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Abstract: We establish the positive energy theorem and a Penrose-type inequality for 3-
dimensional asymptotically hyperboloidal initial data sets with toroidal infinity, weakly
trapped boundary, and satisfying the dominant energy condition. In the umbilic case, a
rigidity statement is proven showing that the total energy vanishes precisely when the
initial data manifold is isometric to a portion of the canonical slice of the associated
Kottler spacetime. Furthermore, we provide a new proof of the recent rigidity theorems
of Eichmair et al. (Commun Math Phys 386(1):253–268, 2021) in dimension 3, with
weakened hypotheses in certain cases. These results are obtained through an analysis of
the level sets of spacetime harmonic functions.

1. Introduction

The positive energy theorem for asymptotically hyperbolic initial data sets with spher-
ical infinity is well-studied. There is a vast literature on the subject, and we direct the
interested reader to some of the most recent results [2,3,5,18,24], as well as the ref-
erences therein. By contrast, much less is known about the nature of total energy for
asymptotically (locally) hyperbolic data having a conformal infinity of positive genus.
In fact, the question of positive energy appears to be significantly more delicate in this
setting, since examples such as the Horowitz–Myers soliton [16] show that the positive
energy theorem fails under the traditional hypotheses of completeness together with a
satisfactory energy density condition. Here we will focus attention on asymptotically
hyperboloidal initial data with toroidal infinity, and prove the positive energy theorem
when a nonempty weakly trapped boundary is present. In addition, related rigidity results
for compact initial data sets with boundary are also established.
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Let (M, g, k) be a 3-dimensional smooth initial data set for the Einstein equations,
where M is an orientable connected manifold with nonempty boundary, g is a Rieman-
nian metric, and k is a symmetric 2-tensor representing the second fundamental form of
an embedding into spacetime. The tensors g and k must satisfy the constraint equations

2μ = Rg + (Trgk)2 − |k|2g, J = divg

(

k − (Trgk
)

g), (1.1)

where Rg denotes scalar curvature and μ, J are the energy and momentum density of
matter fields. We will say that the dominant energy condition is satisfied if μ ≥ |J |g . Note
that if k = ±g, then this condition implies the scalar curvature lower bound Rg ≥ −6.
Let � denote a closed 2-sided surface in M with null expansions θ± = H ± Tr�k,
where H denotes the mean curvature of � with respect to the unit normal that points
towards a designated asymptotic end. When the surface � is viewed as embedded within
spacetime, the null expansions represent the mean curvature in null directions, and hence
measure the rate of change of area of shells of light emanating from the surface in the
outward (toward infinity) future/past direction. Moreover, the null expansions arise as
traces of the null second fundamental forms χ± = I I ±k|� , where I I is the Riemannian
second fundamental form of � ⊂ M . A strong gravitational field is associated with an
outer or inner trapped surface, that is, a surface for which θ+ < 0 or θ− < 0. Moreover,
� will be referred to as weakly outer/inner trapped if θ+ ≤ 0 or θ− ≤ 0, and will be
referred to as a marginally outer/inner trapped surface (MOTS or MITS) if θ+ = 0 or
θ− = 0.

An initial data set will be called asymptotically hyperboloidal with toroidal infinity, if
there is a compact setK ⊂ M such that its complement is diffeomorphic to a cylinder with
torus cross-sections, and in the coordinates given by the diffeomorphism ψ : (1,∞) ×
T 2 → M\K the metric and extrinsic curvature satisfy

ψ∗g = r−2dr2 + r2ĝ + r−1m + Qg, ψ∗ (k + g) = r−1p + Qk, (1.2)

where r ∈ (1,∞) is the radial coordinate, ĝ is a flat metric and m, p are symmetric
two-tensors all on T 2, and Qg , Qk are symmetric 2-tensors on (1,∞) × T 2 with the
property that

|Qg|b + r |∇Qg|b + r2|∇2 Qg|b = o(r−3), |Qk |b + r |∇Qk |b = o(r−3). (1.3)

Here b is the model hyperbolic metric r−2dr2 + r2ĝ on (1,∞) × T 2, and ∇ is the
Levi-Civita connection of b. Note that b arises as a quotient of hyperbolic space H

3 with
identifications along horospheres, and is the induced metric on a constant time slice of
the (toroidal) Kottler spacetime [9] with zero mass and cosmological constant � = −3.
The quantity Trĝ (3m − 2p) on T 2 is referred to as the mass aspect function and yields

a well-defined total energy ([8,22]) if r(μ + |J |g) ∈ L1(M\K), which is given by

E = 1

|T 2|

∫

T 2
Trĝ (3m − 2p) d Aĝ (1.4)

where |T 2| denotes ĝ-area.
In order to state the positive energy theorem, some restrictions on the topology of

M will be needed. In particular, we will make use of the so called homotopy condi-

tion from [10], which generalizes the situation in which M is a retraction onto a given
2-dimensional submanifold �. Namely, the manifold M will be said to satisfy the ho-
motopy condition with respect �, if there exists a continuous map ρ : M → � such
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that its composition with the inclusion map ρ ◦ i : � → � is homotopic to the identity.
Furthermore, we will say that M satisfies the homotopy condition with respect to con-
formal infinity if the condition is satisfied for a coordinate torus in the asymptotic end.

Theorem 1.1. Let (M, g, k) be a smooth orientable 3-dimensional asymptotically hy-

perboloidal initial data set with toroidal infinity satisfying the dominant energy condi-

tion. Suppose that the boundary is nonempty ∂ M 
= ∅, that M satisfies the homotopy

condition with respect to conformal infinity, and H2(M, ∂ M; Z) = 0. If the boundary

is weakly outer trapped θ+(∂ M) ≤ 0, then E ≥ 0. Moreover, the same conclusion con-

tinues to hold if the boundary contains additional components which are weakly inner

trapped and of genus zero.

It should be noted that the boundary need not have a specified topology except for
the weakly inner trapped components. However, the hypothesis of a nonempty bound-
ary cannot be removed if the conclusion is to remain valid. A counterexample to the
boundaryless case is provided by the Horowitz-Myers geon with k = −g. The geon is a
time slice of the Horowitz-Myers soliton, which gives a complete asymptotically locally
hyperbolic Riemannian metric on the solid torus D2 × S1 with constant scalar curvature
Rg = −6 and negative mass. It is conjectured [16,26] that a complete Riemannian 3-
manifold (M, g) which is asymptotic to a Horowitz-Myers geon, and satisfies Rg ≥ −6,
must have total energy at least as large as that of the geon; furthermore, equality should
hold between the energies only if the geometries are isometric.

Previous studies concerning lower bounds for the energy of asymptotically hyper-
boloidal initial data with toroidal infinity have focused on the umbilic case k = −g,
with Rg ≥ −6. In particular, Chruściel et al. [6,7] have proven a version of the posi-
tive energy theorem minus the rigidity statement, assuming that there is a connected
weakly outer trapped boundary and, in dimension 3, that the mass aspect function
has a sign. If the boundary is an outermost minimal surface, with at least one com-
ponent having T 2-topology, then Lee–Neves [19, Corollary 1.2] show that the mass
aspect function has positive supremum. Furthermore, Barzegar-Chruściel-Hörzinger-
Maliborski-Nguyen establish versions of the Horowitz-Myers conjecture under the as-
sumption of axisymmetry, and also find supporting evidence in the perturbation regime,
while Liang–Zhang [20] prove a generalization. The case of equality E = 0 has been
treated by Huang–Jang [17, Theorem 6], assuming that the positive energy inequality
holds. Therefore, combining Theorem 1.1 with [17, Theorem 6] yields one method to es-
tablish the last (umbilic) statement of the following result. We will, however, provide an
alternative approach based on a foliation by level sets of spacetime harmonic functions,
which will in addition provide strong rigidity requirements in the general non-umbilic
case.

Theorem 1.2. If the energy vanishes E = 0 under the assumptions of Theorem 1.1,

including the trapped surface conditions on the boundary, then the following holds.

(1) The manifold M is diffeomorphic to [1,∞) × T 2.

(2) Each level set �t = {t} × T 2 of the radial coordinate t ∈ [1,∞) is a MOTS, and

in fact has vanishing null second fundamental form χ+ = 0.

(3) The induced geometry on �t is that of a flat torus for all t ∈ [1,∞).

(4) If νt denotes the unit normal to �t pointing towards infinity, then μ = |J |g =
−J (νt ) on M.

Moreover, if in addition k = −g then (M, g) is isometric to the Kottler time slice

([1,∞) × T 2, b).



454 A. Alaee, P.-K. Hung, M. Khuri

These two theorems are established using the level set technique associated with
spacetime harmonic functions. This approach has recently been used to prove the positive
mass theorem in the asymptotically flat and asymptotically hyperboloidal (spherical
infinity) settings [3,4,14], and was inspired by the work of Stern [25] where the level
sets of harmonic maps were used to study scalar curvature on compact 3-manifolds. We
refer the reader to the survey [2] for these and other developments concerning the level
set method. A function u ∈ C2(M) will be referred to as a spacetime harmonic function

if it satisfies the equation


u +
(

Trgk
)

|∇u| = 0, (1.5)

in which the left-hand side arises as the trace along M of the spacetime Hessian

∇̄2
i j u := ∇2

i j u + ki j |∇u|. (1.6)

Under the homotopy condition of Theorem 1.1, there exists a connected component of
∂ M , denoted by ∂1 M , such that ∂1 M cannot be separated from infinity by an embedded
2-sphere. See Sect. 2 for more details. We will say that a spacetime harmonic function
u is admissible if it realizes constant Dirichlet boundary data together with ∂υu ≥ 0 on
each boundary component, and there is at least one point on each boundary component
except ∂1 M where |∇u| = 0; here υ denotes the unit normal to ∂ M pointing towards
infinity. The existence of admissible spacetime harmonic functions that asymptote to the
radial coordinate function in the asymptotic end is shown in Sects. 4 and 6 below. The
following energy lower bound implies Theorem 1.1, and is instrumental in the proof
of Theorem 1.2, however, it holds without the assumption of an energy condition but
adds the integrability condition for energy/momentum density that is associated with a
well-defined total energy.

Theorem 1.3. Let (M, g, k) be a smooth orientable 3-dimensional asymptotically hy-

perboloidal initial data set with toroidal infinity, such that r(μ + |J |g) ∈ L1(M\K).

Suppose that the boundary is nonempty and weakly trapped, having at least one weakly

outer trapped (θ+ ≤ 0) component and with each weakly inner trapped (θ− ≤ 0) compo-

nent of genus zero. Assume further that M satisfies the homotopy condition with respect

to conformal infinity, and H2(M, ∂ M; Z) = 0. Then there exists an admissible space-

time harmonic function u that asymptotes to the radial coordinate in the asymptotic end,

and induces the energy lower bound

E ≥ 1

|T 2|

∫

M

( |∇̄2u|2
|∇u| + 2 (μ + J (ν)) |∇u|

)

dV (1.7)

where ν = ∇u/|∇u|. Moreover if in addition k = −g, the dominant energy condition

holds, and the boundary is minimal H = 0 instead of weakly trapped, then a Penrose-

type inequality holds

E ≥ C
|∂1 M |
|T 2| , (1.8)

where C = 4 min∂1 M ∂υu > 0.

