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MULTIAXISYMMETRIC VACUUM BLACK HOLES

IN HIGHER DIMENSIONS

VISHNU KAKKAT, MARCUS KHURI,

JORDAN RAINONE AND GILBERT WEINSTEIN

Extending recent work in 5 dimensions, we prove the existence and unique-

ness of solutions to the reduced Einstein equations for vacuum black holes

in (n + 3)-dimensional spacetimes admitting the isometry group R × U(1)n,

with Kaluza±Klein asymptotics for n ≥ 3. This is equivalent to establish-

ing existence and uniqueness for singular harmonic maps ϕ : R
3 \ Ŵ →

SL(n + 1, R)/SO(n + 1) with prescribed blow-up along Ŵ, a subset of the

z-axis in R
3. We also analyze the topology of the domain of outer communica-

tion for these spacetimes, by developing an appropriate generalization of the

plumbing construction used in the lower-dimensional case. Furthermore, we

provide a counterexample to a conjecture of Hollands±Ishibashi concerning

the topological classification of the domain of outer communication. A refined

version of the conjecture is then presented and established in spacetime

dimensions less than 8.

1. Introduction

In several recent papers, harmonic maps into symmetric spaces were used to con-

struct solutions of the 5-dimensional Einstein equations with symmetry group

R×U(1)2. More precisely, in this situation the Einstein vacuum equations reduce to

an axially symmetric harmonic map with prescribed singularities from R
3 into the

symmetric space SL(3, R)/SO(3). In [16], solutions of this problem corresponding

to spacetimes which are asymptotically flat were constructed, while in [15] a similar

approach was applied to obtain solutions with Kaluza±Klein and locally Euclidean

asymptotics. Furthermore, the absence of conical singularities on the two unbounded

axes was also established in [15]. It is important to emphasize, however, that many

of these solutions are expected to have conical singularities on at least one of the
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bounded components of the axis. In [1], existence and uniqueness results were

produced for the stationary biaxisymmetric minimal supergravity equations, while

in [17] plumbing of disk bundles was used to analyze the topology of the domain

of outer communication (DOC) of these solutions. It is the purpose of the present

work to extend these results to (n + 3)-dimensional vacuum gravity with symmetry

group R ×U(1)n . Similarly, the Einstein vacuum equations in this setting reduce to

an axially symmetric harmonic map with prescribed singularities from R
3 to the

symmetric space target SL(n + 1, R)/SO(n + 1).

A significant motivation for this higher-dimensional study is to expand the avail-

ability of candidate regular solutions, as well as to expand the range of topologies

exhibited. It is expected that in 4 dimensions, all asymptotically flat stationary

and axially symmetric vacuum solutions with more than one horizon, the cross-

sections of which must be 2-spheres, will have a conical singularity on some

bounded component of the axis of rotation. Some results in this direction have

been obtained [3; 9; 21; 40], but a complete resolution is still out of reach. On

the other hand, in dimension 5, there are several known regular solutions other

than the S3-horizon Myers±Perry [30] black holes, namely the Emparan±Reall and

Pomeransky±Sen’kov black rings [6; 38] having horizon topology S1 × S2, the

black saturns [4] of Elvang±Figueras, as well as the black birings [5] and dirings [7;

14] found by Elvang±Rodriguez, Evslin±Krishnan, and Iguchi±Mishima. Recent

work by Lucietti±Tomlinson concerning the existence of conical singularities may

be found in [24; 25], see also [18; 19]. It is reasonable to expect that many more

regular solutions may be found in higher dimensions, other than trivial examples

obtained for instance by taking products of known solutions with flat tori. The

spacetimes that we produce provide a plethora of candidates having an increasing

variety of topologies for the domain of outer communication. Moreover, even those

solutions with a conical singularity should be of interest, since we expect that one

could perturb time slices to obtain initial data, satisfying relevant energy conditions,

with outermost apparent horizon and DOC having exotic topologies.

Motivation is also derived from questions regarding the topological classification

of the domain of outer communication. Specifically, we address Conjecture 1 in [10],

which postulates that under reasonable hypotheses, the topology of a Cauchy slice in

the DOC can be obtained by removing the black hole region from the connected sum

of a product of spheres with the asymptotic region. We provide a counterexample

to this statement, and discuss why the spirit of the conjecture may nevertheless

remain valid. We then offer a refined version of the conjecture, and present a proof

for spacetime dimensions less than 8.

The methods used here parallel those employed in [15; 16; 17] with a number

of notable differences which we now point out. The rod structure, an n-tuple of

relatively prime integers associated with each axis rod, and which determines the
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combination of the Killing fields that degenerate on that rod, is much more complex

than in the 5-dimensional setting where it was merely a pair of relatively prime

integers. In particular, the admissibility condition at the corners (points where two

axis rods meet), which ensures that the reconstructed spacetime has the structure of

a manifold, now involves second determinant divisors. We are thus led to use Smith

and Hermite normal forms. Also, the energy estimates for harmonic maps into

higher rank symmetric spaces, needed to prove existence, require us to extend the

construction of horocyclic coordinates to these more complicated spaces. Finally,

the plumbing construction used to analyze the topology of the DOC in 5 dimensions

must be generalized in higher dimensions, and involves in addition to the disk bundle

integer invariants, a so-called ªplumbing vectorº which describes how neighboring

bundles are glued together.

The paper is organized as follows. The next section presents necessary back-

ground and states the main results. In Section 3, we apply Smith and Hermite

normal forms to describe the rod structures of T n-manifolds. The model map, an

approximate solution of the harmonic map problem, is constructed in Section 4. In

Section 5, we produce horocyclic coordinates on the symmetric space target and use

them to derive energy estimates. The domain of outer communication is analyzed in

Section 6, using an adaptation of the technique of plumbing from the topology of disk

bundles. We conclude with a study of the Hollands±Ishibashi conjecture in Section 7.

2. Background and main results

A connected asymptotically locally Kaluza±Klein stationary vacuum spacetime, with

3, 4, or 5 ªlargeº asymptotically (locally) flat dimensions, will be referred to as well-

behaved if the orbits of the stationary Killing field are complete, the domain of outer

communication (DOC) is globally hyperbolic, and the DOC contains an acausal

spacelike connected hypersurface which is asymptotic to the canonical slice in the

asymptotic end and whose boundary is a compact cross-section of the horizon. These

assumptions are used for the reduction of the stationary vacuum equations and are

consistent with [10]. By asymptotically locally Kaluza±Klein we refer to a spacetime

which asymptotes to the ideal geometry (R4−s,1/G) × T n+s−2, where T n+s−2 is a

flat torus, G ⊂ O(4− s) is a discrete subgroup of spatial rotations, and s ∈ {0, 1, 2}.
If G is trivial, then the moniker ªlocallyº is removed from the terminology.

Let (Mn+3, g), n ≥ 1 be a well-behaved asymptotically Kaluza±Klein stationary

n-axisymmetric vacuum spacetime, that is, it admits R × U(1)n as a subgroup

of its isometry group. As a consequence of topological censorship [2] the orbit

space is simply connected, and hence the spacetime metric g may be written in

Weyl±Papapetrou coordinates [10, Theorem 8] as

(2-1) g = f −1e2σ (dρ2 + dz2) − f −1ρ2 dt2 + fi j (dφi + vi dt)(dφ j + v j dt),
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where ( fi j ) is an n × n symmetric positive definite matrix with determinant f ,

and fi j , v j , σ are all functions of ρ and z. Let

(2-2) g3 = e2σ (dρ2 + dz2) − ρ2 dt2, A( j) = v j dt,

then the vacuum equations imply

(2-3) d( f fi j ⋆3 d A( j)) = 0,

where ⋆3 represents the Hodge dual operator with respect to g3. Thus, there exist

globally defined twist potentials ωi such that

(2-4) dωi = 2 f fi j ⋆3 d A( j).

The value of the twist potentials on axes adjacent to the horizons determines the

angular momenta of the black holes. Next, note that we can write the 3-dimensional

reduced Einstein±Hilbert action [27] as

(2-5) S =
∫

R×(Mn+3/[R×U(1)n])
R(3) ⋆3 1 + 1

4
Tr(8−1 d8 ∧ ⋆38

−1 d8),

where

(2-6) 8 =
(

f −1 − f −1 ωi

− f −1 ωi fi j + f −1 ωi ω j

)
, i, j = 1, . . . , n

is symmetric, positive definite, and satisfies det(8) = 1. By varying the action with

respect to 8 and applying R-symmetry, a majority of the reduced Einstein vacuum

equations may be obtained:

(2-7)
τ fl j = 1 fl j − f km∇µ flm∇µ fk j + f −1∇µωl∇µ ω j = 0,

τω j = 1ω j − f kl∇µ f jl∇µ ωk − f lm∇µ flm∇µ ω j = 0.

These are the equations for a harmonic map ϕ : R
3 \Ŵ → SL(n + 1, R)/SO(n + 1).

Given a solution to this system, the remaining metric components vi and σ may

be found [13] by quadrature. Therefore, the stationary vacuum equations in the n-

axially symmetric setting are equivalent to a harmonic map problem with prescribed

singularities on Ŵ, a subset of the z-axis which represents the axes of the U(1)n-

action or rather those points associated with a nontrivial isotropy group.

