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Existence and uniqueness of stationary

solutions in 5-dimensional

minimal supergravity

Aghil Alaee, Marcus Khuri, and Hari Kunduri

We study the problem of stationary bi-axially symmetric solutions
of the 5-dimensional minimal supergravity equations. Essentially
all possible solutions with nondegenerate horizons are produced,
having the allowed horizon cross-sectional topologies of the sphere
S3, ring S1 × S2, and lens L(p, q), as well as the three different
types of asymptotics. The solutions are smooth apart from possi-
ble conical singularities at the fixed point sets of the axial symme-
try. This analysis also includes the solutions known as solitons in
which horizons are not present but are rather replaced by nontriv-
ial topology called bubbles which are sustained by dipole fluxes.
Uniqueness results are also presented which show that the solutions
are completely determined by their angular momenta, electric and
dipole charges, and rod structure which fixes the topology. Conse-
quently we are able to identify the finite number of parameters that
govern a solution. In addition, a generalization of these results is
given where the spacetime is allowed to have orbifold singularities.
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1. Introduction

A foundational result in mathematical relativity is the proof that the domain
of outer communications of any stationary and axisymmetric asymptotically
flat black hole solution with a connected, non-degenerate horizon of the
Einstein-Maxwell system is isometric to the domain of outer communications
of the three-parameter Kerr-Newman family of solutions [16, Theorem 3.2].
The first step was Hawking’s observation that each horizon cross-section
of a (not necessarily stationary) black hole must have the topology of a
sphere S2 [32]; the exceptional case of a torus T 2 was ruled out in [26]. As
originally shown in [38] under a set of restrictive assumptions, the Reissner-
Nordström family exhausts the set of static black holes in this class . The
result was subsequently strengthened under far weaker conditions [12, 53, 57]
(in particular horizons with multiple components were ruled out). Finally,
it was observed that the Einstein-Maxwell equations reduced on stationary,
axisymmetric solutions are equivalent to a harmonic map from a half plane to
the 4-dimensional complex hyperbolic space SU(2, 1)/S(U(2)× U(1)) [13].
This reduces the classification problem to that of a 2-dimensional elliptic
(singular) boundary value problem. The uniqueness result follows from this,
with existence guaranteed by the explicit construction of the Kerr-Newman
solution [11, 54]. The assumption of axisymmetry can be replaced with that
of analyticity of the solution and there is recent work on removing the latter
assumption [3].

The classification problem for stationary asymptotically flat black hole
solutions in dimensions greater than four is of intrinsic interest, as it is
clear that higher-dimensional general relativity has a number of novel fea-
tures that distinguish it from the standard D = 4 setting [22]. In addition,
string theory, the leading candidate for a theory of quantum gravity, asserts
the existence of more than three spatial dimensions. In phenomenological
models, a subset of these dimensions are ‘compactified’ (i.e. considered very
small) and dynamics in the remaining macroscopic dimensions is governed
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by supergravity theories. These are extensions of general relativity with ad-
ditional scalar fields and both Abelian and non-Abelian gauge fields. Black
holes arise naturally in this context, and indeed a major success of string
theory is a quantum mechanical account of the Bekenstein-Hawking entropy
of a certain class of degenerate (extreme) black holes [59].

The horizon topology theorem has been established in D > 4 by Gal-
loway and Schoen [26, 27]. They prove that a black hole solution satisfying
the dominant energy condition must have a horizon cross-section with pos-
itive Yamabe invariant, that is it admits a metric with positive scalar cur-
vature. In dimensions D = 5 this shows that the possible horizon topologies
are the sphere S3 (or more generally, a space covered by S3, such as lens
spaces L(p, q)), S1 × S2 and connected sums thereof. Explicit asymptotically
flat, stationary bi-axisymeetric supergravity solutions corresponding to S3

(the charged Myers-Perry family [19]), S1 × S2 (charged black rings [20, 21])
and L(p, 1) [46, 61] are known. We note that in the vacuum case, asymp-
totically flat black hole solutions with L(p, q) horizons have been produced
abstractly but they have not yet been shown to be devoid of conical sin-
gularities [41]. Furthermore, any static electrically charged black hole must
belong to the appropriate D > 4 generalization of the 2-parameter Reissner-
Nordström family [29]. Generically it is expected that non-static solutions
will be cohomogeneity-two or higher (the dimension of the orbit space is
greater than 1) making the equations more difficult to analyze systemati-
cally. The explicit solutions above have been constructed either by general-
izing aspects of the Kerr solution (i.e. the ‘Kerr-Schild’ form), inverse scat-
tering techniques associated with integrability of the field equations [23], or
extra geometric constraints satisfied by supersymmetric solutions [28] such
as the existence of Killing spinors. In fact, a classification of stationary bi-
axisymmetric supersymmetric solutions has recently been achieved [9], and
it is known that supersymmetric black holes are not characterized uniquely
by their conserved charges computed at spatial infinity [10, 37]. The mod-
uli space of generic non-supersymmetric solutions is clearly quite rich, and
given that the techniques above are not systematized, it is highly unlikely
that a classification can be achieved with such methods.

A key feature of certain supergravity theories is that upon Kaluza-Klein
reduction they can be recast as a sigma model/harmonic map with a sym-
metric space target manifold. Note that while this property is not satisfied
by the Einstein-Maxwell equations for D = 5 unless additional conditions
are imposed on the metric [35], D = 5 minimal supergravity restricted to
stationary biaxisymmetric solutions is equivalent to a harmonic map with
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8-dimensional target G2(2)/SO(4) [8]. This structure allows one to estab-
lish uniqueness results [5, 6, 60, 62, 63] (generalizing uniqueness theorems
in the vacuum setting [24, 34]), once a given set of geometric invariants is
specified. However, these works do not address the problem of existence and
most of what is known relies on explicitly constructing solutions as discussed
above. More abstract methods of constructing solutions must therefore be
employed. The purpose of this paper is to complete the uniqueness study
and give a general existence theory based on the PDE approach developed
in [39, 41, 42, 66] for the vacuum case. The supergravity setting possesses a
number of new qualitative features, which we describe below.

A gravitational soliton is a nontrivial, globally stationary, geodesically
complete spacetime. Such solutions necessarily do not contain black hole
event horizons. It is a classic result of Lichnerowicz [50] (see also [4] for
a more general result) that the vacuum field equations do not admit any
asymptotically flat gravitational solitons. A similar result holds for the
Einstein-Maxwell system in D = 4. This can be seen more easily in mod-
ern terms by using the positive mass theorem [58, 67]. Let ξ denote the
stationary Killing vector field and Σ be a Cauchy surface. The mass of an
asymptotically flat globally hyperbolic spacetime is given by the Komar in-
tegral

(1.1) m = − (D − 2)

16π(D − 3)

∫

SD−2
∞

⋆dξ =
(−1)D(D − 2)

8π(D − 3)

∫

Σ
⋆Ric(ξ),

where SD−2
∞ indicates a limit on coordinates spheres in the asymptotic end.

The second equality is obtained via Stokes’ theorem, in addition to the fact
ξ is Killing and Σ does not have an inner boundary. In vacuum, the volume
integral vanishes and hence m = 0. We conclude that the spacetime must
be Minkowski space by the rigidity statement of the positive mass theorem.
In Einstein-Maxwell theory, the field strength satisfies

(1.2) dF = 0, d ⋆ F = 0.

By topological censorship [25] the spacetime is simply connected, and hence
if D = 4 there exist globally defined electric and magnetic potentials dψE =
−ιξF , dψM = −ιξ ⋆ F . The Einstein equations then imply that the volume
integrand is exact

(1.3) ⋆Ric(ξ) =
1

4
d (ψE ⋆ F − ψMF) ,
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and we then have m = 0 once again using the fact F → 0 at spatial infinity.
However, ifD > 4 the homology groupHD−3 may be nontrivial. In particular
for D = 5 the spacetime may admit nontrivial 2-cycles. In this case ιξ ⋆ F
need not be exact, and thus the volume integral above is not necessarily zero.
In Einstein-Maxwell theory, one can rule out the existence of static solitons
for all D [47], and no stationary examples are known. Physically, these cycles
may carry magnetic flux and this energy contributes to a nonzero spacetime
mass.

The Maxwell equations of supergravity ((3.2) below) have a nonlinear
source term. One may still construct a closed magnetic D − 3 form as above,
but again nontrivial cycles present an obstruction to the above argument.
Remarkably, there is now a large class of explicit examples of solitons in
supergravity; they are also referred to as ‘smooth geometries’ or ‘fuzzballs’,
see e.g. the review [7]. These solutions have nonzero charge and angular
momenta. Almost all of the known families are supersymmetric (e.g. admit
solutions of the Killing spinor equations) and satisfy the BPS relation m =
|Q| in appropriate units.

The existence of nontrivial topology in the domain of outer communi-
cations also raises the question: do there exist black holes with 2-cycles in
the domain of outer communication? This would present a strong departure
from the familiar four-dimensional case (no-hair theorems), in which black
holes can be characterized by their asymptotic conserved charges. In partic-
ular, quite different black hole spacetimes containing such 2-cycles could not
be distinguished from those without, merely by their mass m, electric charge
Q, and angular momenta Ji. Recently, an explicit example of an asymptot-
ically flat supersymmetric black hole with S3 horizon and a 2-cycle in the
exterior was found [45]. This construction was also generalized in the anal-
ysis of supersymmetric solutions in [10]. The solution can be interpreted
physically as an equilibrium configuration of a black hole and soliton [37].
No non-supersymmetric examples are known, although one would expect
such solutions to exist at least for a restricted region of the moduli space of
solutions. Furthermore, it has been shown that the familiar first law of black
hole mechanics must be modified with new nonlinear contributions from soli-
tons in the exterior region [44]. In the present article, we will construct the
first non-supersymmetric solutions of this type.

2. Statement of main results

We first recall basic notions associated with stationary bi-axisymmetric
spacetimes. The group of isometries of the spacetime (M5,g,F) admits an
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Abelian subgroup R× U(1)× U(1), the generators of which necessarily com-
mute with each other (if there are additional matter fields, such as a Maxwell
field, these fields are assumed to be invariant under these symmetries as
well). The set of points where a closed-orbit Killing field degenerates is an
axis, which appears as an interval or rod on the z-axis in the 2-dimensional
orbit space M5/[U(1)2 × R] [33] or in the domain R

3 of the harmonic map
[41]. Each axis rod Γl comes equipped with a pair of mutually prime integers
vl = (v1l , v

2
l ), referred to as the rod structure, which indicates the particular

linear combination of rotational Killing fields that vanishes on this rod. The
entire z-axis is decomposed into axis rods and horizon rods, the latter having
rod structure (0, 0). End points of horizon rods are called poles, and points
separating two axis rods are called corners where both U(1) generators van-
ish. The collection of rod structures completely determines the topology of
the domain of outer communications, as well as that of the horizons. We
will seek to produce solutions with a prescribed rod structure, and hence a
prescribed topology. An admissibility condition is required to prevent orb-
ifold singularities at a corner associated with a given rod structure [33]. This
states that the determinant (5.3) formed by the 2× 2 matrix of neighboring
rod structures at a corner is ±1. Moreover, for technical reasons tied to the
construction of the harmonic map, when three consecutive axis rods Γl−1,
Γl, and Γl+1 are present an additional compatibility condition is needed. If
the admissibility condition determinant is +1, which may be assumed with-
out loss of generality, the compatibility condition asserts that v1l−1v

1
l+1 ≤ 0.

A generalized compatibility condition (5.5) is utilized in the case that orb-
ifold singularities are present. It should be pointed out that these conditions
do not restrict the possible horizon topologies that can be produced with
our approach, which includes all prime 3-manifolds with positive Yamabe
invariant.

A rod data set consists of the collection of rods, and rod structures vl,
together with a prescription of four constants al ∈ R

2 and bl, cl ∈ R on each
axis rod Γl. The values of al and bl do not change between rods that share
a corner. Thus, these constants may only experience jumps across a horizon
rod, and the difference between these constants on each side of a horizon
rod determines the angular momenta Ji, i = 1, 2 and electric charge Q of
the horizon component, see Section 5. The constants cl may change across a
corner, and their value fixes the dipole charges Dl of the 2-cycle associated
with an axis rod bounded by two corners. The collection of such constants
may be interpreted as axis boundary data for the potentials used to con-
struct the harmonic map φ : R3 \ Γ → G2(2)/SO(4), and the rod structures
uniquely determine its prescribed singularities; here Γ is the union of all
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axis rods. The notion of prescribed singularities in this context refers to the
prescribed nature of the blow-up of the harmonic map at axis rods, which
is enforced by requiring the solutions to be asymptotic to a ‘model map’
that encodes the rod structures. It is important to point out that a primary
difference with the vacuum setting [41] is that the potential constants here
do not agree with the restriction of the potentials to the axes, but rather
agree with a nonlinear combination of the potentials on the axes. It is this
crucial observation that underlies the difficulty in the minimal supergravity
case, and guides the results of this paper. A rod data set having poten-
tial constants as described and satisfying the admissibility condition will be
referred to as admissible.

We will refer to an asymptotically flat stationary vacuum spacetime as
well-behaved if the stationary Killing field has complete orbits, and the do-
main of outer communications is globally hyperbolic with an acausal space-
like connected (Cauchy) hypersurface that is asymptotic to the canonical
slice in the asymptotic end, and is such that the boundary (if nonempty) is
a compact cross section of the horizon. These conditions are utilized in the
dimensional reduction argument and are consistent with those of [16]. Fur-
thermore, we will only treat non-degenerate horizons. The non-degeneracy
condition refers to the requirement that the (Killing) horizon surface grav-
ity is nonzero, which in the current setting is equivalent to the horizon rod
having nonzero length [33].

When constructing the spacetime from a given harmonic map the issue
of conical singularities along the axis rods arises. Along each axis rod Γl the
angle deficit, consisting of the limiting ratio between 2π times the radius
from Γl to the orbit of the Killing field degenerating on this rod and the
length of the orbit, may be different from 1. This conical singularity may
be thought of as a ‘strut’ along the axis holding the system in a stationary
configuration. In order for a solution to be considered physically relevant, we
require the absence of conical singularities along each axis rod. This entails
balancing the various parameters which define the solution.

Theorem 2.1.

(i) A well-behaved stationary bi-axially symmetric asymptotically flat so-
lution of the 5D minimal supergravity equations without degenerate
horizons yields a harmonic map φ : R3 \ Γ → G2(2)/SO(4) having axis
singularities consistent with an admissible rod data set, and is free of
conical singularities.



1286 A. Alaee, M. Khuri, and H. Kunduri

(ii) Conversely, given a rod data set satisfying the admissibility and com-
patibility conditions, there exists a unique harmonic map φ : R3 \ Γ →
G2(2)/SO(4) having the prescribed singularities and potential values on
Γ associated with the rod data.

(iii) Given φ as in (ii), a well-behaved stationary bi-axially symmetric
asymptotically flat solution of the 5D minimal supergravity equations
without degenerate horizons can be constructed.

Remark 2.2. These results may be extended to the setting of spacetimes
which are asymptotically Kaluza-Klein (AKK) and asymptotical locally Eu-
clidean (ALE), as was done in the vacuum case [42]. The topology of the
domain of outer communication is classified in [40].

The reduction to a harmonic map problem in (i) is known (see e.g. [8]),
although here we provide a simplified proof tailored to the existence prob-
lem. The uniqueness result of this theorem is stated for the harmonic map,
and while this is an important component of the uniqueness argument for
minimal supergravity solutions it is not sufficient on its own to yield this
desired conclusion. Corollaries 2.3 and 2.4 below will address the spacetime
uniqueness question, and will identify the parameters needed for a classifi-
cation. The existence result in (ii) generalizes that of [41] in the 5D vacuum
case. A primary difference with the vacuum theory is that here the potentials
are nonconstant along the axes, which results from the inclusion of dipole
charge and electric charge. This implies that the construction of an approxi-
mate solution, one of the main steps in the proof of existence, is much more
elaborate. In addition, it is not obvious in the supergravity setting how the
prescription of charges leads to knowledge of the potential constants that
determine the rod data set. This leads to complications with the uniqueness
question, and is one of the reasons such questions have remained open.