The methods used to prove this theorem may also be applied in the setting of compact
manifolds with boundary. There we recover, with alternative arguments, a version of the
main results obtained by Eichmair et al. [10, Theorems 1.2 and 1.3], for dimension 3.
The statement of our result differs from that of [10, Theorem 1.2], in that the more
restrictive hypothesis of vanishing second homology is included, while we allow for
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the more general situation of multiple untrapped boundary components. In contrast
with [10, Theorem 1.3], our assumption on k leads to rigidity in the form of a warped
product metric as opposed to a constant curvature model. Note that the boundary normal
orientation is reversed and k should be replaced by −k, when comparing with [10].

Theorem 1.4. Let (�, g, k) be a smooth orientable 3-dimensional compact initial data

set with boundary ∂�, satisfying the dominant energy condition and H2(�, ∂̃�; Z) = 0.

Suppose that ∂̃� := ∂�\∂+
1 �, and that the boundary may be decomposed into a disjoint

union

∂� =
(

⊔m
i=1 ∂+

i �
)

⊔
(

⊔ℓ
i=1 ∂−

i �
)

, (1.9)

where the connected components are organized so that θ+

(

∂+
i �

)

≥ 0 with respect to the

outer normal, and θ+

(

∂−
i �

)

≤ 0 with respect to the inner normal. Moreover, assume

that ∂+
1 � has positive genus, that ∂+

i � is of zero genus for i = 2, . . . , m, and that �

satisfies the homotopy condition with respect to ∂+
1 �. Then the following statements

hold.

(1) There are only two boundary components, namely m = ℓ = 1. Indeed, � is diffeo-

morphic to [0, t0] × T 2 for some t0 > 0.

(2) Each level set �t = {t} × T 2 of the radial coordinate t ∈ [0, t0] is a MOTS

with respect to the normal νt pointing towards ∂+
1 �. In fact, these surfaces have

vanishing null second fundamental form χ+ = 0.

(3) The induced geometry on �t is that of a flat torus for all t ∈ [0, t0].
(4) The energy and momentum densities satisfy μ = |J |g = −J (νt ) on �.

Furthermore, if in addition k = −λg where λ ∈ C∞(�), then (�, g) is isometric to the

warped product
(

[0, t0] × T 2, dt2 + f (t)2ĝ
)

, for some flat metric ĝ on T 2 and a smooth

positive radial function f satisfying d
dt

log f = λ. In particular, if λ = λ0 is a constant

then (�, g) is of constant curvature −λ2
0 and μ = |J |g ≡ 0.

As pointed out in [10], the setting of Theorem 1.4 naturally arises in the context of
Lohkamp’s approach to the asymptotically flat version of the positive mass theorem.
Namely, his method relies upon showing that an initial data set (M, g, k) which is
isometric to Euclidean space outside a bounded open set U and with k = 0 there as well,
cannot have a strict dominant energy condition μ > |J |g on U [21, Theorem 2]. By
taking a large cube enclosing U and identifying two opposing pairs of sides, we obtain
a compact initial data set (�, g, k) in which � is diffeomorphic to the connected sum
(

[0, 1] × T 2
)

♯ N for some compact manifold N . The two boundary tori have vanishing

null second fundamental form, and so they are MOTS. Therefore, if H2(�, ∂̃�; Z) = 0
then Theorem 1.4 confirms that this configuration with strict dominant energy condition
on U is not possible.

Motivated by the case of equality from the positive mass theorem in the asymptotically
flat and asymptotically hyperboloidal (spherical infinity) settings, it is reasonable to
suspect that the rigidity statements of Theorems 1.2 and 1.4, when k = −λg, might be
generalized to produce an embedding of the initial data into a model flat spacetime. In
this direction, under a related hypothesis on k, Eichmair et al. [10, Theorem 6.1] confirm
such a result by showing that the data embed into a quotient of Minkowski space. In
contrast, we provide in Sect. 7 an example which shows that the restrictions on the
structure of k cannot be relaxed too far.
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Example 1.5. There exist initial data (M, g, k) satisfying the hypotheses of Theorem 1.2
or 1.4 minus the assumption on the structure of k, while additionally exhibiting a vanish-
ing mass aspect function (in the noncompact case) and vanishing energy and momentum
densities μ = |J |g = 0, with the following properties. Unlike the conclusion of The-
orems 1.2 and 1.4, the metric g does not have a warped product structure, and in a
departure from the conclusion of [10, Theorem 6.1] the initial data arise from a vacuum
(with zero cosmological constant) pp-wave spacetime which is not flat.

This paper is organized as follows. In Sect. 2 the topology of initial data sets is
examined under the hypotheses of the main theorems, while in Sect. 3 an integral identity
for spacetime harmonic functions is presented. Existence and uniqueness of appropriate
boundary value problems for spacetime harmonic functions is established in Sect. 4. The
proof of Theorem 1.4 is presented in Sect. 5, while the proof of Theorems 1.1, 1.2, and
1.3 are presented in Sect. 6. Lastly, the example described in the preceding paragraph is
given in Sect. 7.

2. The Topology of Initial Data Sets

The purpose of this section is to record an attribute of the initial data that will be
instrumental in controlling the level set topology for admissible spacetime harmonic
functions. Recall that the statements of the main results described in the previous section
imply that there is an embedded surface of positive genus with respect to which the
initial data satisfies the homotopy condition. The desired property of the initial data, to
be elucidated here, essentially says that this surface cannot be shielded from all other
boundary components by a 2-sphere. To state this in a precise manner, we require certain
definitions. Let � be a smooth 3-manifold and � ⊂ � be a properly embedded surface,
that is, � ∩ ∂� = ∂� and if this intersection is nonempty it is transverse. The notation
�|� will be used to denote the splitting of � along �. Intuitively, this is the possibly
disconnected 3-manifold obtained from � by cutting along �. See [13, page 3] for a
detailed description. Furthermore, if n1 ≤ n2 are two integers, then �n1, n2� will be used
to denote the set of integers lying between and including n1 and n2.

Definition 2.1. Let S1 and S2 be connected components of ∂�. We say S1 and S2 are
separable by a 2-sphere, if there exists a properly embedded 2-sphere � such that S1

and S2 belong to different connected components of �|�. In this case, we say that �

separates S1 and S2.

Proposition 2.2. Let � be a compact, oriented, connected smooth 3-manifold with

boundary ∂�. Suppose that ∂� has at least two connected components, and may be

decomposed as

∂� =
(

⊔m
i=1 ∂+

i �
)

⊔
(

⊔ℓ
i=1 ∂−

i �
)

(2.1)

such that the following statements hold.

(1) ∂+
1 � has positive genus.

(2) ∂+
i � are homeomorphic to 2-spheres for i ∈ �2, m�.

(3) � satisfies the homotopy condition with respect to ∂+
1 �.

Then there exists i0 ∈ �1, ℓ� such that ∂−
i0

� is not separable from ∂+
1 � by a 2-sphere.
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Remark 2.3. There are large classes of manifolds beyond the model [0, 1] × T 2 which
satisfy the conditions of Proposition 2.2. For instance, consider � = ([0, 1] × Sg) ♯ N ,
where Sg is an orientable closed surface of genus g ≥ 1 and N is any orientable closed

3-manifold. Here m = ℓ = 1, ∂+
1 � = {1} × Sg , and ∂−

1 � = {0} × Sg . As discussed in
[10], these manifolds satisfy the homotopy condition with respect to ∂+

1 �. Furthermore,

a calculation also shows that they satisfy the homology condition H2(�, ∂̃�; Z) = 0 of
Theorem 1.4, if H2(N ; Z) = 0.

The goal of this section is to establish Proposition 2.2. We begin by recalling a for-
mulation of the prime decomposition. As above let � be a compact, oriented, connected
3-manifold with possibly non-empty boundary. � is called prime if � = �′ ♯ �′′ implies
that either �′ or �′′ is S3; here ♯ stands for the connected sum. Moreover � is called irre-

ducible if every 2-sphere S2 ⊂ � bounds a 3-ball. It is well known [13, Proposition 1.4]
that the only orientable prime 3-manifold which is not irreducible is S1 × S2. A version
of the prime decomposition theorem [13, Theorem 1.5] states that there exist irreducible
3-manifolds �1,�2, . . . , �k and a nonnegative integer l such that � is homeomorphic
to the connected sum

� = �1 ♯ �2 ♯ . . . ♯ �k ♯ l(S1 × S2). (2.2)

Furthermore, the decomposition is unique up to order and insertion or deletion of 3-
spheres. We remark that the �i ’s may have non-empty boundary. In order to keep track
of which prime summand contains particular boundary components of �, it is helpful
to utilize the concept of a reduction system, which was introduced by Milnor [23] (see
also [13, page 7]) in the context of proving the uniqueness for the prime decomposition.

Definition 2.4. Let � be a compact, oriented, connected smooth 3-manifold, and let �

be a family of disjoint, properly embedded 2-spheres in �. We say that � is a reduction
system if

�|� =
(

⊔k
j=1 Q j

)

⊔
(

⊔l
j=1 R j

)

, (2.3)

where Q j , j ∈ �1, k� is obtained from the prime factor � j by removing finitely many

open 3-balls, while R j , j ∈ �1, l� is homeomorphic to S3 with finitely many open 3-
balls removed. We call Q j a punctured � j , and R j a punctured 3-sphere. Furthermore,
by decomposing the boundary into components ∂� = ⊔n

i=1∂i�, we may construct
the reduction system correspondence j� : �1, n� → �1, k� that associates to each
component ∂i� the unique punctured prime factor Q j�(i) in which it is contained.

Stated informally, � is a reduction system if by cutting � along �, the prime decom-
position is obtained where each punctured 3-sphere is associated with a S1 × S2 sum-
mand. Moreover, the reduction system correspondence map j� records the irreducible
piece in which the boundary components ∂i� lie. The next result plays an important
role in the proof of Proposition 2.2, and states that a reduction system may be modified
to avoid a given 2-sphere.

Lemma 2.5. Let � be a reduction system as in Definition 2.4, and let S ⊂ � be a

properly embedded 2-sphere. Then there exists another reduction system �̃ which is

disjoint from S. Moreover, the boundary components of ∂� still belong to the same

irreducible pieces, that is, j�(i) = j�̃(i) for all i ∈ �1, n�.
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Fig. 1. An illustration of the procedure that adds one more sphere into the reduction system

Proof. We follow closely the arguments of [13, page 7]. The main idea is to gradually
decrease the number of curves in S ∩� by replacing � with an ‘update’ in a systematic
manner. We begin by describing the types of updates that will be employed, and observe
how the Qi and Ri change in the process.