Consider the orbit space Mn+3/[R×U(1)n]. It is homeomorphic to the right half

plane {(ρ, z) :ρ >0} and its boundary ρ =0 encodes the topology of the horizons [8;

11; 12]. The domain for the harmonic map is obtained from this observation by

adding an ignorable angular coordinate φ ∈ [0, 2π), yielding R
3 parametrized by

the cylindrical coordinates (ρ, z, φ). The harmonic map itself is axisymmetric, as

it does not depend on φ. Uniqueness theorems for higher-dimensional stationary

n-axisymmetric black holes ultimately reduce to the uniqueness question for such

harmonic maps [12], with prescribed axis behavior determined by invariants called
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rod structures as well as a set of potential constants; see Section 3 below for

details. Together this information forms a rod data set, which may be encoded in an

approximate solution referred to as a model map. We then say that the model map

corresponds to the rod data set. If the rods that represent horizon cross-sections have

nonzero length, then the rod structure is associated with nondegenerate black hole

solutions [12, Lemma 7]. The prescribed harmonic map problem is solved by

finding a solution which is asymptotic to the model map. A precise description

of the properties required for the model map is given in Definition 4.1 and the

notion of asymptotic maps is reviewed in Definition 5.1. Our first main result is a

generalization of Theorem 1 in [16]. In particular, it extends the previous result to

higher dimensions and removes the assumption of a compatibility condition for the

rod data. However the notion of admissibility, which is explained in Section 3, is

still retained since this is required to ensure that the total space arising from the rod

structures is a manifold.

Theorem A. (a) For any admissible rod data set, with nondegenerate horizon rods,

there exists a model map ϕ0 : R
3 \Ŵ → SL(n +1, R)/SO(n +1) which corresponds

to the rod data set.

(b) There exists a unique harmonic map ϕ : R
3 \ Ŵ → SL(n + 1, R)/SO(n + 1)

which is asymptotic to the model map ϕ0.

(c) A well-behaved asymptotically (locally) Kaluza±Klein solution of the (n + 3)-

dimensional vacuum Einstein equations admitting the isometry group R×U(1)n can

be constructed from ϕ if and only if the resulting metric coefficients are sufficiently

smooth across Ŵ, and there are no conical singularities on any bounded axis rod.

As indicated in the third part of this theorem, there are two possible regularity

issues that may arise when constructing a spacetime from the harmonic map.

Namely, these are the questions of analytic regularity and geometric regularity.

Analytic regularity concerns differentiability properties of the harmonic map up to

the orbit space boundary after removing the singular part, while geometric regularity

concerns the possible presence of conical singularities [8, Section 3.3]. We note

that in the 4-dimensional vacuum case analytic regularity was treated independently

by Li±Tian [22; 23] and Weinstein [39], whereas the Einstein±Maxwell setting was

addressed more recently by Nguyen [32].

Consider now the topology of the domain of outer communication. In 5 di-

mensions, we obtained a classification theorem [17, Theorem 1] in which the

canonical slice was decomposed into a disjoint union of linearly plumbed disk

bundles over 2-spheres, and a few other more simple pieces. There does not seem

to be a direct natural generalization of linear plumbing which is applicable to

the higher-dimensional setting of stationary n-axisymmetric vacuum spacetimes.

In fact, a naive approach leads to a construction that is not unique, as there are
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various ways to glue the neighboring toroidal fibers together. In order to remedy

this issue we define a generalized or toric plumbing with additional parameters

pi ∈ Z
n which are called plumbing vectors, see Definition 6.6. In the next result, the

higher-dimensional generalization of [17, Theorem 1] is presented. This theorem

applies beyond the realm of vacuum solutions, namely to those satisfying the null

energy condition, which is a hypothesis included to ensure that the topological

censorship theorem [2, Theorem 5.3; 10, Theorem 5] is valid.

We will use the following notation for the building blocks of the decomposition.

The axis Ŵ is a union of intervals {Ŵi, j }
I j +2

i=1 , j = 1, . . . , J called axis rods, each

of which is defined by a particular isotropy subgroup of U(1)n . With each such

rod that is flanked on both sides by another axis, we associate ξ i, j = ξi, j × T n−3

where ξi, j is a (D2) disk-bundle over either the 3-sphere S3, the ring S1 × S2, or a

lens space L(p, q) with p > q relatively prime positive integers. A sequence of

such product spaces may be glued together, with the help of plumbing vectors, to

form the toric plumbing P(ξ 1, j , . . . , ξ I j , j | p2, j , . . . ,pI j , j ). The topologies of ξi, j ,

and the plumbing vectors themselves pi, j , are completely determined by the rod

structures of the axes involved.

Theorem B. The topology of the domain of outer communication of an orientable

well-behaved asymptotically Kaluza±Klein stationary n-axisymmetric spacetime,

with n ≥ 3, and satisfying the null energy condition is Mn+3 = R × Mn+2 where

the Cauchy surface is given by a union of the form

(2-8) Mn+2

=
J⋃

j=1

P(ξ 1, j , . . . , ξ I j , j | p2, j , . . . ,pI j , j )
N1⋃

k=1

Cn+2
k

N2⋃
m=1

B4
m × T n−2

⋃
Mn+2

end ,

in which each constituent is a closed manifold with boundary and all are mutually

disjoint expect possibly at the boundaries. Here Cn+2
k is [0, 1]× D2 × T n−1, B4

m de-

notes a 4-dimensional ball, and the asymptotic end Mn+2
end is given by R+×Y ×T n−2

where Y represents either S3 or S1×S2. Furthermore J , N1, and N2 are the number

of connected components of the axis which consist of three or more axis rods, one

finite axis rod, and two axis rods, respectively.

This result identifies the fundamental constituents of the DOC, and its proof shows

how they may be computed from the rod structure of the torus action. On the other

hand, it does not express the topology in a concise way. In order to achieve this goal,

at least in low dimensions, we observe in the next result that a simplified expression

may be obtained by filling in the horizons and capping off the asymptotic end with

appropriately chosen toric plumbings. In particular, this produces a ªcompactified

DOCº which is a simply connected (n + 2)-manifold without boundary admitting

an effective T n-action. Classification results for such manifolds [33; 34; 35] may
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then be applied to obtain the following theorem, which generalizes [17, Theorem 2]

where the case n = 2 was treated.

Theorem C. Consider the domain of outer communication Mn+3 = R × Mn+2 of

an orientable well-behaved asymptotically Kaluza±Klein stationary n-axisymmetric

spacetime, with 2 ≤ n ≤ 4, satisfying the null energy condition, and having H com-

ponents of the horizon cross-section. There exists a choice of horizon fill-ins

{Mn+2
h }H

h=1 and a cap for the asymptotic end Mn+2
end , each of which is either the

product of a 4-ball with a torus B4 × T n−2 or a finite toric plumbing, such that the

compactified Cauchy surface

(2-9) Mn+2 = (Mn+2 \ Mn+2
end )

H⋃
h=1

Mn+2
h

⋃
Mn+2

end

is homeomorphic to one of the following possibilities, where k = b2(Mn+2) is the

second Betti number and 0 ≤ ℓ ≤ k.

n = 2 n = 3 n = 4

S4 S5 S3×S3

# k
2
(S2×S2) #k(S2×S3) #k(S2×S4)#(k+1)(S3×S3)

ℓCP
2 #(k−ℓ)CP

2 (S2×̃S3)#(k−1)(S2×S3) (S2×̃S4)#(k−1)(S2×S4)#(k+1)(S3×S3)

Moreover, the toric plumbings for each fill-in and cap may be computed algorithmi-

cally from the neighboring rod structures of each horizon and the asymptotic end.

In the chart above, the first row consists of the case when the compactified DOC

is 2-connected, while the second and third rows consist of the spin and nonspin

scenarios, respectively. In the second and third rows the second Betti number k is

positive, and is even for dimension 4 with the spin property. The twisted product

notation is used to denote the nontrivial (and nonspin) sphere bundles over S2. Fur-

thermore, note that S2×̃S2 ∼= CP
2 #CP

2 and CP
2 #CP

2#CP
2 ∼= CP

2 #(S2 ×S2) [35,

Remark 5.8]. This together with [37, Theorem II.4.2, p. 313], shows that in the

nonspin 4 dimensional case an alternate expression for the decomposition may be

given in terms of a connected sum of a number of S2 × S2’s, and either a single

S2×̃S2 or a number of CP
2’s. This is analogous to the result for dimensions 5 and 6

modulo the presence of the complex projective planes. Theorem C may be thought

of as evidence towards a modified version of a conjecture made by Hollands and

Ishibashi in [10, Conjecture 1], concerning the topological classification of the

DOC under a spin assumption. In Section 7 we construct a spacetime which serves

as a counterexample to the original conjecture, and this motivates the refinement

below. Note that Theorem C shows that the following conjecture holds true for

n = 2, 3, 4, if the compactified DOC is spin.
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Conjecture D. Consider the domain of outer communication Mn+3 = R× Mn+2 of

an orientable well-behaved asymptotically Kaluza±Klein stationary n-axisymmetric

spacetime, with n ≥ 2, satisfying the null energy condition. If the Cauchy surface

Mn+2 is spin, then there exists a choice of horizon fill-in and a cap for the asymptotic

end, such that the corresponding compactified DOC is homeomorphic to

(2-10) #n
i=2mi · Si × Sn+2−i

for some nonnegative integers mi .

