |, through

the boost result of Christodoulou and Ó Murchadha [8] and subsequent
generalization of the boost argument in [16]. Moreover, assuming the
decay for the matter energy-momentum density present in [5], Eich-
mair, Huang, Lee, and Schoen [16] have shown that stable marginally
outer trapped surfaces (MOTS) may be used to prove E ≥ |P |, in anal-
ogy with the time-symmetric minimal hypersurface proof. Although the
rigidity statement was not treated in [16], the work of Huang and Lee
[21] demonstrates that it follows from the inequality E ≥ |P |.

In higher dimensions the approach of Witten generalizes for spin man-
ifolds [4, 11], with the case of equality being settled by Chruściel and
Maerten in [10]. Similar to the minimal hypersurface technique, the
MOTS method [16] extends without difficulty to dimensions 3 ≤ d ≤ 7,
and Eichmair [14] has generalized the Jang deformation to these dimen-
sions as well. Combined then with the rigidity argument of Huang and
Lee [21], which holds in all dimensions, the result holds up to dimension
7 without the spin assumption. A compactification argument has been
given by Lohkamp [26], akin to the Riemannian case [24], in which the
spacetime positive mass inequality reduces to the nonexistence of ini-
tial data of the form (Nd#T d, g, k) satisfying a strict dominant energy
condition, where Nd is a compact manifold and T d is the torus; this
relies also on the boost theorem. Furthermore, we point out the articles
of Schoen and Yau [32] and Lohkamp [25] which address the higher
dimensional Riemannian problem. For a survey of topics related to the
positive mass theorem see the book by Lee [23].

The purpose of the current article is to give a lower bound for the dif-
ference E−|P | in terms of linear growth ‘spacetime harmonic functions’
and the difference of energy-momentum densities for the matter fields
µ − |J |g. In order to state the main result, let Σ be a closed 2-sided
hypersurface in M with null expansions θ± = H±TrΣk, where H is the
mean curvature of Σ with respect to the unit normal υ pointing towards
infinity in a designated end Mend. The null expansions are the mean
curvatures in the null directions υ±n when viewed as codimension two
surfaces in spacetime, where n is the future pointing timelike normal
to the slice (M, g, k). Physically these quantities may be interpreted as
determining the rate at which the area of a shell of light is changing as
it moves away from the surface in the outward future/past direction,
and thus can be used to measure the strength of the gravitational field.
The gravitational field is strong if Σ is outer or inner trapped, that is
θ+ < 0 or θ− < 0. Moreover, Σ is called a marginally outer or inner
trapped surface (MOTS or MITS) if θ+ = 0 or θ− = 0; in the literature
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these surfaces are also sometimes referred to as future or past apparent
horizons.

It will be important to restrict the type of regular level sets that a
spacetime harmonic function can have. In order to aid with this task,
we will often pass from the given initial data to a generalized exterior
region associated with a particular end. More precisely, it is shown in
Proposition 2.1 below that for each end Mend, there exists a new initial
data set (Mext, gext, kext) having a single end which is isometric (as ini-
tial data) to the original end. In addition Mext is orientable, satisfies
H2(Mext, ∂Mext;Z) = 0, and has a (possibly empty) boundary ∂Mext

consisting entirely of MOTS and MITS. Any asymptotically flat ini-
tial data set with one end satisfying these later three properties will
be referred to as a generalized exterior region. Although Mext is not
necessarily a subset of M , we will often denote the metric and extrinsic
curvature of Mext by (g, k) for convenience. In the Riemannian setting
where MOTS and MITS correspond to minimal surfaces, the (general-
ized) exterior region is a subset of the initial data which is diffeomorphic
to the complement of a finite number of balls (with disjoint closure) in
R3 [22, Lemma 4.1].

A function u : M → R will be referred to as a spacetime harmonic
function if it satisfies the equation

(1.6) ∆u+ (Trgk) |∇u| = 0,

where ∆ = gij∇ij denotes the Laplace-Beltrami operator associated
with the metric g. As discussed in Section 3, this equation may be
interpreted as the trace along M of the spacetime Hessian

(1.7) ∇̄iju = ∇iju+ kij |∇u|,

and therefore has similarities with the hypersurface Dirac operator [28,
35] induced on the initial data from spacetime. Furthermore, in analogy
with spacetime harmonic spinors, such functions satisfy a Lichnerowicz-
type integral identity whose boundary terms can be employed to extract
the ADM quantities. A spacetime harmonic function u defined on a gen-
eralized exterior region Mext will be called admissible if it has constant
Dirichlet boundary data, and satisfies ∂υu ≤ (≥)0 on each boundary
component with θ+ = 0 (θ− = 0), where υ is the unit boundary normal
pointing outside Mext. Such spacetime harmonic functions asymptotic
to any given linear function in Mend always exist, see Theorem 4.2 and
Lemma 5.1. The main result is the following lower bound for the differ-
ence of ADM energy and linear momentum.

Theorem 1.2. Let (Mext, g, k) be a 3-dimensional generalized exte-
rior region which is complete as a manifold with (possibly empty) bound-
ary, and has ADM energy E and linear momentum P . Let u be an
admissible spacetime harmonic function on Mext, which is asymptotic
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to a linear combination 〈~a, x〉 = aix
i of asymptotically flat coordinates

of the associated end, with |~a| = 1. Then

(1.8) E + 〈~a, P 〉 ≥ 1

16π

∫
Mext

(
|∇̄2u|2

|∇u|
+ 2(µ− |J |g)|∇u|

)
dV.

In particular, if the dominant energy condition holds then E ≥ |P |.
Furthermore, if E = |P | then E = |P | = 0, Mext is diffeomorphic to R3,
and the data arise from an isometric embedding into Minkowski space.

A version of Theorem 1.2 also holds if (Mext, g, k) has weakly trapped
boundary. That is, each boundary component satisfies θ+ ≤ 0 or θ− ≤ 0,
where the mean curvature is computed with respect to the unit normal
pointing inside of Mext. Although, in this situation the conclusion is
a strict inequality E > |P |. Theorem 1.2 generalizes a previous result
[6] in the Riemannian case when k = 0. However, it is important to
note that the boundary conditions for the harmonic functions in [6] are
homogeneous Neumann, as opposed to the constant Dirichlet utilized
here. Thus, the lower bound of Theorem 1.2 does not generally reduce
to that of Theorem 1.2 in [6] when k = 0. In particular, we obtain an
independent proof of the Riemannian results with the new boundary
conditions.

The proof has some similarity with the stable MOTS approach of
Eichmair, Huang, Lee, and Schoen [16] where regular level sets of the
spacetime harmonic functions reprise the role of stable MOTS. The
closest analogy though is to the spinorial method of Witten [35], where
the spacetime harmonic functions play the role of spacetime harmonic
spinors. While the spinor proof of the positive mass theorem also yields
a lower bound for the mass, it should be noted that this is predicated
on the dominant energy condition assumption. More precisely, the ex-
istence result for spacetime harmonic spinors converging to a given con-
stant spinor in the asymptotic end relies on the dominant energy con-
dition. On the other hand, the existence of an admissible spacetime
harmonic function asymptotic to a given linear function in the asymp-
totic end is guaranteed regardless of any local energy hypotheses. Hence,
the lower bound (1.8) remains valid under general conditions far from
those under which the positive mass theorem is known to hold.

Generalized exterior regions always exist for each end of an asymp-
totically flat initial data set satisfying the dominant energy condition,
see Proposition 2.1. Therefore Theorem 1.2 may be applied to arbitrary
asymptotically flat initial data to obtain a lower bound for the difference
of energy and momentum. The rigidity statement in this situation is
stronger, as it implies topological rigidity and an isometric embedding
into Minkowski space for the full initial data, as opposed to an isometric
embedding only for the generalized exterior region. It should be pointed
out that this isometric embedding may be given explicitly as a graph
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over a time slice in Minkowski space via a linear combination of three
spacetime harmonic functions. This leads to a new and relatively simple
proof of the positive mass theorem, Theorem 1.1.

Corollary 1.3. Let (M, g, k) be a 3-dimensional complete asymp-
totically flat initial data set for the Einstein equations, having ADM
energy E and linear momentum P in a chosen asymptotic end Mend.
If the dominant energy condition is satisfied, then there exists a gen-
eralized exterior region Mext associated with Mend, which also satisfies
the dominant energy condition. Let u be an admissible spacetime har-
monic function on Mext, which is asymptotic to a linear combination
〈~a, x〉 = aix

i of asymptotically flat coordinates of the associated end,
with |~a| = 1. Then

(1.9) E + 〈~a, P 〉 ≥ 1

16π

∫
Mext

(
|∇̄2u|2

|∇u|
+ 2(µ− |J |g)|∇u|

)
dV.

In particular E ≥ |P |. If E = |P | then E = |P | = 0, M is diffeomorphic
to R3, and the data (M, g, k) arise from an isometric embedding into
Minkowski space.

Acknowledgements. The authors would like to thank Hubert Bray,
Greg Galloway, and Daniel Stern for helpful comments.

2. Generalized exterior regions

A Lichnerowicz-type integral identity for spacetime harmonic func-
tions lies at the core of the proof of Theorem 1.2 and Corollary 1.3. It is
applied to generalized exterior regions, where one may control the topol-
ogy of level sets. However, the integral formula holds in much greater
generality. In this section we show that generalized exterior regions
always exist, and in the next section we establish the desired identity.