The first type of modification consists of adding another properly embedded 2-sphere

�∗, which is disjoint from �. More precisely, we set �̃ := �⊔�∗. Because �∗ is disjoint
from �, �∗ must be properly embedded in either a Qi or Ri . Suppose that �∗ ⊂ Ri∗ ,
then all the Qi are unchanged and the Ri for i 
= i∗ are also unchanged. Furthermore,
Ri∗ splits into two punctured 3-spheres. See the left portion of Fig. 1 for an illustration.
Now suppose that �∗ ⊂ Qi∗ , then the Qi with i 
= i∗ are unchanged and all Ri are

unchanged as well. Moreover, Qi∗ splits into two pieces Q̃i∗ and R̃l+1, where Q̃i∗ is

a punctured �i∗ which replaces Qi∗ for the reduction system �̃, whereas R̃l+1 is an
additional punctured 3-sphere. Here we used the fact that Qi∗ is a punctured �i∗ , and
that �i∗ is irreducible. See the right portion of Fig. 1 for an illustration.

The second type of update consists of eliminating a component �0 ⊂ � which
satisfies the property that it lies at the transition between two different pieces of the
decomposition (2.3), one of which is a punctured 3-sphere. More precisely, we require
one of the following conditions to hold; where an overline bar denotes the closure of a
set.

(1) There exist j0 ∈ �1, k� and j1 ∈ �1, l� such that �0 ⊂ Q j0 ∩ R j1 .

(2) There exist j0, j1 ∈ �1, l� with j0 
= j1 such that �0 ⊂ R j0 ∩ R j1 .

In this situation we set �̃ := �\�0. Suppose that (2) holds. Then all the Qi are un-
changed and the Ri with i 
= j0, j1 are also unchanged. Moreover, the R j0 and R j1 may

be glued together to form a single punctured S3. See the left portion of Fig. 2 for an
illustration. Thus, in this case, the decomposition (2.3) associated with the new reduction
system has one less punctured 3-sphere. Suppose now that (1) holds. Then all the Qi with
i 
= j0 remain unchanged, and the Ri with i 
= j1 are also unchanged. Furthermore, Q j0

and R j1 may be glued together to form Q̃ j0 , which is still a punctured � j0 and replaces

Q j0 in the decomposition for �̃. See the right portion of Fig. 2 for an illustration. We
note that throughout these two update procedures, the maps j�, j�̃ : �1, n� → �1, k�
are identical.

We are ready to begin the process of decreasing the number of curves in the intersec-
tion between � and S. See Fig. 3 for an illustration. By perturbing �, we may assume



Toroidal Positive Energy Theorem and Rigidity Results 459

Fig. 2. An illustration of the procedure that removes one sphere from the reduction system

Fig. 3. An illustration of the procedure to reduce the number of intersection curves between S and �

that � and S intersect transversally. If S ∩ � = ∅ then we are done, so assume that
S ∩� 
= ∅. Let C ⊂ S ∩� be an innermost closed curve which lies in some component
�1 of �. That is, C bounds a closed disk D in S such that int(D) ∩ � = ∅. Let D′

�
and D′′

� be the closed disks on �1 which are bounded by C . Define �′
1 := D ∪ D′

�
and �′′

1 := D ∪ D′′
� . Both �′

1 and �′′
1 are properly embedded 2-spheres. By perturbing

�′
1 and �′′

1 appropriately, the result of which will be denoted by �̃′
1 and �̃′′

1 , we may
achieve the following properties.

(1) �̃′
1 and �̃′′

1 are disjoint, and both are disjoint from �.

(2) �̃′
1 and �̃′′

1 intersect S transversally. Furthermore, the number of closed curves in

S ∩ (�̃′
1 ⊔ �̃′′

1 ), compared to S ∩ �1, is decreased by 1.

(3) �1, �̃′
1 and �̃′′

1 bound a 3-punctured S3.

In the depiction on the right-hand side of Fig. 3, the above requirements can be satisfied by

shrinking �′
1 and �′′

1 to obtain �̃′
1 and �̃′′

1 . We then replace � by �̃ :=
(

�⊔�̃′
1⊔�̃′′

1

)

\�1.

From (1), (3), and discussion concerning the two previous updates above, �̃ is still a

reduction system and j� = j�̃ . From (2), the number of closed curves in S∩�̃, compared
with S ∩�, is decreased by 1. This construction may be repeated until the new reduction
system is disjoint from S, yielding the desired result. ⊓⊔

We will now utilize the ability to find a reduction system disjoint from a given 2-
sphere, to show that if two boundary components of � are indeed separable by a 2-sphere,
then they must belong to different irreducible pieces of the prime decomposition.

Lemma 2.6. Let � be as in Definition 2.4. Suppose that boundary components ∂i1�

and ∂i2� are separable by a 2-sphere. Then for any reduction system �, the boundary

components ∂i1� and ∂i2� must belong to different punctured irreducible pieces in the

decomposition (2.3). That is, j�(i1) 
= j�(i2).
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Proof. Let S be a properly embedded 2-sphere which separates ∂i1� and ∂i2�. Pro-
ceeding by contradiction, suppose that there exists a reduction system � with j�(i1) =
j�(i2) =: j . By Lemma 2.5, we may assume that S ∩ � = ∅. Furthermore, since S

separates ∂i1� and ∂i2� in �, we have that S ∩ Q j must separate ∂i1� and ∂i2� in Q j .
On the other hand, S ∩ Q j is a properly embedded 2-sphere within Q j , as S ∩ � = ∅.
This, however, contradicts the fact that � j is irreducible. ⊓⊔

The next result is a less refined version of Proposition 2.2. The refinement is included
in the original statement for the purposes of application to the setting in which portions
of the boundary are either trapped or untrapped. Here, however, these considerations are
not relevant.

Lemma 2.7. Let � be as in Definition 2.4, and assume that it has at least two boundary

components. Suppose that ∂1� has positive genus, and � satisfies the homotopy condi-

tion with respect to ∂1�. Then there exists i0 ∈ �2, n� such that ∂1� and ∂i0� are not

separable by a 2-sphere.

Proof. Assume the conclusion is false, that is, ∂1� and ∂i� are separable by a 2-sphere
for all i ∈ �2, n�. Let � be a reduction system and let j1 = j�(1). By Lemma 2.6, we
have that j�(i) 
= j1 for all i ∈ �2, n�. Therefore ∂ Q j1 consists of ∂1� and 2-spheres,
so that

0 = [∂ Q j1] = [∂1�] + [spheres] (2.4)

in H2(Q j1). Moreover, Q j1 satisfies the homotopy condition with respect to ∂1�. Thus,
there exists a continuous map ρ : Q j → ∂1� such that its restriction to ∂1� is homotopic
to the identity. It follows that

0 = ρ∗
(

[∂1�] + [spheres]
)

= [∂1�], (2.5)

which is impossible. In the second equality, we used the fact that every map from S2 to
a higher genus surface has degree zero. We conclude that there must exist i0 ∈ �2, n�
such that ∂1� and ∂i0� are not separable by a 2-sphere. ⊓⊔
Proof of Proposition 2.2. This is a direct consequence of Lemma 2.7. To see this, simply
note that the component ∂i0� which is not separable from ∂+

1 � by a 2-sphere, must be

among the ∂−
i � since ∂+

i � are 2-spheres for i 
= 1. ⊓⊔

3. An Integral Identity

Spacetime harmonic functions satisfy a Bochner-type identity, which when integrated
produces a natural relation between the dominant energy condition and the boundary
geometry of initial data sets. This observation leads to a proof of the spacetime version
of the positive mass theorem in the asymptotically flat and hyperboloidal settings [3,14].
Here we will present a version of the resulting integral identity suitable for the purposes
of this paper. In particular, the boundary terms are analyzed in greater detail so that
they may be related to the null expansions of the boundary. The following result is a
generalization of [14, Proposition 3.2] and [15, Proposition 1.1]. Although it is stated
in full generality with arbitrary boundary conditions, the inequality will only be applied
for constant Dirichlet boundary data, in which case several boundary integrals simplify.
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Proposition 3.1. Let (�, g, k) be an orientable 3-dimensional compact initial data set

with smooth boundary ∂�, having outward unit normal n. Let u : � → R be a spacetime

harmonic function which lies in C2,α(�), 0 < α < 1, and denote the open subset of the

boundary on which |∇∂u| 
= 0 by ∂̄�, where ∇∂u is the projection of the full gradient

onto the boundary tangent space. The set of boundary points on which |∇u| 
= 0 will be

labeled by ∂̂�. If u and u are the maximum and minimum values of u and �t are t-level

sets, then
∫

∂̂�

(k(∇∂u, n) − |∇u|H − n(u)Tr∂�k) d A

+

∫

∂̄�

|∇∂u|
|∇u| ∇∂u

(
n(u)

|∇∂u|

)

d A + 2π

∫ ū

u

χ(�t )dt

≥
∫

�

(
1

2

|∇̄2u|2
|∇u| + μ|∇u| + J (∇u)

)

dV, (3.1)

where χ(�t ) is the Euler characteristic, ∇̄2u is the spacetime Hessian, and H is the

mean curvature of the boundary with respect to n.

Proof. The integral identity of [14, Proposition 3.2] states that
∫

∂̂�

(n(|∇u|) + k(∇u, n)) d A ≥
∫ u

u

∫

�t

(
1

2

|∇̄2u|2
|∇u|2 + μ + J

( ∇u

|∇u|

)

− K

)

d Adt,

(3.2)
where K is the Gauss curvature of regular level sets �t . Observe that by Sard’s theorem,
the set of values in [u, u] which are critical for u on � or ∂� is of measure zero; see
[14, Remark 3.3] for the applicability of Sard’s theorem under the current regularity
hypotheses. Thus, on the right-hand side of (3.2) we may restrict attention to regular
level sets �t for which t is also a regular value of u|∂�. These level sets intersect the
boundary of � transversely, and hence

∂�t = �t ∩ ∂� = �t ∩ ∂̄� (3.3)

consists of possibly multiple smooth closed curves in ∂�. We may then apply the Gauss-
Bonnet theorem and coarea formula to find

∫ u

u

(

2πχ(�t ) −
∫

�t ∩∂̄�

κ

)

dt +

∫

∂̂�

(n(|∇u|) + k(∇u, n)) d A

≥
∫

�

(
1

2

|∇̄2u|2
|∇u| + μ|∇u| + J (∇u)

)

dV, (3.4)

where κ denotes the geodesic curvature of �t ∩ ∂̄� viewed as the boundary of the regular
level set �t .