The supergravity solutions produced in (iii) may possess conical singu-
larities. It is conjectured that this is the only obstruction to regularity of
the spacetime arising from the harmonic map. In fact, there are two pos-
sible regularity issues that should be addressed, namely, the questions of
geometric regularity and analytic regularity. Geometric regularity concerns
the ability to smoothly extend the spacetime metric across the orbit space
rods, and is directly related to the potential presence of conical singular-
ities. On the other hand, analytic regularity concerns the differentiability
properties of the harmonic map up to the orbit space boundary after the
singular part of the map has been removed. Although solutions to singular
harmonic map problems into nonpositively curved targets, such as the one
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studied here, are expected to be analytically regular, we will not address this
topic here. It should be noted that analytic regularity has only relatively re-
cently been established for the Einstein-Maxwell equations in the classical
4D setting by Nguyen [55], for the interior of axis rods; in the same setting,
analytic regularity at the poles has apparently not yet been addressed. On
the other hand, the 4D vacuum case was treated independently by Li-Tian
[48, 49] and Weinstein [64]. In Appendix A we will show that, assuming a
minimal amount of analytic regularity for the harmonic maps constructed
above, the question of geometric regularity is resolved precisely when the
axes are devoid of conical singularities.

In the unbalanced case where conical singularities have not been re-
solved, we may count the number of parameters on which the solution de-
pends. Suppose that the topology is fixed, that is, the rod structures have
been chosen. Let n denote the number of axis rods, and m denote the num-
ber of horizon rods. For each finite rod its length counts as one parame-
ter, and thus there are (n− 2) +m total length parameters. Each horizon
component has an electric charge and two angular momenta, which yields
3m parameters. Furthermore, it will be shown that we may prescribe n− 2
dipole charges, and therefore all together the solutions produced are deter-
mined by 2(n− 2) + 4m parameters. It is expected that one parameter will
be needed to alleviate the conical singularity on each finite axis rod, while
the two semi-infinite rods are automatically free of such singularities [42]; it
should be noted that [42] details a proof for the vacuum case, however, the
argument carries over with mild modifications to the current setting. Hence,
a balanced solution should be determined by n− 2 + 4m parameters. In par-
ticular, solitons (which by definition do not have horizons) are determined
by n− 2 parameters corresponding to the dipole charge of each finite rod.
Note that such finite rods represent nontrivial 2-cycles in the spacetime and
are referred to as ‘bubbles’. These solutions do not appear in the vacuum
setting, and are of independent interest. Theorem 2.1 implies the following
result.

Corollary 2.3. Associated with each soliton solution is a set of n rod struc-
tures satisfying the admissibility condition, and n− 2 dipole charges. Con-
versely, given an admissible set of n axis rod structures satisfying the com-
patibility condition, and n− 2 dipole charges, there exists a unique soliton
(possibly with conical singularities on the axes) realizing this data.

The question of whether the solitons produced by this corollary can be
balanced to cure all conical singularities, remains open. On the other hand,
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the result states that regardless of whether the solitons are balanced or not,
they are uniquely determined by their dipole charges and rod structure.

For solitons the total angular momenta Ji and electric charge Q are
functions of the dipole charges, and therefore the solution may be interpreted
as being supported from these fluxes alone. It should also be pointed out
that alternate definitions of these charges Ji, Q are used in the literature, see
for example [30]. In Section 5 we show how the two definitions are related.

In the general case when horizons are present, Theorem 2.1 can be used
to obtain solutions with prescribed angular momenta and electric charge of
each horizon component, as well as prescribed dipole charges for bubbles. In
particular, the next result translates the rod data sets of Theorem 2.1 into
the language of physical charges.

Corollary 2.4. Associated with each well-behaved stationary bi-axisym-
metric solution is a set of n axis rod structures, m horizon rod structures
satisfying the admissibility condition, 2m angular momenta Ji, m electric
charges Q, and n− 2 dipole charges Dl. Conversely, given an admissible set
of n axis and m horizon rod structures satisfying the compatibility condi-
tion, along with 2m angular momenta, m electric charges, and n− 2 dipole
charges, there exists a unique well-behaved solution (possibly with conical
singularities on the axes) of the 5D minimal supergravity equations realizing
this data.

While there are more than n− 2 dipole charges that one may compute
from a sequence of n+m rod structures, the proof of this corollary gives an
algorithm for identifying those n− 2 dipole charges which may be used to
uniquely determine the solution. These solutions, again, may have conical
singularities on the axes unless n− 2 of the parameters are balanced or
chosen appropriately.

The uniqueness of solutions of minimal supergravity was previously con-
sidered for particular rod structures [60, 62, 63] corresponding to black hole
solutions having trivial topology in the domain of outer communication.
More recently, the case of general rod structures was studied in [5, 6] using
a Mazur identity appropriate in this setting. In particular, in [5] it was shown
that for a spacetime containing a single non-extreme black hole, uniqueness
may be obtained by fixing the rod structure, mass, angular momenta, elec-
tric charge, and magnetic flux on each spatial rod. The case of multiple
black holes is also considered and arguments supporting a uniqueness re-
sult are given under certain special hypotheses. In addition, these results
require knowledge of a higher number of parameters than is necessary to
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uniquely determine a solution. In contrast, our approach identifies the min-
imal number of parameters that are needed to uniquely specify a solution,
and furthermore shows that for each admissible choice of this set of param-
eters there is a corresponding solution.

The results above may be generalized by omitting the admissibility con-
dition, in which case the generalized compatibility condition (5.5) should be
imposed. This extra technical condition arises from the particular approach
used here to construct the harmonic map. It is not known whether this con-
dition is necessary for existence. When the admissibility condition does not
hold, the resulting spacetime will have orbifold singularities associated with
the corners. This means that neighborhoods of such points in a time slice
are foliated by lens spaces instead of spheres.

Theorem 2.5. Given a rod data set respecting the generalized compatibil-
ity condition, there exists a unique harmonic map φ : R3 \ Γ → G2(2)/SO(4)
having the prescribed singularities and potential values on Γ associated with
the rod data. This map produces a well-behaved stationary bi-axially sym-
metric solution of the 5D minimal supergravity equations without degenerate
horizons.

The organization of this paper is as follows. In Sections 3 and 4 di-
mensional reduction is carried out to the 2D orbit space, and the harmonic
map problem is defined. Section 5 is dedicated to a description and relation
between the various charges associated with stationary bi-axisymmetric min-
imal supergravity. An approximate solution to the singular harmonic map
problem is constructed in Section 6, and the full existence/uniqueness is
carried out together with the proofs of our main results in Sections 7 and 8.
Lastly, two appendices are included to address the relationship between
conical singularities and geometric regularity, and to compute the Mazur
quantity.

3. Minimal supergravity and reduction to a 3D wave map

3.1. Field equations

We will consider five dimensional spacetimes (M5,g,F) where M5 is a
smooth, orientable manifold equipped with a Lorentzian metric g having
signature (−,+,+,+,+) and F is a closed 2-form describing the Maxwell
field. A solution (M5,g,F) of D = 5 minimal supergravity is a critical point
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of the following action functional

(3.1) S =

∫

M5

R ⋆ 1− 1

2
F ∧ ⋆F − 1

3
√
3
F ∧ F ∧ A,

where R is scalar curvature, ⋆ is the Hodge dual operator associated to g,
and A is a local 1-form gauge potential F = dA. In general H2(M

5) ̸= 0 so
A need not be globally defined. This theory automatically includes vacuum
general relativity when F ≡ 0. The spacetime field equations derived from
this functional are

Rab =
1

2
FacF c

b − 1

12
|F|2ggab,

d ⋆ F +
1√
3
F ∧ F = 0.

(3.2)

Unlike the more familiar pure Einstein-Maxwell system, d ⋆ F ̸= 0. In what
follows dimensional reduction of the minimal supergravity equations will be
carried out, leading to a sigma model or harmonic map system. Although
such a reduction has previously been given in the literature, the methods of
our existence and uniqueness result require a particular formulation which
we now describe. Moreover, simplified proofs of some known identities are
also given.

3.2. Bi-axisymmetric spacetimes

Suppose that the spacetime (M5,g) admits an action of U(1)× U(1) ≡
U(1)2 by isometries. Denote the generators of this action by η(i), i = 1, 2
and their positive semidefinite matrix of inner products by fij = g(η(i), η(j))
with f = det fij . The η(i) are Killing vector fields, that is Lη(i)g = 0, they
commute with each other Lη(i)η(j) = 0, and the conserved angular momenta
associated with this symmetry may be encoded in the twist 1-forms

(3.3) Θi = ⋆
(

η(1) ∧ η(2) ∧ dη(i)
)

.

Geometrically these forms measure the integrability of the 3-plane distri-
bution orthogonal to the U(1)2 action. We will denote the natural inner
product on forms by (·, ·), the interior product operator by ι, and the wave
operator acting on functions by □g = ∇2

g = − ⋆ d ⋆ d.
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Proposition 3.1. The following identities for the twist 1-forms and fiber
metric hold:

dΘi = −2ιη(1)ιη(2) ⋆ Ric(η(i)),(3.4)

⋆d ⋆
(

f−1f ijΘi

)

= 0,(3.5)

□gfij = f lm(dfli, dfmj)− f−1(Θi,Θj)− 2Ric(η(i), η(j)).(3.6)

Proof. The first equation (3.4) arises from the identity ⋆d ⋆ dK = −2Ric(K)
for Killing fields K, Cartan’s formula, as well as the identities1

(3.7) ιX ⋆ α = (−1)p ⋆ (X ∧ α), ιXα = (−1)p ⋆ (X ∧ ⋆α),

for p-forms α and vector fields X where without ambiguity the dual 1-form
toX is denoted by the same notation. Next, observe that a direct calculation
gives the exterior derivative of the dual 1-forms to the Killing field generators

(3.8) dη(i) = −f−1 ⋆ (η(1) ∧ η(2) ∧Θi) + fkjdfji ∧ η(k).

This may be rewritten as

(3.9) d[fmiη(i)] = − ⋆ (η(1) ∧ η(2) ∧ µm)

where µi = f−1f ijΘj , and therefore with the help of Cartan’s formula

(3.10)
0 = d ⋆ (η(1) ∧ η(2) ∧ µm) = −ιη(1)d ⋆ (η(2) ∧ µm)

= − ⋆ (η(1) ∧ ⋆d ⋆ (η(2) ∧ µm)).

Consider now the following identity, which holds for an arbitrary Killing
field K and applies to p-forms

(3.11) LKα = (−1)p(K ∧ ⋆d ⋆ α) + (−1)p+1 ⋆ d ⋆ (K ∧ α).

Using this together with (3.10) and the fact that Lη(2)µm = 0 produces

(3.12) (η(1) ∧ η(2)) ⋆ d ⋆ µm = η(1) ∧ ⋆d ⋆ (η(2) ∧ µm) = 0.

Since η1 ∧ η2 ̸= 0 we conclude

(3.13) ⋆d ⋆
(

f−1f ijΘj

)

= 0,

or equivalently that µm has vanishing spacetime divergence. This establishes,
independently of any field equations, formula (3.5).

1See [1, Appendix D] for our conventions for forms and relevant formulas.
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Lastly, taking the inner product of (3.8) with itself yields

(3.14) (dη(i), dη(j)) = fml(dfmi, dflj)− f−1(Θi,Θj).

Moreover since

(3.15) dfij = d
[

iη(i)η(j)
]

= − ⋆ (η(i) ∧ ⋆dη(j)),

we obtain

(3.16)
d ⋆ dfij = dη(i) ∧ ⋆dη(j) − η(i) ∧ d ⋆ dη(j)

=
(

(dη(i), dη(j)) + (η(i), ⋆d ⋆ η(j))
)

ϵ

where ϵ is the spacetime volume form. Therefore

□gfij = (dη(i), dη(j))− 2Ric(η(i), η(j))

= fml(dfmi, dflj)− f−1(Θi,Θj)− 2Ric(η(i), η(j)),
(3.17)

which establishes (3.6). □

In order to elucidate the wave map structure underlying the field equations,
we must reduce the analysis to the 3-dimensional Lorentzian orbit space
M̂3 =M5/U(1)2. Since this Kaluza-Klein decomposition procedure is well
understood [51], only the main features will be mentioned. The spacetime
metric may be decomposed as

(3.18) gab = f−1hab + f ijη(i)aη(j)b = f−1hab +ΦTa F
−1Φb,

where f−1hab is the orbit space metric, Φ = (η(1), η(2))
T , and F = (fij). Next

let

(3.19) hab = δab − f ijηa(i)η(j)b

be the projection tensor onto M̂3, then a detailed computation reveals the
relation between the Ricci tensors of the spacetime and orbit space. Namely,
if Ω = (Θ1,Θ2)

T then

Ric(h)ac =
[

hbah
d
c + f−1hac(Φ

T )bF−1Φd
]

Ric(g)bd +
1

2f
ΩTa F

−1Ωc

+
1

4
Tr
(

F−1∂aFF
−1∂cF

)

+
∂af∂cf

4f2
.

(3.20)
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Furthermore the differential identities of Proposition 3.1 may be rewritten
as

∇̂aΩb − ∇̂bΩa = 2Ric(g)cdΦ
dηm(1)η

l
(2)ϵabcml,

divh
(

f−1F−1Ω
)

= hab∇̂a

(

f−1F−1Ωb
)

= 0,

□hF = hab∇̂aF
(

F−1∂bF
)

− f−1habΩaΩ
T
b

− 2f−1Ric(g)adΦ
a(ΦT )d,

(3.21)

where ∇̂ is the connection associated to h.

3.3. The potentials

The wave map of minimal supergravity is constructed in part from five
potentials [8, 43]. In particular two twist potentials ζ1, ζ2 encode angular
momentum, two magnetic potentials ψ1, ψ2 encode the dipole charges, and
one electric potential χ is associated with the electric charge. The global
definition of these potentials is guaranteed as the orbit space M̂3 is simply
connected [33]. Observe first that Cartan’s formula and the fact that dF = 0
imply the existence of magnetic potentials

(3.22) dψi = ιη(i)F .

It is straightforward to show that

(3.23) Lη(i)ψj = ιη(i)ιη(j)F = 0,

so that the magnetic potentials are functions defined on the orbit space.
Consider now the 1-form

(3.24) Υ = −ιη(1)ιη(2) ⋆ F .

As a consequence of the Maxwell equation in (3.2) we have

(3.25) dΥ =
1√
3
d (ψ1dψ2 − ψ2dψ1) ,

which yields existence of an electric potential satisfying

(3.26) dχ = Υ− 1√
3
(ψ1dψ2 − ψ2dψ1) .
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Next, recall that in pure vacuum the twist 1-forms Θi are closed. In the
supergravity setting this is no longer case since the Ricci tensor is nonva-
nishing. Using the field equations (3.2), a detailed calculation [43] shows
that

(3.27) dΘi = −Υ ∧ ιη(i)F = d

[

ψi

(

dχ+
1

3
√
3
(ψ1dψ2 − ψ2dψ1)

)]

.

It follows that there exist twist potentials which obey

(3.28) dζi = Θi − ψi

[

dχ+
1

3
√
3
(ψ1dψ2 − ψ2dψ1)

]

,

and it is routine to show that ζi as well as χ are functions on the orbit
space. Finally, note that the Maxwell field can be reconstructed from the
fields (fij , ζi, χ, ψi) with the identity

(3.29) F = f−1 ⋆ (η(2) ∧ η(1) ∧Υ) + f ijη(i) ∧ dψj .