In Lemma 4.1 of [22] Huisken and Ilmanen established the existence
of an exterior region for asymptotically flat Riemannian 3-manifolds,
showing that for each asymptotic end there is such a region which is
diffeomorphic to the complement of a finite union of balls in R3. They
accomplished this by removing all compact minimal surfaces, includ-
ing immersed ones, to identify the trapped region and remove it. As
pointed out by Lee in [23, page 140], the weaker topological simplifi-
cation H2(Mext, ∂Mext;Z) = 0 may still be achieved by only removing
embedded compact minimal surfaces. His proof relies on the classical
result that within each nontrivial 2-dimensional homology class there ex-
ists an area minimizing minimal surface representative. Due to the lack
of a variational characterization, such a result is not currently known
for MOTS. Nevertheless, the conclusion of Lee’s observation still re-
mains valid in spirit with the role of minimal surfaces replaced by that
of MOTS and MITS.
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Proposition 2.1. Let (M, g, k) be a smooth asymptotically flat initial
data set satisfying the dominant energy condition. Then for each end
Mend, there exists a new initial data set (Mext, gext, kext) having a single
end which is isometric (as initial data) to (Mend, g, k). Furthermore,
Mext is orientable, satisfies H2(Mext, ∂Mext;Z) = 0, and has a boundary
∂Mext consisting entirely of MOTS and MITS.

Proof. There are two primary steps. The first is to identify appropri-
ate (possibly immersed) MOTS and MITS to remove from M in order
to obtain a subset M ′ ⊃Mend, whose compactification admits a positive
scalar curvature metric. The second step entails reducing the first Betti
number of M ′ to zero via an iterative process which involves passing to
finite sheeted covers. The proof of the first step is based on a reorga-
nization of the arguments used for [1, Theorem 1.2], and thus only an
outline of the main ideas will be given here. The second step will be
described in detail. In what follows, we assume without loss of gener-
ality that M is orientable by passing to the orientable double cover if
necessary.

According to [16, Theorem 22] there is a sequence of perturbed ini-

tial data (M, gi, ki) with gi → g in W 3,p
−q (M) and ki → k in W 2,p

−q−1(M)
as i → ∞ for p > 3, such that a strict dominant energy condition is
satisfied µi > |Ji|gi . To this end, solve the Jang equation [14, Proposi-
tion 7] for (M, gi, ki) with standard asymptotic decay in each end. Note
that the assumed decay on Trgk is not in general sufficient to guarantee
bounded solutions of Jang’s equation near infinity. However, as pointed
out in [1, Remarks 2.2 and 3.1], this technicality can be avoided by an
appropriate deformation of the initial data in the asymptotic ends. The
solution of Jang’s equation gives rise to a hypersurface in R×M which
is a vertical graph over an open subset of M containing the asymptotic
ends; Ωi ⊂M will denote the component of this open set that contains
the designated end Mend. The components of the boundary ∂Ωi are
spherical MOTS or MITS that satisfy a uniform C-almost minimiza-
tion property [1, Remark 2.3], [12]. Note that the spherical topology is
due to the strict dominant energy condition and stability property of the
Jang graph. Observe that due to the strict dominant energy condition,
the proof of [1, Theorem 1.2] shows that a conformal change of metric
may be introduced, after preliminary deformations along the asymptoti-
cally cylindrical ends as well as in the asymptotically flat ends, to arrive
at a positive scalar curvature (PSC) metric on the manifold obtained
by compactifying the asymptotically flat ends of Ωi, which also has a
Riemannian product structure near each boundary component.

Next, by the compactness theory of [12, 13], the sequence ∂Ωi sub-
converges in the C2,α local graph sense to a set S which is a finite collec-
tion of MOTS {S+

a }
a0
a=1 and MITS {S−b }

b0
b=1 in (M, g, k). Moreover, each

of these MOTS and MITS arises from a sequence of connected closed
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properly embedded MOTS S+
ai ⊂ ∂Ωi or MITS S−bi ⊂ ∂Ωi with respect

to (gi, ki). We claim that S is a smooth submanifold. If a MOTS S+
a or

a MITS S−b remains disjoint from the other MOTS and MITS of S, then

this component is a smooth submanifold. If S+
a or S−b has nontrivial

intersection and does not coincide with another member of the MOTS
and MITS comprising S, this violates the C-almost minimization prop-
erty of ∂Ωi for large i. Thus the MOTS and MITS in S are pairwise
disjoint, and hence are smooth submanifolds.

To conclude the first step, remove the surface S from M and take
the metric completion of the component containing the designated end
Mend to obtain an initial data set (M ′, g, k). Note that this contains
(Mend, g, k), has boundary components consisting entirely of smooth
MOTS and MITS, and the topology of M ′ agrees with that of Ωi for
large i. Because Ωi admits a PSC metric having Riemannian product
structure near each boundary component, we may apply the prime de-
composition theorem along with a result of Gromov-Lawson [19] and
the resolution of the Poincaré conjecture to deduce that manifold M ′ has
PSC topology. That is, M ′ is diffeomorphic to a finite connected sum
of spherical spaces, S1×S2’s, and R3’s representing the ends, all with a
finite number of 3-balls removed which indicate the horizons. Thus, to
conclude the first step of the proof, we have produced an asymptotically
flat initial data set (M ′, g, k) having PSC topology, with boundary ∂M ′

consisting of MOTS and MITS components, and is such that one of the
ends coincides with (Mend, g, k).

In the second step of the proof the first Betti number of M ′ will be
reduced to zero with an iterative procedure. Since H2(M ′, ∂M ′;Z) is
Poincaré dual to H1(M ′;Z), which is itself isomorphic to the torsion-
free subgroup of H1(M ′;Z), this procedure will result in the desired
conclusion of vanishing second homology relative to the boundary. As
observed above, M ′ can be expressed as the compliment of finitely many
disjoint balls in #l(S1×S2)#N where N is a rational homology sphere.
Since N has vanishing first Betti number, b1(M ′) is equal to the num-
ber of its handle S1 × S2 summands. We proceed by constructing a
particular double cover of M ′. Let Σ′ ⊂ M̊ ′ be the image of an embed-
ding of S2 in one of the S1 × S2 summands of M ′ which is homologous
{pt} × S2 ⊂ S1 × S2. Define W to be the metric completion of M ′ \Σ′

and notice that its boundary can be decomposed as

(2.1) ∂W = ∂M ′ ∪ Σ′1 ∪ Σ′2,

where Σ′1 and Σ′2 are copies of Σ′. Next, consider the manifold

(2.2) M = W1 tW2/ ∼,
where W1 and W2 are copies of W and the relation ∼ identifies Σ′1 ⊂W1

with Σ′2 ⊂ W2 and Σ′2 ⊂ W1 with Σ′1 ⊂ W2. The manifold M is a two-
fold cover of M , classified by the mod 2 reduction of the cohomology
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class Poincaré dual to [Σ], and the pullback of the data (g, k) to M will
be denoted by (g, k). Furthermore, observe that M is diffeomorphic to
the complement of finitely many disjoint balls in

(2.3)
(

#l−1(S1 × S2)#N
)

#(S1 × S2)#
(

#l−1(S1 × S2)#N
)
,

so that

(2.4) b1(M) = 2b1(M ′)− 1.

Consider the two ends of M that are isometric to Mend, and choose
one for reference and denote it by E . The boundary of the double cover
may be decomposed as ∂M = ∂+M ∪ ∂−M , where θ± = 0 on ∂±M
and the null expansions are computed with respect to the unit normal
pointing inside M . Now let D ⊂ M be the bounded component that
remains after removing sufficiently large coordinate spheres in each of
the asymptotic ends of M . The boundary may be decomposed into two
types of surfaces ∂D = ∂outD∪∂inD, in which θ+ ≥ 0 on ∂outD with re-
spect to the normal pointing out of D, and θ+ ≤ 0 on ∂inD with respect
to the normal pointing into D. Note that MOTS boundary components
belong to ∂inD, while MITS components belong to ∂outD. Moreover the
coordinate sphere boundary in E satisfies the strict inequality θ+ > 0
and belongs to ∂outD, while the coordinate sphere boundaries lying in
the remaining ends satisfy the strict inequality θ+ < 0 and belong to
∂inD. It follows that we may apply the MOTS existence result [15,
Theorem 4.2], or rather a slight generalization of it to allow for non-
strict inequalities (see [2, Section 5] or [13, Remark 4.1]), to obtain an
outermost (with respect to E) MOTS Σ ⊂ D that separates ∂outD from
∂inD. Furthermore, this surface separates M into two disjoint regions
M \ Σ = Mout ∪ M in, where Mout is the component containing the
reference end E , see Figure 1.

In the remainder of the argument, we will first consider the case in
which (M, g, k) satisfies a strict dominant energy condition, and will
subsequently explain the alterations required for the general case. By
the strict dominant energy condition, stability of outermost MOTS, and
orientability of M , it follows that Σ consists of finitely many disjoint em-
bedded spheres. Now consider the Mayer-Vietoris sequence associated
with the decomposition M = Mout ∪M in, that is

· · · → H1(Σ;R)→ H1(Mout;R)⊕H1(M in;R)→ H1(M ;R)→ · · · .

(2.5)

Since H1(Σ;R) = 0 we find that b1(Mout) + b1(M in) ≤ b1(M). Tak-
ing (2.4) into consideration shows that either Mout or M in must have
first Betti number strictly less than b1(M ′); label the component of

this manifold that contains an isometric copy of Mend, by M
′
. Notice

that each component of the boundary of M
′

is either a MOTS or a
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(M, g, k)
Σ′

(M, g, k)

M out

(Mext, gext, kext)

Figure 1. A schematic description of the stages in the
second step in the proof of Proposition 2.1.

MITS. Moreover, as Σ is spherical, the sets Mout and M in give rise
to a connected sum decomposition of M . It follows that both Mout

and M in are diffeomorphic to the compliment of finitely many disjoint
balls in the connected sum of S1×S2’s and a rational homology sphere.