3. Topology and the rod structure

The topology of the spacetimes considered here will always be of the form R×Mn+2,

due to the assumption of global hyperbolicity. The time slice Mn+2 is assumed to

admit an effective action by the torus T n , and hence the quotient map Mn+2 →
Mn+2/T n exhibits Mn+2 as a T n-bundle over a 2-dimensional base space with

possibly degenerate fibers on the boundary. Fibers over interior points are n-

dimensional, while fibers over points along the boundary can be (n −1)- or (n −2)-

dimensional. The set of points where the fiber is (n −1)-dimensional are called axis

rods while the points with an (n − 2)-dimensional fiber are called corners. The set

of corners is always discrete. If in addition topological censorship holds, as is the

case under the hypotheses of the main theorems, then the base space Mn+2/T n is

homeomorphic to a half plane [12]. The boundary ∂R
2
+ of this half-plane is divided

into disjoint intervals separated by corners or horizon rods where the fibers do not

degenerate. The boundary points of horizon rods are called poles. Associated to

each axis rod interval Ŵi ⊂ ∂R
2
+ is a vector vi ∈ Z

n called the rod structure, that

defines the 1-dimensional isotropy subgroup R/Z · vi ⊂ R
n/Z

n ∼= T n for the action

of T n on points that lie over Ŵi . The topology of the DOC is determined by the rod

structures, namely

(3-1) Mn+2 ∼= (R2
+ × T n)/ ∼,

where the equivalence relation ∼ is given by ( p, φ) ∼ ( p, φ + λvi ) with p ∈ Ŵi ,

λ ∈ R/Z, and φ ∈ T n . This setting is a special case of the following construction.

Definition 3.1. A simple T n-manifold is an orientable smooth manifold Mk , k ≥ n

with an effective T n-action, in which the quotient space Mk/T n is simply connected

and the quotient map defines a trivial fiber bundle over the interior of the quotient.

If Mn+2 is a simply connected T n-manifold (it admits an effective T n-action)

such that ∂(Mn+2/T n) ̸= ∅, then it is necessarily a simple T n-manifold, see

Theorem 7.1. As above, the topology of an (n+2)-dimensional simple T n-manifold

is completely determined by the set of rod structures. A graphical representation

of this information is called a rod diagram, see Figure 1 for examples. These are
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drawn as either a disk in the compact case, or a half plane in the noncompact case,

in which the boundary is divided into segments with associated rod structure vectors

indicating the linear combination of generators that degenerate at the axes. Black

dots represent corners or poles where two rods meet, and the segments drawn with

jagged lines are horizon rods along which the torus action is free. We will revisit

this figure after Lemma 3.3.

It should be noted that the notion of rod structures given above does not guarantee

a unique presentation. Indeed, the vectors v and 2v both generate the same isotropy

subgroup R/Z · v, and thus both can be used to describe the same rod structure.

In order to identify a unique presentation (up to a choice of sign), it is natural to

restrict attention to primitive elements. A vector or a set of vectors {v1, . . . , vk}⊂Z
n

forms a primitive set if they are linearly independent and

(3-2) Z
n ∩ spanR{v1, . . . , vk} = spanZ{v1, . . . , vk}.

For a single vector v = (v1, . . . , vn), this is equivalent to the components be-

ing relatively prime, that is, gcd{v1, . . . , vn} = 1. Next, observe that the group

GL(n, Z) of unimodular matrices provides the group of coordinate transformations

for T n = R
n/Z

n . Two rod diagrams are equivalent if every rod structure of one

is obtained from the corresponding rod structure of the other by the action of the

same unimodular matrix. Thus, quantities depending only on the T n-structure will

be invariant under GL(n, Z) transformations. The following proposition exhibits

an example of such a quantity, Detk , referred to as the kth determinant divisor [31,

Chapter II, Section 14]. In the statement we will use the multiindex notation I n
k , for

k ≤n, to denote the set of k-tuples i = (i1, . . . , ik)∈Z
k such that 1≤ i1 < · · ·< ik ≤n.

Proposition 3.2. Let v1, . . . , vm ∈ Z
n , k ≤ min{m, n}, and set

(3-3) Detk(v1, . . . , vm) = gcd{Q i
j | i ∈ I n

k , j ∈ I m
k },

where Q i
j is the determinant of the k × k minor obtained from the matrix defined

by the column vectors v1, . . . , vm , by picking columns j and rows i . Then Detk is

invariant under GL(n, Z), that is,

(3-4) Detk(v1, . . . , vm) = Detk(Av1, . . . , Avm)

for all A ∈ GL(n, Z).

Proof. Let ω ∈
∧k

Z
n be a k-form on Z

n . Each such form can be written as a linear

combination of the basis elements {ei1 ∧ · · · ∧ eik | i ∈ I n
k }, where {ei } is the basis

of covectors dual to the standard basis {e j } of Z
n so that ei (e j ) = δi

j . Thus

(3-5) ω =
∑

i∈I n
k

ai1...ik
ei1 ∧ · · · ∧ eik , ai ∈ Z,
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where by definition ei1 ∧ · · · ∧ eik (v j1, . . . , v jk ) is the minor determinant Q i
j . Con-

sider the k × k minor determinant Q′ i
j of the matrix formed from the column

vectors Av j1, . . . , Av jk and observe that Q′ i
j is multilinear and antisymmetric

in {v j1, . . . , v jk }. Therefore it is a linear combination as in (3-5) and may be

expressed as

(3-6) Q′ i
j =

∑
i ′∈I n

k

a i
i ′ Q

i ′
j .

Observe that if p ∈ Z divides Q i ′
j for all i ′ ∈ I n

k , then p also divides Q′ i
j and hence

(3-7) Detk(Av1, . . . , Avm) = gcd{Q′ i
j | i ∈ I n

k , j ∈ I m
k }

≥ gcd{Q
j ′

i | i ′ ∈ I n
k , j ∈ I m

k } = Detk(v1, . . . , vm).

Furthermore since A−1 ∈ GL(n, Z), the same reasoning shows that

(3-8) Detk(v1, . . . , vm) = Detk(A−1(Av1), . . . , A−1(Avm))

≥ Detk(Av1, . . . , Avm).

The desired invariance follows from these two inequalities. □

A corner point between two adjacent axis rods is admissible if the total space

over a neighborhood of the corner is a manifold. The importance of the second

determinant divisor in the current context arises from the fact that it determines

whether or not a corner is admissible. Since the corner point represents an (n − 2)-

torus within the total space, a tubular neighborhood will be a manifold if and only

if it is homeomorphic to B4 × T n−2, or equivalently if its boundary is S3 × T n−2.

This last criteria occurs precisely when there is a matrix Q ∈ GL(n, Z) such that

Qv = e1 and Qw = e2, where v, w are the rod structures of the axis rods forming

the corner, and e1, e2 are members of the standard basis for Z
n . Corollary 3.6 below,

guarantees that such a Q exists if and only if Det2(v, w) = 1. The statement of this

result uses the Hermite normal form, whose properties are listed in the next lemma.

A proof of this lemma can be found in [26]. The Hermite normal form may be

viewed as the integer version of the reduced echelon form, or as the integer version

of the Q R decomposition for real matrices.

Lemma 3.3. Let A be a n × k integer matrix. There exist integer matrices Q

and H such that Q A = H , where Q is unimodular and H = (hi j ) has the following

properties.

(1) For some integer m, the rows 1 through m of H are nonzero, and the rows

m + 1 through n are rows of zeros.

(2) There is a sequence of integers 1 ≤ r1 < r2 < · · · < rm ≤ r = rank A such that

the entries hiri
of H , called pivots, are positive for i = 1, . . . , m. The pivot hiri

is the first nonzero element in the row i , that is, hi j = 0 for 1 ≤ j < ri .
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(3) In each column of H that contains a pivot, the entries of the column are

bounded between 0 and the pivot, that is, for i = 1, . . . , m and 1 ≤ j < i we

have 0 ≤ h jri
< hiri

.

The matrix H is unique and is known as the Hermite normal form of A. Further-

more, the Hermite normal form of B A is equal to the Hermite normal form of A

whenever B is a unimodular matrix. Finally, the unimodular matrix Q, known as

the transformation matrix of A, is unique when A is an invertible square matrix.

It should be noted that if the first l columns of A are linearly independent, then

the upper-left l × l block of the Hermite normal form of A is upper triangular with

nonzero diagonal entries, namely ri = i for i = 1, . . . , l. For our purposes, the

matrix A will typically consist of a collection of k rod structures for rods which

are not necessarily adjacent. An example of this is shown in Figure 1, where the

3 × 4 matrix A is assembled from the rod structures on the left (treated as column

vectors), and sent to its Hermite normal form consisting of the rod structures on the

right, via the transformation matrix that appears in the middle of the diagram.

(1, 0, 0)

(1, −1, 1)

(2, 0, 3)

(1, 1, 0)




1 1 0

0 −1 0

0 1 1




(1, 0, 0)

(0, 1, 0)

(2, 0, 3)

(2, −1, 1)

Figure 1. Two rod diagrams, separated by an arrow, both depicting

(5 + 1)-dimensional spacetimes with a single black hole. Each rod

diagram shows the 2-dimensional quotient space as the right-half-

plane with the vertical lines being their boundaries. The jagged lines

are black hole horizon rods, the interior of which correspond to the

product of an open interval with T 3. The rod structures flanking the

horizon rod yield horizon cross-sectional topology S1×S3. The two

rod diagrams depict the same spacetime. The unimodular matrix

in the middle represents a coordinate change on T n . In particular,

it is the transformation matrix from Lemma 3.3 which sends the

rod structures on the left to their Hermite normal form on the right.
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Remark 3.4. If rod structures {v1, v2, v3} arise from three consecutive rods with

admissible corners, then more information is known about their Hermite normal

form {w1, w2, w3}. In particular w1 = e1, w2 = e2, and w3 = (q, r, p, 0, . . . , 0)

with 0 ≤ q < p, 0 ≤ r < p, p = Det3(v1, v2, v3), and gcd{q, p} = 1 if the set

of vectors is linearly independent. In the case of a linearly dependent triple, we

have p = 0 and q = 1, while r is unconstrained. Furthermore, given any integers

µ, λ ∈ Z there exists a coordinate change which sends vi to w′
i where

(3-9)

w′
1 = (1, 0, . . . , 0),

w′
2 = (0, 1, 0, . . . , 0),

w′
3 = (q + µp, r + λp, p, 0, . . . , 0).