The boundary terms of (3.4) will now be analyzed. Working on ∂̂�, a straightforward
computation shows that

n(|∇u|) = 1

|∇u|
(

n(u)∇2
nu − I I (∇∂u,∇∂u) + ∇∂u (n(u))

)

, (3.5)

where I I (X, Y ) = 〈∇X n, Y 〉 with X, Y ∈ T ∂� denotes the second fundamental form
of the boundary. Furthermore, as is shown below, on ∂̄� the second fundamental form
term may be expanded as
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−|∇u|−1 I I (∇∂u,∇∂u)

= |∇∂u|κ − |∇u|H − n(u)Trgk − n(u)

|∇u|∇
2
nu − n(u)

|∇∂u||∇u|∇∂u(|∇∂u|). (3.6)

It follows that on ∂̄� we have

n(|∇u|) = |∇∂u|κ − |∇u|H − n(u)Trgk +
|∇∂u|
|∇u| ∇∂u

(
n(u)

|∇∂u|

)

. (3.7)

Consider now the set ∂̂�\∂̄�, that is, boundary points where |∇u| 
= 0 but |∇∂u| = 0.
In this case, (3.5) and the spacetime harmonic equation (1.5) imply that

n(|∇u|) = n(u)

|∇u|∇
2
nu = −n(u)

|∇u|
(

Hn(u) +
(

Trgk
)

|∇u|
)

= −|∇u|H−n(u)Trgk (3.8)

at points with 
∂u = 0, where 
∂ is the Laplace-Beltrami operator with respect to the
boundary metric. Moreover, the set of points with |∇∂u| = 0 and 
∂u 
= 0 is of measure
zero in ∂�, as may be seen by applying the regular value theorem to the appropriate
projection of ∇∂u. Therefore combining (3.4), (3.7), and (3.8) along with the coarea
formula on the boundary, yields the desired result.

It remains to verify (3.6). Each point of ∂̄� lies on a smooth curve ∂�t , for some
level set �t . We may then construct an orthogonal frame {τ, ν, ñ} at each such boundary

point where: τ is the unit tangent vector to the curve, ν = ∇u
|∇u| , and ñ = n − n(u)

|∇u|ν is

the projection of the unit outer normal for ∂� onto the tangent space of �t . The mean
curvature of ∂� and the geodesic curvature of ∂�t may then be expressed as

H = 〈∇τ n, τ 〉 + |∇∂u|−2〈∇∇∂ un,∇∂u〉, (3.9)

κ =
〈

∇τ

ñ

|ñ| , τ
〉

= |ñ|−1

(

〈∇τ n, τ 〉 − n(u)

|∇u|2 〈∇τ∇u, τ 〉
)

. (3.10)

Therefore

− I I (∇∂u,∇∂u) = |∇∂u|2 (〈∇τ n, τ 〉 − H)

= |∇∂u|2
(

|ñ|κ +
n(u)

|∇u|2 〈∇τ∇u, τ 〉 − H

)

. (3.11)

Using the computation

|ñ|2 = 1 − n(u)2

|∇u|2 = |∇∂u|2
|∇u|2 (3.12)

and the fact that u is a spacetime harmonic function, we find that

− I I (∇∂u,∇∂u)

= |∇∂u|3
|∇u| κ − |∇∂u|2 H +

n(u)|∇∂u|2
|∇u|2 〈∇τ∇u, τ 〉

= |∇∂u|3
|∇u| κ − |∇∂u|2 H − n(u)|∇∂u|2

|∇u|2
(

∇2
nu +

∇2u(∇∂u,∇∂u)

|∇∂u|2 +
(

Trgk
)

|∇u|
)

.

(3.13)
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Lastly, inserting

∇2u(∇∂u,∇∂u) = ∇2
∂ u(∇∂u,∇∂u) + I I (∇∂u,∇∂u)n(u)

= |∇∂u|∇∂u (|∇∂u|) + I I (∇∂u,∇∂u)n(u) (3.14)

into (3.13) and solving for I I (∇∂u,∇∂u) produces formula (3.6). ⊓⊔
The boundary terms in the integral identity (3.1) motivate a boundary value problem

for the spacetime harmonic function. In particular, consider the case in which the function
u takes constant values on each connected component of ∂�. This implies that ∂̄� = ∅,
and k(∇∂u, n) = 0, as well as n(u) = ±|∇u|. Thus, if additionally the sign of n(u)

were prescribed appropriately, then the null expansions would appear in the boundary
integrals. It turns out that this can be achieved by choosing the constants on the various
components of the boundary correctly.

Consider the setting of Theorem 1.4, in which the boundary is decomposed into a
disjoint union

∂� =
(

⊔m
i=1 ∂+

i �
)

⊔
(

⊔ℓ
i=1 ∂−

i �
)

, (3.15)

where the connected components are organized so that θ+

(

∂+
i �

)

≥ 0 with respect to

the outer normal, and θ+

(

∂−
i �

)

≤ 0 with respect to the inner normal. The unit normal
which takes this set of orientations at the various components will be denoted by υ. We
then propose the following boundary value problem which is closely related to that used
in [14]:


u +
(

Trgk
)

|∇u| = 0 on �, (3.16)

⎧

⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎩

u = 1 on ∂+
1 �,

u = 0 on ∂−
1 �,

u = a+
i ∈ (0, 1) on ∂+

i �, i ∈ �2, m�,

u = a−
i ∈ (0, 1) on ∂−

i �, i ∈ �2, ℓ�,

(3.17)

and

min
∂+

i �
∂υu = 0 for i ∈ �2, m�, min

∂−
i �

∂υu = 0 for i ∈ �2, ℓ�, (3.18)

for some constants a±
i . For a solution as above, it holds that

n(u) = ∂υu = |∇u| at ∂+
i � for i ∈ �1, m�,

n(u) = −∂υu = −|∇u| at ∂−
i � for i ∈ �1, ℓ�, (3.19)

where we have used the maximum principle for i = 1. This implies that

− |∇u|H − n(u)Tr∂�k = −θ+|∇u| at ∂+
i � for i ∈ �1, m�, (3.20)

− |∇u|H − n(u)Tr∂�k = θ+|∇u| at ∂−
i � for i ∈ �1, ℓ�, (3.21)

where the mean curvature in θ+ is computed with respect to υ. Applying Proposition 3.1
with this spacetime harmonic function then yields
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∫

�

(
1

2

|∇̄2u|2
|∇u| + μ|∇u| + J (∇u)

)

dV +

m
∑

i=2

∫

∂̂+
i �

θ+|∇u|d A −
ℓ

∑

i=1

∫

∂̂−
i �

θ+|∇u|d A

≤ 2π

∫ ū

u

χ(�t )dt −
∫

∂̂+
1 �

θ+|∇u|d A. (3.22)

Although the integral over ∂̂+
1 � is similarly nonnegative in this setting, we keep it in the

expression (3.22) for later use with other hypotheses.

4. The Spacetime Harmonic Function Boundary Value Problem

In this section we will solve the boundary value problem (3.16), (3.17) with auxiliary
condition (3.18). Note that the auxiliary condition is needed only when � has more than
two boundary components. The spacetime harmonic function equation admits a mild,
effectively linear, nonlinearity. This allows from a relatively straightforward applica-
tion of the Leray-Schauder fixed point theorem, to establish existence for the Dirichlet
problem, see [14, Section 4.1]. There it was shown that given a function h ∈ C2,α(∂�),
α ∈ (0, 1) there is a unique solution u ∈ C2,α(�) of

{


u +
(

Trgk
)

|∇u| = 0, on �,

u = h, on ∂�,
(4.1)

satisfying the estimate
‖u‖C2,α(�) ≤ C

(

α, ‖h‖C2,α(∂�)

)

(4.2)

where the constant C also depends on g and k although this is not emphasized. Further-
more, the existence of constant boundary values a±

i for which the auxiliary condition
(3.18) is satisfied may be motivated as follows. Suppose that on one boundary com-
ponent ∂+

i � the Dirichlet value is set to a+
i = 1. Then by the maximum principle and

the Hopf lemma, which applies to the spacetime harmonic function equation since the
nonlinear first order part may be expressed as a linear term with bounded coefficients,
we must have that the normal derivative satisfies n(u) > 0 on ∂+

i �. Similarly, if we
set a+

i = 0 then n(u) < 0. Thus, if we vary the choice of a+
i from 1 to 0, while all

other boundary values are held fixed, then there should be a value a+
i ∈ (0, 1) such that

min∂+
i � n(u) = 0. It turns out that we are able to prove a slightly stronger result. In what

follows, vectors in R
m+ℓ−2 will be denoted by �a = (a+

2 , . . . , a+
m, a−

2 , . . . , a−
ℓ ), and we

shall write �a ≤ �b if a+
i ≤ b+

i for all i ∈ �2, m� and a−
i ≤ b−

i for all i ∈ �2, ℓ�.

Proposition 4.1. Let (�, g, k) be a smooth compact initial data set, with boundary

satisfying the decomposition (3.15). Then there exists a unique vector �a ∈ (0, 1)m+ℓ−2

and a unique function u�a ∈ C2,α(�) satisfying (3.16), (3.17), and (3.18). Furthermore,

let �b ∈ R
m+ℓ−2 be any vector, and let u �b ∈ C2,α(�) be the unique solution to (3.16)

and (3.17) with �a replaced by �b. If n(u �b) ≥ 0 on ∂�\
(

∂+
1 � ∪ ∂−

1 �
)

, where n is the unit

outer normal, then �a ≤ �b. In particular, u�a ≤ u �b on �.

For consistency of orientation at the boundary, in this section we will solely make
use of the unit outer normal n to ∂�, instead of using the normal υ. With this convention
the auxiliary condition (3.18) becomes

min
∂+

i �
n(u) = 0 for i ∈ �2, m�, max

∂−
i �

n(u) = 0 for i ∈ �2, ℓ�. (4.3)
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Next, we introduce some notation. Let �a ∈ R
m+ℓ−2 and consider the spacetime harmonic

function u�a that satisfies the boundary conditions (3.17). Define a map

� : R
m+ℓ−2 →

m
∏

i=2

C1,α(∂+
i �) ×

ℓ
∏

i=2

C1,α(∂−
i �) (4.4)

given by
�[�a] := (φ+

2 [�a], . . . , φ+
m[�a], φ−

2 [�a], . . . , φ−
ℓ [�a]), (4.5)

where

φ+
i [�a] := n(u�a)

∣
∣
∣
∣
∂+

i �

for i ∈ �2, m�, φ−
i [�a] := n(u�a)

∣
∣
∣
∣
∂−

i �

for i ∈ �2, ℓ�.

(4.6)

Lemma 4.2. The map � is continuous.

Proof. Let �a j ∈ R
m+ℓ−2, j ∈ N be a sequence of vectors which converges to �a∞.

The estimate (4.2) guarantees that the corresponding spacetime harmonic functions u�a j

are uniformly bounded in C2,β(�) for any β ∈ (α, 1). Observe that the Arzelà–Ascoli
theorem yields the existence of a subsequence, still denoted by u�a j

, which converges in

C2,α(�). The limit is a spacetime harmonic function with boundary data given by �a∞.
Since solutions to the Dirichlet problem (4.1) are unique, we must have that the limit
agrees with u�a∞ . Therefore u�a j

converges to u�a∞ in C2,α(�). This implies that φ+
i [�a j ]

converges to φ+
i [�a∞] in C1,α(∂+

i �) for i ∈ �2, m�, and φ−
i [�a j ] converges to φ−

i [�a∞] in

C1,α(∂−
i �) for i ∈ �2, ℓ�. ⊓⊔

In order to facilitate the manipulation of boundary data, we introduce the following
operations for �a ∈ R

m+ℓ−2 and b ∈ R in which the entry a+
i or a−

i is replaced by b,
namely

π+
i (b, �a) = (a+

2 , . . . , a+
i−1, b, a+

i+1, . . . , a+
m, a−

2 , . . . , a−
ℓ ), i ∈ �2, m�,

π−
i (b, �a) = (a+

2 , . . . , a+
m, a−

2 , . . . , a−
i−1, b, a−

i+1, . . . , a−
ℓ ), i ∈ �2, ℓ�. (4.7)

Furthermore, consider the optimal values for the Dirichlet data of each boundary com-
ponent, that is

T +
i (�a) := inf{b ∈ R | min

∂+
i �

φ+
i [π+

i (b, �a)] ≥ 0} for i ∈ �2, m�,

T −
i (�a) := inf{b ∈ R | max

∂−
i �

φ−
i [π−

i (b, �a)] ≥ 0} for i ∈ �2, ℓ�. (4.8)

Notice that T +
i (�a) does not depend on a+

i and T −
i (�a) does not depend on a−

i . Furthermore,
the maximum principle combined with the Hopf lemma shows that the sets used in the
definition of (4.8) are non-empty and bounded from below. Therefore T +

i (�a) and T −
i (�a)

are finite. The next result collects the essential properties of these quantities.