Furthermore, we may assume that M
′

has a single end, since if nec-
essary attention may be restricted to the region outside the outermost
MOTS to isolate the isometric copy of Mend. This same procedure

can be applied to M
′

to once again reduce the first Betti number by
at least one. Continuing in this manner yields the desired initial data
(Mext, gext, kext).

To finish, we describe the modifications necessary to accomplish the
construction in the above paragraph in the general case when (M, g, k)
satisfies the dominant energy condition, but not strictly so. In this case,
apply the approximating argument from the first step to obtain a se-
quence (gi, ki) on M satisfying the strict dominant energy condition and
which converges to (g, k). Note that a minor refinement of [16, Theo-
rem 22] is required for this due to the presence of boundary components,
see [1, footnote – page 869]. The outermost MOTS Σi that induces a

separation M = M
i
out ∪M

i
in, admits the C-almost minimization prop-

erty and consists of spherical MOTS and MITS. By the arguments of

the previous paragraph, the first Betti number of either M
i
out or M

i
in

is strictly less than b1(M ′). As described in the first step of the proof,
Σi subconverges to a limiting MOTS/MITS surface S in M , and we

may consider the metric completion M̂ of M \ S. The two components

of M̂ containing the isometric copies of Mend, have the same topology

as components of M
i
out or M

i
in for sufficiently large i. It follows that

one of them, M̂ ′, satisfies b1(M̂ ′) < b1(M ′). As above it may be as-

sumed that the component M̂ ′ possesses one end modeling E . Moreover
its boundary consists of MOTS and MITS, and it is diffeomorphic to
the compliment of finitely many disjoint balls in the connected sum of
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S1 × S2’s and a rational homology sphere. Thus the iteration may be
continued to obtain the desired conclusion. q.e.d.

3. The integral formula

Let (M̃4, g̃) be an asymptotically flat spacetime with initial data slice
(M, g, k). In the time-symmetric case when k = 0 the positive mass
theorem was proven [6] using asymptotically linear harmonic functions
on (M, g). In order to find an analogue in the spacetime setting, it
is helpful to obtain intuition from the case of equality. If the mass
vanishes, m = 0, then the spacetime in which the initial data set resides
should be Minkowski space M4. In the time symmetric case the initial
data coincide with a constant time slice, and the harmonic functions
used are simply the linear functions of the coordinates of this slice,
that is aix

i where ai, i = 1, 2, 3 are constants. For nonconstant time
slices, a natural generalization would be to use linear functions of the
coordinates in M4, that is a0x

0 + aix
i, and restrict this function to the

slice (M, g, k). It then remains to find a canonical equation induced on
the slice which is satisfied by these functions.

To this end, let ∇̃ and ∇ denote the Levi-Civita connections of the
spacetime and slice, respectively. Since the Minkowski coordinate func-
tions have vanishing spacetime Hessian, their linear combinations re-
stricted to the slice must be in the kernel of the hypersurface spacetime

Laplacian ∆̃ = gij∇̃ij . In a general spacetime, we are then motivated

to consider functions ũ ∈ C∞(M̃4) which satisfy

(3.1) 0 = ∆̃ũ = gij (∇ij ũ− kijn(ũ)) = ∆ũ− (Trgk)n(ũ) on M,

where n is the unit timelike normal to the slice. Notice that ∆̃ũ can be
considered as the divergence of ∇̃u|M using the spacetime connection

∇̃ acting on sections of the induced bundle TM̃ |M . This is in direct
analogy to the spinorial proof of the positive mass theorem where Wit-
ten [35] considers a Dirac operator defined using a connection induced

by M̃ . Equation (3.1), however, does not depend solely on the restric-
tion u = ũ|M due to the presence of the normal derivative. A choice for
n(ũ) must then be made in order to obtain a purely intrinsic equation
on the slice. It turns out that the desired choice for our purposes is to
choose the normal derivative so that the spacetime gradient of ũ is null,
that is n(ũ) = −|∇u|.

With the above discussion in mind, we make the following definitions.
Given initial data (M, g, k) and a function u ∈ C2(M), set

(3.2) ∇̄2u = ∇2u+ k|∇u|.
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A function u ∈ C2(M) is spacetime harmonic with respect to initial
data (M, g, k) if ∆̄u = 0 where

(3.3) ∆̄u = Trg∇̄2u = ∆u+K|∇u|.

In the above, we have made use of the shorthand K = Trgk. Note
that (3.2) agrees with the spatial components of the spacetime Hessian
when the normal derivative off of the slice is chosen as above.

Before stating the primary integral formula for spacetime harmonic
functions, we give a technical lemma based on a refined version of Kato’s
inequality. This will be used in the proof of the main result of this sec-
tion. Note that the natural regularity for spacetime harmonic functions
is C2,α(M), 0 < α < 1. By Rademacher’s theorem |∇u| is then differen-
tiable almost everywhere, and from the equation the same holds for ∆u.
Thus, the inequality of the next result holds away from a set of measure
zero.

Lemma 3.1. Let u be a spacetime harmonic function for the initial
data set (M, g, k). Then there exists a constant C > 0 depending only
on K and its first derivatives such that

(3.4) |∇2u|2 − |∇|∇u||2 + 〈∇u,∇∆u〉 ≥ −C|∇u|2.

Proof. By using the spacetime harmonic function equation (3.3) we
have

〈∇u,∇∆u〉 ≥ −K〈∇u,∇|∇u|〉 − C0|∇u|2 ≥ −
1

4
|∇|∇u||2 − C1|∇u|2.

(3.5)

Moreover, a refined version of the Kato inequality produces

(3.6) |∇2u|2 ≥ 5

4
|∇|∇u||2 − C2|∇u|2.

Note that as discussed above, these inequalities hold almost everywhere.
Combining (3.5) and (3.6) yields the desired result.

It remains to establish (3.6). To this end denote ui = ∂iu and set

(3.7) Xi =
1

2
∂i|∇u|2 −

1

3
(∆u)ui, Wij = X(iuj) −

1

3
〈X,∇u〉gij ,

where parentheses are used to indicate symmetrization of indices. Ob-
serve that

|W |2 = Xiuj
(
X(iuj) −

1

3
〈X,∇u〉gij

)
(3.8)

=
1

2
|X|2|∇u|2 +

1

6
〈X,∇u〉2

≤ 2

3
|X|2|∇u|2,



SPACETIME HARMONIC FUNCTIONS AND MASS 235

which implies that

1

2
Xi∂i|∇u|2 = Xiuj∇iju(3.9)

= Xiuj
(
∇iju−

1

3
(∆u)gij

)
+

1

3
(∆u)〈X,∇u〉

= W ij

(
∇iju−

1

3
(∆u)gij

)
+

1

3
(∆u)〈X,∇u〉

≤ |W |
√
|∇2u|2 − 1

3
(∆u)2 +

1

3
(∆u)〈X,∇u〉

≤
√

2

3
|X||∇u|

√
|∇2u|2 − 1

3
(∆u)2 +

1

3
(∆u)〈X,∇u〉.

It follows that

(3.10) |X| ≤
√

2

3
|∇u|

√
|∇2u|2 − 1

3
(∆u)2.

Squaring both sides, utilizing the spacetime harmonic function equation,
and applying Young’s inequality then gives

|∇u|2|∇2u|2 ≥ 1

3
(∆u)2|∇u|2 +

3

2
|X|2

=
1

2
(∆u)2|∇u|2 +

3

2
|∇|∇u||2|∇u|2−(∆u)|∇u|〈∇u,∇|∇u|〉

≥ 5

4
|∇|∇u||2|∇u|2 − C2|∇u|4.

(3.11)

This gives inequality (3.6), if |∇u| 6= 0. At points where |∇u| = 0 and
|∇u| is differentiable, we have that |∇|∇u|| = 0 since the nonnegative
function |∇u| achieves its minimum value. Inequality (3.6) thus holds
trivially at such points. The remaining points, where |∇u| = 0 and |∇u|
is not differentiable, form a set of measure zero. q.e.d.

We are now in a position to establish the main integral formula for
spacetime harmonic functions. This may be viewed as a generalization
of [6, Proposition 4.2], see also [7, 33].

Proposition 3.2. Let (Ω, g, k) be a 3-dimensional oriented compact
initial data set with smooth boundary ∂Ω, having outward unit normal υ.
Let u : Ω → R be a spacetime harmonic function, and denote the open
subset of ∂Ω on which |∇u| 6= 0 by ∂ 6=0Ω. If u and u denote the maxi-
mum and minimum values of u and Σt are t-level sets, then∫

∂ 6=0Ω
(∂υ|∇u|+ k(∇u, υ)) dA(3.12)

≥
∫ u

u

∫
Σt

(
1

2

|∇̄2u|2

|∇u|2
+ µ+ J(ν)−K

)
dAdt,
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where ν = ∇u
|∇u| and K is the level set Gauss curvature.

Proof. Recall Bochner’s identity

(3.13)
1

2
∆|∇u|2 = |∇2u|2 + Ric(∇u,∇u) + 〈∇u,∇∆u〉.

For ε > 0 set ϕε =
√
|∇u|2 + ε, and use Bochner’s identity to find

∆ϕε =
∆|∇u|2

2ϕε
− |∇|∇u|

2|2

4ϕ3
ε

(3.14)

≥ 1

ϕε

(
|∇2u|2 − |∇|∇u||2 + Ric(∇u,∇u) + 〈∇u,∇∆u〉

)
.

On a regular level set Σ, the unit normal is ν = ∇u
|∇u| and the second

fundamental form is given by II =
∇2

Σu

|∇u| , where ∇2
Σu represents the

Hessian of u restricted to TΣ⊗ TΣ. We then have

(3.15) |II|2 = |∇u|−2
(
|∇2u|2 − 2|∇|∇u||2 + [∇2u(ν, ν)]2

)
,

and the mean curvature satisfies

(3.16) |∇u|H = ∆u−∇2
νu.