These observations will be utilized in Section 6.

In order to establish the relationship between the admissibility condition for

corners and the second determinant divisor, we recall the Smith normal form. This

may be considered as the integer matrix analog of the singular value decomposition,

and is utilized in the classification of finitely generated Abelian groups. This latter

fact will be employed when we compute the fundamental group of the DOC in

Theorem 7.1. A proof of the following result can be found in [31].

Lemma 3.5. Let A be an n ×k integer matrix of rank l. There exist integer matrices

U, V, and S such that UAV = S. The matrices U and V are unimodular, and S is

diagonal with entries si such that si |si+1 for 1 ≤ i < l. These entries, referred to as

elementary divisors, satisfy si = 0 for i > l with all others computed by

(3-10) si =
Deti (A)

Deti−1(A)
, i ≤ l,

where we have set Det0(A) = 1. The matrix S is unique and is known as the Smith

normal form of A.

The distinction between the Hermite and Smith normal forms, in the context of

rod structures, is as follows. The transformations used to obtain Hermite normal

form are always actions by n × n matrices on the left. Such an action corresponds

to shuffling the Killing vectors around by linear combinations. This does not affect

the topology of the total space nor its toric structure, only the representation of the

torus T n ∼= R
n/Z

n and thus the rod structures. By contrast, Smith normal form also

includes actions on the right by k×k matrices. These actions correspond to shuffling

the axis rods themselves. This changes the topology of our space, possibly no longer

making it a manifold. Consequently, when seeking out a simpler presentation of the

rod structures we will invoke the Hermite normal form in order to avoid changing

the topology. Two exceptions to this are in the proof of Theorem 7.1, where only
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the integer span of the rod structures is significant and not their order, and in the

proof of Corollary 3.6 below, where the Hermite and Smith normal forms coincide.

Corollary 3.6. Let A be an n ×k integer matrix of rank k. Then Detk(A) = 1 if and

only if the upper k × k block of the Hermite normal form of A is the identity matrix.

Proof. Assume that the upper k ×k block of the Hermite normal form is the identity.

By uniqueness, this matrix is also the Smith normal form. The diagonal entries are

then 1 = si = Deti (A)/ Deti−1(A), which implies that

Detk(A) = Detk−1(A) = · · · = Det0(A) = 1.

Conversely, assume that Detk(A) = 1 and let

(3-11)

[
S

0

]
= UAV

be the Smith normal form of A, where S = diag(s1, . . . , sk). Consider the n × n

matrix

(3-12) B = U−1

[
S 0

0 In−k

] [
V −1 0

0 In−k

]
= [A E],

where E consists of the last n − k columns of U−1. It follows that

(3-13) det(B) = det(U−1) det(S) det(V −1)

= s1 · · · sk =
Det1(A)

Det0(A)
· · ·

Detk(A)

Detk−1(A)
= Detk(A).

By assumption Detk(A) = 1, and thus B is invertible. Therefore

(3-14) B−1 A =
[

Ik

0

]

and by uniqueness this must be the Hermite normal form of A. □

As mentioned after the proof of Proposition 3.2, this corollary shows that a

pair of adjacent rod structures v, w is admissible if and only if Det2(v, w) = 1.

Moreover, in a similar manner, a collection of k rod structures {v1, . . . , vk} can be

sent to the standard basis {e1, . . . , ek}, and thus forms a primitive set if and only if

Detk(v1, . . . , vk) = 1. Another application of the Hermite normal form is to give a

variant proof of Hollands and Yazadjiev’s horizon topology theorem [12, Theorem 2].

It states that for n ≥ 2, all closed (n + 1)-manifolds with an effective T n-action,

whose quotient is not a circle, must be a product of T n−2 and either S3, a lens space

L(p, q), or S1 × S2. This is a generalization of a result by Orlik and Raymond for

3-manifolds, see [35, Section 2]. Observe that the (n + 1)-dimensional case can

be reduced to the 3-dimensional case by applying the transformation matrix from

Lemma 3.3 to the matrix of rod structures defining the horizon, which we assume
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to be primitive vectors. In particular, the resulting Hermite normal form consists

of the new rod structures (1, 0, . . . , 0) and (q, p, 0, . . . , 0), with 0 ≤ q < p. With

this representation of the T n-action, the last n − 2 coordinate Killing fields clearly

never vanish. Therefore the total space is homeomorphic to a product of T n−2 and

a 3-manifold 6 with an effective T 2 action. According to the possibilities given

for the 3-dimensional case, we find that 6 is either S3 if p = 1, S1 × S2 if p = 0,

or the lens space L(p, q) if p > 1.

Remark 3.7. Given a horizon topology 6 × T n−2, it is possible to determine

the topology of 6 directly from the second determinant divisor. Let v, w ∈ Z
n

be primitive vectors that describe the flanking rod structures of the horizon, and

compute Det2(v, w). If this value is 0, then v = w and 6 = S1 × S2. If it is 1, then

the pair is admissible and 6 = S3. If Det2(v, w) = p > 1 then 6 = L(p, q) for

some q < p. Moreover, q may be found from the relation w = qv mod p.

Theorem 3.8. Given any two (primitive) rod structures v and w, it is always

possible to find a finite number of additional rod structures that connect v to w

in such a way that each corner in the resulting sequence of rods is admissible. That is,

there exists a sequence of rod structures {v1, . . . , vk}, with v1 =v and vk =w, having

the property that Det2(vi , vi+1) = 1 for i = 1, . . . , k − 1.

Proof. By Lemma 3.3 there exists a unimodular matrix Q which transforms v

and w into Hermite normal form, in particular Qv = (1, 0, . . . , 0) and Qw =
(q, p, 0, . . . , 0) where 0 ≤ q < p. If q = 0, then p = 1 since w is primitive, and

hence Det2(v, w) = 1. So assume that q ≥ 1. In [17, Section 3] an algorithm is

presented that is based on the continued fraction decomposition of p/q, which

produces a sequence of rod structures in Z
2 connecting (1, 0) to (q, p) such that each

corner is admissible. We may then append zeros to each of the rod structures in this

sequence, to obtain a sequence in Z
n that connects (1, 0, . . . , 0) to (q, p, 0, . . . , 0)

with the same property. Applying Q−1 then produces the desired sequence. □

This result was used in [17], for (4 + 1)-dimensional spacetimes, to construct

simply connected fill-ins for horizons. The simple connectivity of the fill-ins

preserves the fundamental group of the DOC, and is not difficult to achieve since

in this low dimensional setting admissible rod structures cannot contribute to the

fundamental group. In higher dimensions this is not the case, and a more careful

choice of rod structures is needed to achieve simply connected fill-ins. Moreover,

since the boundary between the filled in region and the DOC now has a much larger

fundamental group, there is a more complicated relation between the topologies

of these regions. In the last section, we will study the fundamental group of the

compactified domain of outer communication.
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4. The model map

In this section we construct a model map ϕ0 : R
3 \ Ŵ → SL(n + 1, R)/SO(n + 1),

which describes the singular behavior of the desired harmonic map near the axis Ŵ,

as well as the asymptotics at infinity. The model map can be viewed as an ap-

proximate solution to the singular harmonic map problem near the axes and at

infinity [16; 41]. We define a model map as follows.

Definition 4.1. A map ϕ0 : R
3 \ Ŵ → SL(n + 1, R)/SO(n + 1) is a model map if

(1) |τ(ϕ0)| is bounded, where τ denotes the tension of ϕ0, and

(2) there is a positive function w ∈ C2(R3) with 1w ≤ −|τ(ϕ0)| and w → 0 at

infinity.

It should be noted that if |τ(ϕ0)| = O(r−α) as r → ∞, for some α > 2, then

this is sufficient to satisfy condition (2). In order to facilitate the construction of

the model map, we will utilize the following parametrization of the target space.

Namely, the target space is parametrized by (F, ω), where F = ( fi j ) is a symmetric

positive definite n × n matrix and ω = (ωi ) is an n-tuple corresponding to the

twist potentials. On each axis rod, the Dirichlet boundary data for ωi is constant.

These so-called potential constants determine the angular momenta of the horizons,

and do not vary between adjacent axis rods which are separated by a corner. In

(F, ω) coordinates, the metric on the target space SL(n + 1, R)/SO(n + 1) may be

expressed as (see [27])

(4-1) 1
4

d f 2

f 2
+ 1

4
f i j f kl d fik d f jl + 1

2

f i j dωi dω j

f

= 1
4
[Tr(F−1 d F)]2 + 1

4
Tr(F−1 d F F−1 d F) + 1

2

dωt F−1 dω

f
,

where f = det F and F−1 = ( f i j ) is the inverse matrix. By setting

(4-2) H = F−1∇F, G = f −1 F−1(∇ω)2, K = f −1 F−1∇ω,

it follows from (2-7) that the squared norm of the tension becomes

(4-3) |τ |2

= 1
4
[Tr(div H+G)]2+ 1

4
Tr[(div H+G)(div H+G)]+ 1

2
f (div K )t F(div K ).