Lemma 4.3. (1) Fix i ∈ �2, m� and let c ∈ R. Then min∂+
i � φ+

i [π+
i (c, �a)] is positive,

zero, or negative when c > T +
i (�a), c = T +

i (�a), or c < T +
i (�a) respectively.

(2) Fix i ∈ �2, ℓ� and let c ∈ R. Then max∂−
i � φ−

i [π−
i (c, �a)] is positive, zero, or negative

when c > T −
i (�a), c = T −

i (�a), or c < T −
i (�a) respectively.
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(3) If �a, �b ∈ R
m+ℓ−2 with �a ≤ �b then T +

i (�a) ≤ T +
i (�b) for i ∈ �2, m�, and T −

i (�a) ≤
T −

i (�b) for i ∈ �2, ℓ�.

(4) The functions T +
i : R

m+ℓ−2 → R, i ∈ �2, m� and T −
i : R

m+ℓ−2 → R, i ∈ �2, ℓ� are

continuous.

Proof. We begin with (1). By Lemma 4.2 the quantity φ+
i [�a] depends continuously on

�a, and therefore min∂+
i � φ+

i [π+
i (c, �a)] is a continuous function of c. In order to establish

(1), it suffices to show that for fixed �a, the function c �→ min∂+
i � φ+

i [π+
i (c, �a)] is strictly

increasing. To this end let c < c̃, and consider the spacetime harmonic functions uc,�a and
u c̃,�a satisfying the boundary conditions (3.17) with a+

i replaced by c and c̃, respectively.
A direct computation shows that v := u c̃,�a − uc,�a solves the equation


v +
(

Trgk
) ∇(v + 2uc,�a)

|∇(v + uc,�a)| + |∇uc,�a | · ∇v = 0 on �. (4.9)

Moreover, v = 0 on ∂�\∂+
i � and v = c̃ − c > 0 on ∂+

i �. Thus, by the Hopf lemma
n(v) > 0 on ∂+

i �. This implies that

min
∂+

i �
φ+

i [π+
i (c̃, �a)] = min

∂+
i �

(

n(v) + φ+
i [π+

i (c, �a)]
)

> min
∂+

i �
φ+

i [π+
i (c, �a)], (4.10)

which completes the proof of (1). The proof of (2) is similar and so we omit it.

Next, consider statement (3). Assume that �a, �b ∈ R
m+ℓ−2 with �a ≤ �b, let b ∈ R,

and fix i ∈ �2, m�. Denote the spacetime harmonic functions satisfying the boundary

conditions (3.17) associated to π+
i (b, �a) and π+

i (b, �b), by ub,�a and u
b,�b, respectively.

As above, a computation shows that the function ṽ := u
b,�b − ub,�a solves an equation

analogous to (4.9). Furthermore, ṽ ≥ 0 on ∂� and ṽ = 0 on ∂+
i �. This implies that

n(ṽ) ≤ 0 on ∂+
i �, and thus

min
∂+

i �
φ+

i [π+
i (b, �b)] = min

∂+
i �

(

n(ṽ) + φ+
i [π+

i (b, �a)]
)

≤ min
∂+

i �
φ+

i [π+
i (b, �a)]. (4.11)

Together with the monotonicity of min∂+
i � φ+

i [π+
i (b, �a)] in b, it follows that T +

i (�a) ≤
T +

i (�b). Similar arguments may be used to establish the remaining cases of (3).

Lastly, we address (4). Let �a j ∈ R
m+ℓ−2 be a sequence of vectors which converges

to �a∞. To prove that T +
i is continuous, it suffices to show that

lim sup
j→∞

T +
i (�a j ) ≤ T +

i (�a∞), and lim inf
j→∞

T +
i (�a j ) ≥ T +

i (�a∞). (4.12)

Suppose that the first inequality of (4.12) fails. Then up to a subsequence, there exists
ǫ > 0 such that T +

i (�a j ) ≥ T +
i (�a∞) + ǫ. Therefore

0 = lim
j→∞

min
∂+

i �
φ+

i [π+
i (T +

i (�a j ), �a j )] ≥ lim
j→∞

min
∂+

i �
φ+

i [π+
i (T +

i (�a∞) + ǫ, �a j )]

= min
∂+

i �
φ+

i [π+
i (T +

i (�a∞) + ǫ, �a∞)], (4.13)

where we have used monotonicity of the map c �→ min∂+
i � φ+

i [π+
i (c, �a)], as well as

Lemma 4.2. Furthermore, since the monotonicity is strict it follows that the right-hand
side of (4.13) is strictly positive, which leads to a contradiction. We conclude that the first
inequality of (4.12) holds. The second inequality of (4.12) may be dealt with similarly,
and thus the continuity of T +

i is established. The continuity of T −
i can be proved in an

analogous way. ⊓⊔
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We now have the tools required to establish Proposition 4.1. This result may be
reformulated in a concise manner through the use of notation developed in this section,

together with the map �T : R
m+ℓ−2 → R

m+ℓ−2 defined by

�T (�a) = (T +
2 (�a), . . . , T +

m (�a), T −
2 (�a), . . . , T −

ℓ (�a)). (4.14)

Proposition 4.4. There exists a unique �a ∈ (0, 1)m+ℓ−2 such that �T (�a) = �a. Further-

more, if �b ∈ R
m+ℓ−2 has the property that φ+

i [�b] ≥ 0 on ∂+
i � for all i ∈ �2, m� and

φ−
i [�b] ≥ 0 on ∂−

i � for all i ∈ �2, ℓ�, then �a ≤ �b. In particular, u�a ≤ u �b on �.

Proof. Consider first the existence of �a. Let �a0 = (1, 1, . . . , 1) and inductively define

�a j+1 = �T (�a j ). By the Hopf lemma, φ+
i [�a0] ≥ 0 on ∂+

i � for i ∈ �2, m� and φ−
i [�a0] ≥ 0

on ∂−
i � for i ∈ �2, ℓ�. Moreover, according to the definition of �T we must have �a1 ≤ �a0.

Inductively applying part (3) of Lemma 4.3 then shows that the components of �a j each
form a monotone non-increasing sequence. Furthermore, an inductive application of the
Hopf lemma shows that each component of �a j is non-negative. Therefore, �a j converges
to a limit �a. No component of �a can be 0 or 1, which again follows from the Hopf lemma,

and thus �a ∈ (0, 1)m+ℓ−2. Lastly, part (4) of Lemma 4.3 states that �T is continuous, and

hence �T (�a) = �a.

Next, we prove uniqueness of the solution �a. Suppose there exists another fixed

point �b 
= �a. Recall that u�a and u �b are the unique spacetime harmonic functions with

Dirichlet boundary conditions determined by �a and �b, from (3.17). We may assume

without loss of generality that there is a component of �b which is strictly larger than

the corresponding component of �a, otherwise the roles of �b and �a may be reversed in
the following argument. Observe that the maximum of u �b − u�a must be achieved on

∂�\
(

∂+
1 � ∪ ∂−

1 �
)

, since this function satisfies an equation of the form (4.9). If the
maximum is achieved on ∂+

i �, for some i ∈ �2, m�, then the Hopf lemma applied to
u �b − u�a implies that

φ+
i [�b] = n(u �b)

∣
∣
∣
∣
∂+

i �

> n(u�a)

∣
∣
∣
∣
∂+

i �

= φ+
i [�a]. (4.15)

This, however, contradicts the fact that

min
∂+

i �
φ+

i [�b] = min
∂+

i �
φi [�a] = 0. (4.16)

A similar argument holds if the maximum is achieved on ∂−
i �, for some i ∈ �2, ℓ�.

Therefore, �a is unique.

Now suppose that �b ∈ R
m+ℓ−2 satisfies φ+

i [�b] ≥ 0 on ∂+
i � for all i ∈ �2, m� and

φ−
i [�b] ≥ 0 on ∂−

i � for all i ∈ �2, ℓ�. The Hopf lemma shows that each component of �b
is strictly positive. By choosing �a0 = �b and repeating the above iteration procedure, we

find that there exists a fixed point solution �a∞ ∈ (0, 1)m+ℓ−2 with �a∞ ≤ �b. According to

the uniqueness of such fixed points proven above, it follows that �a = �a∞ ≤ �b. Finally,
the maximum principle shows that u�a ≤ u �b on �. ⊓⊔
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5. Proof of Theorem 1.4

Let (�, g, k) be a smooth orientable 3-dimensional compact initial data set with bound-

ary ∂�, satisfying the dominant energy condition and H2(�, ∂̃�; Z) = 0. Suppose that
the boundary may be decomposed into a disjoint union

∂� =
(

⊔m
i=1 ∂+

i �
)

⊔
(

⊔ℓ
i=1 ∂−

i �
)

, (5.1)

where the connected components are organized so that θ+

(

∂+
i �

)

≥ 0 with respect to the

outer normal, and θ+

(

∂−
i �

)

≤ 0 with respect to the inner normal. Moreover, assume that
∂+

1 � has positive genus, that ∂+
i � is of zero genus for i = 2, . . . , m, and that � satisfies

the homotopy condition with respect to ∂+
1 �. By Proposition 2.2, it may be assumed that

the ordering of ∂−
i �, i ∈ �1, ℓ� has been arranged so that ∂−

1 � is not separable from

∂+
1 � by a 2-sphere. Next, let u ∈ C2,α(�) be the unique solution of (3.16), (3.17), and

(3.18) given by Proposition 4.1. We may then apply Proposition 3.1 and the discussion
of Sect. 3, in particular (3.22), to find

∫

�

(
1

2

|∇̄2u|2
|∇u| + μ|∇u| + J (∇u)

)

dV ≤ 2π

∫ 1

0

χ(�t )dt

+

ℓ
∑

i=1

∫

∂−
i �

θ+|∇u|d A −
m

∑

i=1

∫

∂+
i �

θ+|∇u|d A.