Furthermore by taking two traces of the Gauss equations

(3.17) 2 Ric(ν, ν) = Rg −RΣ − |II|2 +H2,

where Rg and RΣ are scalar curvatures. Combining these formulas
with (3.14) produces

∆ϕε ≥
1

ϕε

(
|∇2u|2 − |∇|∇u||2

)
+

1

ϕε

(
〈∇u,∇∆u〉+

|∇u|2

2

(
Rg −RΣ +H2 − |II|2

))
=

1

2ϕε

(
|∇2u|2 + (Rg −RΣ)|∇u|2

)
+

1

2ϕε

(
2〈∇u,∇∆u〉+ (∆u)2 − 2(∆u)∇2

νu
)
.

(3.18)

Let us now replace the Hessian with the spacetime Hessian via the re-
lation ∇̄2u = ∇2u+k|∇u|, and utilize the spacetime harmonic function
equation ∆u = −K|∇u| to find

∆ϕε ≥
1

2ϕε

(
|∇̄2u|2 − 2〈k,∇2u〉|∇u| − |k|2g|∇u|2 + (Rg −RΣ)|∇u|2

−2〈∇u,∇K〉|∇u| − 2K〈∇u,∇|∇u|〉+K2|∇u|2 + 2K|∇u|∇2
νu
)
.

(3.19)
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Moreover noting that

〈∇u,∇|∇u|〉 =
1

2
〈ν,∇|∇u|2〉 = ui∇iνu = |∇u|∇2

νu,(3.20)

2µ = Rg +K2 − |k|2g,(3.21)

gives rise to the following inequality on a regular level set

∆ϕε ≥
1

2ϕε

(
|∇̄2u|2 + (2µ−RΣ)|∇u|2

)
(3.22)

+
1

2ϕε

(
−2〈k,∇2u〉|∇u| − 2〈∇u,∇K〉|∇u|

)
.

Consider an open set A ⊂ [u, u] containing the critical values of u,
and let B ⊂ [u, u] denote the complementary closed set. Then integrate
by parts to obtain

(3.23)

∫
∂Ω
∂υϕεdA =

∫
Ω

∆ϕεdV =

∫
u−1(A)

∆ϕεdV +

∫
u−1(B)

∆ϕεdV.

According to Lemma 3.1 and (3.14) there is a positive constant C0,
depending only on Ric(g) along with K and its first derivatives, such
that

(3.24) ∆ϕε ≥ −C0|∇u|.

An application of the coarea formula to u : u−1(A)→ A then produces

(3.25) −
∫
u−1(A)

∆ϕεdV ≤ C0

∫
u−1(A)

|∇u|dV = C0

∫
t∈A
H2(Σt)dt,

where H2(Σt) is the 2-dimensional Hausdorff measure of the t-level
set Σt. Next, apply the coarea formula to u : u−1(B) → B together
with (3.22) to find∫

u−1(B)
∆ϕεdV(3.26)

≥ 1

2

∫
t∈B

∫
Σt

|∇u|
ϕε

[
|∇̄2u|2

|∇u|2
+ 2µ−RΣt

]
dAdt.

≥ 1

2

∫
t∈B

∫
Σt

|∇u|
ϕε

[
− 2

|∇u|
(〈k,∇2u〉+ 〈∇u,∇K〉)

]
dAdt.

Combining all this together produces∫
∂Ω
∂υϕεdA+ C0

∫
t∈A
H2(Σt)dt(3.27)

≥ 1

2

∫
t∈B

∫
Σt

|∇u|
ϕε

(
|∇̄2u|2

|∇u|2
+ 2µ−RΣt

)
dAdt

−
∫
t∈B

∫
Σt

ϕ−1
ε

(
〈k,∇2u〉+ 〈∇u,∇K〉

)
dAdt.
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On the set u−1(B), we have that |∇u| is uniformly bounded from
below. In addition, on ∂ 6=0Ω it holds that

(3.28) ∂υϕε =
|∇u|
ϕε

∂υ|∇u| → ∂υ|∇u| as ε→ 0.

Therefore, the limit ε → 0 may be taken in (3.27), resulting in the
same bulk expression except that ϕε is replaced by |∇u|, and with the
boundary integral taken over the restricted set. Furthermore, by Sard’s
theorem (see Remark 3.3 below) the measure |A| of A may be taken to
be arbitrarily small. Since the map t 7→ H2(Σt) is integrable over [u, u]
in light of the coarea formula, by then taking |A| → 0 we obtain∫

∂ 6=0Ω
∂υ|∇u|dA ≥

1

2

∫ u

u

∫
Σt

(
|∇̄2u|2

|∇u|2
+ 2µ−RΣt

)
dAdt(3.29)

−
∫

Ω

(
〈k,∇2u〉+ 〈∇u,∇K〉

)
dV.

Lastly integrating parts

−
∫

Ω
〈k,∇2u〉dV = −

∫
Ω
kij∇ijudV =

∫
Ω
ui∇jkij −

∫
∂Ω
k(∇u, υ)dA,

(3.30)

and recalling that J = divg(k − Kg) and RΣt = 2K, yields the desired
result. q.e.d.

Remark 3.3. The classical statement of Sard’s theorem in the cur-
rent context requires u ∈ C3, while spacetime harmonic functions typi-
cally only satisfy u ∈ C2,α, 0 < α < 1. Nevertheless, Sard’s theorem still
applies. To see this, observe that since |∇u| is Lipschitz and hence in

Lploc for all p, elliptic regularity yields u ∈ W 2,p
loc . It follows from Kato’s

inequality that |∇u| ∈W 1,p
loc , and therefore u ∈W 3,p

loc . According to [17,
Theorem 5] the conclusion of Sard’s theorem holds for such functions.

4. Existence and uniqueness of spacetime harmonic functions

Let (M, g, k) be an asymptotically flat initial data set with (possi-
bly empty) smooth boundary ∂M . The purpose of this section is to
establish the appropriate existence, uniqueness, and asymptotic prop-
erties of spacetime harmonic functions. As we will see, even though
the spacetime harmonic function equation is nonlinear, the nonlinearity
is sufficiently mild that it behaves similar to a linear equation without
zeroth order term. For simplicity of discussion, it will be assumed here
that M possesses a single end, although the final result stated at the
end of the section will be given in full generality. Let aix

i be a linear
function of the asymptotic coordinates in the end Mend, with

∑
i a

2
i = 1,
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and let h ∈ C∞(∂M). By slightly generalizing [4, Theorem 3.1] we may
solve the asymptotically linear Dirichlet problem

∆v = −K on M,(4.1)

v = 0 on ∂M, v = aix
i +O2(r1−q) as r →∞,(4.2)

where r = |x|, q is as in (1.2), and O2 indicates in the usual way addi-
tional fall-off for each derivative taken up to order 2. Consider now the
corresponding problem for the spacetime harmonic function equation

∆u+K|∇u| = 0 on M,(4.3)

u = h on ∂M, u = v +O2(r−β) as r →∞,(4.4)

where β ∈ (0, 1). The strategy will be to first solve for u on a sequence
of compact domains exhausting M , use a barrier in the asymptotic end
to obtain uniform estimates, and then find a subsequence that converges
to the desired solution.

4.1. Solutions on compact exhausting domains. Let Sr ⊂ Mend

be a coordinate sphere in the asymptotic end, and let Mr denote the
compact component of M \Sr having boundary ∂Mr = ∂M ∪Sr. Con-
sider now the preliminary Dirichlet problem

∆ur +K|∇ur| = 0 on Mr,(4.5)

ur = h on ∂M, ur = v on Sr.(4.6)

For this boundary value problem we will use the Leray-Schauder fixed
point theorem [18, Theorem 11.3].

Theorem 4.1. Let B be a Banach space and F : B × [0, 1] → B a
compact mapping with F(b, 0) = 0 for all b ∈ B. If there is a constant
c, such that any solution (b, σ) ∈ B × [0, 1] of b = F(b, σ) satisfies the a
priori inequality ‖ b ‖≤ c, then there is a fixed point at σ = 1. That is,
there exists b1 ∈ B with b1 = F(b1, 1).

To set up the fixed point method write ur = ṽ + wr and f =
∆ṽ + K|∇ṽ|, where ṽ = v + v0 with v0 ∈ C∞(M) a fixed function
satisfying v0 = h on ∂M and v0 ≡ 0 on Mend. Then boundary value
problem (4.5), (4.6) becomes

∆wr = −K (|∇ur| − |∇ṽ|)− f(4.7)

= −K
(

∇(wr + 2ṽ)

|∇(wr + ṽ)|+ |∇ṽ|

)
· ∇wr − f on Mr,

(4.8) wr = 0 on ∂Mr.

Let C2,α
0 (Mr) denote the space of C2,α(Mr) functions which vanish on

the boundary, and observe that ∆−1 : C2,α
0 (Mr) → C0,α(Mr) is an
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isomorphism. Now set

F(w, σ) = σ∆−1

[
−K

(
∇(w + 2ṽ)

|∇(w + ṽ)|+ |∇ṽ|

)
· ∇w − f

]
(4.9)

=: σ∆−1F (w), w ∈ C1,α
0 (Mr).