It is clear from (4-3) that the tension norm is invariant under the transformation

(4-4) F 7→ hFht and ω 7→ hω

for any h ∈ SL(n, R). Note that det h = 1 is not required for this to hold when ω is

constant, since G and K are then zero. The next result generalizes the model map

construction from lower dimensions that was presented in [15; 16].
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R1

R2

R3

T

R4

N

S

C1

(0, . . . , 0)

(0, . . . , 0)

q = (q1, . . . , qn)

r = (r1, . . . , rn)

p = (p1, p2, 0, . . . , 0)

t = (1, 0, . . . , 0)

Figure 2. The various regions used in the construction of the model

map. Axis rod structures are represented by p, q, r , and t , while

horizon rods are indicated by dashed lines.

Lemma 4.2. For any admissible rod data set, with nondegenerate horizons, there

exists a corresponding model map ϕ0 : R
3 \Ŵ → SL(n+1, R)/SO(n+1), for n ≥ 2,

having tension decay at infinity given by |τ | = O(r−5/2).

Proof. We first present a proof for the rod data set corresponding to two horizons

and a single corner, as shown in Figure 2. At the end of the proof, we will indicate

the necessary adjustments for the general case. Observe that in the diagram there are

four neighborhoods R1, R2, R3, and R4 associated with certain axis rods, having

rod structures p, q, r , and t respectively. The model map will be constructed

separately in each of these regions. The following two harmonic functions on R
3 \Ŵ

will play an important role in the construction:

(4-5)
ua = log(ra − (z − a)) = log

(
2ra sin2

(
1
2
θa

))
,

va = log(ra + (z − a)) = log
(
2ra cos2

(
1
2
θa

))
,

where ra =
√

ρ2 + (z − a)2 is the Euclidean distance from the point z = a on the

z-axis, and θa is the polar angle.
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Consider first the case in which the asymptotic end is modeled on L(p, q)×T n−2,

where 0 ≤ q < p. By applying Lemma 3.3 if necessary, it may be assumed

without loss of generality that the rod structures on the semiinfinite rods are p =
(p1, p2, 0, . . . , 0) with p2 > 0, and t = (1, 0, . . . , 0). The model map outside of a

large ball (corresponding to the shaded region outside of the circle in Figure 2) and

in the regions R1 and R4, may then be given by

(4-6) F1 = h F̃1 ht , ω = hω̃(θ),

where ω̃ is a function of θ = θ0 alone described below and

(4-7)

F̃1 = diag (eu0−log 2, ev0−log 2, 1, . . . , 1),

h =




0
√

p2 0

1/
√

p2 −p1/
√

p2 0

0 0 In−2


 ,

with In−2 representing the identity matrix. Notice that, up to multiplication by

constants, ht sends t 7→ e2 and p 7→ e1. Thus, the matrix F1 possesses the appro-

priate kernel at the semiinfinite rods to encode the given rod structures. Moreover,

since ϕ0 = (F1, ω) is obtained from the map (F̃1, ω̃) by applying an isometry to the

target space, and F̃1 arises from the canonical flat metric on R
4 × T n−2, it follows

that div H = div F−1
1 ∇F1 = 0. We may further choose ω̃(θ) to be constant for

θ ∈ [0, ϵ] ∪ [π − ϵ, π], thus showing that (F1, ω) is harmonic in R1 and R4. The

constants are chosen to coincide with the prescribed potential constants on the axis

rods. Within the remaining angular interval, ω̃(θ) may be prescribed arbitrarily as

long as it is smooth. In order to verify the decay of the tension for this map in the

range θ ∈ [ϵ, π − ϵ], observe that since

F1 = O(r), f = O(r2), |∇ω| = O(r−1), and div K = O(r−4)

we have

(4-8) f (div K )t F1(div K ) = O(r−5), G = O(r−4).

Hence |τ | decays like r−5/2, which is sufficient. Similarly, in the case where the

asymptotic end is modeled on S2 × T n−1, we can without loss of generality assume

that the rod structures on both the semiinfinite rods are (1, 0, . . . , 0). The model

map outside of the large ball and in the regions R1 and R4 is now given by

(4-9) F1 = diag (eu, 1, . . . , 1), ω = ω(θ),

where u = 2 log ρ and ω is constant on θ ∈ [0, ϵ]∪[π −ϵ, π]. As before, the tension

decays as |τ | = O(r−5/2) when r → ∞.
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Next consider the compact region R2 below the first horizon. The poles in

this region are located at z = a and z = b, a < b, and the rod structure is q =
(q1, q2, . . . , qn). The model map in this region is defined by

(4-10) F2 = h2 F̃2 ht
2, ω = c2,

where F̃2 = diag (eu, 1, . . . , 1), u = ua − ub, and

(4-11) h2 = ([q, e2, . . . , en]t)−1.

The constant vector c2 is chosen to agree with the prescribed potential constants

on the rod. As pointed out in the remark preceding the lemma, det h2 = 1 is not

required here since ω is constant. It follows that the map ϕ0 = (F2, ω) is harmonic

in region R2.

Now we will deal with the regions R3, R4 and the transition region T between

them. Let the pole S be at z = s > 0 and the corner C1 be at z = 0. The rod structure

above the corner C1 is r = (r1, . . . , rn) and below the corner is t = (1, 0, . . . , 0).

Because of admissibility, we can without loss of generality assume that r2 > 0. As

above we set ω to be a constant c3, agreeing with the prescribed potential constant

on the rods, in the entire southern tubular neighborhoods R3 and R4. Let

(4-12)
F̃3 = diag (eu, ev, 1, . . . , 1),

u = (u0 − log 2) − λ(z)(us − log 2), v = v0 − log 2,

where λ = λ(z) is a smooth cut-off function which is 1 near R3 and 0 near R4.

Define the map in region R3 by

(4-13) F3 = h3 F̃3 ht
3, ω = c3,

where

(4-14) h3 = √
p2([r, e1, e3, . . . , en]t)−1.

We have already given the map in R4. In order to define the map in T , set h3(z) to be

a smooth curve of invertible n×n matrices which connects h3 in (4-14) to h in (4-7).

Note that this is possible since both endpoint matrices have negative determinant,

and that the curve may be chosen so that the second column of (h3(z)
t)−1 remains

the constant vector 1/
√

p2 e1. The map

F3(z) = h3(z)F̃3(z)ht
3(z)

then identifies the correct rod structures, and agrees with the previously defined

map on R4. Since ω = c3, we have G = K = 0 in R3 ∪R4. It remains to show

that div F−1
3 ∇F3 is bounded on the transition region T , since it vanishes on the
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complement. To see this, compute

(4-15) div F−1
3 ∇F3

= [∇(F̃3 ht
3)

−1] · (h−1
3 ∇h3)F̃3 ht

3 + (F̃3 ht
3)

−1 div(h−1
3 ∇h3)F̃3 ht

3

+ (F̃3 ht
3)

−1(h−1
3 ∇h3) · ∇(F̃3 ht

3) + (∇h−t
3 ) · (F̃−1

3 ∇ F̃3)ht
3

+ h−t
3 div(F̃−1

3 ∇ F̃3)ht
3 + h−t

3 (F̃−1
3 ∇ F̃3) · ∇ht

3 + div(h−t
3 ∇h3).

Note that |∇u| and ∂zv = 1/r are clearly bounded in T . Moreover, the second

row of h−1
3 ∇h3 vanishes, and this leads to the desired boundedness of div F−1

3 ∇F3.

Indeed, consider the first term on the right-hand side of (4-15), namely

(4-16) [∇(F̃3 ht
3)

−1] · (h−1
3 ∇h3)F̃3 ht

3

= [(ht
3)

−1∂z F̃−1
3 + ∂z(h

t
3)

−1 · F̃−1
3 ](h−1

3 ∂z h3)F̃3 ht
3.

The only potential difficulty in bounding this expression on T arises from the func-

tion e−v , in F̃−1
3 and ∂z F̃−1

3 . However, since h−1
3 ∂z h3 has a vanishing second row,

the products

(4-17) F̃−1
3 · (h−1

3 ∂z h3), ∂z F̃−1
3 · (h−1

3 ∂z h3),

no longer contain e−v and the first term of (4-15) is controlled. The remaining

terms may be handled analogously. It follows that (4-15) is bounded, and hence

the model map ϕ0 = (F3, ω) has bounded tension in a tubular neighborhood of

the two southern most rods. This treats the case in which the asymptotic end is

modeled on L(p, q) × T n−2, and a similar procedure may be used in the case that

the asymptotic end is modeled on S2 × T n−1.

We will now address the multiple corner case. Any connected component of

the axis consists of a consecutive sequence of axis rods. To construct the model

map in a tubular neighborhood of such a component, first divide this region into

neighborhoods centered at corners and transition regions between corners. The basic

block consists of two such neighborhoods around adjacent corners Cn and Cs , and

the transition region T between them. It suffices to illustrate the map construction

in such blocks, as the full map may then be obtained by combining the individual

pieces to handle any rod structure configuration.