(5.2)

We will now show that the level set Euler characteristics satisfy χ(�t ) ≤ 0 for all
regular values t ∈ [0, 1]. This will be a consequence of the special boundary conditions
chosen for u, the vanishing second relative homology, and the fact that � satisfies the
homotopy condition with respect to a surface of positive genus. Let �t be a regular
level set for t 
= 0, 1. It suffices to show that χ(�′

t ) ≤ 0, for an arbitrary connected
component �′

t of �t . Note that �′
t is a 2-sided properly embedded submanifold, which

does not intersect ∂� in light of the boundary conditions chosen for u. Thus, we need
only show that �′

t is not a 2-sphere.

Proceeding by contradiction, let us suppose that �′
t is indeed a 2-sphere. Since the

second homology relative to certain boundary components vanishes, H2(�; Z) is gen-
erated by boundary cycles and hence there exist c+

i , c−
i ∈ Z such that

[�′
t ] +

m
∑

i=1

c+
i [∂+

i �] +

ℓ
∑

i=1

c−
i [∂−

i �] = 0 in H2(�; Z). (5.3)

Let �̃ be the compact manifold without boundary obtained by filling in 3-balls and

handlebodies along ∂�. Then [�′
t ] = 0 as an element in H2(�̃; Z). This implies that

there exists a domain D̃ ⊂ �̃ such that �′
t = ∂ D̃. Set D = D̃ ∩�. Then the boundary of

D consists of �′
t and some (possibly empty) connected components of ∂�. Therefore,

by changing the orientation of �′
t if necessary, the coefficients in (5.3) are either 1 or 0.

Moreover, since the sum of all boundary cycles is trivial, we may assume that c+
1 = 0

by further changing the orientation of �′
t as needed. In fact, it must also be the case that
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c−
1 = 0 because ∂−

1 � is not separable from ∂+
1 � by a 2-sphere. Therefore, there exist

index sets I ⊂ �2, m� and J ⊂ �2, ℓ� such that

[�′
t ] +

∑

i∈I

[∂+
i �] +

∑

i∈J

[∂−
i �] = 0 in H2(�; Z), (5.4)

and ∂ D = �′
t ⊔(⊔i∈I ∂

+
i �)⊔(⊔i∈J ∂−

i �). By the maximum principle, the maximum and
minimum of u on D must be achieved on ∂ D. However, the Hopf lemma together with
the boundary condition (3.18) show that neither of these extrema can occur on ∂ D ∩∂�.
It follows that both maximum and minimum are obtained on �′

t , and hence u is constant
within D. This contradicts the regularity of �′

t as a level set. We conclude that �′
t cannot

be a 2-sphere, and thus must have nonpositive Euler characteristic.

Consider now the case when t = 0, 1. Note that χ(�1) ≤ 0 by assumption, since
�1 = ∂+

1 � is taken to have positive genus. Furthermore, by the Hopf lemma both of

these are regular values for u. Therefore, a small neighborhood of ∂−
1 � is foliated by

regular level sets �t , t > 0 all having the same topology as this boundary component.
Since the Euler characteristic of these level sets is nonpositive, the same is true for the
boundary component: χ(�0) ≤ 0.

According to (5.2), the dominant energy condition, the sign constraint on the null
expansions of the boundary, and the observation concerning Euler characteristics of level
sets imply that

θ+|∇u| = 0 on ∂�, χ(�t ) = 0 for all regular values t ∈ [0, 1], (5.5)

|∇2u + |∇u|k| = 0, |∇u|μ + J (∇u) = 0, on �. (5.6)

It follows from the first equation of (5.6) that whenever |∇u| 
= 0 we have

|∇ log |∇u|| ≤ |∇2u|
|∇u| ≤ sup

�

|k|. (5.7)

Thus, applying this estimate along curves emanating from ∂±
1 �, where |∇u| > 0 by

the Hopf lemma, shows that |∇u| > 0 on all of �. In particular, this is incompatible
with the boundary condition (3.18), so there can be only two boundary components
and m = ℓ = 1. Moreover, since all level sets are regular and have vanishing Euler
characteristic we find that �t

∼= T 2, � ∼= [0, 1] × T 2, and the metric can be expressed
as

g = |∇u|−2dt2 + gt (5.8)

for some family of metrics gt on the torus. In addition, the nonvanishing gradient together
with the dominant energy condition and (5.6), imply that μ = |J |g = −J (ν) on � where

ν = ∇u
|∇u| . In particular, the orthogonal projection of J to any level set vanishes J |�t = 0.

Next, note that I It = ∇2u
|∇u| |�t is the second fundamental form of the t-level set, and

therefore the first equation of (5.6) yields

0 =
(

∇2u + |∇u|k
)∣
∣
�t

=
(

I It + k
∣
∣
�t

)

|∇u|. (5.9)

This shows that the (future) null second fundamental forms vanish χ+ = 0, and hence
each level set �t is a MOTS with respect to ν. Moreover, since ∂t = f −1ν with f = |∇u|,
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the first variation of null expansion formula [1,11] gives

0 = ∂tθ+ = −
t f −1+2〈X,∇t f −1〉+
(

Kt − μ − J (ν) − 1

2
|χ+|2 + divt X − |X |2

)

f −1,

(5.10)
where Kt , 
t , and X = k(ν, ·) are respectively the Gauss curvature, Laplace-Beltrami
operator, and a 1-form on �t . Multiplying by f and integrating by parts, while utilizing
the Gauss-Bonnet theorem and the vanishing of the null second fundamental forms as
well as the vanishing of the sum of energy and momentum densities, produces

0 = −
∫

�t

(

f 
t f −1 + 2〈X,∇t log f 〉 + |X |2
)

d A = −
∫

�t

|∇t log f + X |2d A.

(5.11)
It follows that X = −∇t log f , and thus from (5.10) we find Kt ≡ 0 so that (�t , gt ) is
a flat torus for all t ∈ [0, 1].

Consider now the case in which k = −λg for some λ ∈ C∞(�). Since the momentum
density vanishes when evaluated on vector fields Y tangential to �t , we have

0 = J (Y ) = divg

(

k − (Trgk)g
)

(Y ) = 2Y (λ), (5.12)

so that λ is constant on �t and we may write λ = λ(t). Next observe that the first
equation of (5.6) implies

Y (|∇u|) = ∇2u

( ∇u

|∇u| , Y

)

= λg(∇u, Y ) = 0, (5.13)

so that |∇u| is a constant on �t . Furthermore

∂t |∇u| = g

(

∇|∇u|, ∇u

|∇u|2
)

= ∇2u

( ∇u

|∇u| ,
∇u

|∇u|2
)

= λg(ν, ν) = λ. (5.14)

Define a new radial coordinate s = s(t) such that ds = |∇u|−1dt and s(0) = 0. Then
(5.14) shows ∂s log f = λ, and with the help of (5.9) we find

1

2
∂s gs = I Is = −k

∣
∣
�s

= λgs = (∂s log f ) gs (5.15)

so that gs = f (s)2 ĝ for some flat metric ĝ on T 2. It follows from (5.8) that the desired
form of the metric is achieved

g = ds2 + f (s)2 ĝ. (5.16)

6. Proof of Theorems 1.1–1.3

Let (M, g, k) be a smooth orientable 3-dimensional asymptotically hyperboloidal initial
data set with toroidal infinity. Suppose that the boundary may be decomposed into a
disjoint union

∂ M =
(

⊔m
i=2 ∂+

i M
)

⊔
(

⊔ℓ
i=1 ∂−

i M
)

, (6.1)

where the connected components are organized so that θ+

(

∂+
i M

)

≥ 0 with respect to

the outer normal, and θ+

(

∂−
i M

)

≤ 0 with respect to the inner normal; this unit normal
having the stated orientations will be denoted by υ. Moreover, assume that ∂+

i M is of
zero genus for i = 2, . . . , m, that M satisfies the homotopy condition with respect
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to conformal infinity, and H2(M, ∂ M; Z) = 0. Note that the integers m, ℓ ≥ 1, with
m = 1 signifying that the first set of components in (6.1) is empty. Thus, the boundary
is nonempty and weakly trapped with respect to the unit normal pointing towards the
asymptotic end, having at least one weakly outer trapped component and with each
weakly inner trapped component of genus zero.

For each r > 1, let Tr denote the constant radial coordinate torus in the asymptotic
end, and set Mr to be the bounded component of M\Tr . Its boundary is then given by

∂ Mr = ∂+
1 Mr ⊔

(

⊔m
i=2 ∂+

i Mr

)

⊔
(

⊔ℓ
i=1 ∂−

i Mr

)

, (6.2)

where ∂+
1 Mr = Tr , ∂+

i Mr = ∂+
i M for i 
= 1, and ∂−

i Mr = ∂−
i M for all i ∈ �1, ℓ�. By

Proposition 2.2, it may be assumed that the ordering of ∂−
i M has been arranged so that

∂−
1 Mr is not separable from ∂+

1 Mr by a 2-sphere. Furthermore, let w ∈ C2,α(M̄r ) be
the unique solution of (3.16), (3.17), and (3.18) given by Proposition 4.1 with w = 0
on ∂−

1 Mr and w = 1 on ∂+
1 Mr . Define ur = rw, and observe that this function satisfies


ur +
(

Trgk
)

|∇ur | = 0 on Mr , (6.3)
⎧

⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎩

ur = r on ∂+
1 Mr ,

ur = 0 on ∂−
1 Mr ,

ur = ra+
i (r) on ∂+

i Mr , i ∈ �2, m�,

ur = ra−
i (r) on ∂−

i Mr , i ∈ �2, ℓ�,

(6.4)

and

min
∂+

i Mr

∂υur = 0 for i ∈ �2, m�, min
∂−

i Mr

∂υur = 0 for i ∈ �2, ℓ�, (6.5)

for some constants a±
i (r) ∈ (0, 1). We may then apply Proposition 3.1 and the discussion

of Sect. 3, in particular (3.22), to find

∫

Mr

(
1

2

|∇̄2ur |2
|∇ur |

+ μ|∇ur | + J (∇ur )

)

dV −
m

∑

i=2

∫

∂+
i Mr

θ−|∇ur |d A −
ℓ

∑

i=1

∫

∂−
i Mr

θ+|∇ur |d A

≤ 2π

∫ r

0

χ(�r
t )dt −

∫

∂+
1 Mr

θ+|∇ur |d A, (6.6)

where the null expansions are computed with respect to the unit normal pointing towards
the asymptotic end and �r

t denotes the t-level set of ur .

We will show that the integral over ∂+
1 Mr converges to a positive multiple of the total

energy, as r → ∞. To accomplish this, we will first estimate the asymptotics for ur and
its derivatives. In the next result, suitable barrier functions are constructed showing that
the leading term in the expansion for the solutions is the coordinate function r .

Lemma 6.1. There exist constants C > 0 and r∗ > 1, such that for all ρ > r∗ we have

|uρ − r | ≤ C on Mρ\M1. (6.7)
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Proof. We start by constructing an upper barrier. Let r0 > 1, λ ∈ R, and c0 > 0 be
constants to be determined, and let ρ > r0. Consider the spacetime harmonic function
w+

r0
∈ C2,α(M̄r0)with boundary conditionsw+

r0
= 1 on Tr0⊔

(

⊔m
i=2∂

+
i Mρ

)

⊔
(

⊔ℓ
i=2∂

−
i Mρ

)

and w+
r0

= 0 on ∂−
1 Mρ , that is guaranteed by the discussion in Sect. 4. By the Hopf lemma

n
(

w+
r0

)

> 0 on Tr0 ⊔
(

⊔m
i=2∂

+
i Mρ

)

⊔
(

⊔ℓ
i=2∂

−
i Mρ

)

, (6.8)

where n denotes the unit outer normal. Define

z+ :=
{

c0w
+
r0

on Mr0 ,

r + (c0 − r0 − λr−2
0 ) + λr−2 on M\Mr0 .