Proposition 3.2. The supergravity field equations (3.2) for U(1)2-invariant
solutions (g,F) are equivalent to the following system:

Ric(h)ab =
1

4
Tr
(

F−1∂aFF
−1∂bF

)

+
∂af∂bf

4f2

+
ΥaΥb

2f
+
f ij

2
∂aψi∂bψj +

1

2f
f ijΘiaΘjb,

(3.30)

(3.31)
□hfij = fkl(dfik, dfjl)h − f−1(Θi,Θj)h − (dψi, dψj)h

+
1

3
fij

(

fkl(dψk, dψl)h − f−1(Υ,Υ)h

)

,

where (·, ·)h denotes the inner product on forms with respect to the metric h
and

(3.32) divh
(

f−1f ijΘj

)

= 0,

(3.33)

divh(f
ijdψj) = (Υ, f−1f ijΘj)h

− 2√
3f

[

δi2(Υ, dψ1)h − δi1(Υ, dψ2)h
]

,

(3.34) divh
(

f−1Υ
)

= −(dψi, f
−1f ijΘj)h.
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Proof. To obtain (3.30) one performs a long computation using the expres-
sion for the Maxwell field (3.29) to evaluate the spacetime Ricci tensor, and
then substitutes the result into (3.20). The field equation (3.31) is similarly
obtained using (3.21), and Proposition 3.1 gives (3.32) directly. To derive
(3.33), use (3.7) to find

(3.35)
⋆d ⋆ (f ijdψj) = ⋆d ⋆ f ij ⋆ (η(j) ∧ ⋆F)

= ⋆
(

f ijη(j) ∧ d ⋆ F − d(f ijη(j)) ∧ ⋆F
)

.

Now employ the identity (3.8) and the Maxwell equation (3.2) on the first
and second terms respectively, as well as (3.29), to obtain the desired equa-
tion. With the help of Υ = f ⋆ (f1iη(i) ∧ f2jη(j) ∧ F), a similar computation
leads to (3.34). □

The equations of Proposition 3.2 arise as critical points of a 3-dimensional
theory of gravity on (M̂3, h) coupled to a wave map [8, 56] (that is, a har-
monic map defined on a manifold with Lorentzian signature) having non-
compact symmetric space target manifold G2(2)/SO(4) and governed by the
action

(3.36) S[h,X] =

∫

M̂3

(

Rh − 2hµνGAB∂µX
A∂νX

B
)

dVol(h)

where Rh is the scalar curvature of h, and X = (fij , ζi, χ, ψi) are the set of
coordinates on the target manifold with metric

8GABdX
AdXB = (d log f)2 +Tr(F−1dF )2 + 2f−1f ijΘiΘj

+ 2f−1Υ2 + 2f ijdψidψj .
(3.37)

The Euler-Lagrange equations of (3.36) are given by

Ric(h)µν =
1

8
Tr(Ψ−1∂µΨΨ−1∂νΨ) = 2GAB∂µX

A∂νX
B,

∇̂µ(Ψ−1∂µΨ) = 0.
(3.38)

An explicit expression for the positive definite unimodular coset representa-
tive Ψ may be found in [43].

3.4. Construction of the solution from potentials

Given a solution (h, fij , ζi, χ, ψi) of the reduced supergravity equations, one
may reconstruct the full spacetime solution (g,F). To see this introduce local
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coordinates xµ on the orbit space (M̂3, h), and 2π-periodic coordinates ϕi

adapted to the Killing vectors so that η(i) = ∂φi . The dual 1-forms g(η(i), ·)
to the Killing fields are then given by fij(dϕ

j +Aj), where Aj = Ajµdxµ are
1-forms on the orbit space. The spacetime metric then takes on the following
expression

(3.39) g = f−1hµνdx
µ ⊗ dxν + fij(dϕ

i +Ai)⊗ (dϕj +Aj).

A simple calculation shows that the Aj are determined by the twist 1-forms
via

(3.40) dAi = − ⋆h
(

f−1f ijΘj

)

,

where ⋆h denotes the Hodge dual with respect to the metric on the orbit
space. Observe that integrability of this equation is guaranteed by the second
equation of (3.21).

To construct the Maxwell field, first note that Υ is a 1-form defined on
the base space, that is it may be expressed as Υ = Υµdx

µ. We may then
compute

(3.41) ⋆(η(2) ∧ η(1) ∧Υ) = −f−1 ⋆h Υ.

Furthermore

(3.42)
f ijη(i) ∧ dψj = dϕi ∧ dψi +Aj ∧ dψj

= −d
[

ψj(dϕ
j +Aj)

]

+ ψjdA
j .

It now follows from (3.29) that

(3.43)
F = f−2 ⋆h

[

fψjf
jkΘk −

(

dχ+
1√
3
(ψ1dψ2 − ψ2dψ1)

)]

− d
[

ψj(dϕ
j +Aj)

]

,

thus completing the construction of the spacetime solution.

4. Reduction to 2D

In this section we will assume that in addition to being bi-axisymmetric the
spacetime is also stationary, that is the group of isometries is U(1)2 × R.
Thus, along with the rotational Killing field generators η(i) there is another
Killing field ξ which asymptotically coincides with the generator of time
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translations at spatial infinity and which commutes with η(i); we have Lξg =
0 and LξF = 0. Scalar potentials associated to the Maxwell field may be
introduced with the help of this new Killing field. These will again be globally
defined due to simple connectedness [34] of the 2-dimensional orbit space
M̂2 =M5/[U(1)2 × R]. In particular there is an ‘electric’ potential satisfying

(4.1) dE0 = ιξF .

Furthermore the following 2-form is closed

(4.2) Ξ ≡ 1

2
ιξ ⋆ F − 1√

3
E0F ,

which implies the existence of two more potentials

(4.3) dEi = ιη(i)Ξ =
1

2
ιη(i)ιξ ⋆ F − 1√

3
E0dψi, i = 1, 2.

The 2-plane distribution orthogonal to the three symmetry generators
is integrable by Frobenius’ theorem. This requires

(4.4) ⋆(ξ ∧ η(1) ∧ η(2) ∧ dKI) = 0

for each I = 0, 1, 2, where the KI are used to denote the three Killing fields
and their duals. To see that this holds for I = 1, 2 observe that

(4.5) ⋆(ξ ∧ η(1) ∧ η(2) ∧ dη(i)) = ιξΘi = 0,

where we have used (3.28) and the fact that all scalar potentials are invariant
under ξ. For example, note that

(4.6) dιξdψi = d(ιξιη(i)F) = 0

as dF = 0, and so ιξdψi is constant. If we choose η(i) to be one of the
generators of an axis of symmetry at spatial infinity then this constant must
vanish, and therefore ιξdψi = 0. Analogous arguments show that the other
scalar potentials are also invariant under ξ. Consider now the case when
I = 0 and compute

(4.7) d ⋆ (ξ ∧ η(1) ∧ η(2) ∧ dξ) = 2ιξιη(1)ιη(2) ⋆ Ric(g)(ξ).

Furthermore from the field equations it can be shown that

(4.8) ⋆Ric(g)(ξ) = −1

3
Ξ ∧ F +

1

3
d (E0 ⋆ F) ,
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and expressing this in terms of the various potentials implies that (4.7)
vanishes. Thus ⋆(ξ ∧ η(1) ∧ η(2) ∧ dξ) is a constant, which must vanish since
at least two linear combinations of the η(i) vanish along the symmetry axes
at spatial infinity. Hence Frobenius’ theorem applies.

Introduce now a time coordinate t such that ξ = ∂t. The orthogonal
transitivity of the isometry group allows for the following expression of the
spacetime metric

(4.9) g = f−1g2 − f−1ρ2dt2 + fij(dϕ
i + ωidt)(dϕj + ωjdt),

so that h = g2 − ρ2dt2 and Ai = ωidt in (3.39). Here g2 is the M̂
2 orbit space

metric induced by h, and ρ =
√− det q where qIJ = g(KI ,KJ) is the fibre

metric obtained by restricting g to the Killing fields, that is

(4.10) q = −f−1ρ2dt2 + fij(dϕ
i + ωidt)(dϕj + ωjdt).

It is proved in [14, Theorem 5.1] that det q < 0 in the domain of outer
communications. This simplified expression for h yields

(4.11) Ric(h)tt = ρ∆2ρ, Ric(h)ab = Ric(g2)ab −
1

ρ
DaDbρ,

where ∆2, Da are the Laplacian and covariant derivative associated with g2.
From (3.30) and the fact that all quantities are independent of t, it follows
that ∆2ρ = 0 so that as in the vacuum case ρ is harmonic with respect
to g2. From this it can be shown [15, §6] that ρ has no critical points in
the orbit space M̂2. We may then define the harmonic conjugate function
z up to a constant by dz = ⋆2dρ. The functions (ρ, z) form a global set of
coordinates on the orbit space which is homeomorphic to the right-half plane
{(ρ, z) | ρ > 0}. These coordinates are also naturally isothermal so that there
is a function σ defined on the orbit space such that

(4.12) g2 = e2σ(dρ2 + dz2).

Concerning the Maxwell field, it also simplifies considerably in Weyl-
Papapetrou coordinates. According to (3.40) we have

(4.13) dωi = ρf−1f ik ⋆2 Θk,
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and therefore (3.43) becomes

F = dt ∧
[

dE0 − d(ψjω
j)
]

− d
[

ψj(dϕ
j + ωjdt)

]

= −d
[

(E0 − ψjω
j)dt+ ψj(dϕ

j + ωjdt)
]

= −d
[

E0dt+ ψjdϕ
j
]

(4.14)

with the help of

(4.15) dE0 = −ρf−2 ⋆2

[

dχ+
1√
3
(ψ1dψ2 − ψ2dψ1)

]

+ ψjdω
j + d(ψjω

j).

In addition it should be pointed out that a useful advantage of these coor-
dinates is that the h-Laplacian of any function u defined on the orbit space
becomes

(4.16) ∆hu =
1√
deth

∂a(
√
dethhab∂bu) = e−2σ∆u,

where ∆ is the Laplacian for an auxiliary Euclidean 3-space in which the
flat metric is written in cylindrical coordinates

(4.17) δ = dρ2 + dz2 + ρ2dϕ2.

Here ϕ is an auxiliary azimuthal angle on which no quantity depends. There-
fore, in the harmonic map system described below it is this flat Laplacian
that appears.

It will now be shown that the only content of the 3D Einstein equations
of the system (3.38) is to determine σ via quadrature. Observe that

(4.18) Ric(h)ab = −δab∆2σ − ρ−1DaDbρ,

and therefore

(4.19)

Ric(h)ρρ = −∆2σ + ρ−1∂ρσ,

Ric(h)ρz = ρ−1∂zσ,

Ric(h)zz = −∆2σ − ρ−1∂ρσ.

It now follows from (3.38) that

ρ−1∂zσ = 2GAB∂ρX
A∂zX

B,

ρ−1∂ρσ = GAB∂ρX
A∂ρX

B −GAB∂zX
A∂zX

B.
(4.20)

These first order equations for σ are integrable as a result of the harmonic
map equations. To see this note that the harmonic map equations arise from
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the action

(4.21) SX =

∫

R3

GABdX
A ∧ ⋆δdXB,

so that the associated divergence free stress-energy tensor is given by

(4.22) Tij = GAB∂iX
A∂jX

B − 1

2
δij |dX|2G.

The equations (4.20) may now be rewritten as

(4.23) ∂ρσ = 2ρTρρ = −2ρTzz, ∂zσ = 2ρTρz.

Next compute

(4.24) ι∂φ ⋆δ ι∂zT = ρTzzdρ− ρTρzdz = −ρTρρdρ− ρTρzdz = −1

2
dσ.

We then have that the integrability of (4.20) follows from

(4.25)
d
(

ι∂φ ⋆δ ι∂zT
)

= [∂z(ρTzz) + ∂ρ(ρTρz)]dρ ∧ dz
= ρ(div T )(∂z)dρ ∧ dz = 0,

where div is the divergence with respect to δ.
In summary, given data (fij , ζi, χ, ψi) forming the coset representative

Ψ satisfying the harmonic map equations

(4.26) div(Ψ−1∇Ψ) = 0 ⇔ δab∂a(ρΨ
−1∂bΨ) = 0,

a spacetime metric g and Maxwell field F may be constrcuted yielding a
full solution of (3.38). Hence, the stationary bi-axisymmetric supergravity
equations reduce to the study of a singular harmonic map problem from R

3 \
Γ → G2(2)/SO(4), where Γ represents the axes of rotation in the auxiliary
orbit space R

3 where Ψ blows-up.

5. Angular momentum and charges

As described in the previous section a well-behaved stationary bi-axisym-
metric solution of the minimal supergravity equations admits a global system
of Weyl-Papapetrou coordinates in its domain of outer communication M5,
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so that the metric and Maxwell field are expressed by

(5.1)
g = f−1e2σ(dρ2 + dz2)− f−1ρ2dt2 + fij(dϕ

i + ωidt)(dϕj + ωjdt),

F = −d
[

E0dt+ ψjdϕ
j
]

.

The 2-dimensional orbit space M̂2 =M5/[U(1)2 × R] is homeomorphic to
the right-half plane {(ρ, z) | ρ > 0}, and its boundary ρ = 0 encodes all non-
trivial topology of the spacetime [33, Theorem 9]. This may be described by
the rod data on the z-axis that indicates which 1-cycles in the 2-torus fibers
vanish [34]. In particular the z-axis is broken into L+ 1 intervals called rods

(5.2) Γ1 = [z1,∞), Γ2 = [z2, z1], . . . , ΓL = [zL, zL−1], ΓL+1 = (−∞, zL],

on which either F = (fij) is full rank and the interval is referred to as a
horizon rod, or it fails to be of full rank and the interval is referred to as
an axis rod. In the case of an axis rod Γl, the kernel of F is 1-dimensional
and there is a pair of relatively prime integers (v1l , v

2
l ) such that the Killing

field vil∂φi vanishes on Γl [34, Prop. 1]. The pair (v1l , v
2
l ) is called the rod

structure of the rod Γl, and (0, 0) is reserved for the rod structure of a
horizon rod. The possible horizon topologies in this setting are the sphere
S3, ring S1 × S2, and lens space L(p, q) = S3/Zp. These topologies may be
obtained from a horizon rod which is bounded by two axis rods having the
rod structures {(1, 0), (0, 1)}, {(1, 0), (1, 0)}, and {(1, 0), (q, p)} respectively.
Similarly, if at infinity the two semi-infinite rods possess these pair of rod
structures then the resulting spacetime is asymptotically flat (AF), asymp-
totically Kaluza-Klein (AKK), and asymptotically locally Euclidean (ALE)
respectively. See [33, Section 3.1] for the relevant definitions concerning the
asymptotic conditions.

Two consecutive axis rods are separated by a point referred to as a
corner. In order to preserve the manifold structure of the spacetime, the
two neighboring rod structures vil and vil+1 associated with a corner must
satisfy the admissibility condition

(5.3) det

(

v1l v2l
v1l+1 v2l+1

)

= ±1.

If this does not hold then the spacetime will have an orbifold singularity [34,
Proposition 1]. In addition to (5.3), the existence results of this paper rely on
a further condition relating the rod structures referred to as the compatibility
condition. This, however, is only needed in the presence of three consecutive
axis rods. Let Γl−1, Γl, and Γl+1 be such a configuration with rod structures
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satisfying the admissibility condition at the two corners. We may assume
without loss of generality that the determinant in (5.3) is +1 by multiplying
the rod structures by −1 as necessary. Then the compatibility condition
asserts that

(5.4) v1l−1v
1
l+1 ≤ 0.

This technical condition is used only for the construction of an approximate
solution in the next section, and it is not known whether or not it is neces-
sary for existence. It should be pointed out that this extra condition does
not restrict the types of horizon topologies that can be produced with our
approach, which includes all possibilities [41, Proposition 3]. Furthermore, if
(5.3) does not hold then orbifold singularities are allowed and (5.4) should
be replaced with the generalized compatibility condition

(5.5) v1l−1v
1
l+1 det

(

v1l−1 v2l−1

v1l v2l

)

det

(

v1l v2l
v1l+1 v2l+1

)

≤ 0.

With the rod structure and potentials, we may now obtain simple ex-
pressions for the charges and angular momenta that characterize stationary
bi-axisymmetric solutions. There are two types of such quantities, those
which are conserved with respect to homology class and those which are
based on Komar integrals. Both will be described.