Consider a basic block with rod structures p, q, and r on axis rods Ŵ1, Ŵ2, and Ŵ3

respectively, moving from north to south. Note that p and q, as well as q and r ,

must be linearly independent since the corners Cn and Cs are admissible. It follows

that there is a collection of standard basis vectors {ei1
, . . . , ein−2

} that complete

{ p, q} to a basis, and similarly for {q, r}. We may then form the matrices

(4-18) h p,q = ([ p, q, ei1
, . . . , ein−2

]t)−1, hr,q = ([r, q, e j1, . . . , e jn−2
]t)−1.
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Next define F0 = diag (eu, ev, 1, . . . , 1) where u and v are harmonic, with eu

vanishing on Ŵ1 and Ŵ3, and ev vanishing on Ŵ2. These functions may be given as

the sum of logarithms of the form (4-5). Then F0 corresponds to the rod structures e1,

e2, and e1 on Ŵ1, Ŵ2, and Ŵ3 respectively. Consider a smooth curve of invertible

n ×n matrices h p|r,q(z) which agrees with h p,q on Ŵ1 and in a neighborhood of Cn ,

and transitions over T ⊂ Ŵ2 so that it agrees with hr,q on Ŵ3 and in a neighborhood

of Cs . The existence of such a curve is possible since we may assume that the

determinants of h p,q and hr,q have the same sign by replacing r with −r if necessary.

Moreover, the curve may be designed such that the second column of (h p|r,q(z)
t)−1

is the constant vector q. This implies that the second row of h−1
p|r,q∇h p|r,q vanishes,

so that with the help of (4-15) we find that div F−1∇F remains bounded along T ,

where F = h p|r,q F0 ht
p|r,q . The model map ϕ0 = (F, ω) on the basic block, with ω

constant, then has bounded tension.

Lastly, it remains to treat the case of multiple blocks within an axis component.

To accomplish this, take u and v harmonic so that eu and ev vanish in an alternating

fashion on the string of axis rods. The diagonal matrix F0 is then defined along

the entire string. We will inductively construct the model map on basic block

assemblies. As a demonstration of this, consider adding an additional rod Ŵ4, with

rod structure w, to the sequence of three rods discussed above which we call basic

block B1. We may view the Ŵ2, Ŵ3, Ŵ4 string, with rod structures q, r , w, as a basic

block B2; the corner between the third and fourth rod will be denoted by Cw. The

map has already been defined into a neighborhood of Ŵ3, and may be extended into

a neighborhood of Ŵ4 as follows. Recall that the maps

(4-19) F1 = h p|r,q F0 ht
p|r,q, F2 = hr,q|w F0 ht

r,q|w

are defined on the basic blocks B1 and B2 respectively, and identify the desired rod

structures. However, they do not necessarily coincide on the overlap regions. In

order to remedy this situation, let h4(z) be a smooth curve of invertible n×n matrices

connecting hr,q to hr,w with a transition over T̃ ⊂ Ŵ3. This is possible since by

replacing w with −w if necessary, we may assume that both endpoint matrices have

determinants of the same sign. Moreover, this curve may be chosen such that the first

column of (h4(z)
t)−1 remains the constant vector r . Set F = h4(z)F0 h4(z)

t on Ŵ3,

and observe that this agrees with F1 and F2 near the corners Cs and Cw, respectively,

so that F is naturally defined on all of B1 ∪ B2. Since the first row of h−1
4 ∇h4

vanishes, we find with the aid of (4-15) that div F−1∇F remains bounded along Ŵ3.

The model map ϕ0 = (F, ω) on the two basic blocks, with ω constant, then has

bounded tension. We may continue this process inductively to treat any number of

consecutive axis rods. □

Remark 4.3. In [15; 16] an additional technical assumption on the rod struc-

tures, known as the compatibility condition, was used for the construction of the
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model map. The condition, which is not required for Lemma 4.2, states that given

three adjacent rod structures with admissible corners, say (m, n), (p, q), and (r, s),

the following inequality must hold:

(4-20) mr(mq − np)(ps − rq) ≤ 0 .

This turns out not to be a geometric condition, as it can always be achieved by a

change of coordinates. To see this, first assume without loss of generality that the

determinants (mq − np) and (ps − rq) are 1, by possibly replacing (p, q) or (r, s)

or both with the vector of the same length and opposite direction. Note that this

operation does not alter the isotropy subgroup prescribed by the rod structure. Next

apply the unimodular matrix

(4-21) A =
(

q −p

−n m

)

to obtain the rod structures A · {(m, n), (p, q), (r, s)} = {(1, 0), (0, 1), (r ′, s ′)} for

some r ′, s ′ ∈ Z. Then (4-20) is clearly satisfied for the new set of rod structures.

Remark 4.4. Lemma 4.2 and Remark 4.3 provide the proof of part (a) from

Theorem A.

5. Horocyclic coordinates and energy estimates

In this section we show how the energy estimates based on horocyclic coordinates

can be generalized from the lower-rank target space setting that was treated in [16,

Section 6]. The target space is now SL(n+1, R)/SO(n+1), which is a noncompact

symmetric space of dimension 1
2
(n(n + 3)) and rank n. For convenience we denote

G = SL(n + 1, R), K = SO(n + 1), and X = G/K . The Iwasawa decomposition

is given by G = NAK , where A is the abelian group

(5-1) A =
{

diag(eλ1, . . . , eλn+1) |
n+1∏
i=1

eλi = 1
}

and N is the nilpotent subgroup of upper triangular matrices with diagonal entries

set to 1. Thus, given g ∈ G there are unique elements m ∈ N , a ∈ A, and k ∈ K

with g = mak, and the symmetric space X may be identified with the subgroup NA.

Denote x0 =[I d] ∈ X and note that the orbits A·x0 =:Fx0
and N ·x0 are respectively

a maximal flat and a horocycle. The former is an n-dimensional totally geodesic

submanifold with vanishing sectional curvature, and the latter is an 1
2
(n(n + 1))-

dimensional submanifold with the property that each flat which is asymptotic to the

same Weyl chamber at infinity has an orthogonal intersection with the horocycle

in a single point. Furthermore, since each point x ∈ X may be uniquely expressed

as ma ·x0, the assignment x 7→Fx = ma ·Fx0
yields a smooth foliation whose leaves
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are the flats {m ·Fx0
}m∈N ; the flat Fx orthogonally interacts the horocycle N · x only

at x . In this manner, the pair (a, m) gives rise to a horocyclic orthogonal coordinate

system for X .

A Euclidean coordinate system r = (r1, . . . , rn) may be introduced on Fx0
, and

can then be pushed forward to each flat m ·Fx0
so that the horocyclic coordinates

(a, m) may be represented by (r, m). Furthermore, each r ′ defines a diffeomorphism

(translation) (r, m) 7→ (r + r ′, m) that preserves the m-coordinates, and for each

m′ ∈ N there is an isometry that preserves the r-coordinates (r, m) 7→ (r, m′m).

These r-translations map horocycles to horocycles, and therefore may be used to

push forward a system of global coordinates θ = (θ1, . . . , θn(n+1)/2) on N · x0
∼=

R
n(n+1)/2 to all horocycles. It follows that (r, θ) form a set of global coordinates

on X in which the coordinate fields ∂ri
and ∂θ j are orthogonal, and such that the

G-invariant Riemannian metric on X is expressed as

(5-2) g = dr2 + Q(dθ, dθ) =
n∑

i=1

dr2
i +

n(n+1)/2∑
j,l=1

Q jl dθ j dθ l,

where the coefficients Q jl(r, θ) are smooth functions. Moreover, the proof of [16,

Lemma 8] generalizes in a direct manner to the current setting to yield the uniform

bounds

(5-3) bQ(ξ, ξ) ≤ ∂ri
Q(ξ, ξ) ≤ cQ(ξ, ξ)

for all i = 1, . . . , n and ξ ∈ R
n(n+1)/2 where 0 < b < c. With the help of (5-3), by

expressing the harmonic map equations in the horocyclic parametrization we may

establish energy bounds on compact subsets away from the axis. In particular, if

ϕ : R
3 \ Ŵ → X is a harmonic map and � ⊂ R

3 \ Ŵ is a bounded domain then the

harmonic energy restricted to � satisfies

(5-4) E�(ϕ) ≤ C,

where the constant C depends only on the maximum distance supy∈� dX(ϕ(y), x0).

Definition 5.1. Two maps ϕ1, ϕ2 : R
3 \ Ŵ → X are asymptotic if there exists a

constant C such that dX(ϕ1, ϕ2) ≤ C and dX(ϕ1(y), ϕ2(y)) → 0 as |y| → ∞.

The distance between the model map and solutions to the harmonic map Dirichlet

problem on an exhausting sequence of domains may be estimated via a maximum

principle argument [41], which is based on convexity of the distance function in

the nonpositively curved target. This supremum bound together with the energy

bound, allow for an application of standard elliptic theory to control all higher-order

derivatives. The sequence of harmonic maps on exhausting domains will then

subconverge to the desired solution, see [16, Sections 6 and 7] for details. We

record this conclusion as the following result.
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Lemma 5.2. Let ϕ0 be a model map. Then there exists a unique harmonic map

ϕ : R
3 \ Ŵ → X such that ϕ is asymptotic to ϕ0.

This lemma establishes part (b) of Theorem A. Since ϕ is asymptotic to ϕ0, it can

be shown in the same way as [16, Theorem 11], that the two maps respect the same

rod data set. Furthermore, part (c) of Theorem A may be established analogously

to [16, Section 8]. This completes the proof of Theorem A.