(6.9)

Clearly z+ is continuous on M , and is C2,α smooth away from Tr0 .

We now show that z+ is a super solution on M\Mr0 ifλ and r0 are chosen appropriately.
Observe that (1.2) yields

det g = r2 det ĝ
(

1 + (Trĝm)r−3 + o(r−3)
)

, grr = r2
(

1 + o(r−3)
)

, (6.10)

so that in the exterior region


z+ = 1√
det g

∂r

(

grr
√

det g∂r z+

)

+ o(r−2) = 3r

(

1 − 1

2
(Trĝm)r−3 + o(r−3)

)

.

(6.11)
Moreover

Trgk = −3+(Trĝp)r−3+o(r−3), |∇z+|2 = grr
(

∂r z+
)2 = r2

(

1 − 2λr−3 + o(r−3)
)

,

(6.12)
so that

(

Trgk
)

|∇z+| = r
(

−3 + (6λ + Trĝp)r−3 + o(r−3)
)

. (6.13)

It follows that


z+ +
(

Trgk
)

|∇z+| =
(

6λ − 3

2
Trĝm + Trĝp

)

r−2 + o(r−2) ≤ 0 (6.14)

on M\Mr0 , if λ is chosen so that the term in parentheses within (6.14) is less than −1
and r0 is chosen sufficiently large.

The function z+ is a super solution for the spacetime harmonic equation on Mr0

and M\Mr0 separately. Moreover, it is a weak super solution on M if c0 is chosen
appropriately. To see this, note that with the help of (6.8) we may choose c0 > 0 large
enough so that on Tr0 the following inequality holds

c0n
(

w+
r0

)

≥ n
(

r + λr−2
)

= r2
0

(

1 − 2λr−3
0 + o(r−3

0 )
)

. (6.15)

Consider now the spacetime harmonic function ũρ ∈ C2,α(Mρ) satisfying the boundary
conditions ⎧

⎨

⎩

ũρ = ρ, on ∂+
1 Mρ,

ũρ = 0, on ∂−
1 Mρ,

ũρ = z+, on
(

⊔m
i=2∂

+
i Mρ

)

⊔
(

⊔ℓ
i=2∂

−
i Mρ

)

.

(6.16)
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Observe that in light of (6.14) and the definition (6.9), the difference z+ − ũρ is a super
solution for a linear elliptic equation with bounded coefficients, namely

L(z+ − ũρ) := 
(z+ − ũρ) +
(

Trgk
) ∇(z+ + ũρ)

|∇z+| + |∇ũρ |
︸ ︷︷ ︸

�K

·∇(z+ − ũρ) ≤ 0 (6.17)

on Mr0 and Mρ\Mr0 separately. It follows that for nonnegative test functions ϕ ∈
C∞

c (Mρ) we have

0 ≤ −
∫

Mr0

ϕL(z+ − ũρ)dV

=
∫

Mr0

(

∇ϕ · ∇(z+ − ũρ) − ϕ �K · ∇(z+ − ũρ)
)

dV −
∫

Tr0

ϕn
(

c0w
+
r0

− ũρ

)

d A,

(6.18)

and

0 ≤ −
∫

Mρ\Mr0

ϕL(z+ − ũρ)dV

=
∫

Mρ\Mr0

(

∇ϕ · ∇(z+ − ũρ) − ϕ �K · ∇(z+ − ũρ)
)

dV +

∫

Tr0

ϕn
(

r + λr−2 − ũρ

)

d A,

(6.19)

so that summing these two inequalities produces

∫

Mρ

(

∇ϕ · ∇(z+ − ũρ) − ϕ �K · ∇(z+ − ũρ)
)

dV ≥
∫

Tr0

ϕn
(

c0w
+
r0

− r − λr−2
)

d A ≥ 0.

(6.20)

Thus, the weak maximum principle [12, Theorem 8.1] implies that

inf
Mρ

(

z+ − ũρ

)

≥ inf
∂ Mρ

(

z+ − ũρ

)

≥ 0, (6.21)

where in the last inequality we may ensure that z+ ≥ ũρ on ∂+
1 Mρ by choosing c0 larger

(dependent only on r0 and λ) if necessary.

These estimates may be translated into bounds for uρ in the following way. Since

z+ ≥ ũρ on Mρ we find that n
(

ũρ

)

≥ n
(

z+
)

> 0 on
(

⊔m
i=2∂

+
i Mρ

)

⊔
(

⊔ℓ
i=2∂

−
i Mρ

)

,

where (6.8) was also used. Proposition 4.1 may now be applied to ρ−1ũρ and ρ−1uρ to
find that ũρ ≥ uρ on Mρ . Hence z+ ≥ uρ on Mρ for ρ > r0.

The construction of a lower barrier is analogous, so we will only give an outline.
Let r1 > 1, ς ∈ R, and c1 > 0 be constants to be determined. Consider the spacetime
harmonic function w−

r1
∈ C2,α(Mr1) with boundary conditions w−

r1
= −1 on Tr1 and

w−
r1

= 0 on
(

⊔m
i=2∂

+
i Mρ

)

⊔
(

⊔ℓ
i=1∂

−
i Mρ

)

. Use this function to define

z− :=
{

c1w
−
r1

on Mr1 ,

r − (c1 + r1 + ςr−2
1 ) + ςr−2 on M\Mr1 .

(6.22)
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The calculation (6.14) shows that if ς is chosen to ensure 6ς − 3
2

Trĝm + Trĝp > 1, then

r1 may be chosen sufficiently large to guarantee that z− is a sub solution of the spacetime
harmonic equation on M\Mr1 . The Hopf lemma, together with an appropriately large
choice for c1, shows that z− is a weak sub solution on M . A comparison argument
then yields z− ≤ uρ on Mρ for ρ > r1. By setting r∗ = max{r0, r1}, we then have
z− ≤ uρ ≤ z+ on Mρ for all ρ > r∗. The desired conclusion now follows. ⊓⊔

The pointwise estimates for uρ may be parlayed into uniform gradient bounds in the
asymptotic end with standard L p-elliptic estimates. These bounds, presented in the next
result, will be sufficient to show convergence of the boundary integral on the right-hand
side of (6.6) to the total energy.

Lemma 6.2. Let r∗ > 1 be as in Lemma 6.1. There exists a constant C > 0 such that

for all ρ > r∗ we have

|∇uρ − ∇r | ≤ C on Mρ\M1. (6.23)

Proof. Let ρ > r∗, and set vρ = uρ − r . As in (6.17) we find that vρ satisfies the
equation


vρ +
(

Trgk
) ∇(uρ + r)

|∇uρ | + |∇r | · ∇vρ = −
r −
(

Trgk
)

|∇r | =: F. (6.24)

Note that the first order coefficients are uniformly bounded. Take a point x0 ∈ ∂+
1 Mρ ,

and let Bǫ and Bǫ/2 be geodesic balls centered at x0 with radii ǫ and ǫ/2, respectively.
We fix ǫ > 0 so that it is less than the injectivity radius for any point x ∈ M\Mr∗ . For
1 < p < ∞ the boundary L p-estimates [12, Theorem 9.13], with vρ = 0 on ∂+

1 Mρ ,
yield

‖vρ‖W 2,p(Bǫ/2∩Mρ ) ≤ C0

(

‖F‖L p(Bǫ∩Mρ ) + ‖vρ‖L p(Bǫ∩Mρ )

)

. (6.25)

Since g is asymptotically locally hyperbolic, the constant C0 is uniform over all x0 ∈
∂+

1 Mρ and all ρ > r∗. Furthermore, a calculation similar to (6.14) shows that


r +
(

Trgk
)

|∇r | =
(

Trĝp − 3

2
Trĝm

)

r−2 + o(r−2), (6.26)

and therefore F is uniformly bounded in the asymptotic end. Moreover, by Lemma 6.1
we have that vρ is uniformly bounded on Mρ\M1 independent of ρ. Thus, with the aid
of Sobolev embedding (and choosing p > 3) there is a uniform constant C such that

‖vρ‖C1,β (Bǫ/2∩Mρ ) ≤ C1‖vρ‖W 2,p(Bǫ/2∩Mρ ) ≤ C, (6.27)

where β = 1 − 3
p

. The interior L p-estimates may be used to obtain the same conclusion

in balls away from the boundary. The desired result now follows. ⊓⊔
Proof of Theorem 1.1. Consider the inequality (6.6). According to the hypotheses of
the theorem, the left-hand side is nonnegative. Moreover, the assumptions imply that
M satisfies the homotopy condition with respect to some coordinate torus Tr̄ in the
asymptotic end. Since the entire asymptotic end is homotopy equivalent to Tr̄ , we find
that Mr satisfies the homotopy condition with respect to ∂+

1 Mr . Therefore, the arguments
of Sect. 5 apply to show that the level set Euler characteristics satisfy χ(�r

t ) ≤ 0 for
all regular values t ∈ [0, r ]. To establish that the total energy E is nonnegative, it then
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suffices to show that the boundary integral on the right-hand side of (6.6) converges to
a positive multiple of this quantity, namely

E = lim
r→∞

− 2

|T 2|

∫

∂+
1 Mr

θ+|∇ur |d A. (6.28)

Observe that the asymptotics (1.2) imply that the unit outer normal to ∂+
1 Mr satisfies

n = ∇r

|∇r | = grr∂r + grl∂l

|∇r | = r
(

1 + o(r−3)
)

∂r + �2
l=1o(r−4)∂l , (6.29)

where l = 1, 2 denote directions tangential to the torus cross-sections. It follows that
the mean curvature with respect to n has the expansion

H = 1

2

(

r−2 ĝ jl − r−5m jl + o(r−5)
)

n
(

r2 ĝ jl + r−1m jl + o(r−1)
)

= 2 − 3

2

(

Trĝm
)

r−3 + o(r−3), (6.30)

where m jl indicates indices raised with the metric ĝ. Similarly we have

Tr∂+
1 Mr

k =
(

r−2ĝ jl − r−5m jl + o(r−5)
) (

−r2 ĝ jl + r−1p jl − r−1m jl

)

= −2 +
(

Trĝp
)

r−3 + o(r−3), (6.31)

so that

θ+ = H + Tr∂+
1 Mr

k =
(

Trĝp − 3

2
Trĝm

)

r−3 + o(r−3). (6.32)

Furthermore the area form is a direct calculation, and Lemma 6.2 yields the asymptotics
for the modulus of the derivatives of the spacetime harmonic function

d A = r2
(

1 + o(r−3)
)

d Aĝ, |∇ur | = |∇r | + O(1) = r (1 + o(1)) . (6.33)