5.1. Dipole charges

Consider a homology class [C] ∈ H2(M
5). In the current setting nontrivial

classes may be constructed from a single rod Γl = [zl, zl−1] and a vector
w ∈ Z

2 in the following way. Let Γl be either an axis rod bounded by two
corners with w linearly independent from the rod structure vl of this rod, or
let Γl be a ring horizon rod with w the rod structure of the two neighboring
axis rods. In the axis case a typical choice for w is v̂l = (−v2l , v1l )T , which
is perpendicular to vl. In both cases a homology representative Cw, homeo-
morphic to a 2-sphere, may be constructed by moving the circle associated
with w along the rod Γl from one end point to the other (where it collapses).
The dipole charge of this homology class is then given by

(5.6) Dl =
1

2π|w|

∫

Cw

F =
1

|w|

∫

Γl

ιwiη(i)F =
wi

|w| [ψi(zl−1)− ψi(zl)] .

This definition may be generalized to 2-dimensional submanifolds with
boundary that are associated with a rod. In particular the same definition
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and computation apply if Γl is an arbitrary axis rod, or a horizon rod with
arbitrary w ∈ Z

2. In this general situation the surface C is obtained by mov-
ing the circle associated with w in the torus fibers U(1)2 along Γl, and is not
necessarily a 2-sphere. Depending on how wiη(i) vanishes at the end points
of the rod C could be either a disk, cylinder, or sphere.

A dipole charge may also be computed for 2-cycles that are not as-
sociated with a single rod. For example let Γl = [zl, zl−1], l = 1, 2, 3 be a
consecutive sequence of three rods in which the first and third are axis rods
and the second is a horizon rod. Consider a semi-circle in the 2-dimensional
orbit space connecting the corner point z0 to a point on Γ3. The S

1 associ-
ated with the rod structure v3 may be moved along this curve to produce a
2-sphere. This yields a dipole charge in the same manner as (5.6).

5.2. Electric charge

The total electric charge contained within the spacetime is defined to be

(5.7) Q =
1

16π

∫

S∞

(

⋆F +
1√
3
A ∧ F

)

,

where S∞ represents the limit as r =
√

ρ2 + z2 → ∞ of cross-sectional sur-
faces Sr at spatial infinity. The quantity (5.7) is sometimes referred to as
the Page charge [52]. The 3-form integrand is closed as a direct result of the
Maxwell equation (3.2). Therefore this charge, assuming that the potential
A is globally defined, is conserved in that it is unchanged if S∞ is replaced
by any surface homologous to it. However in general A will not be globally
defined. To avoid this issue we express Q as an integral over the orbit space
of the globally defined potential χ and apply Stokes’ theorem to obtain

(5.8) Q =
π

4

∫

C∞

dχ =
π

4
[χ(Γ1)− χ(ΓL+1)] =

π

4

∑

l

[χ(zl−1)− χ(zl)] ,

where C∞ is the semi-circle at infinity in the half plane orbit space (the
orientation is taken to be counterclockwise in the (ρ, z) plane). As computed
in the proof of Proposition 6.1 there is a constant bl for each axis rod such
that

(5.9) χ = − 1√
3|vl|2

(ψ · vl)(ψ · v̂l) + bl on Γl.

Furthermore observe that vilη(i) = 0 on Γl, so that vildψi = 0 and thus vilψi =
cl is a constant on Γl. Therefore by working in a gauge such that c1 = cL+1 =
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0 we then have that χ is constant on the two semi-infinite rods so that χ(Γ1),
χ(ΓL+1) are well-defined. Using (5.9) the expression for total electric charge
may be expressed in terms of dipole charges

(5.10) Q =
π

4

∑

l=horizon

[χ(zl−1)− χ(zl)] +
π

4
√
3

∑

l=axis

cl
|vl|

Dl.

A consequence of this is that even in the absence of horizons Q need not
vanish. It should also be pointed out that (5.7) is gauge invariant under
smooth gauge transformations, but is not necessarily invariant under the so
called large gauge transformations [31].

As explained in the proof of uniqueness in Section 8, it is natural to
define an electric horizon charge QH associated with a horizon rod Γl to be

(5.11) QH =
π

4
(bl−1 − bl+1),

which corresponds to the difference of the constants appearing in (5.9) that
arise from the two surrounding axis rods. This notion is the direct gener-
alization of horizon charge from stationary axisymmetric solutions of 4D
Einstein-Maxwell theory, since it is determined by the change in potential
constants across the horizon rod. Moreover it allows the total charge (5.7)
to be expressed as a combination of horizon charges and dipole charges.
This follows from (5.10) by computing the difference in χ. To see this let us
consider a specific example of a rod structure with five rods, that is L = 4,
in which Γ3 is a horizon rod and the rest are axis rods. Note that the rod
point z1 and z4 separate the two semi-infinite rods from the finite rods. We
then have

Q =
π

4
[χ(z1)− χ(z4)]

=
π

4

(

− c2√
3|v2|2

(ψ(z1) · v̂2) + b2 +
c4√
3|v4|2

(ψ(z4) · v̂4)− b4

)

= QH − π

4
√
3

(

c2
|v2|2

ψ(z1) · v̂2 −
c4

|v4|2
ψ(z4) · v̂4

)

.

(5.12)

As explained in Section 8 the quantities cl and the values of the poten-
tials ψi(zl) at corner points are uniquely determined by the dipole charges.
Therefore the total charge agrees with the sum of horizon charges QH up to
a combination of dipole fluxes.
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A second commonly used definition of electric charge is based on the
classical expression from Maxwell’s theory

(5.13) Q =
1

16π

∫

S∞

⋆F .

Note that if A → 0 sufficiently fast at infinity then Q = Q. This, however, is
not always the case and the difference arises when applying Stokes’ theorem
to rewrite Q. In particular, let Σ denote the t = 0 slice with boundary H =
∂Σ then

(5.14) Q = − 1

16
√
3π

∫

Σ
F ∧ F +

1

16π

∫

H

⋆F .

In the case of solitons, H = ∅ but the volume integral does not vanish in
general.

Like the conserved charge (5.7) the classical charge (5.14) may also be
computed in terms of potentials. To see this let εij be the totally antisym-
metric symbol in 2 dimensions with ε12 = 1 and observe that

− 1

4π2

∫

Σ
F ∧ F =− 1

2

∫

M̂2

εijιη(j)ιη(i)F ∧ F

=

∫

M̂2

εijdψi ∧ dψj

=−
∑

l

∫

Γl

εijψidψj +

∫

C∞

εijψidψj ,

(5.15)

where C∞ is the semi-circle at infinity in the half-plane orbit space. Let
ψ̂ = (−ψ2, ψ1)

T and note that from (6.13) below we have

(5.16) εijψidψj = ψ̂ · dψ = |vl|−2(ψ · vl)d(ψ · v̂l).

This shows that the axis rod integrals of (5.15) reduce to the difference
of values of the potentials at the end points, which in turn is related to
the dipole charge of such rods. Furthermore, the horizon rod integrals of
(5.15) combine with the horizon integral of (5.14) to give Q. Putting this
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all together yields

Q =
π

4

∑

l=horizon

[χ(zl−1)− χ(zl)]

+
π

4
√
3

∑

l=axis

cl
|vl|

Dl +
π

4
√
3

∫

C∞

εijψidψj

= Q+
π

4
√
3

∫

C∞

εijψidψj .

(5.17)

Under reasonable conditions the asymptotic decay at infinity will imply that
the integral over C∞ vanishes. Therefore this formula indicates that at least
in a gauge in which A → 0 at spatial infinity, we have Q = Q. Lastly we
note that a similar result demonstrating the relation with dipole fluxes was
obtained in [30] for solitons.

5.3. Angular momenta

The total angular momenta contained within the spacetime is given by the
Kormar-type integral

(5.18) Ji =
1

16π

∫

S∞

⋆dη(i) +A(η(i))

(

⋆F +
2

3
√
3
A ∧ F

)

.

When F ≡ 0 this reduces to the usual definition of Komar angular momenta.
The second term has been included in order to render the integrand a closed
3-form. As with the electric charge, however, the presence of the gauge po-
tential A implies that the integrand need not be globally defined. In order
to avoid this we express Ji as an integral over the orbit space and apply
Stokes’ theorem to find

(5.19) Ji =
π

4

∫

C∞

dζi =
π

4
[ζi(Γ1)− ζi(ΓL+1)] =

π

4

∑

l

[ζi(zl−1)− ζi(zl)] .

As computed in the proof of Proposition 6.1 there are constants al, âl for
each axis rod such that
(5.20)

ζ =

(

2

3
√
3

c2l (ψ · v̂l)
|vl|3

+ al

)

vl
|vl|

+

(

1

3
√
3

cl(ψ · v̂l)2
|vl|3

+ âl

)

v̂l
|vl|

on Γl.

Note that the values ζ(Γ1), ζ(ΓL+1) are well-defined, since working in a
gauge such that c1 = cL+1 = 0 yields that ζ is constant on the two semi-
infinite rods. In analogy with electric charge, (5.19) and (5.20) imply that
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the total angular momentum vector may be written in terms of horizon
angular momentum plus an expression determined by dipole charges

(5.21) J =
∑

l=horizon

Jl +D,

whereD depends solely on dipole charges of bubbles and the horizon angular
momentum vector associated with a horizon rod Γl is defined by

(5.22) Jl =
π

4

(

al−1
vl−1

|vl−1|
− al+1

vl+1

|vl+1|
+ âl−1

v̂l−1

|vl−1|
− âl+1

v̂l+1

|vl+1|

)

.

Note that this notion reduces to the typical expression of horizon angular
momentum in the vacuum case, which is given by the difference of poten-
tial constants on either side of the horizon rod. Moreover, this definition is
naturally motivated by its role in the proof of uniqueness in Section 8.

It is also common in the literature to use the standard definition of
Komar angular momenta

(5.23) Ji =
1

16π

∫

S∞

⋆dη(i),

which is gauge invariant but not conserved between homologous surfaces.
By applying Stokes’ theorem we obtain

(5.24) Ji =
1

8π

∫

Σ
⋆Ric(η(i)) +

1

16π

∫

H

⋆dη(i).

Introduce now the closed 2-forms

(5.25) Bi =
1

2
ιη(i) ⋆ F − 1√

3
ψiF ,

and observe that the field equations imply

(5.26)
1

8π

∫

Σ
⋆Ric(η(i)) =

1

24π

∫

Σ
(d (ψi ⋆ F)− Bi ∧ F) .

The first term on the right-hand side is exact and may be computed on H,
assuming proper asymptotic decay at infinity. It is then the second term
that gives nonzero Komar angular momentum for soliton spacetimes.
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Now define the potentials by

(5.27) dκij = ιη(i)Bj ,

and note that viκij are constants along an axis on which viη(i) vanishes. In
terms of the harmonic map potentials

(5.28) dκij = −εij
2

[

dχ+
1√
3
(ψ1dψ2 − ψ2dψ1)

]

− 1√
3
ψjdψi.

We now compute the expression from (5.26) in terms of these new quantities

(5.29)

− 1

4π2

∫

Σ
Bi ∧ F =

∫

M̂2

εjmdκji ∧ dψm =

∫

M̂2

d
[

εjmκji ∧ dψm
]

=

∫

M̂2

d
[

εmjψm ∧ dκji
]

.

Observe that the integrand has been written as a total derivative in two
alternate forms in order to obtain desirable expressions for the cases of
spacetimes with and without horizons. Let us assume first that the solution
is a soliton, that is it does not contain any black holes, we then have

(5.30) Ji = −π
6

∑

l

∫

Γl

εjmκjidψm +
π

6

∫

C∞

εjmκjidψm.

Since vl · ψ = cl is constant on Γl, a similar calculation to that of (5.16)
implies

(5.31) εjmκjidψm = |vl|−2(vl · κi)d(v̂l · ψ).

Furthermore it also holds that vl · κi = dli is constant on Γl, and therefore

(5.32) Ji =
π

6

∑

l

|vl|−1dliDl +
π

6

∫

C∞

εjmκjidψm.

This shows that Ji, in contrast to Ji, can be nonzero for soliton spacetimes,
with a value given as a weighted sum over dipole charges if the asymptotic
decay at infinity guarantees that the integral over C∞ vanishes.
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Consider now the case in which the spacetime contains black hole hori-
zons. In this situation the last integrand in (5.29) yields

(5.33) − 1

24π

∫

Σ
Bi ∧ F = −π

6

∑

l

∫

Γl

εmjψmdκji +
π

6

∫

C∞

εmjψmdκji.

On an axis rod we have

(5.34) εmjψmdκji = |vl|−2cld(v̂l · κi),

whereas on a horizon rod (5.28) gives

(5.35) εmjψmdκji =
ψi
2

(

dχ− 1√
3
(ψ1dψ2 − ψ2dψ1)

)

.

It follows that the relation between the two notions of angular momentum
is given by

Ji =
π

6

∑

l=axis

cl
|vl|2

v̂jl [κji(zl)− κji(zl−1)] +
π

6

∫

C∞

εmjψmdκji

− π

6

∑

l=horizon

∫

Γl

εmjψmdκji +
1

16π

∫

H

(

⋆dη(i) −
2

3
ψi ⋆ F

)

.

(5.36)

If we associate a dipole-like charge to the flux of Bi out of 2-surface C by
setting

(5.37) Ki =
1

2π|w|

∫

C

Bi =
wj

|w| [κji(zl)− κji(zl−1)] ,

and use ιη(2)ιη(1) ⋆ dη(i) = Θi and (3.28) then the final angular momentum
expression takes the form

(5.38)

Ji =
π

4

∑

l=horizon

[ζi(zl−1)− ζi(zl)]

+
π

6

∑

l=axis

cl
|vl|

Kli +
π

6

∫

C∞

εmjψmdκji.

We now find the relation between the two definitions of total angular
momenta. Observe that on an axis rod Γl

(5.39) dκij = − 1√
3
ψjdψi,
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and therefore

(5.40) vildκij = − 1√
3
ψjd(ψ · vl) = 0, v̂ildκij = − 1√

3
ψjd(ψ · v̂l).

It follows from (5.20) that on the axis

(5.41) dζk = − 2cl
3|vl|4

(

d(vjl v̂
i
lκij)v

k
l + d(v̂jl v̂

i
lκij)v̂

k
l

)

,

and hence

(5.42) dζj = − 2cl
3|vl|2

v̂ildκij .

Using (5.19) and (5.38) then yields

Ji =
π

4

∑

l=horizon

[ζi(zl−1)− ζi(zl)] +
π

6

∑

l=axis

cl
|vl|

Kli

= Ji −
π

6

∫

C∞

εmjψmdκji.

(5.43)

Under appropriate asymptotic decay conditions on the potentials ψi, the
second term will vanish.