Observe that F (w) ∈ C0,α(Mr) and hence F(w, σ) ∈ C2,α
0 (Mr). We

choose B = C1,α
0 (Mr) and note that the composition

(4.10) C1,α
0 (Mr)

F−→C0,α(Mr)
∆−1

−→C2,α
0 (Mr)

ι−→C1,α
0 (Mr),

yields a compact map F : B × [0, 1] → B since the first two pieces F
and ∆−1 are bounded while the inclusion ι is compact. Furthermore,
finding a fixed point wr = F(wr, 1) is equivalent to solving (4.7), (4.8)

in C2,α
0 (Mr) by elliptic regularity. Then ur = ṽ + wr is the desired

solution of (4.5), (4.6).
It remains to establish the a priori estimate |wσ|C1,α(Mr) ≤ c, in-

dependent of σ, for a fixed point wσ = F(wσ, σ). Such a fixed point
satisfies (4.7), (4.8) with K and f replaced by σK and σf . This may be
viewed as a linear equation with coefficients that depend on the solution.
However, since the coefficients remain uniformly bounded independent
of the solution, Lp estimates for linear elliptic equations may be applied
to obtain

(4.11) ‖ wσ ‖W 2,p(Mr)≤ C
(
‖ f ‖Lp(Mr) + ‖ wσ ‖Lp(Mr)

)
,

where W l,p denotes the Sobolev space with l weak derivatives in Lp,
p > 1. Moreover, since the coefficient of the zeroth order term in (4.7)
vanishes, the maximum principle is valid and leads to a C0 bound for
wσ which in turn gives a bound for ‖ wσ ‖Lp(Mr). Hence we obtain the
a priori estimate

(4.12) ‖ wσ ‖W 2,p(Mr)≤ C3,

independent of σ. According to the Sobolev embedding W 2,p(Mr) ↪→
C1,α(Mr) for p sufficiently large, we obtain

(4.13) |wσ|C1,α(Mr) ≤ C5,

independent of σ. The Leray-Schauder theorem may now be applied to
obtain a fixed point at σ = 1.

4.2. Barriers. Rotationally symmetric asymptotic barrier functions
will be constructed to obtain uniform bounds on the solutions wr of
(4.7), (4.8) independent of r. To this end, in the asymptotically flat
region set

w(r) = λr−β, w′(r) = −λβr−1−β, w′′(r) = λβ(1 + β)r−2−β,

(4.14)
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for β ∈ (0, 1) and where λ > 0 is a constant to be chosen sufficiently
large. Using the level sets of r, the metric may be expressed as

(4.15) g = |∂r|2dr2 + gr = |∇r|−2dr2 + gr,

where gr is the induced metric on the coordinate spheres Sr. If υ denotes
the unit outer normal to the coordinate spheres then

υ = |∂r|−1∂r = |∇r|∂r, |∇r|2 = gij∂ir∂jr =
gijxixj

r2
= 1 +O2(r−q),

(4.16)

and the Laplacian becomes

(4.17) ∆w = ∇2
υw +HSrυ(w),

where HSr denotes mean curvature. Observe that

(4.18) ∇2
υw = υiυj∇ijw = |∇r|2∇rrw = |∇r|2

(
w′′ − Γrrrw

′) ,
and

(4.19) Γrrr =
1

2
grr∂rgrr = −∂r log |∇r|,

so that

∆w = |∇r|2w′′ + |∇r| (HSr + ∂r|∇r|)w′(4.20)

=
(
1 +O(r−q)

)(
w′′ +

2

r
w′ +O(r−q−1)w′

)
= −λβ(1− β)r−2−β (1 +O(r−q)

)
.

Furthermore ∣∣K(wr) · ∇w
∣∣ :=

∣∣∣∣K( ∇(wr + 2ṽ)

|∇(wr + ṽ)|+ |∇ṽ|

)
· ∇w

∣∣∣∣(4.21)

≤ Cr−q−1|w′| = Cλβr−q−2−β.(4.22)

It follows that

(4.23) Lw := ∆w +K(wr) · ∇w = −λβ(1− β)r−2−β (1 +O(r−q)
)
.

Consider now the asymptotics for f . According to (4.1), (4.2) we
have

(4.24) |f | = |∆v +K|∇v|| = |K||1− |∇v|| ≤ C1r
−2q−1 = C1r

−2−β,

by setting β = 2q − 1 > 0. Therefore, given a large radius r0, it holds
that

(4.25) Lw ≤ −f for r > r0

if λ is sufficiently large. Hence, w is a super-solution of (4.7) onMr\Mr0 .
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In order to obtain a global barrier let w̃r0 solve (4.7), (4.8) on Mr0

with K(w̃r0) replaced by K(wr), noting that this is a linear boundary
value problem. Next define

(4.26) ŵλ =

{
w̃ := w̃r0 + λr−β0 on Mr0 ,

w on Mr \Mr0 .

This function is smooth everywhere, except at Sr0 where it is continu-
ous, and is a super-solution for (4.7) on Mr0 and Mr \Mr0 separately.
Furthermore we have

(4.27) ∂rw̃ > ∂rw at Sr0 ,

if λ is sufficiently large (independent of r), and this allows for an appli-
cation of the weak maximum principle. To see this, let φ ∈ C∞c (Mr) be
a nonnegative test function and observe that

0 = −
∫
Mr0

φL(w̃ − wr)dV(4.28)

=

∫
Mr0

(
∇φ · ∇(w̃ − wr)− φK(wr) · ∇(w̃ − wr)

)
dV

−
∫
Sr0

φ∂r(w̃ − wr)dA,

and

0 ≤ −
∫
Mr\Mr0

φL(w − wr)dV(4.29)

=

∫
Mr\Mr0

(
∇φ · ∇(w − wr)− φK(wr) · ∇(w − wr)

)
dV

+

∫
Sr0

φ∂r(w − wr)dA,

so that upon adding these two inequalities∫
Mr

(
∇φ · ∇(ŵλ − wr)− φK(wr) · ∇(ŵλ − wr)

)
dV(4.30)

≥
∫
Sr0

φ(∂rw̃ − ∂rw)dA ≥ 0.(4.31)

Hence, according to [18, Theorem 8.1] the weak maximum principle
yields

(4.32) infMr(ŵλ − wr) ≥ inf∂Mr(ŵλ − wr) ≥ 0.

A similar argument with ŵ−λ yields a lower bound, and therefore

(4.33) ŵ−λ < wr < ŵλ on Mr.

Consequently we obtain a global C0 estimate for wr independent of r.
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4.3. The global existence result. Here we will show that wr subcon-
verges on compact subsets as r → ∞ to a C2,α solution of (4.7) on all
of M . In the previous subsection a uniform C0 estimate was achieved.
Consider (4.7) as a linear equation with coefficients depending on wr but
which are uniformly bounded, and apply the local Lp estimates to find

(4.34) ‖ wr ‖W 2,p(Ω)≤ C
(
‖ f ‖Lp(Ω′) + ‖ wr ‖Lp(Ω′)

)
,

where Ω ⊂⊂ Ω′ are any fixed compact subsets of Mr and C is indepen-
dent of r. The uniform C0 bound implies a uniform Lp bound in Ω′,
and therefore

(4.35) ‖ wr ‖W 2,p(Ω)≤ C ′.

By Sobolev embedding this yields a uniform C1,α(Ω) bound, so that in
particular the right-hand side of (4.7) is controlled in C0,α(Ω). Now
applying the local Schauder estimates we obtain the desired C2,α esti-
mate on a subset of Ω, for any α ∈ (0, 1). It follows then by a diagonal
argument that there is a subsequence wri converging in C2,α on any
compact subset of M to a smooth function w which solves

∆w = −K
(

∇(w + 2ṽ)

|∇(w + ṽ)|+ |∇ṽ|

)
· ∇w − f on M,(4.36)

w = 0 on ∂M, −w < w < w on M \Mr0 .(4.37)

Finally, by setting u = ṽ+w we obtain the desired solution of (4.3), (4.4).
As mentioned at the start of the section, this global existence result

extends in a straightforward manner to the case of multiple asymp-
totically flat ends M `

end, ` = 1, . . . , `0. For this situation let a`ix
i be

a linear function of the asymptotic coordinates in the end M `
end, with∑

i(a
`
i)

2 = 1, and let h ∈ C∞(∂M). Then the background function
satisfies

∆v = −K on M,(4.38)

v = 0 on ∂M,(4.39)

v = a`ix
i +O2(r1−q) as r →∞ in M `

end, ` = 1, . . . , `0.

(4.40)

Theorem 4.2. Suppose that (M, g, k) is a smooth asymptotically flat
initial data set with (possibly empty) boundary ∂M , and h ∈ C∞(∂M).
Let v be a solution of (4.38) and (4.40). Then for each α ∈ (0, 1)
there exists a solution u ∈ C2,α(M) of the spacetime harmonic function
equation

(4.41) ∆u+K|∇u| = 0 on M,

such that

(4.42) u = h on ∂M, u = v +O2(r1−2q) as r →∞.
The solution u is unique among those which satisfy (4.42).
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Proof. The existence portion was proven in the discussion above,
while the uniqueness follows from the maximum principle in the same
manner as the barrier argument at the end of Section 4.2. Lastly, the
decay of derivatives in the asymptotic ends may be established analo-
gously to [30, Proposition 3]. q.e.d.

5. Controlling the level set topology

In order to apply the integral inequality Proposition 3.2 successfully,
it is important to ensure that the Euler characteristic of regular level sets
for the spacetime harmonic function does not exceed 1. In this section,
we show that it is possible to choose the spacetime harmonic function,
by carefully selecting its Dirichlet data, to achieve this goal for the
level sets. Since this will be employed for generalized exterior regions,
here we consider asymptotically flat initial data (M, g, k) with a single
asymptotic end, although the boundary may have several components
∂M = ∪ni=1∂iM . Let v solve (4.38), (4.40) and consider the Dirichlet
problem

∆uc +K|∇uc| = 0 on M,(5.1)

uc = ci on ∂iM, i = 1, . . . , n, uc = v +O2(r1−2q) as r →∞,
(5.2)

where c = (c1, . . . , cn) are constants. The following is a technical pre-
liminary result that indicates how to choose the constants c in order
to achieve the main topological conclusions of Theorem 5.2 concerning
level sets, as well as to aid with the computation of boundary terms in
the integral inequality Proposition 3.2.