Therefore, combining (6.32) and (6.33) produces (6.28). ⊓⊔
Proof of Theorem 1.2. We will first establish an energy lower bound by taking a limit
of inequality (6.6). To accomplish this, observe that by Lemma 6.1, the functions ur

are locally uniformly bounded. Standard elliptic estimates then show that derivatives
of ur are locally uniformly bounded in C2,α , for any α ∈ (0, 1). Therefore a diagonal
argument implies that there is an increasing sequence rj → ∞, such that {urj} converges

in C2,α on compact subsets to a spacetime harmonic function u ∈ C2,α(M).
Consider now the limit of (6.6) as rj → ∞. Due to the regular convergence of the

spacetime harmonic functions, it is clear that the limit may be passed under the boundary
integrals on the left-hand side, and the same holds for the bulk integrals over fixed
compact subsets, except possibly the first involving the Hessian. To deal with the Hessian
term, fix a compact set � ⊂ M . For any ε > 0, define �ε = {x ∈ � | |∇u(x)| ≥ ε}.
Because urj converges to u in C2,α(�), for j large enough it holds that |∇urj | ≥ 2−1ε

on �ε, and therefore

lim
j→∞

|∇̄2urj |2
|∇urj |

(x) = |∇̄2u|2
|∇u| (x) for all x ∈ �ε. (6.34)
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Fatou’s lemma then applies to yield

lim inf
j→∞

∫

�

|∇̄2urj |2
|∇urj |

dV ≥ lim inf
j→∞

∫

�ε

|∇̄2urj |2
|∇urj |

dV ≥
∫

�ε

|∇̄2u|2
|∇u| dV, (6.35)

and by the monotone convergence theorem we may let ε → 0 to obtain

lim inf
j→∞

∫

�

|∇̄2urj |2
|∇urj |

dV ≥
∫

�

|∇̄2u|2
|∇u| dV . (6.36)

Therefore if � properly contains all boundary components of M , then utilizing the fact

that all regular level sets satisfy the Euler characteristic estimate χ(�
rj

t ) ≤ 0, as well as
(6.28), (6.36) and the dominant energy condition, we find that taking the lim inf of both
sides in inequality (6.6) produces

E ≥ 1

|T 2|

∫

�

( |∇̄2u|2
|∇u| + 2(μ + J (ν))|∇u|

)

dV

− 2

|T 2|

m
∑

i=2

∫

∂+
i M

θ−|∇u|d A − 2

|T 2|

ℓ
∑

i=1

∫

∂−
i M

θ+|∇u|d A, (6.37)

where ν = ∇u/|∇u|.
We are now in a position to establish the rigidity statement. The line of argument

from this point is almost identical to the proof of Theorem 1.4, and thus we will only
give an outline here while emphasizing the differences. In particular when E = 0, the
lower bound (6.37) for arbitrary � together with the strategy in Sect. 5 establishes the
following: |∇u| > 0 on all of M , there is only one boundary component ∂−

1 M , M is
diffeomorphic to [0,∞)×� for some orientable closed surface �, μ = |J |g = −J (ν),
each level set �t = {t} × � has vanishing null second fundamental form χ+ = 0, and
the metric may be expressed as

g = |∇u|−2dt2 + gt . (6.38)

Next observe that (5.10), (5.11), and the Gauss–Bonnet theorem yield

0 = 2πχ(�t ) −
∫

�t

|∇t log f + X |2d A. (6.39)

Since M satisfies the homotopy condition with respect to conformal infinity, Proposi-
tion 2.2 may be applied to show that ∂−

1 M cannot be separated from the asymptotic end
by a 2-sphere. This implies that �t cannot be a 2-sphere. It follows that χ(�t ) ≤ 0 for
all t ≥ 0, and in fact by (6.39) we must have χ(�t ) = 0 in addition to X = −∇t log f .
From (5.10) we then find that (�t , gt ) is a flat torus for all t ≥ 0. Finally, if k = −g

then the arguments in the last paragraph of Sect. 5 show that

g = dt2 + e2t ĝ (6.40)

for some flat metric on T 2. Thus by changing radial coordinates r = et , we find that
(M, g) is isometric to the Kottler time slice ([1,∞) × T 2, b). ⊓⊔
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Proof of Theorem 1.3. This result arises from an updated version of inequality (6.37).
Since the dominant energy condition is not assumed for the first portion of this theorem,
(6.37) should be amended in the terms involving μ and J . To accomplish this, observe
that

(μ + J (ν))|∇u| ≤ (|∇r | + O(1)) (μ + |J |g) ≤ cr
(

μ + |J |g
)

∈ L1(M\M1) (6.41)

for some uniform constant c, where we have used Lemma 6.2. Then by the dominated
convergence theorem

lim inf
j→∞

∫

Mrj

(

μ|∇urj | + J (∇urj)
)

dV =
∫

M

(μ + J (ν)) |∇u|dV . (6.42)

Thus, the portion of (6.37) involving the energy/momentum densities should in this case
be replaced by an integration over all of M . Now for the Hessian term, we may take a
sequence of � that exhaust M to find

E ≥ 1

|T 2|

∫

M

( |∇̄2u|2
|∇u| + 2(μ + J (ν))|∇u|

)

dV

− 2

|T 2|

m
∑

i=2

∫

∂+
i M

θ−|∇u|d A − 2

|T 2|

ℓ
∑

i=1

∫

∂−
i M

θ+|∇u|d A. (6.43)

The hypotheses of the theorem guarantee that the boundary integrals are nonnegative,
and this yields the desired inequality (1.7).

Consider now the case in which k = −g, the dominant energy condition holds, and the
boundary is minimal H = 0 instead of weakly trapped. In this situation, we relabel the
boundary components of M so that all are within the ∂−

i M designation. This changes the
spacetime harmonic function boundary conditions according to (6.4), (6.5), and produces
a version of (6.43) without terms involving ∂+

i M . Since θ+ = H + Tr∂−
i M k = −2 for

i ∈ �1, ℓ+m −1�, and the Hopf lemma ensures that |∇u| = ∂υu > 0 on ∂−
1 M , it follows

that

E ≥ − 2

|T 2|

ℓ+m−1
∑

i=1

∫

∂−
i M

θ+|∇u|d A ≥ C
|∂−

1 M |
|T 2| (6.44)

where C = 4 min∂−
1 M ∂υu > 0. ⊓⊔

7. An Example

In this section we illustrate two of the main theorems with explicit initial data, and in the
process show the necessity of certain hypotheses. More precisely, we construct initial
data (M, g, k) satisfying the hypotheses of Theorem 1.2 or 1.4 minus the assumption
on the structure of k, while additionally exhibiting a vanishing mass aspect function (in
the noncompact case) and vanishing energy and momentum densities μ = |J |g = 0.
It is then shown that, unlike the conclusion of Theorems 1.2 and 1.4, the metric g does
not have a warped product structure, and in a departure from the conclusion of [10,
Theorem 6.1] the initial data arise from a vacuum (with zero cosmological constant)
pp-wave spacetime which is not flat.
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Fix r0 > 1 and Pθ , Pξ > 0, and consider the 4-manifold N = R × [r0,∞) × T 2

equipped with the Lorentzian metric

g̃ = −2(1 − r−3)−1/2dτdr + r−2(1 − r−3)−1dr2 + r2(1 − r−3)dξ2 + r2dθ2. (7.1)

Here τ and r are coordinates on R and [r0,∞) respectively, and ξ and θ are coordinates
on T 2 with periods Pξ and Pθ respectively. Note that N has a boundary {r = r0}. A
calculation shows that (N , g̃) is a vacuum but non-flat spacetime (with zero cosmological
constant). Moreover, consider a function u = u(r) with u(r0) = 0 defined by

du

dr
= (1 − r−3)−1/2. (7.2)

It follows that the spacetime gradient ∇̃u = −∂τ is a null Killing field, so that

g̃(∇̃u, ∇̃u) = 0, ∇̃2u = 0. (7.3)

In particular, (N , g̃) is a pp-wave spacetime.
Let M = {τ = 0} ⊂ N , then the induced metric on M is given by

g = r−2(1 − r−3)−1dr2 + r2(1 − r−3)dξ2 + r2dθ2. (7.4)

Observe that if Pξ = 4π/3, the metric g can be extended smoothly to r = 1, and in this
case (M, g) is called the AdS soliton/Horowitz–Myers geon [16,26]. Because we stay
away from r = 1, we do not include a restriction on Pξ . The unit timelike normal to M

is ñ = −r−1∂τ − r(1 − r−3)1/2∂r , which yields the second fundamental form

k = 1

2
Lñ g̃ = −r−2(1−r−3)−1/2dr2−r2(1−r−3)1/2(1+2−1r−3)dξ2−r2(1−r−3)1/2dθ2

(7.5)
where L denotes Lie differentiation. Since (N , g̃) is vacuum, we have μ = |J |g = 0.
Furthermore, Eq. (7.3) imply that the function u, when restricted to M , satisfies the
vanishing spacetime Hessian property

∇̄2u = ∇2u + |∇u|k = 0. (7.6)

As in (5.9), this shows that each level set �t = {u = t, τ = 0} has vanishing null
expansion χ+ = 0, and therefore M is foliated by MOTS. In addition, the functions cr u

coincide with the spacetime harmonic functions satisfying the boundary value problem
(6.4), for some constants cr → 1 as r → ∞.

Lastly, we show that the mass aspect function of (M, g, k) vanishes. In order to
accomplish this we make a change of radial coordinate, as in [26, (2.23)], in order to
place the metric into a form satisfying the asymptotics (1.2). Namely, define

ρ := 4−1/3r−1
[

1 − (1 − r−3)1/2
]−2/3

. (7.7)

Then in this coordinate the metric has the expansion

g = ρ−2dρ2 + ρ2(1 + 4−1ρ−3)4/3

(
1 − 4−1ρ−3

1 + 4−1ρ−3

)2

dξ2 + ρ2(1 + 4−1ρ−3)4/3dθ2

= ρ−2dρ2 + ρ2 ĝ + ρ−1m + Qg, (7.8)
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where Qg satisfies (1.3) and

ĝ = dξ2 + dθ2, m = −2

3
dξ2 +

1

3
dθ2. (7.9)

In particular, Trĝm = − 1
3
. Furthermore, the second fundamental form has the expansion

k = −ρ−2dρ2 − ρ2 ĝ +

[

2−1ρ−5dρ2 − ρ−1

(
1

3
dξ2 − 1

6
dθ2

)]

+ Q̃k

= −g + ρ−1p + 2−1ρ−5dρ2 + Qk (7.10)

where Qk satisfies (1.3) and

p = −dξ2 +
1

2
dθ2. (7.11)

In particular Trĝp = − 1
2

, and therefore the mass aspect function Trĝ (3m − 2p) = 0.

Note that due to the presence of the term ρ−5dρ2, the extrinsic curvature does not satisfy
(1.2). However, all the results of this manuscript continue to hold under the slightly
weaker asymptotics in which the radial direction decay is amended to kρρ + gρρ =
O(ρ−5), with corresponding fall-off for derivatives.
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