6. The approximate solution

In this section we will begin the process of solving the harmonic map equa-
tions (4.26) with prescribed rod structure and potentials on the axes. Our
approach is motivated by the work of Weinstein [66], as well as the methods
presented in [41, 42]. The first step is to construct a type of approximate
solution referred to as the model map Ψ0 : R

3 \ Γ → Ñ , where Ñ is the set
of 7× 7 positive definite unimodular matrices which may be used to repre-
sent the coset space N = G2(2)/SO(4) ∼= R

8. The coset representatives in Ñ
are parameterized [2, §3] by the coordinates F = (fij), ζ = (ζ1, ζ2)

T , χ, and
ψ = (ψ1, ψ2)

T , and according to (3.37) the canonical complete nonpositively
curved metric on N takes the form

(6.1)
4G =

1

2

[

Tr
(

F−1dF
)]2

+
1

2
Tr
[

(

F−1dF
)2
]

+ f−1ΘTF−1Θ+ f−1Υ2 + dψTF−1dψ,

where f = detF , and Θ, Υ are given by (3.28), (3.26). Recall that the tension
of a map between two Riemannian manifolds φ :M → N is a section of the
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pullback bundle φ∗TN and is given by

(6.2) τ(φ) = ∇̃a∂aφ,

where ∇̃ is the induced connection on T ∗M ⊗ φ∗TN . The tension field mea-
sures how far away a map is from being harmonic, in that φ is harmonic if
and only if |τ(φ)| = 0. In the current setting the components of the tension
are found to be

(6.3) τ = τ fij∂fij + τΘiΘi + τΥΥ+ τψi∂ψi

where

F−1τF = div
(

F−1dF
)

+ f−1F−1Θ ·ΘT +
1

3
f−1Υ ·ΥI2

+
1

3
F−1dψ · dψT − 1

3
dψT ·

(

F−1dψ
)

I2,

F−1τΘ = fdiv
(

f−1F−1Θ
)

,

τΥ = fdiv
(

f−1Υ
)

+ dψT ·
(

F−1Θ
)

,

F−1τψ = div(F−1dψ)− f−1Υ ·
(

F−1Θ
)

+
2f−1

√
3

(

δ2Υdψ
1 − δ1Υdψ

2
)

,

(6.4)

in which I2 is identity 2× 2 matrix and all inner products are with respect
to the flat metric. It follows that the norm squared of the tension is

4|τ |2 = 1

2

[

Tr

(

div
(

F−1dF
)

+
F−1Θ ·ΘT

f
+
F−1dψ · dψT

3
− dψT ·

(

F−1dψ
)

I2

3
+

|Υ|2I2
3f

)]2

+
1

2
Tr





(

div
(

F−1dF
)

+
F−1Θ ·ΘT

f
+
F−1dψ · dψT

3
− dψT ·

(

F−1dψ
)

I2

3
+

|Υ|2I2
3f

)2




+ f
[

div
(

f−1F−1Θ
)]T

F
[

div
(

f−1F−1Θ
)]

+ f
[

div
(

f−1Υ
)

+ f−1dψT ·
(

F−1Θ
)]2

+

[

div(F−1dψ)− f−1Υ ·
(

F−1Θ
)

+
2f−1

√
3

(δ2Υ · dψ1 − δ1Υ · dψ2)

]T

× F

[

div(F−1dψ)− f−1Υ ·
(

F−1Θ
)

+
2f−1

√
3

(δ2Υ · dψ1 − δ1Υ · dψ2)

]

.

(6.5)

In order for a model map Ψ0 to be considered an appropriate approxi-
mate solution on which to build the existence theory it must keep the ten-
sion bounded and properly decaying at infinity, as well as share the same rod
structure and potential constants along the axes as those that are prescribed
for the solution.
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Proposition 6.1. Let Γl be a set of axis rods having corresponding rod
structures (v1l , v

2
l ) satisfying the compatibility condition (5.5), and let al,

bl, cl be a set of associated constants in which only cl may change between
rods that share an end point. Then there exists a model map Ψ0 : R

3 \ Γ → Ñ
that possesses uniformly bounded tension, decays at infinity by |τ | = O(r−3),
and satisfies vilψi = cl on Γl, with ζ and χ agreeing with al and bl on Γl
up to a function depending only on ψ and the rod structure. Furthermore
the functions defining the model map (F, ζ, χ, ψ) are all smooth everywhere
including along the axis and at corners.

Remark 6.2. Given a rod structure and corresponding model map pro-
vided by this proposition, the constants al, bl, cl may be used to prescribe
the angular momenta Ji and electric charge Q of each horizon rod, as well
as the dipole charge D for each axis rod whose end points are corners. In
fact, the angular momenta and electric charge of a horizon component are
simply (up to a constant multiple) the difference of the constants al and bl
on each side of the relevant horizon rod.

Proof. Consider three domains whose disjoint union is R3 = D1 ∪D2 ∪D3.
Let D1 = R

3 \Br0 be the complement of a large ball which intersects the
two semi-infinite rods, and let D2 be a small tubular neighborhood of the
axis rods inside Br0 . The domain D3 is then the complement of D2 within
Br0 . This decomposition is depicted in Figure 1. Consider first the case in
which no connected component of the axis Γ has more than one corner. By
setting the potentials (ζ, χ, ψ) to be the appropriate prescribed constants
on connected components of D2, the tension norm |τ | reduces to the same
expression as that in the vacuum case treated in [41, Theorem 6], and thus
the definition of F in D2 is taken to be the same as given there. The tension
is then bounded in this domain. Suppose further that the model map Ψ0 is
given in D1, then in D3 we may set it to be any function which interpolates
smoothly between the definitions in D1 and D2.

Let us now construct the model map in the exterior region D1. On this
domain define
(6.6)

F =

(

r sin2(θ/2) 0
0 r cos2(θ/2)

)

, ζ = ζ(θ), χ = χ(θ), ψ = ψ(θ),

where (r, θ) are polar coordinates i.e. ρ = r sin θ, z = r cos θ. The compo-
nents of F are harmonic functions and therefore div

(

F−1dF
)

= 0. In addi-
tion, since f11 behaves like 2 log ρ near the positive z-axis and is bounded
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near the negative z-axis while f22 has the opposite behavior, the rod struc-
ture arising from this prescription is (1, 0) for the northern semi-infinite rod
and (0, 1) for the southern semi-infinite rod. This is the rod structure asso-
ciated with an asymptotically flat spacetime. Next, the potential functions
are chosen to be the appropriate prescribed constants near the axes, that
is for θ ∈ [0, ε] ∪ [π − ε, π] with 0 < ε small. It follows that near the axes in
D1 the model map is harmonic so that |τ | = 0. We may now choose (ζ, χ, ψ)
to be arbitrary smooth functions of θ that interpolate between the two sets
of constants for θ ∈ [ε, π − ε]. It will now be shown that the tension |τ | de-

D2

D2

D2

D1

D3

∂Br0

Figure 1. Domain decomposition.

cays like O(r−3). According to the description above the tension vanishes
near the axes, and so this condition need only be checked on the interpola-
tion region. There, using the explicit description of F , the asymptotics for
each term may be computed. For instance, consider the second term on the
right-hand side of (6.5). The portion F−1 decays like O(r−1), f−1 decays
like O(r−2), and the inner product contributes an extra O(r−2) since the
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derivatives within Θ are only in the θ direction. It follows that

(6.7) f−1F−1Θ ·ΘT = O(r−5).

Similar considerations may be applied to each term yielding |τ | = O(r−3).
For the ALE and AKK asymptotics the model map construction is the same
except that F is modified appropriately in the region D1, see §4.1 and §4.2
of [42] respectively. Analogous arguments may then be made to estimate the
asymptotics of each term appearing in (6.5) to arrive at the same conclusion.

It remains to define the model map in the region D2 when components
of Γ have more than one corner. For each component, the construction may
be accomplished inductively on the number of rods. Thus we will give de-
tails only for a sequence of three rods separated by two corners. Consider
a consecutive sequence of axis rods: the north Γ1, middle Γ2, and south Γ3

having rod structures vl = (v1l , v
2
l ), l = 1, 2, 3, and separated by corners p1,

p2. It may be assumed without loss of generality for the purposes here that
the rod structures are of unit norm |vl| = 1. Let D denote the region of D2

which contains these rods. The construction of F in this domain follows that
of [41, Theorem 6]. Namely by choosing appropriate harmonic functions u
and v the matrix

(6.8) F̄ =

(

eu 0
0 ev

)

,

gives rise to rod structure (1, 0) on Γ1 ∪ Γ3, and (0, 1) on Γ2. The model map
matrix is then set to F = kF̄kT where k = k(z) is a 2× 2 nonsingular matrix
function that is constant except on the interior of Γ2, where it transitions
smoothly between rod structures. This definition realizes the desired rod
structures and has the property that div

(

F−1dF
)

is uniformly bounded in
D. The above construction is motivated by the fact that

(6.9) F 7→ kFkT , ψ 7→ kψ, χ 7→ (det k)χ, ζ 7→ (det k)kζ,

(6.10) ⇒ Υ 7→ (det k)Υ, Θ 7→ (det k)kΘ,

is an isometry of the target space.
We will now define the potentials of the model map in D; they will all

be functions of z alone. The magnetic potential ψ is defined to be a smooth
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function which satisfies

(6.11) vilψi = cl on Γl,

for arbitrary constants cl = cl. Note that this fixes one component of ψ on
each rod while the other component is allowed to transition. Furthermore,
since neighboring rod structures are linearly independent the prescription
(6.11) fully determines ψ at the corners, and ψ may be taken to be this
constant quantity in a neighborhood of the corners.

Consider next the electric potential. The goal is to choose χ so that

(6.12) Υ = dχ+
1√
3
ψ̂ · dψ = 0 on D,

where the ‘hat’ operation takes a vector to one which is orthogonal to the
original and having the same norm ψ̂ = (−ψ2, ψ1)

T . By using (6.11) and the
fact that vl and v̂l are constant on Γl we have

(6.13)
ψ̂ · dψ = |vl|−4 [−(ψ · v̂l)vl + (ψ · vl)v̂l] · d [(ψ · vl)vl + (ψ · v̂l)v̂l]

= |vl|−2d [(ψ · vl)(ψ · v̂l)] .

It follows that Υ = 0 on each Γl by setting

(6.14) χ = − 1√
3
(ψ · vl)(ψ · v̂l) + bl on Γl,

where bl are arbitrary constants. Furthermore since ψ is constant in a neigh-
borhood of the corners, the function χ may be made continuous by appro-
priately choosing the constants b2 − b1 and b3 − b2. Then among the three
constants bl there is one left that may be chosen arbitrarily, and so the
smooth function χ is defined up to a single constant bl on D.

Lastly, the twist potentials are chosen to achieve

(6.15) Θ = dζ + ψ[dχ+
1

3
√
3
ψ̂ · dψ] = 0 on D.
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Using (6.11), (6.12), and (6.13) shows that on Γl

Θ = dζ − 2

3
√
3
ψd [(ψ · vl)(ψ · v̂l)]

= d [(ζ · vl)vl + (ζ · v̂l)v̂l]

− 2

3
√
3
[(ψ · vl)vl + (ψ · v̂l)v̂l] d [(ψ · vl)(ψ · v̂l)]

= vld

[

(ζ · vl)−
2

3
√
3
(ψ · vl)2(ψ · v̂l)

]

+ v̂ld

[

(ζ · v̂l)−
1

3
√
3
(ψ · vl)(ψ · v̂l)2

]

.

(6.16)

Therefore to achieve (6.15) define ζ on Γl by

(6.17)

ζ · vl =
2

3
√
3
(ψ · vl)2(ψ · v̂l) + al,

ζ · v̂l =
1

3
√
3
(ψ · vl)(ψ · v̂l)2 + âl,

for arbitrary constants al, âl. As in the definition of χ, the function ζ may be
made continuous by properly choosing the constants a2 − a1, a3 − a2, â2 −
â1, and â3 − â2. There is then one degree of freedom left for each component
of ζ, and thus ζ is defined up to a constant vector al on D.

We may now complete the proof. Consider each term in the tension ex-
pression (6.5). In light of (6.12) and (6.15) all terms involving Υ and Θ vanish
in D. Moreover as mentioned above div

(

F−1dF
)

is uniformly bounded. Fi-
nally (6.11) implies that F−1dψ and div

(

F−1dψ
)

remain bounded as well.
Hence |τ | is properly controlled in D. Lastly it is clear from the construction
that the degrees of freedom may be chosen properly so that vilψi = cl on Γl,
with ζ and χ agreeing with al and bl on Γl up to a function depending only
on ψ and the rod structure; here al = a is the same constant for l = 1, 2, 3
and similarly for bl = b. □

7. Harmonic map existence and uniqueness

With the model map Ψ0 in hand, the proof of the existence and uniqueness
of a harmonic map Ψ : R3 \ Γ → Ñ which is asymptotic to the model map
may now be carried out by following the arguments in the vacuum case
[41] with slight modification. This is possible due to the fact that the target
symmetric space here, N = G2(2)/SO(4), is nonpositively curved and of rank
2 just as the target space in the vacuum case SL(3,R)/SO(3). For the sake
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of completeness we will sketch the arguments. Recall that two maps are
said to be asymptotic if the N -distance between the two d(Ψ,Ψ0) remains
bounded near the axes, and d(Ψ,Ψ0) → 0 as r → ∞. As is shown in [41,
Theorem 11], if Ψ and Ψ0 are asymptotic then they give rise to the same
rod structure and the values of the two sets of potentials on the axes agree.
Thus, the spacetime resulting from Ψ will have the prescribed rod structure
and hence topology, as well as the prescribed charges.

Consider now the question of uniqueness. Let Ψ1 and Ψ2 be two harmonic
maps that are asymptotic with the same model map Ψ0. Since the target
space is nonpositively curved it follows [66, Lemma 2] that

(7.1) ∆
√

1 + d(Ψ1,Ψ2)2 ≥ −|τ(Ψ1)| − |τ(Ψ2)| = 0.

As the two maps are asymptotic to each other there is a uniform bound
for the distance d(Ψ1,Ψ2) ≤ C, and we may then interpret the function
√

1 + d(Ψ1,Ψ2)2 as weakly subharmonic on R
3. Due to the fact that Γ is of

codimension 2, the maximum principle applies [65, Lemma 8] to show that
√

1 + d(Ψ1,Ψ2)2 ≤ 1, since d(Ψ1,Ψ2) → 0 at infinity. Hence Ψ1 = Ψ2.
The proof of existence proceeds as follows. Let Dj be an increasing

sequence of domains that exhaust R3 \ Γ as j → ∞, and let Ψj be the unique
harmonic map onDj which agrees with the model map on the boundary, that
is, having the Dirchlet boundary conditions Ψj = Ψ0 on ∂Dj . Since |τ(Ψ0)|
is uniformly bounded and decays sufficiently fast at infinity, there exists [66,
pg. 838] a positive smooth function w on R

3 satisfying ∆w ≤ −|τ(Ψ0)| such
that w → 0 as r → ∞ [41, Lemma 10]. Then with the aid of (7.1) we find
(7.2)

∆

(

√

1 + d(Ψj ,Ψ0)2 − w

)

≥ 0,
√

1 + d(Ψj ,Ψ0)2 − w ≤ 1 on ∂Dj .

The maximum principle may be used again to produce a uniform C0 es-
timate for d(Ψj ,Ψ0). From this, local pointwise energy estimates may be
established following [41, Section 6]. Note that although [41, Section 6] is
written explicitly for the rank 2 target space SL(3,R)/SO(3), analogous
arguments may be given by G2(2)/SO(4) since it is also of rank 2. Standard
elliptic bootstrapping can now be implemented to control all higher order
derivatives of Ψj on compact subsets. Therefore this sequence of maps sub-
converges to a harmonic map Ψ having a distance to the model map which
is uniformly bounded and vanishes at infinity, since (7.2) implies

(7.3) d(Ψ,Ψ0) ≤
√

w(2 + w).
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In particular the solution is asymptotic to Ψ0. We have proved the following
result.

Theorem 7.1. Given a model map Ψ0 having uniformly bounded tension
field that decays at infinity like O(r−3), there exists a unique harmonic map
Ψ : R3 \ Γ → Ñ which is asymptotic to Ψ0.

Let us now complete the proof of the main theorem. Suppose that a
set of rod structure data and corresponding potential constants are given,
satisfying the assumptions of Theorem 2.1. By Proposition 6.1 there exists a
model map Ψ0 which encodes this data and falls-off appropriately at infinity.
Theorem 7.1 may now be applied to find a unique harmonic map Ψ which is
asymptotic to Ψ0. From this harmonic map, a solution of the supergravity
equations may be constructed according to the description in Section 3.4.
Arguments similar to those used in the vacuum case [41, Theorem 11], which
are detailed below, may now be employed to show that this solution realizes
the prescribed rod data and charges. Additionally, conical singularities may
be ruled out on the semi-infinite rods as in [42, §6].