Lemma 5.1. Let uc be the solution of (5.1), (5.2) given by Theo-
rem 4.2.

1) Let (−1)ςi, ςi ∈ {0, 1} be a choice of sign associated with each
boundary component i = 1, . . . , n. There exists a set of constants
c such that for each boundary component there is a point yi ∈ ∂iM
with |∇uc(yi)| = 0, and in addition (−1)ςi∂υuc ≥ 0 on ∂iM , where
υ is the unit normal to ∂M pointing outside M .

2) If v 6= 0, then within each boundary component ∂iM , the set of
points at which |∇uc| = 0 is nowhere dense.

Proof. A priori estimates established in the previous section show
that uc is continuously differentiable in c. Set ui := ∂ciuc and observe
that these functions satisfy

∆ui +K ∇uc
|∇uc|

· ∇ui = 0 on M,(5.3)

ui = δij on ∂jM, j = 1, . . . , n, ui = O(r1−2q) as r →∞.
(5.4)
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Clearly the set of functions {u1, . . . , un} is linearly independent. Pick
yi ∈ ∂iM , i = 1, . . . , n and set y = (y1, . . . , yn). We claim that the
Jacobian matrix

(5.5) U(c,y) =


∂υu1(y1) ∂υu2(y1) . . . ∂υun(y1)
∂υu1(y2) ∂υu2(y2) . . . ∂υun(y2)

...
...

. . .
...

∂υu1(yn) ∂υu2(yn) . . . ∂υun(yn)


is invertible, where υ is the unit outer normal to ∂M . Suppose by way
of contradiction that it is not invertible. Then there exist constants bi,
i = 1, . . . , n, not all zero, such that u =

∑n
i=1 biui satisfies ∂υu(yj) = 0,

j = 1, . . . , n. Note that the function u satisfies

∆u+K ∇uc
|∇uc|

· ∇u = 0 on M,(5.6)

u = bj on ∂jM, j = 1, . . . , n, u = O(r1−2q) as r →∞.
(5.7)

Since bi are not all zero, we have that u 6= 0. On the other hand, by
the maximum principle either the global max or min must be achieved
on ∂i0M for some i0. By the Hopf lemma, we then have ∂υu(yi0) 6= 0.
However this contradicts the basic property of u described above. It
follows that U is invertible.

We now show that U(c,y) stays uniformly bounded and away from
being singular. To see this, suppose that for a sequence {(cl,yl)}∞l=1
either ‖ U(cl,yl) ‖→ ∞ or detU(cl,yl)→ 0. Observe that the solutions

∂ciucl of (5.3), (5.4) are uniformly controlled in W 2,p
loc (M) by the Lp

estimates, since the first order coefficients remain uniformly bounded. It
follows that there is subsequential convergence in C1,α(M) to a solution
∂ciu∞. Consequently, using that the sequence {yl} ⊂ Πn

i=1∂iM lies in
a compact set, we find that there is subconvergence U(cl,yl)→ U(∞).
However, the arguments of the previous paragraph show that U(∞)
is invertible, and this contradiction yields the desired conclusion. In
particular, U−1(c,y) is uniformly bounded.

Consider the map U : Rn → Rn given by

(5.8) U(c1, . . . , cn) = (∂υuc(y1(c)), . . . , ∂υuc(yn(c))),

where yi(c) ∈ ∂iM is a point at which ∂υuc achieves its: minimum over
this component when ςi = 0, or maximum over this component when
ςi = 1. Observe that U is continuous. Moreover, it will be shown that
this function is differentiable in certain directions, and the matrix U
will play a role similar to a Jacobian for U. Set

(5.9) p0 = (∂υu0(y1(0)), . . . , ∂υu0(yn(0))),

and let p(t) ⊂ Rn be a smooth curve emanating from p0 = p(0) and
ending at p(1) = 0. We claim that there is a smooth curve c(t), t ∈ [0, 1],
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emanating from c(0) = 0, such that U(c(t)) = p(t). To find this solve
the ODE initial value problem

(5.10) c′(t) = U−1(c(t),y(c(t)))p′(t), c(0) = 0.

Observe that global existence holds since U−1(c,y(c)) is uniformly
bounded independent of c.

We will now show that U(c(t)) is differentiable. Let yi(c) be a min-
imum point for ∂υuc on ∂iM , and 0 ≤ s < t ≤ 1; a similar argument
holds or a maximum point. Then

∂υuc(t)(yi(c(t)))− ∂υuc(s)(yi(c(s)))(5.11)

=
[
∂υuc(t)(yi(c(t)))− ∂υuc(s)(yi(c(t)))

]
+
[
∂υuc(s)(yi(c(t)))− ∂υuc(s)(yi(c(s)))

]
≥ ∂υuc(t)(yi(c(t)))− ∂υuc(s)(yi(c(t)))

=
∑
j

∂υ∂cjuc(t)(yi(c(t))c′j(t)(t− s) + o(t− s)

= p′i(t)(t− s) + o(t− s),

and

∂υuc(t)(yi(c(t)))− ∂υuc(s)(yi(c(s)))(5.12)

=
[
∂υuc(t)(yi(c(t)))− ∂υuc(t)(yi(c(s)))

]
+
[
∂υuc(t)(yi(c(s)))− ∂υuc(s)(yi(c(s)))

]
≤ ∂υuc(t)(yi(c(s)))− ∂υuc(s)(yi(c(s)))

=
∑
j

∂υ∂cjuc(s)(yi(c(s))c′j(s)(t− s) + o(t− s)

= p′i(s)(t− s) + o(t− s),

where we have used Taylor’s theorem and (5.10) with the notation
p(t) = (p1(t), . . . , pn(t)). Dividing both sides of these equations by
t− s and letting t→ s shows that U(c(t)) is differentiable, and

(5.13)
d

dt
U(c(t)) = p′(t).

Integrating this equation then gives the desired relation. We now have
U(c(1)) = 0, so that c(1) is the claimed set of constants such that

(5.14) ∂υuc(1)(yi(c(1))) = 0, i = 1, . . . , n.

This completes the proof of (1).
Consider now part (2). Suppose that the set within ∂iM on which

|∇uc| = 0 has a nonempty interior. Then since equation (5.1) may
be viewed as a linear equations with bounded coefficients, the unique
continuation result [34, Theorem 1.7] applies to show that uc ≡ const.
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This contradicts the assumption that v 6= 0. Since the set on which
|∇uc| = 0 is also closed, it follows that it is nowhere dense. q.e.d.

∂iM -

u−1
c (ci)

u−1
c (0)

u−1
c (−1)

Figure 2. Possible level sets of the function uc con-
structed in Lemma 5.1.

We are now in a position to establish the main topological result con-
cerning regular level sets of the spacetime harmonic function uc arising
from Lemma 5.1. This will later be employed in generalized exterior
regions which have a simplified topology, although we do not use here
the MOTS and MITS condition on the boundary of such regions.

Theorem 5.2. Let (M, g, k) be a smooth asymptotically flat initial
data set having a single asymptotic end, and satisfying H2(M,∂M ;Z) =
0. Let uc be the solution of (5.1), (5.2) with c given by Lemma 5.1.
Then all regular level sets of uc are connected and noncompact with a
single end modeled on R2 \B1. In particular, if Σt is a regular level set
then its Euler characteristic satisfies χ(Σt) ≤ 1.

Proof. Let Σt = u−1
c (t) be a regular level set, and suppose that there

is a compact connected component Σ′t ⊂ Σt. Note that Σ′t is a 2-
sided properly embedded submanifold. Since H2(M,∂M ;Z) = 0 the
boundary cycles ∂iM , i = 1, . . . , n generate H2(M). Thus, either Σ′t is
homologous to zero or it is homologous to a sum of boundary cycles.
In the former case Σ′t bounds a compact region of M , and since the
spacetime harmonic function equation admits a maximum principle the
solution uc ≡ t in this region. This, however, contradicts the assump-
tion that t is a regular value. So now consider the later case in which
[Σ′t] can be represented as the sum of boundary classes

∑
i∈I [∂iM ], for

some index set I. Let D ⊂ M denote the compact region bounded by
Σ′t ∪ (∪i∈I∂iM) = ∂D. Since the maximum and minimum of uc on D
are achieved on the boundary, it follows that either the max or min
is achieved on ∂i0M , for some i0 ∈ I. In particular, this max or min
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is achieved at yi0 ∈ ∂i0M . Next observe that the Hopf lemma applies
to the spacetime harmonic function equation, since the nonlinear first
order part may be expressed as a linear term with bounded coefficients,
and therefore ∂υuc(yi0) 6= 0. However this contradicts the fact that yi0
is a critical point for uc, as stated in Lemma 5.1. We conclude that
all components of Σt are noncompact. Moreover Σt is a closed subset
of M , since it is properly embedded. Therefore if any component of
Σt stays within Mr (see Section 4.1), it must be compact which is a
contradiction. It follows that each component must extend beyond Sr
for all r.

The asymptotics of uc ∼ aix
i in the end Mend imply that for all

sufficiently large r the level set Σt stays within a slab {x ∈ M \Mr |
t − C < aix

i < t + C}, for some constant C. Indeed, by the implicit
function theorem Σt may be presented uniquely in this region as a graph
over the plane t = aix

i. Hence, Σt is connected and has a single end
modeled on R2 \B1. q.e.d.