6. Plumbing and topology of the domain of outer communication

There are two methods that can be used to characterize the domain of outer com-

munication. One method consists of filling in horizons and cross-sections in the

asymptotic end to obtain a simply connected compact manifold. In the next section

we use this method for spatial dimensions 4, 5, and 6, where a complete list of

possible topologies is available. The other approach involves breaking up the domain

of outer communication into simpler pieces, and then classifying the individual

components. This is the method of plumbing constructions which will be discussed

in the current section and will yield the proof of Theorem B. Throughout this section

we will assume that n ≥ 3.

In Theorem B the domain of outer communication is broken up into components

determined by the number of corners that they contain. The pieces which contain

no corners are either the asymptotic end Mn+2
end , or a piece which is homeomorphic

to [0, 1] × D2 × T n−1 which we denote by Cn+2
k . When a piece contains a single

corner, the admissibility condition may be used to show that it is the product of a

ball with a torus B4 × T n−2. This part of the analysis is identical to the (spatial)

4-dimensional case that is covered in [17, Theorem 1]. However, a significant

difference occurs in higher dimensions when analyzing components that contain

at least two corners. A component with exactly two corners will turn out to be

the product of a torus T n−3 with a disk bundle over a 3-manifold, rather than a

2-sphere. Moreover, for components with more than two corners, we will have to

define a generalization of plumbing where the fibers and base space are not of the

same dimension.

Theorem 6.1. Let Mn+2 be a simple T n-manifold, and consider a neighbor-

hood N 2 in the orbit space of a portion of the axis with two corners and no

horizon rods. The total space over N 2 is homeomorphic to ξ × T n−3, where the

action of T n ∼= T 3 × T n−3 acts componentwise. Here ξ is a D2-bundle over

X ∈ {S3, L(p, q), S1 × S2}. The topologies of X and ξ may be read off from the

Hermite normal form of the rod structures.

Proof. The rod diagram of N 2 has three axis rods separated by two admissible

corners. Using Remark 3.4 we can, without changing the topology, transform our

rod structures into the form of (3-9), where the last n−3 entries of each rod structure
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are zero. The last n−3 Killing fields then do not vanish over N 2, and hence the total

space is a product manifold ξ × T n−3, where the T n-action splits naturally into T 3

acting on ξ and T n−3 acting on itself. Here ξ denotes the manifold represented

by the rod diagram {(1, 0, 0), (0, 1, 0), (q, r, p)} with 0 ≤ q < p, 0 ≤ r < p,

and gcd{q, p} = 1 if the vectors are linearly independent. In the case that they are

linearly dependent, we instead have q = 1, p = 0, and r ∈ Z.

The middle axis rod, where the second Killing field vanishes, is a deformation re-

tract of the space ξ . This rod represents a closed manifold X ∈{S3, L(p, q), S1×S2}.
Fibers over this space correspond to rays extending out from the middle axis rod, see

Figure 4. Each point in the interior of the middle axis rod corresponds to an entire T 2,

while a ray terminating at that point corresponds to D2 ×T 2. Moreover, each of the

two corners corresponds to an S1 in the base space X , while the adjacent axis rods

correspond to D2 × S1. It follows that ξ has the structure of a D2-bundle over X .

To determine the topology of X and ξ , we look at the rod structures. If they

are linearly dependent, then the rod structures must be {(1, 0, 0), (0, 1, 0), (1, r, 0)}
by admissibility. There is then a free S1 action, and after factoring this out, it

remains to analyze the 4-dimensional disk bundle generated by the diagram with

rod structures {(1, 0), (0, 1), (1, r)}. The base space of this latter disk-bundle is S2,

and its zero-section self-intersection number, or equivalently the characteristic

number of its Euler class is r , see [17]. Moreover, we have X = S1 × S2.

If the rod structures {(1, 0, 0), (0, 1, 0), (q, r, p)} are linearly independent, the

base space X = L(p, q). Recall that L(1, q) = S3 for all q . The number of distinct

disk bundles, or equivalently SO(2)-bundles, over X is determined by the homotopy

classes of maps [X, CP
∞]. Moreover, the classifying space BS1 = CP

∞ is an

Eilenberg±Mac Lane space of type K (Z, 2), so the homotopy classes of based maps

from X to K (Z, 2) is in bijection with H 2(X; Z)∼=Zp. The element of this cohomol-

ogy group which corresponds to a specific bundle ξ is called the Euler class e(ξ).

By uniqueness of the Hermite normal form, the r ∈ Zp
∼= H 2(L(p, q); Z) in the

rod structure is uniquely determined for each equivariant homeomorphism class

of ξ . Conversely, for each class in H 2(L(p, q); Z) there is a unique disk bundle

over L(p, q). Each of these disk bundles admits an effective T 3 action, with T 1

acting on the fibers, and a T 2 acting on the base L(p, q). Thus, to each of these

disk bundles corresponds a rod diagram with three axis rods and two admissible

corners. This gives a one-to-one correspondence between integers

r ∈ [0, p) and e(ξ) ∈ H 2(L(p, q), Z).

Furthermore, for the trivial disk bundle L(p, q) × D2 both r = 0 and e(ξ) = 0. To

see this, note that the quotient of L(p, q) by its T 2-action can be represented as an

interval where the (1, 0) and the (q, p) circles degenerate at the end points. Similarly,

the quotient of D2 by S1 can be represented by a half open interval where the circle
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degenerates at the one end point. Taking the product of these two spaces produces

the rod diagram {(1, 0, 0), (0, 1, 0), (q, 0, p)}, from which we deduce that r = 0. □

The above theorem shows that the total space over a neighborhood of three

consecutive axis rod structures {u, v, w}, satisfying the admissibility condition,

is ξ × T n−3 where ξ is a disk bundle over either a lens space or a ring. Observe

that there is a subtorus T 3 which leaves the slices ξ × {ϕ} ∈ ξ × T n−3 invariant,

and is spanned by the rod structures {u, v, w} ⊂ Z
n as

(6-1) T 3 ∼= spanR{u, v, w}/Z
n ⊂ R

n/Z
n ∼= T n.

Although {u, v, w} may not necessarily be a primitive set, this can be rectified by

employing an integral version of the Gram±Schmidt process, which will lead to the

formulation of generalized plumbing.

Lemma 6.2. Let {u, v, w} ⊂ Z
n be a consecutive sequence of rod structures satisfy-

ing the admissibility condition and with a neighborhood that lifts to ξ × T n−3 in the

total space. If ξ is a D2-bundle over L(p, q), 0 ≤q < p with Euler class determined

by r ∈ [0, p), then there exists a unique primitive vector p ∈ Z
n satisfying

(6-2) w = qu + rv + pp.

Furthermore, {u, v,p} ⊂ Z
n forms a primitive set. In addition, if ξ is a D2-bundle

over S1 × S2, then (6-2) is satisfied with p = 0.

Proof. First consider the case in which ξ is a D2-bundle over L(p, q), 0 ≤ q < p

with Euler class determined by r ∈ [0, p). Let Q be the unimodular matrix

that transforms {u, v, w} into Hermite normal form, that is, Qu = e1, Qv = e2,

and Qw = qe1 + r e2 + pe3. We may then set p = Q−1e3 and observe that (6-2) is

satisfied. Since the Hermite normal form is unique, and p ̸= 0, it is clear that p∈ Z
n

is the unique solution to the equation. Furthermore, since Q−1 is unimodular and e3

is a primitive vector we find that p is primitive as well. Next note that {u, v,p} is a

primitive set if and only if Det3(u, v,p) = 1. Moreover, by multilinearity of the

determinant together with (6-2), it follows that

(6-3) Det3(u, v,p)= p−1 Det3(u, v, w)= p−1 Det3(e1, e2, qe1+r e2+ pe3)= 1,

where the second equality follows from the coordinate invariance of Det3. Lastly,

if ξ is a D2-bundle over S1 × S2, then q = 1 and p = 0 so that (6-2) is satisfied

with p = 0. □

We will now consider portions of the axis having more than two consecutive

corners in a simple T n-manifold. The total space over neighborhoods of these

regions of the axis, with l+1 corners, will be shown to consist of l disk bundle-torus

products that are glued together in a fashion that may be viewed as a generalization

of the linear plumbing construction. This higher-dimensional plumbing, which
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we will refer to as toric plumbing, is not a straightforward generalization of 4-

dimensional procedure due to the various ways that the extra toroidal dimensions

may be conjoined. For each pair of neighboring disk bundles we will define a

plumbing vector, which distinguishes the different ways that the two disk bundles

can be plumbed together. Figure 3 provides examples of the same two disk bundles

being plumbed together in different ways to form nonhomeomorphic total spaces.

Consider a section of the axis rod, having admissible corners, with rod structures

{v1, . . . , vl+2}. From Theorem 6.1, a neighborhood of each consecutive triple of rod

structures {vi , vi+1, vi+2} lifts to the total space as a product ξ i
∼= ξi ×T n−3 ⊂ Mn+2,

where ξi is a disk bundle with Euler class determined by ri over either L(pi , qi ),

or S1 × S2 if pi = 0. With the aid of a unimodular transformation matrix Q, we

can arrange the rod structures into Hermite normal form {w1, . . . ,wl+2} so that

Qvi = wi . Recall that the wi are uniquely determined, although Q may not have

this property. By Remark 3.4, the first three elements are given by w1 = e1, w2 = e2,

and w3 = (q1, r1, p1, 0, . . . , 0). For each i such that pi ̸= 0, Lemma 6.2 ensures

the existence of a unique primitive vector pi ∈ Z
n satisfying

(6-4) wi+2 = qiwi + riwi+1 + pipi .

When pi = 0 we define pi = 0, and (6-4) is trivially satisfied.