Theorem 7.2. Let (F, ζ, χ, ψ) and (F0, ζ0, χ0, ψ0) denote the functions
defining the harmonic map Ψ and model map Ψ0 of Theorem 7.1. Then
on each axis rod Γl with rod structure vl, we have ker F = ker F0 and

(7.4) ζ · vl −
2

3
√
3
(ψ · vl)2(ψ · v̂l) = ζ0 · vl −

2

3
√
3
(ψ0 · vl)2(ψ0 · v̂l),

(7.5) ζ · v̂l −
1

3
√
3
(ψ · vl)(ψ · v̂l)2 = ζ0 · v̂l −

1

3
√
3
(ψ0 · vl)(ψ0 · v̂l)2,

(7.6) χ+
1√
3
(ψ · vl)(ψ · v̂l) = χ0 +

1√
3
(ψ0 · vl)(ψ0 · v̂l), vl · ψ = vl · ψ0.

In particular, the two maps respect the same rod data set.

The first step towards establishing this result is to obtain a relationship
between the distance d(Ψ0,Ψ) and the Mazur quantity Tr(Ψ−1

0 Ψ). Since the
metric on N is G2(2)-invariant, the distance function is preserved under the
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action of left translation

(7.7) d(Ψ0,Ψ) = d(Id, LB−1Ψ),

where B ∈ SL(7,R) arises from the representation of G2(2) and satisfies
BBT = Ψ0 (see [18, Section 5]), with

(7.8) LB−1Ψ = B−1Ψ(B−1)T = eW

for some symmetric W such that Tr W = 0. Due to the fact that N is a
symmetric space, the Riemannian exponential map and the matrix expo-
nential coincide. Furthermore, Hadamard’s theorem applies (using that N
is complete, simply connected, and nonpositively curvatured) to show that
the exponential map is a diffeomorphism, and the geodesic γ(t) = etW is
minimizing. It follows that

(7.9) d(Id, LB−1Ψ) = |γ′(0)| = |W | =
√

Tr(W 2).

Now consider the Mazur quantity [54], namely

Tr
(

Ψ−1
0 Ψ

)

= Tr
(

(B−1)TB−1Ψ(B−1)tBT
)

= Tr
(

B−1Ψ(B−1)T
)

= Tr eW .

(7.10)

Since eW is symmetric and positive definite it may be diagonalized with
positive eigenvalues λi, i = 1, . . . , 7. We then have

(7.11) Tr eW =

7
∑

i=1

λi, Tr(W 2) =

7
∑

i=1

(log λi)
2,

and since W has zero trace

(7.12)

7
∑

i=1

log λi = 0.

If Tr eW ≤ c then it is not difficult to see that (7.12) implies Tr(W 2) ≤ c1.
Conversely if Tr(W 2) ≤ c2 then each | log λi| ≤ c, and it holds that Tr eW ≤
7ec. We have thus shown the following.

Lemma 7.3. The distance d(Ψ0,Ψ) is uniformly bounded if and only if the
Mazur quantity Tr

(

Ψ−1
0 Ψ

)

is uniformly bounded.
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Proof of Theorem 7.2. If Ψ is asymptotic to Ψ0 then d(Ψ0,Ψ) ≤ c0, that is
the distance is uniformly bounded, in particular near Γ. By Lemma 7.3 this
implies that the Mazur function is also uniformly bounded

(7.13) Tr
(

Ψ−1
0 Ψ

)

≤ c.

Moreover this quantity may be computed, as is done in Appendix B with
all relevant notation, to find

Tr
(

Ψ−1
0 Ψ

)

= Tr(F−1
0 F ) + f−1Tr(F−1

0 LT1 L1) + Tr(F−1
0 LT5 F

−1L5)

+ 2Tr[F−1
0 (ν − ν0)(ν − ν0)

T ] + f0f
−1

+ f−1Tr[F0J(ν − ν0)(J(ν − ν0))
T ]

+ Tr(F0F
−1) + f−1

0 (J(ν − ν0))
TFJ(ν − ν0)

+ f−1
0 f−1L2

2 + f−1
0 LT4 F

−1L4 + f−1
0 f

+ 2f−1
0

(

µ− µ0 + νT0 Jν
)2

+ f−1L2
3 + 2(ν − ν0)

TF−1(ν − ν0) + 1.

(7.14)

Since each of the terms on the right-hand side is nonnegative (see appendix),
and the roles of Ψ and Ψ0 may be reversed, we have

(7.15) c−1f0 ≤ f ≤ cf0, Tr(FF−1
0 ) ≤ c,

(7.16)
(ν − ν0)

TF−1
0 (ν − ν0) ≤ c/2, f−1

0

(

µ− µ0 + νT0 Jν
)2 ≤ c/2,

f−1LT4 F
−1
0 L4 ≤ c.

We now show that F and F0 give rise to the same rod structure. Observe
that since F0 is symmetric it may be diagonalized with an orthogonal matrix
O, so that F0 = ODOT where D = diag(ϱ1, ϱ2). Consider now a neighbor-
hood of an interior point on an axis rod. At the axis points, the kernel of F0

is 1-dimensional and so it may be assumed without loss of generality that
c−1
1 f0 ≤ ϱ1 ≤ c1f0 and 0 < c−1

2 ≤ ϱ2 ≤ c2. Let F̃ = OTFO then

(7.17)
Tr(FF−1

0 ) = Tr(FOD−1OT ) = Tr(OOTFOD−1OT )

= Tr(F̃D−1) = f̃11ϱ
−1
1 + f̃22ϱ

−1
2 .

Thus

(7.18) f̃11ϱ2 + f̃22ϱ1 ≤ cϱ1ϱ2 = cf0,
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so that

(7.19) f̃11 ≤ cc2f0, f̃22 ≤ cf0ϱ
−1
1 ≤ cc1.

Moreover

(7.20) f = f̃11f̃22 − f̃212 ≤ f̃11f̃22 ≤ cc2f0f̃22,

which produces the lower bound

(7.21) f̃22 ≥ (cc2)
−1ff−1

0 ≥ c−2c−1
2 .

In order to control the cross terms, observe that from the above

(7.22) f̃212 = f̃11f̃22 − f ≤ c2c1c2f0.

We conclude that

(7.23) f̃11 ≤ c3f0, |f̃12| ≤ c3
√

f0, c−1
3 ≤ f̃22 ≤ c3.

Hence, on an axis rod both D = OTF0O and F̃ = OTFO have the same
kernel, and therefore F0 and F have the same kernel. Analogous arguments
hold for a horizon rod.

Let us now show that the potential constants agree on axis rods. Consider
an axis rod Γl, which we may assume without loss of generality has rod
structure vl = (1, 0), and use the notation above for diagonalizing F0. The
first inequality of (7.16) yields

(7.24) (ψ̃ − ψ̃0)
TD−1(ψ̃ − ψ̃0) = 3(ν − ν0)

TF−1
0 (ν − ν0) ≤ 3c/2,

where

(7.25) (ψ̃ − ψ̃0) = OT (ψ − ψ0).

It follows that

(7.26) ϱ−1
1 (ψ̃1 − (ψ̃0)1)

2 + ϱ−1
2 (ψ̃2 − (ψ̃0)2)

2 ≤ 3c/2,

which implies

(7.27) (ψ̃1 − (ψ̃0)1)
2 ≤ c4f0.

We then have ψ1 = (ψ0)1 on Γl, since O coincides with the identity matrix
on the axis. Next, observe that the second inequality of (7.16) shows that
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on the axis

0 =
√
3
(

µ− µ0 + νT0 Jν
)

= χ− χ0 +
1√
3
(ψ2(ψ0)1 − ψ1(ψ0)2)

= χ+
1√
3
ψ1ψ2 −

(

χ0 +
1√
3
(ψ0)1(ψ0)2

)

,

(7.28)

where in the last equality we used ψ1 = (ψ0)1 on Γl. Thus, (7.6) holds. To
confirm (7.4) and (7.5), note that similar arguments to those that produced
(7.26) show that the last inequality of (7.16) gives L4 = 0 on the axis. A
direct calculation of the components of L4 then produces

0 = ζ1 − (ζ0)1 +
1

3
(χ− χ0)(2ψ1 + (ψ0)1)

− 1

3
√
3
ψ1(ψ1(ψ0)2 − ψ2(ψ0)1),

(7.29)

0 = ζ2 − (ζ0)2 +
1

3
(χ− χ0)(2ψ2 + (ψ0)2)

− 1

3
√
3
ψ2(ψ1(ψ0)2 − ψ2(ψ0)1).

(7.30)

Using (7.28) to replace χ− χ0, as well as ψ1 = (ψ0)1 leads to

(7.31) 0 = ζ1 −
2

3
√
3
ψ2
1ψ2 −

(

(ζ0)1 −
2

3
√
3
(ψ0)

2
1(ψ0)2

)

,

(7.32) 0 = ζ2 −
1

3
√
3
ψ1ψ

2
2 −

(

(ζ0)2 −
1

3
√
3
(ψ0)1(ψ0)

2
2

)

,

which yields the desired result. □

8. Uniqueness of minimal supergravity solutions

In the previous section uniqueness was established for harmonic maps which
are asymptotic to one another. This does not necessarily imply that any two
minimal supergravity solutions having the same charges and rod structure
are equivalent. This is due to the fact that although two such solutions pro-
duce two harmonic maps Ψ1 and Ψ2, it is not known a priori that these maps
remain within bounded distance to each other globally. Thus, the primary
task of this section is to show that indeed the distance d(Ψ1,Ψ2) is uniformly
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bounded. Previous works [5, 6, 60, 62, 63] on the uniqueness question for
the minimal supergravity equations appear to have used the Mazur quan-
tity Tr(Ψ1Ψ

−1
2 − I), as opposed to the distance function. Both functions are

subharmonic, and once they are known to be bounded a maximum principle
argument may be used (as in Section 7) to yield that they vanish identi-
cally. A drawback to the prior approach is that in the minimal supergravity
setting the Mazur quantity is difficult to compute, and so only special cases
of uniqueness have been established previously. On the other hand these
two subharmonic functions are related in that boundedness of one implies
boundedness of the other. This fact is a consequence of the structure of
the symmetric space target, and may be proved as in [41, Lemma 12] which
treats the vacuum case. The only difference here, when passing from vacuum
to minimal supergravity, is the presence of extra potential terms which are
treated in the same manner as the vacuum potentials in the proof of [41,
Lemma 12].

As in the vacuum case [36], there are five regions to consider when es-
tablishing boundedness of the distance function. Namely: 1) the interior of
axis rods, 2) the interior of horizon rods, 3) a neighborhood of infinity, 4)
a neighborhood of the poles, which are intersections of a horizon and axis
rod, and 5) a neighborhood of corner points, which are the intersection of
two axis rods. It has been shown [5, §2] that the Mazur quantity remains
bounded in a neighborhood of infinity, and as mentioned above this im-
plies boundedness of the distance function in region (3). Furthermore, the
harmonic map does not blow-up at a horizon rod and thus the distance is
controlled in region (2). The arguments needed for regions (4) and (5) are
similar to those of (1), which we will treat first.

Consider an axis rod Γl having rod structure vl. By assumption both
solutions have the same rod structure, so in particular this rod and its struc-
ture are shared. Since the linear combination vilη(i) vanishes on this rod, the
definitions (3.3), (3.22), and (3.24) imply that Θi, d

(

vilψi
)

, and Υ vanish on
Γl. The computations (6.11), (6.14), and (6.17) then show that there exist
constants ajl , b

j
l , and c

j
l such that on this rod

ζj · vl −
2

3
√
3
(ψj · vl)2(ψj · v̂l) = ajl ,

ζj · v̂l −
1

3
√
3
(ψj · vl)(ψj · v̂l)2 = âjl ,

(8.1)

(8.2) χj +
1√
3
(ψj · vl)(ψj · v̂l) = bjl , vl · ψj = cjl ,
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where j = 1, 2 indicates association with the solution Ψj. Here, as before, it
is assumed without loss of generality that |vl| = |v̂l| = 1. It will be shown
below that equality of angular momenta and charges of the two solutions
implies that these constants agree on all axis rods, that is ajl = al, b

j
l = bl,

and cjl = cl. We then have

(8.3)
(ζ1 − ζ2) · vl −

2(cl)
2

3
√
3
(ψ1 − ψ2) · v̂l = O(ρ2),

(ζ1 − ζ2) · v̂l −
cl

3
√
3

[

(ψ1 · v̂l)2 − (ψ2 · v̂l)2
]

= O(ρ2),

(8.4) (χ1 − χ2) +
cl√
3
(ψ1 − ψ2) · v̂l = O(ρ2), vl · (ψ1 − ψ2) = O(ρ2).

Let Ψ(s), s ∈ [0, 1] be a curve in the symmetric space target Ñ with
Ψ(0) = Ψ2 and Ψ(1) = Ψ1. The distance is by definition the infimum of the
length of all curves connecting the two solutions, and therefore d(Ψ1,Ψ2) ≤
L(Ψ(s)). All the components of the curve, except for one, will be chosen to
be linear functions. Namely

fij(s) = f2ij + s
(

f1ij − f2ij
)

, χ(s) = χ2 + s
(

χ1 − χ2
)

,

ψ(s) = ψ2 + s
(

ψ1 − ψ2
)

,
(8.5)

vl · ζ(s) = vl · ζ2 + svl ·
(

ζ1 − ζ2
)

,

v̂l · ζ(s) = âl +
cl

3
√
3
(ψ(s) · v̂l)2 + γ(s),

(8.6)

where γ(s) is a function satisfying

γ(0) = v̂l · ζ2 − âl −
cl

3
√
3

(

ψ2 · v̂l
)2
,

γ(1) = v̂l · ζ1 − âl −
cl

3
√
3

(

ψ1 · v̂l
)2
.(8.7)

Observe that by (8.1) and (8.2) both γ(0) and γ(1) are O(ρ2), and thus this
function may be chosen so that |γ(s)|+ |γ′(s)| = O(ρ2) for all s.

We will now estimate the length

(8.8) L(Ψ(s)) =

∫ 1

0

√

GABΨ̇AΨ̇Bds,

where G is the symmetric space metric given by (6.1) and Ψ̇ = ∂sΨ. The two
terms of G involving dF remain uniformly bounded independent of s since
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both solutions have the same rod structure, see the proof of [36, Theorem 5].
In particular, observe that if λ(s) and λ̂(s) are the eigenvalues of F (s), then
near Γl we have the approximate diagonalization

F (s) = λ(s)vlv
T
l + λ̂(s)v̂lv̂

T
l +O(ρ2),

F−1(s) = λ(s)−1vlv
T
l + λ̂(s)−1v̂lv̂

T
l +O(ρ2),

(8.9)

where the eigenvalues are positive away from the axis with λ(s) ∼ ρ2 and
λ̂(s) ∼ 1 away from corner points. It follows that

F−1Ḟ = λ(s)−1(λ1 − λ2)vlv
T
l + λ̂(s)−1(λ̂1 − λ̂2)v̂lv̂

T
l +O(1)(8.10)

= O(1),

showing that the first two terms of (6.1) possess the desired behavior. To
proceed, write

(8.11) ψ = (ψ · vl)vl + (ψ · v̂l)v̂l,

and use (8.4) to find that the last term of (6.1) is controlled

ψ̇TF−1ψ̇ = λ−1[(ψ1 − ψ2) · vl]2 + λ̂−1[(ψ1 − ψ2) · v̂l]2 +O(ρ2)(8.12)

= O(1).

Similar considerations show that

(8.13) f−1ΘTF−1Θ = f−1λ−1[Θ · vl]2 + f−1λ̂−1[Θ · v̂l]2 +O(ρ2),

where according to (6.16) and (8.3), (8.4)

Θ · vl = ∂s

[

(ζ · vl)−
2

3
√
3
(ψ · vl)2(ψ · v̂l)

]

+O(ρ2)

= (ζ1 − ζ2) · vl −
2(cl)

2

3
√
3
(ψ1 − ψ2) · v̂l +O(ρ2)

= O(ρ2),

(8.14)

and with the help of (8.6)

Θ · v̂l = ∂s

[

(ζ · v̂l)−
1

3
√
3
(ψ · vl)(ψ · v̂l)2

]

+O(ρ2)

= O(ρ2).