6. Proof of the mass lower bound

Let (M, g, k) be a complete asymptotically flat initial data set for the
Einstein equations, having generalized exterior region Mext associated
with a particular end Mend and given by Proposition 2.1; for convenience
we will continue denoting the metric and extrinsic curvature on Mext by
(g, k). Suppose that x = (x1, x2, x3) are spacetime harmonic coordinates
on Mext. This means that each function xl satisfies (5.1), (5.2) and is
given by Theorem 4.2 and Lemma 5.1 (1), with asymptotics xl ∼ x̃l

for some given asymptotically flat coordinate system x̃ = (x̃1, x̃2, x̃3) on
Mend. More precisely, by Lemma 5.1(1) we may choose the sign of the
normal derivative at each boundary component ∂iMext, i = 1, . . . , n so
that:

∂υx
l ≤ 0 on ∂iMext if θ+ (∂iMext) = 0,(6.1)

∂υx
l ≥ 0 on ∂iMext if θ− (∂iMext) = 0, l = 1, 2, 3.(6.2)

Note that although xl are referred to as spacetime harmonic coordinates
and are defined on all of Mext, they are only guaranteed to form a coor-
dinate system in Mend. Observe that due to the asymptotic expansion
in Theorem 4.2, the ADM energy and linear momentum computed in
spacetime harmonic coordinates will agree with the computation in any
other valid asymptotically flat coordinate system [4].

For L > 0 sufficiently large define the cylindrical boundaries

D±L = {x ∈Mend | (x2)2 + (x3)2 ≤ L2, x1 = ±L},(6.3)

TL = {x ∈Mend | (x2)2 + (x3)2 = L2, |x1| ≤ L},
CL = D+

L ∪ TL ∪D
−
L ,
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and denote by ΩL the bounded component of Mext \CL, so that ∂ΩL =
CL t ∂Mext. Let u = x1 be the spacetime harmonic function described
above, and set Σt = u−1(t) as well as ΣL

t = Σt ∩ ΩL. If t is a regular
value of u, then ∂ΣL

t lies entirely within CL, due to the fact that u has
critical points on each component ∂iMext, i = 1, . . . , n. Note also that
the regular level sets ΣL

t meet TL transversely, and by Theorem 5.2, ΣL
t

has only one component so that χ(ΣL
t ) ≤ 1. Therefore we may apply

Proposition 3.2 together with the Gauss-Bonnet theorem to obtain

1

2

∫
ΩL

(
|∇̄2u|2

|∇u|
+ 2(µ− |J |g)|∇u|

)
dV

(6.4)

≤
∫ L

−L

(
2πχ(Σt)−

∫
ΣLt ∩TL

κt,L

)
dt+

∫
∂ 6=0ΩL

(∂υ|∇u|+ k(∇u, υ)) dA

≤ 4πL−
∫ L

−L

(∫
ΣLt ∩TL

κt,L

)
dt+

∫
CL

(∂υ|∇u|+ k(∇u, υ)) dA

+

∫
∂ 6=0Mext

(∂υ|∇u|+ k(∇u, υ)) dA,

where κt,L is the geodesic curvature of ΣL
t ∩TL interpreted as the bound-

ary curve in Σt, ∂ 6=0Mext denotes the subset of ∂Mext where |∇u| 6= 0,
and we have used that |∇u| > 0 on CL.

In what follows we will compute first the outer boundary integral
along CL in the asymptotic end, from which the ADM energy and linear
momentum will arise. The inner boundary integral along ∂ 6=0Mext will
then be computed and shown to vanish, due to the fact that ∂Mext

consists of MOTS and MITS. Below, the notation
∫
D±L
±f will be used

to represent
∫
D+
L
f −

∫
D−L

f .

6.1. Computation of the outer boundary integral. In [6, Lemma
6.1], a computation was carried out in harmonic coordinates. Each step
of the proof applies here without change using spacetime harmonic coor-
dinates, except for equation [6, (6.9)] where harmonicity was used. By
replacing the harmonic function equation with the spacetime harmonic
function equation, in this calculation, we find that

∫
CL

∂υ|∇u|dA

(6.5)

=

∫
D±L

±
(

1

2

∑
j

(g1j,j − gjj,1)−K
)
dA

+
1

2L

∫
TL

[
x2(g21,1 − g11,2) + x3(g31,1 − g11,3)

]
dA+O(L1−2q).
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Similarly, [6, Lemma 6.2] may be carried over without change to the
current setting to yield∫ L

−L

(∫
Σt∩TL

κt,L

)
dt(6.6)

= 4πL+
1

2L

∫
TL

[
x2(g33,2 − g23,3) + x3(g22,3 − g32,2)

]
dA

+O(L1−2q + L−q).

Next, observe that the outward normal υ to CL takes the form

(6.7) υ =

{
±∂1 +O(|x|−q) on D±L ,
x2

L ∂2 + x3

L ∂3 +O(|x|−q) on TL.

Furthermore

(6.8) ∇u = gi1∂i = ∂1 +O(|x|−q).

It follows that

(6.9) k(∇u, υ) = ±k11 +O(|x|−1−2q) on D±L ,

and

(6.10) k(∇u, υ) =
x2

L
k12 +

x3

L
k13 +O(|x|−1−2q).

Finally, combining these computations produces

4πL−
∫ L

−L

(∫
ΣLt ∩TL

κt,L

)
dt+

∫
CL

(∂υ|∇u|+ k(∇u, υ)) dA(6.11)

=
1

2

∫
D±L

±
∑
j

(g1j,j − gjj,1)dA

+
1

2

∫
TL

[
x2

L
(g21,1 − g11,2) +

x3

L
(g31,1 − g11,3)

]
dA

+
1

2

∫
TL

[
x2

L
(g23,3 − g33,2) +

x3

L
(g32,2 − g22,3)

]
dA

+

∫
D±L

± (k11 −K) dA

+

∫
TL

(
x2

L
k12 +

x3

L
k13

)
dA+O(L1−2q + L−q)

=
1

2

∫
CL

∑
j

(gij,j − gjj,i)υidA

+

∫
CL

(k1i − (Trgk)g1i) υ
idA+O(L1−2q + L−q).
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6.2. Computation of the inner boundary integral. Here we show
that the inner boundary integral over ∂ 6=0Mext vanishes, due to bound-
ary behavior of the spacetime harmonic function combined with the fact
that each boundary component is either a MOTS or MITS. Moreover,
if the boundary components consist of weakly trapped surfaces then the
inner boundary integral is nonpositive, which is an advantageous sign
with respect to positivity of the ADM energy. Let υ denote the unit
normal to a boundary component ∂iMext, which points outside of Mext.
Then because u is constant on ∂iMext, the spacetime harmonic function
equation and gradient may be rewritten on this surface as

(6.12) ∇2
υu = Hυ(u)−K|∇u|, ∇u = υ(u)υ.

Note that here, the mean curvature H is computed with respect to −υ.
Observe that

|∇u|∂υ|∇u| =
1

2
∂υ|∇u|2 =

1

2
∂υ
(
gijuiuj

)
= uj∇jυu = υ(u)∇2

υu,

(6.13)

and hence

∂υ|∇u| =
υ(u)

|∇u|
∇2
υu =

υ(u)

|∇u|
(Hυ(u)−K|∇u|) = H|υ(u)| − Kυ(u).

(6.14)

Furthermore since

K = k(υ, υ) + Tr∂Mextk, k(∇u, υ) = k(υ, υ)υ(u),(6.15)

it follows that the inner boundary integral becomes∫
∂ 6=0Mext

(∂υ|∇u|+ k(∇u, υ)) dA(6.16)

=

∫
∂Mext

[H|υ(u)| − (Tr∂Mextk) υ(u)] dA

=

n∑
i=1

∫
∂iMext

θ±|υ(u)|dA,

where we have used (6.1) in the last step. The notation θ± above in-
dicates that the integrand contains θ+ for a MOTS component and θ−
for a MITS component. We conclude that the inner boundary integral
vanishes. Similarly, if the boundary of the generalized exterior region
consists of weakly trapped surfaces then this boundary integral is non-
positive.

6.3. Proof of Theorem 1.2 and Corollary 1.3 (the inequality).
By combining (6.4), (6.11), (6.16), and taking the limit as L → ∞ we
obtain

(6.17) E + P1 ≥
1

16π

∫
Mext

(
|∇̄2u|2

|∇u|
+ 2(µ− |J |g)|∇u|

)
dV,
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since q > 1
2 . Furthermore, it may be assumed without loss of general-

ity that the ADM linear momentum satisfies P1 = −|P |, by applying
an appropriate rotation of the asymptotically flat coordinates x̃. This
yields the desired inequalities (1.8) and (1.9).

7. The case of equality

In this section we will finish the proof of Theorem 1.2 and Corol-
lary 1.3 by establishing the rigidity statement. Namely, it will be
shown that if the dominant energy condition holds and E = |P |, then
E = |P | = 0, M is diffeomorphic to R3, and the initial data set (M, g, k)
arises from an isometric embedding into Minkowski space. The proof
of inequality (1.8) shows that if E = |P |, then |∇̄2u| = 0 on Mext for
some asymptotically linear spacetime harmonic function. This in turn
guarantees that the gradient never vanishes.

Lemma 7.1. Suppose that u ∈ C2(Mext) satisfies

(7.1)

{
∇̄iju = ∇iju+ kij |∇u| = 0 in Mext,

u = v +O(r1−2q) in Mend,

where v 6= 0 is a solution of (4.38) and (4.40) in Mext. Then there
exists a constant c > 0 such that |∇u| ≥ c on Mext.

Proof. Due to the asymptotics in the asymptotically flat end, there
exists a large coordinate sphere Sr0 such that |∇u| ≥ 1

2 holds on the
unbounded component of Mext \ Sr0 . Denote the bounded component
of Mext \Sr0 by Mr0 , and pick x0 ∈ Sr0 . Given x ∈Mr0 , let γ ⊂Mr0 be
a curve parameterized by arclength connecting x0 to x. Observe that
since

(7.2) |∇|∇u|| ≤ |∇2u| ≤ |k||∇u|,
we have that

(7.3)
∣∣(log |∇u| ◦ γ)′

∣∣ ≤ |∇ log |∇u|| ◦ γ ≤ C(1 + r ◦ γ)−1−q,

where (1.2) was used and it is assumed that the radial function r in the
asymptotically flat end is extended smoothly to a positive function on
all of Mext. By integrating along γ, it follows that there is a constant
C1 > 0 such that

(7.4) C−1
1 |∇u(x0)| ≤ |∇u(x)| ≤ C1|∇u(x0)|, x ∈Mr0 .

Clearly C1 may be chosen independently of x. The desired result follows
since |∇u(x0)| ≥ 1

2 . q.e.d.

Nonvanishing of the gradient is inconsistent with the boundary be-
havior of spacetime harmonic functions given by Theorem 4.2 and Lem-
ma 5.1 (1). This implies that the generalized exterior region has no
boundary, and leads to trivial topology for the initial data.
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Proposition 7.2. Let (M, g, k) be an asymptotically flat initial data
set for the Einstein equations satisfying the dominant energy condition.
If E = |P | in one of the asymptotic ends, then M is diffeomorphic to R3.

Proof. As described above, the generalized exterior region associated
with a designated end Mend satisfying E = |P | must have empty bound-
ary. This fact can be applied repeatedly in order to conclude the desired
result. The arguments follow closely those of [15, Theorem 5.1], and
thus here we simply outline the main steps. We first claim that M has
a single asymptotically flat end. Suppose instead that it has other non-
designated ends. Then large coordinate spheres in these nondesignated
ends are outer trapped from the point of view of the designated end,
that is, they satisfy θ+ < 0; this null expansion is computed with respect
to the unit normal pointing away from the nondesignated end. Further-
more, a large coordinate sphere in the designated end is untrapped, that
is, it satisfies θ+ > 0; this null expansion is computed with respect to the
unit normal pointing towards the designated end. These surfaces may
be used as barriers to produce a MOTS in the region that they bound,
see [2, 12]. The existence of this MOTS implies that the generalized
exterior region for the designated end must have a nonempty boundary,
contradicting the fact that E = |P | in this end. It follows that M has
a single end.

Suppose now that M is not orientable. Then it possesses a connected
orientable double cover, endowed with the pullback data coming from
(g, k). This cover has two ends, and therefore as above there exists a
MOTS. Since E = |P | in each end, this is a contradiction. We con-
clude that M is orientable. It follows that M ∼= N#R3, where N is
a compact orientable 3-manifold without boundary. According to [20]
and the resolution of the geometrization conjecture, there is a normal
subgroup of π1(N) = π1(M) with finite index that does not contain
a given non-identity element; such groups are referred to as residually
finite. Thus, if M is not simply connected then it possesses a nontrivial
finite sheeted cover. As before, the fact that this covering has multiple
ends leads to a contradiction with E = |P |. We conclude that M is
simply connected. The positive resolution of the Poincaré conjecture
then shows that M ∼= R3. q.e.d.

We will now establish the main result of this section, and complete
the proof of Theorem 1.2 and Corollary 1.3. The proof is motivated
by Beig and Chruściel’s treatment [5, Theorem 4.1] of the spinorial
approach to the rigidity statement. One advantage of the approach
presented here is that the isometric embedding into Minkowski space
may be presented explicitly as a graph given by a linear combination of
spacetime harmonic functions.
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Theorem 7.3. Let (M, g, k) be an asymptotically flat initial data set
for the Einstein equations satisfying the dominant energy condition. If
E = |P | in one of the asymptotic ends, then E = |P | = 0 and (M, g, k)
arises from an isometric embedding into Minkowski space.

Proof. Proposition 7.2 shows that M ∼= R3, so there is only one end.
Let x = (x1, x2, x3) be a global coordinate system which coincides with
the asymptotically flat coordinates in this end, and denote the space-
time harmonic function of Theorem 4.2 which is asymptotic to aix

i by
u(a1, a2, a3); it is assumed as usual that

∑
i a

2
i = 1. Define a lapse

function α and shift vector β by

α =

∣∣∣∣∇u( 1√
2
,

1√
2
, 0

)∣∣∣∣+

∣∣∣∣∇u(− 1√
2
, 0,

1√
2

)∣∣∣∣− ∣∣∣∣∇u(0,
1√
2
,

1√
2

)∣∣∣∣ ,
(7.5)

and

(7.6) β = ∇u
(

1√
2
,

1√
2
, 0

)
+∇u

(
− 1√

2
, 0,

1√
2

)
−∇u

(
0,

1√
2
,

1√
2

)
.

Observe that α → 1 and |β| → 0 as r → ∞. From these we may form
the stationary spacetime (R×M, ḡ) where

(7.7) ḡ = −
(
α2 − |β|2

)
dt2 + 2βidx

idt+ g.

This is the Killing development of (M, g, k, α, β) with Killing initial data
(α, β) decomposing the Killing vector

(7.8) ∂t = αn + β,

where n is the unit normal to the hypersurfaces t = const. It will be
shown that this spacetime is isometric to Minkowski space, and that
(M, g, k) arise from a constant time slice.

Next observe that the inequality E ≥ |P | implies that E = |P | = 0
from Huang and Lee’s result [21]. The condition E = |P | = 0 together
with (1.8) then produces

(7.9) ∇iju(a1, a2, a3) = − |∇u(a1, a2, a3)| kij ,

and therefore

(7.10) ∇iβj = −αkij , ∂iα = −βjkij .

It follows that

(7.11)
1

2
∂i(α

2 − |β|2) = α∂iα− βj∇iβj = 0.

Since α2 − |β|2 → 1 as r →∞, we then have that α2 − |β|2 ≡ 1 and

(7.12) ḡ = −dt2 +2βidx
idt+g = −

(
dt− βidxi

)2
+(gij + βiβj) dx

idxj .
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This simplification shows that Christoffel symbols involving the time
coordinate vanish. Namely, if a, b, c = 0, 1, 2, 3 with the index 0 repre-
senting the time coordinate, then

(7.13) Γ̄bat =
1

2
ḡbc (∂aḡct + ∂tḡca − ∂cḡat) =

1

2
ḡbc (∂aβc − ∂cβa) = 0,

where we have used that β = du with

(7.14) u = u

(
1√
2
,

1√
2
, 0

)
+ u

(
− 1√

2
, 0,

1√
2

)
− u

(
0,

1√
2
,

1√
2

)
.

The second fundamental form of the constant time slice t = const is
then

(7.15) 〈∇̄in, ∂j〉 = α−1〈∇̄i(∂t − β), ∂j〉 = α−1Γ̄bitḡbj − α−1∇iβj = kij .

Furthermore, the initial data metric g is the induced metric on t = const
and hence (M, g, k) arises from a constant time slice in this Killing
development.

Let us now show that the Killing development is flat. Consider the
null vector fields

(7.16) X` = ∇u` + |∇u`|n, ` = 1, 2, 3,

where

(7.17) u1 = u(1, 0, 0), u2 = u(0, 1, 0), u3 = u(0, 0, 1),

and these functions are extended trivially in the t-direction to all of
R×M . Let i, j = 1, 2, 3 and compute

〈∇̄tX`, ∂t〉 = 〈∇̄t∇u`, ∂t〉+ |∇u`|〈∇̄t∂t, ∂t〉 = 0,(7.18)

〈∇̄iX`, ∂j〉 = 〈∇̄i∇u`, ∂j〉+ |∇u`|〈∇̄in, ∂j〉 = ∇iju` + |∇u`|kij = 0,

(7.19)

〈∇̄tX`, ∂i〉 = 〈∇̄t∇u`, ∂i〉+ |∇u`|〈∇̄tn, ∂i〉 = −|∇u`|〈n, ∇̄t∂i〉 = 0,

(7.20)

and

〈∇̄iX`, ∂t〉 = ∂i〈X`, ∂t〉(7.21)

= ∂i

(
uj` ḡjt −

|∇u`|
α

(
1 + βj ḡjt

))
= ∂i

(
uj`βj − α|∇u`|

)
= βj∇iju` + uj`∇iβj − |∇u`|∂iα− α∂i|∇u`|
= 0.

It follows that these vector fields are covariantly constant, and in light
of (7.13) the same holds for the Killing field ∂t. Furthermore, the col-
lection of vector fields {X1, X2, X3, ∂t} is linearly independent in the



256 S. HIRSCH, D. KAZARAS & M. KHURI

asymptotic end, and by parallel translation this property holds glob-
ally. We then have that the spacetime (R×M, ḡ) is flat.

In order to complete the proof it must be shown that the Killing
development is isometric to Minkowski space. To this end, observe that
since β is exact, the change of coordinates t̄ = t − u(x), x̄ = x yields
the static structure

(7.22) ḡ = −dt̄2 + (g + du2).

The manifold (R3, g + du2) is asymptotically flat, and hence complete.
Moreover it is flat, and thus isometric to Euclidean 3-space, yielding the
desired conclusion. Next observe that since the initial data (M, g, k)
arise from the t = 0 slice, we find that they may be expressed as the
graph of a linear combination of spacetime harmonic functions, namely
t̄ = −u(x̄). q.e.d.
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[9] P. Chruściel, Boundary conditions at spatial infinity from a Hamiltonian point of
view, Topological Properties and Global Structure of Space-Time (P. Bergmann
and V. de Sabbata, eds.), Plenum Press, New York, 1986, pp. 49–59.
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