(8.15)
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In light of the fact that f(s) ∼ ρ2, we then have bounds for the third term
of (6.1), that is

(8.16) f−1ΘTF−1Θ = O(1).

Analogous arguments yield f−1Υ2=O(1), and consequently L(Ψ(s))=O(1).
Therefore, the distance d(Ψ1,Ψ2) is bounded in a neighborhood of the inte-
rior of axis rods.

Consider now region (4) consisting of a neighborhood of the poles, which
are intersections of a horizon rod and an axis rod Γl. It may be assumed
for the purposes of this argument that the pole in question lies at the origin
in the ρz-plane. Here we will follow closely the arguments of Hollands and
Yazadjiev [36, pgs. 668–69], who treated the vacuum case. By redefining the
torus fiber coordinates (ϕ1, ϕ2) if necessary, we may assume without loss of
generality that the rod structure vTl = (1, 0); we then also have v̂Tl = (0, 1).
As explained in [36, pg. 668], associated with each solution are a set of
coordinates (R1, Y1) and (R2, Y2) for the orbit space M̂2 =M5/[U(1)2 × R]
near the pole such that

(8.17) F j =

(

R2
j (1 +O(R2

j )) R2
jO(1)

R2
jO(1) d+O(R2

j + Y 2
j )

)

,

and

ζj · vl −
2

3
√
3
(ψj · vl)2(ψj · v̂l) = al +O(R2

j ),

ζj · v̂l −
1

3
√
3
(ψj · vl)(ψj · v̂l)2 = âl +O(R2

j ),
(8.18)

χj +
1√
3
(ψj · vl)(ψj · v̂l) = bl +O(R2

j ),

vl · ψj = cl +O(R2
j ),

(8.19)

for j = 1, 2 where d is a positive number. The new coordinates satisfy the
properties that Rj ≥ 0, Rj = 0 corresponds to the axis Γl, and Rj(0) =
Yj(0) = 0. In analogy with (8.9), near the pole we then have

(8.20)
F (s) = λ(s)vlv

T
l + λ̂(s)v̂lv̂

T
l +O(R2

1 +R2
2),

F−1(s) = λ(s)−1vlv
T
l + λ̂(s)−1v̂lv̂

T
l +O(1),

where

(8.21) λ(s) ∼ sR2
1 + (1− s)R2

2, λ̂(s) ∼ d.
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It is shown in [36, pg. 669] that the two sets of coordinate functions (Rj, Yj),
j = 1, 2 are asymptotic to one another, and therefore as in (8.10) we find
that F−1(s)Ḟ (s) = O(1). This ensures that the first two terms of (6.1) are
appropriately controlled near poles. Furthermore, in light of (8.18), (8.19)
the difference equations (8.3), (8.4) remain valid here with O(ρ2) replaced by
O(R2

1 +R2
2). It follows that we may imitate the arguments of (8.11)-(8.16)

to establish boundedness of the remaining terms of (6.1), so that L(Ψ(s)) =
O(1). Hence, the distance d(Ψ1,Ψ2) is bounded in a neighborhood of poles.

It remains to consider region (5), consisting of a neighborhood of the
corner points where two axis rods intersect. This, however, may be treated
in an analogous way to region (4). Namely, following [36, pg. 669], new
coordinates may be introduced in a neighborhood of a corner point, which
elucidate the degeneracy present in the matrices F j. From there, as in case
(4), the procedure given in case (1) may be employed to conclude that
L(Ψ(s)) = O(1). Therefore, the distance d(Ψ1,Ψ2) is bounded globally.

Γl4

z−axis
z1 z2=zl1−1 zl3

v1

v1

v1

vl4

vL+1

vL+1

Figure 2. Rod Diagram and Dipole Charges.

It remains to show that the constants ajl , b
j
l , and cjl are independent

of j. Let l = 1, . . . , L+ 1 enumerate the entire sequence of rods along the
z-axis as in (5.2). There are m horizon rods and n axis rods. We begin
by showing that c1l = c2l by demonstrating that these constants are uniquely
determined by knowledge of n− 2 dipole charges. Recall that these constants
determine the magnetic potential in the rod structure direction along an
axis rod Γl = [zl, zl−1], namely vl · ψj = cjl . Since the potential ψ has two
components it is defined up to the choice of two integration constants, which
we choose to obtain cj1 = cjL+1 = 0. Suppose first that all rod structures are
pairwise linearly independent with v1. Take a semi-circle in the ρz-half plane
orbit space emanating from the left most corner point z1 to the next corner
point z2, see Figure 2. Together with the orbit S1 associated with vi1∂φi , this
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semi-circle represents an S2 bubble having dipole charge

(8.22) D2(v1) = v1 ·
(

ψj(z2)− ψj(z1)
)

.

Therefore, knowledge of D2(v1) and v1 · ψj(z1) = cj1 = 0 gives rise to knowl-
edge of v1 · ψj(z2). Next, take a semi-circle connecting z2 to the next corner
point z3. Then in the same way, knowledge of D3(v1) and v1 · ψj(z2) yields
knowledge of v1 · ψj(z3). Continue this process down the z-axis until reaching
a horizon rod or the last corner point. We then have determined v1 · ψj(zl),
l = 1, . . . , l1 − 1 where Γl1+1 = [zl1+1, zl1 ] is the first horizon rod. Now ex-
tend a semi-circle emanating from zl1−1 to the next corner point zl2 ; note
that this may require jumping over more than one horizon rod. This semi-
circle has a v1-dipole charge associated with it, and its value together with
v1 · ψj(zl1−1) determines v1 · ψj(zl2). We may proceed in this way, down to
the last corner point, to obtain the v1-direction of ψ at all corner points
from knowledge of v1-dipole charges.

The next step involves a similar process going from the right of the z-
axis leftwards. Consider the semi-infinite rod ΓL+1 at the right of the z-axis.
If this is part of a larger connected sequence of axis rods, then zL is a corner
point. By the set up vL+1 · ψj(zL) = cjL+1 = 0, and by the above process

the value of v1 · ψj(zL) is determined. Thus, since v1 and vL+1 are linearly
independent, we know the whole vector ψj(zL). It follows that c

j
L = vL · ψj

is determined on ΓL. Since vL is linearly independent with v1, if zL−1 is
another corner point we may similarly determine cjL−1. In fact, this may be

continued to obtain all cjl associated with this connected sequence of axis
rods. Take now a semi-circle emanating from the bottom axis rod ΓL+1 and
ending on a corner point zl3 of another connected sequence of axis rods.
Knowledge of the vL+1-dipole charge affiliated with this semi-circle then
gives knowledge of vL+1 · ψj(zl3), from which we may determine the whole
vector ψj(zl3) since v1 · ψj(zl3) is already known. As before this yields all
constants cjl inherent to this sequence.

The above process uniquely determines all constants cjl from knowledge
of dipole charges, except those arising from axis rods which are bordered
by two horizon rods. Consider such an axis rod Γl4 , and take a semi-circle
connecting it to a corner point zl5 (in Figure 2, zl5 = zl3). Then knowledge
of the vl4-dipole charge coming from this semi-circle determines cjl4 , since

the whole vector ψj(zl5) has previously been determined. It should be noted
that the corner point zl5 may be the ‘corner at infinity’ if no proper corner
points are present. Moreover, this algorithm was carried out with the initial
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assumption that all rod structures are pairwise linearly independent with
v1. However, straightforward modifications may be made in the case that
this assumption is not valid. Finally, simple bookkeeping shows that a total
of n− 2 dipole charges are used to fully determine the constants and show
that c1l = c2l .

We now treat the constants bjl and show that they are uniquely deter-
mined by dipole charges and the electric charge of each horizon compo-
nent. As above we choose a gauge in which cj1 = cjL+1 = 0. This implies, by

(6.14), that χj(Γ1) = bj1 and χj(ΓL+1) = bjL+1. The potential χ is defined
up to a constant, and by an appropriate choice of this constant we obtain
χj(Γ1) = bj1 = 0. Since the total electric charge (evaluated at infinity) is ex-
pressed in terms of the difference χj(Γ1)− χj(ΓL+1), which in turn is given
as a sum of dipole charges and electric charges of horizon components, the
value bjL+1 is determined. We now proceed from top to bottom in a step by
step fashion along the z-axis. Observe that from (6.14)

(8.23) bj2 = χj(z1) +
c2√
3
v̂2 · ψj(z1) =

c2√
3
v̂2 · ψj(z1),

and the right-hand side is fully determined by dipole charges. With bj2 in
hand we then know the value of

(8.24) χj(z2) = bj2 −
c2√
3
v̂2 · ψj(z2)

in terms of dipole charges. Continuing in this way down the axis, the values
of bjl and the values of χj at corner points before the first horizon rod Γl1+1

are known. Since the charge of this horizon component is given in terms of
the difference bjl1+2 − bjl1 , it follows that bjl1+2 is determined. This process
may now be repeated until all the constants are found in terms of the fixed
dipole and electric charges. We then have b1l = b2l .

Finally the angular momentum constants may be treated analogously to
those of electric charge, so that they are uniquely determined by the angular
momenta of the horizon components and dipole charges resulting in a1l = a2l .

Appendix A. Conical singularities and geometric regularity

There are two possible regularity issues that can arise when constructing
the spacetime (M5,g) with metric

g = −f−1ρ2dt2 + e2α(dρ2 + dz2) + fij(dϕ
i + ωidt)(dϕj + ωjdt),

α = σ − 1
2 log f,

(A.1)
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from the harmonic map φ : R3 \ Γ → G2(2)/SO(4). More precisely, these are
the questions of geometric regularity and analytic regularity. Geometric reg-
ularity concerns the ability to smoothly extend the spacetime metric across
the rods and is related to the potential presence of conical singularities,
while analytic regularity concerns the differentiability properties of the har-
monic map up to the orbit space boundary after the singular part has been
removed. We will not treat the issue of analytic regularity here, and note
that it has only relatively recently been established for the Einstein-Maxwell
equations in the classical 4D setting by Nguyen [55], for the interior of axis
rods. In this setting, the question of analytic regularity at poles is apparently
still open. On the other hand, the 4D vacuum case was treated independently
by Li-Tian [48, 49] and Weinstein [64]. In this appendix we will show that,
assuming a minimal amount of analytic regularity for the harmonic maps
constructed above, the question of geometric regularity is resolved precisely
when the axes are devoid of conical singularities.

To begin, we will examine geometric regularity at the interior of a horizon
rod Γh. Note that since the harmonic map remains bounded at such points,
equation (4.13) shows that Ωi = −ωi|Γh

, i = 1, 2 are constant on the horizon
and therefore the Killing field ∂t +Ωi∂φi becomes null there, making each
such rod represent a Killing horizon. By using the change of coordinates
t̃ = t, ϕ̃i = ϕi − Ωit (where ϕi are viewed as coordinates on the universal
cover R2 of T 2), the metric becomes

g = −f−1ρ2dt̃2 + e2α(dρ2 + dz2) + fij(dϕ̃
i + ω̃idt̃)(dϕ̃j + ω̃jdt̃),

α = σ − 1
2 log f,

(A.2)

with ω̃i = ωi +Ωi = ρ2ω̄i for some regular ω̄i. Furthermore, observe that
from (4.20) and (6.1) the following quadrature equations hold globally

αρ =
ρ

8

[

(log f)2ρ − (log f)2z +TrF−1FρF
−1Fρ

− TrF−1FzF
−1Fz − 4ρ−1(log f)ρ

+ 2f−1ΘT
ρ F

−1Θρ − 2f−1ΘT
z F

−1Θz + 2f−1(Υ2
ρ −Υ2

z)

+2ψTρ F
−1ψρ − 2ψTz F

−1ψz
]

,

αz =
ρ

4

[

(log f)ρ(log f)z +TrF−1FρF
−1Fz − 2ρ−1(log f)z

+2f−1ΘT
ρ F

−1Θz + 2f−1ΥρΥz + 2ψTρ F
−1ψz

]

.

(A.3)

Thus, integrating (A.3) produces α = −1
2 log f − log c+ ᾱ near Γh for a con-

stant c > 0 which is related to the horizon surface gravity [36, Appendix],
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and a function ᾱ = O(ρ2). It follows that

− f−1ρ2dt̃2 + e2α(dρ2 + dz2)(A.4)

= c−2f−1e2ᾱ
(

−c2ρ2dt̃2 + dρ2 + dz2
)

+O(ρ4)dt̃2.

Introducing Kruskal-type coordinates X,Y > 0 given by XY = ρ2, X/Y =
e2ct̃ then yields

g = c−2f−1e2ᾱ
(

dXdY + dz2
)

+ fij

(

dϕ̃i + ω̄i

2c (Y dX −XdY )
)(

dϕ̃j + ω̄i

2c (Y dX −XdY )
)

+O(1)(Y dX −XdY )2,

(A.5)

near the interior of Γh. Therefore, the geometry is regular across the interior
of horizon rods without the need to balance certain parameters.

Regularity of the solution at axis rods, corners, and poles, however, does
rely on the balancing of parameters to relieve geometric singularities. Con-
sider first a small neighborhood Va ⊂ M̂2 in the orbit space of an interior
point to an axis rod Γl, which does not intersect the endpoints of Γl. We may
assume without loss of generality that the rod structure of Γl is (1, 0). As-
suming analytic regularity yields expansions of the harmonic map variables
in ρ. In particular

(A.6) F =

(

eu O(ρ2)
O(ρ2) ev

)

where u = 2 log ρ+ ū in which ū and v are regular function, and as in (8.1),
(8.2) the potentials satisfy

(A.7)

ζ1 +
1

3
√
3
ψ2
1ψ2 + ψ1(χ− bl) = al +O(ρ4),

ζ2 −
1

3
√
3
ψ1ψ

2
2 = âl +O(ρ2),

(A.8) χ+
1√
3
ψ1ψ2 = bl +O(ρ2), ψ1 = cl +O(ρ2),

for some potential constants al, âl, bl, and cl. This implies that the potential
expressions within the brackets of (A.3) are bounded. It follows that

(A.9) αρ =
1

2
ūρ +O(ρ), αz =

1

2
ūz +O(ρ2),
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and hence α = 1
2 ū+ c+O(ρ2) in Va, for some constant c. The spacetime

metric over Va may then be written as

g = −eO(1)dt2 + eū+2c+O(ρ2)(dρ2 + dz2) + eu(dϕ1)2(A.10)

+O(ρ2)dϕ1dϕ2 + ev(dϕ2)2.

Clearly, the absence of a conical singularity on Γl is equivalent to c = 0. In
this case, we may make the change of coordinates x = ρ cosϕ1, y = ρ sinϕ1

to find

eū+O(ρ2)dρ2 + eu(dϕ1)2 = eū
(

dx2 + dy2
)

+O(1) (xdx+ ydy)2 ,

O(ρ2)dϕ1dϕ2 = O(1) (xdy − ydx) dϕ2.
(A.11)

Therefore, the metric (A.10) is geometrically regular across the interior of
the axis rod Γl.

Next let Vc ⊂ M̂2 be a neighborhood of a corner, which separates two
axis rods Γ1 to the north and Γ2 to the south. By performing a coordi-
nate change in the torus fibers if necessary, we may assume without loss
of generality that Γ1, Γ2 have rod structures (1, 0), (0, 1) respectively. In
addition, the origin of the orbit space coordinates may be taken to be the
corner point intersection of these two axis rods, and the Euclidean distance
to the origin will be denoted r =

√

ρ2 + z2. Then assuming analytic regu-
larity and a sufficiently small Vc, there exist regular functions ū, v̄ such that
u = log(r − z) + ū, v = log(r + z) + v̄ contribute to the expansion

(A.12) F =

(

eu O(ρ2)
O(ρ2) ev

)

,

and as in (8.1), (8.2) the potentials satisfy

(A.13)

ζ1 +
1

3
√
3
ψ2
1ψ2 + ψ1(χ− b) = a+O(|r − z|2),

ζ2 −
1

3
√
3
ψ1ψ

2
2 = â+O(|r − z|),

(A.14)

ζ2 +
1

3
√
3
ψ1ψ

2
2 + ψ2(χ− b) = â− c1c

2
2√
3

+O(|r + z|2),

ζ1 −
1

3
√
3
ψ2
1ψ2 = a+

c21c2√
3

+O(|r + z|),
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(A.15)
χ+

1√
3
ψ1ψ2 = b+O(ρ2), ψ1 = c1 +O(|r − z|),

ψ2 = c2 +O(|r + z|),

for some potential constants a, â, b, c1, and c2. This implies that the potential
expressions within the brackets of (A.3) are bounded. It follows that

αρ =− ρ

2r2
+

(r + z)

4r
ūρ +

(r − z)

4r
v̄ρ +

ρ

4r
(ūz − v̄z) +O(ρ),

αz =− z

2r2
+

(r + z)

4r
ūz +

(r − z)

4r
v̄z −

ρ

4r
(ūρ − v̄ρ) +O(ρ2).

(A.16)

On Vc we then have

(A.17) α = −1

2
log r +

(r + z)

4r
(ū− ū(0)) +

(r − z)

4r
(v̄ − v̄(0)) + c+O(ρ2),

for some constant c and where ū(0), v̄(0) denote these functions evaluated
at the corner. The spacetime metric over Va may then be written as

g = −eO(1)dt2 + (r − z)eū(dϕ1)2 + (r + z)ev̄(dϕ2)2 +O(ρ2)dϕ1dϕ2

+ r−1 exp

(

2c+
(r + z)

2r
(ū− ū(0)) +

(r − z)

2r
(v̄ − v̄(0)) +O(ρ2)

)

× (dρ2 + dz2).

(A.18)

The absence of conical singularities on the two axis rods Γ1, Γ2 implies that
ū(0) = v̄(0) and 2e2c = eū(0) = ev̄(0). Furthermore, note that the geometric
angle at the pole between the rods is π/2, and not π as it is in the orbit space.
This motivates the change to new coordinates ξ, η ≥ 0 given by z + iρ =
1
2(ξ + iη)2, or equivalently ρ = ξη, z = 1

2

(

ξ2 − η2
)

, in which the metric takes
the form

g = −eO(1)dt2 + η2eū(dϕ1)2 + ξ2ev̄(dϕ2)2 +O(ξ2η2)dϕ1dϕ2

+ exp

(

ū(0) +
ξ2

ξ2 + η2
(ū− ū(0)) +

η2

ξ2 + η2
(v̄ − v̄(0)) +O

(

ξ2η2
)

)

× (dξ2 + dη2).

(A.19)

Now define two pairs of Cartesian coordinates x1 = η cosϕ1, y1 = η sinϕ1,
and x2 = ξ cosϕ2, y2 = ξ sinϕ2 with

(A.20) dη2 + η2(dϕ1)2 = dx21 + dy21, η2dη2 = (x1dx1 + y1dy1)
2,
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(A.21) dξ2 + ξ2(dϕ2)2 = dx22 + dy22, ξ2dξ2 = (x2dx2 + y2dy2)
2.

We then have

g =− eO(1)dt2 + eū
(

η2(dϕ1)2 + dη2 +O

(

ū− v̄ − ū(0) + v̄(0)

ξ2 + η2
+ ξ2

)

η2dη2
)

+ ev̄
(

ξ2(dϕ2)2 + dξ2 +O

(

ū− v̄ − ū(0) + v̄(0)

ξ2 + η2
+ η2

)

ξ2dξ2
)

+O(ξ2η2)dϕ1dϕ2

=− eO(1)dt2 + eū
(

dx21 + dy21 +O
(

r̄2
)

(x1dx1 + y1dy1)
2
)

+ ev̄
(

dx22 + dy22 +O
(

r̄2
)

(x2dx2 + y2dy2)
2
)

+O(1) (y1dx1 − x1dy1) (y2dx2 − x2dy2) ,

(A.22)

where r̄2 =
∑

(x2i + y2i ) and the regularity of ū− v̄ at the corner has been
used. Therefore, the metric (A.1) is geometrically regular across corner
points.

Finally, consider a neighborhood Vp ⊂ M̂2 of a pole, separating an axis
rod Γl to the north (without loss of generality) having rod structure (1, 0),
and a horizon rod Γh to the south. Similarly to the corner case, we will
take the origin of the coordinate system to be centered at the pole. Then
assuming analytic regularity and a sufficiently small Vp, there exist regular
functions ū and v with u = log(r − z) + ū such that

(A.23) F =

(

eu O(|r − z|)
O(|r − z|) ev

)

,

and as in (8.1), (8.2) the potentials satisfy

ζ1 +
1

3
√
3
ψ2
1ψ2 + ψ1(χ− b) = al +O(|r − z|2),

ζ2 −
1

3
√
3
ψ1ψ

2
2 = âl +O(|r − z|),

(A.24)

(A.25) χ+
1√
3
ψ1ψ2 = bl +O(|r − z|), ψ1 = cl +O(|r − z|),
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for some potential constants al, âl, bl, and cl. This implies that the potential
expressions within the brackets of (A.3) are bounded. It follows that

αρ =− ρ

2r2
+

z

2r
ūρ +

(z − r)

4r
ṽρ +

ρ

4r
(2ūz + ṽz) +O(ρ),

αz =− z

2r2
+

z

2r
ūz +

(z − r)

4r
ṽz −

ρ

4r
(2ūρ + ṽρ) +O(ρ2),

(A.26)

where ṽ = v + f̃ and ef̃ = e−u−vf . On Vp we then have

(A.27) α = −1

2
log r +

z

2r
(ū− ū(0)) +

(z − r)

4r
(ṽ − ṽ(0)) + c+O(ρ2),

for some constant c and where ū(0), ṽ(0) denote these functions evaluated
at the pole. The spacetime metric over Vp may then be written as

g =− ρ2e−ū−ṽ

r − z
dt2 + (r − z)eū(dϕ1)2 + ev(dϕ2)2 +O(|r − z|)dϕ1dϕ2

+ r−1 exp

(

2c+
z

r
(ū− ū(0)) +

(z − r)

2r
(ṽ − ṽ(0)) +O(ρ2)

)

(dρ2 + dz2).

(A.28)

The absence of a conical singularity on the axis rod implies that 2e2c = eū(0).
As above we are motivated to change to new coordinates ξ, η ≥ 0 given by
z + iρ = (ξ + iη)2, or equivalently ρ = 2ξη, z = ξ2 − η2 in which the metric
takes the form

g =− 2ξ2e−ū−ṽdt2 + 2η2eū(dϕ1)2 + ev(dϕ2)2 +O(η2)dϕ1dϕ2

+ 2 exp

(

ū(0) +
ξ2(ū− ū(0))− η2(ū+ ṽ − ū(0)− ṽ(0))

ξ2 + η2
+O

(

ξ2η2
)

)

× (dξ2 + dη2) .

(A.29)

Now define Cartesian coordinates x = η cosϕ1, y = η sinϕ1, and Kruskal-

type coordinates X,Y > 0 with XY = ξ2, X/Y = exp
(

2te−ū(0)−
1

2
ṽ(0)
)

so

that

(A.30) dη2 + η2(dϕ1)2 = dx2 + dy2, η2dη2 = (xdx+ ydy)2,

(A.31) dξ2 − e−2ū(0)−ṽ(0)ξ2dt2 = dXdY, ξ2dξ2 =
1

4
(Y dX +XdY )2.
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We then have

g = 2e−ū−ṽ+2ū(0)+ṽ(0)

(

dXdY +O

(

2ū+ ṽ − 2ū(0)− ṽ(0)

ξ2 + η2
+ η2

)

× (Y dX +XdY )2
)

+ 2eū
(

dx2 + dy2 +O

(

2ū+ ṽ − 2ū(0)− ṽ(0)

ξ2 + η2
+ ξ2

)

(xdx+ ydy)2
)

+ ev(dϕ2)2 +O(1)(xdy − ydx)dϕ2.

(A.32)

Since 2ū+ ṽ is a regular function at the pole we find that the error terms
involving this quantity are regular. It follows that the metric (A.1) is geo-
metrically regular across horizon poles.

A similar analysis may be used to show that the Maxwell field F of
(5.1) is a regular 2-form on the spacetime, assuming analytic regularity of
the harmonic map.

Appendix B. The coset representative and Mazur quantity

In this appendix we give an explicit expression for the positive definite uni-
modular coset representative Ψ parameterizing the noncompact symmetric
space target manifold G2(2)/SO(4), and use it to compute to the Mazur
quantity as well as to establish positivities that are employed in Section 7.
We will follow the presentation given in [43] which is adapted for a reduc-
tion of the supergravity equations with two spacelike Killing fields, rather
than one timelike and one spacelike Killing field derived originally in [8].
Let Ñ denote the set of 7× 7 positive definite unimodular matrices, then
Ψ : R3 \ Γ → Ñ is given by:

(A.1) Ψ =





A B
√
2R

BT C
√
2U√

2RT
√
2UT S



 ,

with inverse

(A.2) Ψ−1 =





C BT −
√
2U

B A −
√
2R

−
√
2UT −

√
2RT S



 ,

where A, C are symmetric 3× 3 matrices, B is a 3× 3 matrix, R, U are
3× 1 matrices and S is a scalar. Upon setting χ =

√
3µ, ψi = −

√
3νi, and
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F = (fij), f = detF these submatrices may be expressed as

A =

(

(1 + F−1µ2)F + F−1ζ̃ ζ̃T + (2 + νT ν)ννT + µ√
f
(ννTJ− JννT ) −f−1ζ̃

−f−1ζ̃T f−1

)

,

B =

(

ννT − µ√
f
J+ 1√

f
ζ̃νTJ υ

−νTJ√
f

µ2

f
− νTJζ̃√

f

)

,

C =

(

(1 + νT ν)F−1 − ννT ζ̃ + ( µ
2

√
f
− νTJζ̃)Jν − µν

ζ̃T + ( µ
2

√
f
− νTJζ̃)JνT − µνT c

)

,

U =

(

(F−1 − µ√
f
J)ν

νTF−1ζ̃ − µ[1 + νT ν + µ2

f
− 1√

f
νTJζ̃]

)

,

R =

(

(1 + νT ν)ν − µ√
f
Jν + µ

f
ζ̃

−µ
f

)

,

S =1 + 2(νT ν + f−1µ2),

(A.3)

where ν represents a column vector with components νi and similarly for ζ
with

ζ̃i = ζi − µνi,

υ = −
(

1− µ2

f

)

√

fJν − (2 + νT ν)µν + νTF−1ζ̃ν

+

(

−µ
2

f
+
νTJζ̃√
f

)

ζ̃ − µ√
f
Jζ̃ ,

c = ζ̃T ζ̃ − 2µνT ζ̃ + f [1 + νT ν + (2 + νT ν)f−1µ2 + f−2(µ2 − νTJζ̃
√

f)2],

(A.4)

and

(A.5) J =

(

0 1
−1 0

)

.

For comparison, when the Maxwell field is set to zero (χ = ψi = 0), the
above coset representative considerably simplifies to

(A.6) Ψvacuum =





Φ−1 0 0
0 Φ 0
0 0 1



 ,
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where Φ is the coset representative for the target space SL(3,R)/SO(3) used
in [41].

We are interested in computing the Mazur quantity Tr(Ψ−1
0 Ψ), where Ψ

and Ψ0 are two coset representatives. In order to carry out this computation,
it is beneficial to express (A.1) as a product of simpler matrices. Such a
decomposition is given by Clement [18], with the replacement τ → −f to
take into account the fact that we are reducing on two spacelike Killing
fields. We will write

(A.7) Ψ = VTζ VTµ VTν FVνVµVζ ,

where Vν ,Vµ,Vζ , and F are the following unimodular 7× 7 matrices, which
for notational convenience are expressed as 5× 5 matrices with the first and
third columns each represent two columns (e.g. the upper left minor in F

and Vζ are the 2× 2 matrices F and the 2-dimensional identity matrix I2
respectively):
(A.8)

F =













F 0 0 0 0
0 f−1 0 0 0
0 0 F−1 0 0
0 0 0 f 0
0 0 0 0 1













, Vζ =













I2 0 0 0 0
−ζT 1 0 0 0
0 0 I2 ζ 0
0 0 0 1 0
0 0 0 0 1













,

(A.9)

Vµ =













I2 0 0 0 0

0 1 0 µ2 −
√
2µ

µJ 0 I2 0 0
0 0 0 1 0

0 0 0 −
√
2µ 1













,

Vν =













I2 0 0 −Jν 0
0 1 −νTJ 0 0

ννT 0 I2 0
√
2ν

0 0 0 1 0√
2νT 0 0 0 1













.

Let P = VνVµVζ and observe that

Tr
(

Ψ−1
0 Ψ

)

= Tr
(

P−1
0 F−1

0 (P T0 )−1P TFP
)

(A.10)

= Tr
(

F−1
0 (PP−1

0 )TFPP−1
0

)

,
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where the subscript 0 indicates matrices associated with Ψ0. It follows that

PP−1
0 =













I2 0 0 −J(ν − ν0) 0
L1 1 −(ν − ν0)

TJ L2 L3

L5 0 I2 L4

√
2(ν − ν0)

0 0 0 1 0√
2(ν − ν0)

T 0 0 −
√
2(µ− µ0)−

√
2νT0 Jν 1













,

(A.11)

where we have defined the (row) vector

(A.12) L1 = 2νT0 (µ− µ0)− (ζ − ζ0)
T + νT0 (ν

T
0 Jν) + νT (µ− µ0),

the scalars

L2 = (µ− µ0)
2 + (ζ − ζ0)

TJ(ν − ν0)− (µ− µ0)ν
T
0 Jν,

L3 = −
√
2(µ− µ0)−

√
2νT0 Jν,

(A.13)

the (column) vector

(A.14) L4 = (νTJν0)ν − (µ− µ0)ν0 − 2(µ− µ0)ν + (ζ − ζ0),

and finally the 2× 2 matrix

(A.15) L5 = (ν − ν0)(ν − ν0)
T +

[

νT0 Jν + (µ− µ0)
]

J.

Using this decomposition it is straightforward to calculate
(A.16)

FPP−1
0 =













F 0 0 −FJ(ν − ν0) 0
f−1L1 f−1 −f−1(ν − ν0)

TJ f−1L2 f−1L3

F−1L5 0 F−1 F−1L4

√
2F−1(ν − ν0)

0 0 0 f 0√
2(ν − ν0)

T 0 0 −
√
2(µ− µ0)−

√
2νT0 Jν 1













,

and
(A.17)

F−1
0 (PP−1

0 )T =













F−1
0 F−1

0 LT1 F−1
0 LT5 0

√
2F−1

0 (ν − ν0)
0 f0 0 0 0
0 F0J(ν − ν0) F0 0 0

f−1
0 (ν − ν0)

TJ f−1
0 L2 f−1

0 LT4 f−1
0 −

√
2f−1

0 (µ− µ0)−
√
2f−1

0 νT0 Jν

0 L3

√
2(ν − ν0)

T 0 1













.
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Finally, the Mazur quantity is obtained by taking the trace of the matrix
resulting from the multiplication of (A.16) and (A.17), which yields

Tr
(

Ψ−1
0 Ψ

)

= Tr(F−1
0 F ) + f−1Tr(F−1

0 LT1 L1) + Tr(F−1
0 LT5 F

−1L5)

+ 2Tr[F−1
0 (ν − ν0)(ν − ν0)

T ] + f0f
−1

+ f−1Tr[F0J(ν − ν0)(J(ν − ν0))
T ]

+ Tr(F0F
−1) + f−1

0 (J(ν − ν0))
TFJ(ν − ν0) + f−1

0 f−1L2
2(A.18)

+ f−1
0 LT4 F

−1L4

+ f−1
0 f + 2f−1

0

(

µ− µ0 + νT0 Jν
)2

+ f−1L2
3 + 2(ν − ν0)

TF−1(ν − ν0) + 1.

Since the matrices F and F0 are positive semi-definite, it may be verified that
each term in this expression is nonnegative, with the help of the elementary
fact that the product of two positive semi-definite matrices has nonnegative
trace.
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