S3 × T 2

S2 × T 3

L(3,2) × S1

S3 × S1

ξ ξ

ξ ξ

ξ1 ξ2

ξ1 ξ2

(1,0,0,0) (0,1,0,0) (0,0,1,0) (0,0,0,1)

(1,0,0,0) (0,1,0,0) (0,0,1,0) (1,0,0,0)

(1,0,0) (0,1,0) (2,3,5) (11,9,24)

(1,0,0) (0,1,0) (2,3,5) (−3,9,−11)

P(ξ ,ξ | e4) P(ξ1,ξ2 | (1,0,2))

P(ξ ,ξ | e1) P(ξ1,ξ2 | (−1,0,−3))

Figure 3. Left: Toric plumbings of the trivial bundle ξ = S3×D2×S1

with itself for the plumbing vector p2 = e4 (top) and p2 = e1 (bottom).

Right: Toric plumbings of ξ 1 over L(5, 2) with Euler class determined

by 3 and ξ 2 over L(7, 3) with Euler class determined by 2 for the

plumbing vector p2 = (1, 0, 2) (top) and p2 = (−1, 0, −3) (bottom).

For each pair the topology and toric structure of the total space is

different, as a consequence of having different plumbing vectors. The

notation P(ξ 1, ξ 2,p) refers to the toric plumbing of ξ 1 and ξ 2 with

plumbing vector p (see Definition 6.6).
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Definition 6.3. The vectors pi satisfying (6-4) are referred to as plumbing vectors.

Remark 6.4. If Q is a unimodular matrix, then {v1, . . . ,vl+2} and {Qv1, . . . ,Qvl+2}
have the same Hermite normal form and thus the same plumbing vectors. Therefore,

plumbing vectors do not depend on the choice of coordinates, but rather depend

only on the toric structure of the total space.

While the set of plumbing vectors is uniquely determined by a set of rod structures,

they are not uniquely determined by the topologies of ξi . In Figure 3, we present two

pairs of examples in which the same disk bundles are being plumbed with different

plumbing vectors. From Remark 6.4 we know that the total spaces will have different

toric structures, and will not simply differ by a change of coordinates. Furthermore,

in these examples the boundaries of the total spaces have different fundamental

groups. Thus, plumbing vectors can affect the topology of the total space.

Plumbing vectors satisfy a number of relations, the first of which is the collection

of recursion equations that are used in the definition

(6-5a)

w1 = e1, w2 = e2,

wi+2 = qiwi + riwi+1 + pipi if pi ̸= 0, and

pi = 0 if pi = 0

for i = 1, . . . , l. The next two conditions arise from are admissibility of the corners,

and primitivity of the triples containing the plumbing vector. More precisely,

adjacent rods {wi+1, wi+2} are assumed to have an admissible corner, that is,

Det2(wi+1, wi+2) = 1. By using the recursion relations and the multilinearity

of determinants, this can be reexpressed as

(6-5b) Det2(wi+1, qiwi + pipi ) = 1.

Furthermore, the primitivity condition that is guaranteed by Lemma 6.2 asserts that

(6-5c) Det3(wi , wi+1,pi ) = 1,

when pi ̸= 0. If pi = 0 then this condition does not apply. Finally, we obtain two

conditions from the fact that {w0, . . . ,wl+2} is in Hermite normal form. The first

describes conditions under which certain entiees must vanish. That is, if pi j = 0

for all j ≥ m and 1 ≤ i < k, where pi = (pi1, . . . , pin), then

(6-5d) pk j = 0 for all j > m.

The second condition indirectly restricts the size of certain components in the

plumbing vectors. Write wi = (wi1, . . . , win) and denote the last nonzero entry

of pk by pkmk
. If pimk

= 0 for all 1 ≤ i < k, then w(k+2)mk
is a pivot in the Hermite

normal form so that

(6-5e) 0 ≤ w(k+2) j < w(k+2)mk
for all j < mk .
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These relations will be collectively referred to as the plumbing relations.

The first plumbing vector p1 takes a simple form in all cases, depending only on

whether p1 vanishes. Namely, if the base space of ξ1 is S1 × S2 then p1 = 0, and we

have p1 = 0. If p1 ̸= 0 then note that Remark 3.4 implies w3 = (q1, r1, p1, 0, . . . , 0).

This immediately shows that p1 = e3 solves (6-5a), and by uniqueness of plumbing

vectors it follows that p1 must take this form. In what follows, since p1 is determined

only by the topology of ξ1 and not by plumbing information, we do not include it

when describing the toric plumbing of ξ1 and ξ2. Thus, only l −1 plumbing vectors

are needed to describe the gluing for a string of l + 2 rod structures.

Proposition 6.5. There is a one-to-one correspondence between collections of

admissible rod structures {w1, . . . ,wl+2} ⊂ Z
n in Hermite normal form, and collec-

tions of bundles {ξ 1, . . . , ξ l} paired with a set of primitive vectors {p2, . . . ,pl}⊂ Z
n

satisfying (6-5).

Proof. Let {w1, . . . ,wl+2} ⊂ Z
n be a collection of admissible rod structures in

Hermite normal. The proof of Theorem 6.1 shows that from each successive triple

{wi , wi+1, wi+2}, there is a unique bundle ξ i which is the lift of a (orbit space)

neighborhood of these three rods to the total space Mn+2. The rod structures

also give the integers qi , ri , and pi used in Definition 6.3 to obtain the plumbing

vectors pi . By construction, together with the admissibility condition, these vectors

satisfy the full set of plumbing relations (6-5).

Conversely, let {ξ 1, . . . , ξ l} be a collection of bundles and let {p2, . . . ,pl} ⊂ Z
n

be a collection of vectors satisfying (6-5). According to the discussion preceding

this proposition, we may append to this list p1 = 0 if the base of ξ 1 is S1 × S2, or

p1 = e3 if the base of ξ 1 is a lens space. Equation (6-5a) then uniquely determines

the rod structures {w1, . . . ,wl+2}, since the integers qi , ri , and pi are uniquely

defined by each ξ i as in the proof of Theorem 6.1. By hypothesis, the vectors

{w1, . . . ,wl+2} satisfy (6-5b) which can be rewritten as Det2(wi+1, wi+2) = 1, thus

establishing admissibility. Lastly, we note that (6-5a) and (6-5e) imply that the

matrix composed of column vectors wi satisfies the conditions of Lemma 3.3. Thus,

the collection of rod structures is in Hermite normal form. □

Definition 6.6. Let ξ i
∼= ξi × T n−3, i = 1, . . . , l where each ξi is a D2-bundle

over either a 3-dimensional lens space or S1 × S2, and let {p2, . . . ,pl} ⊂ Z
n be a

collection of primitive vectors satisfying the plumbing relations (6-5). We define

the toric plumbing of ξ 1, . . . , ξ l along the plumbing vectors p2, . . . ,pl to be the

(n + 2)-dimensional simple T n-manifold given by rod structures {w1, . . . ,wl},
where the wi are determined by (6-5a). This simple T n-manifold is denoted by

P(ξ 1, . . . , ξ l | p2, . . . ,pl).

Toric plumbing may be considered as a generalization of standard equivariant

plumbing. In the latter construction the base and the fiber have the same dimension,
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w w w ww1 w2 w3 w4

Figure 4. We have w1 = e1, w2 = e2, w3 = (q1, r1, p1), and w4 =
q2w2+r2w3+ p2p2 in accordance with (6-5a). The diagram shows

a toric plumbing of two disk bundle-torus products ξ 1 and ξ 2 over

lens spaces L(p1, q1) and L(p2, q2), along plumbing vector p2.

The fibers of ξ 1 are given by rays emanating from w2, while the

fibers of ξ 2 are given by rays emanating from w3. Note that in the

overlap, the fibers and sections switch roles between ξ 1 and ξ 2.

while in the former they do not. In order to elucidate the similarity between the

two notions of plumbing, we restrict attention to n = 3 and consider a simple

T 3-manifold P(ξ 1, ξ 2 | p2). First note that this represents a gluing of ξ 1 and ξ 2.

Indeed, the inclusion ξ 1 →֒P(ξ 1, ξ 2 |p2) is manifested by the fact that {w1, w2, w3}
gives the canonical (Hermite normal form) rod diagram for ξ 1. Furthermore, the

inclusion of ξ 2 may be observed by applying a unimodular transformation Q which

sends w2 to e1, w3 to e2, and sends p2 to e3 if p2 ̸= 0, to obtain the rod structures

{Qw2, Qw3, Qw4} which give the canonical rod diagram for ξ 2; the primitivity

condition from (6-5c) guarantees that existence of the matrix Q.

Consider now the gluing map between the two bundles. This map will operate

between the subsets of ξ 1 and ξ 2 which are depicted by the overlap in Figure 4.

This region is an open neighborhood of a single corner and thus is homeomorphic

to B4 × S1. In both ξ 1 and ξ 2 the corner represents a single (polar) circle in

the base 3-manifold. The overlap region can further be viewed as a trivialization

B2 × D2 × S1 of the D2-bundles ξ 1, ξ 2 over a neighborhood of a polar circle. Here

we use B2 to denote a disk in the base, and D2 to denote a disk in the fiber. Just as

in standard equivariant plumbing, Figure 4 shows that the D2 fibers in say ξ 1, which

are represented by rays emanating from w2, switch roles in the overlap with the

B2 sections in the base of ξ 2. The gluing map is an automorphism on the overlap

B2 × D2 × S1, and we have observed that the base and fiber disks B2 and D2 are

exchanged in the gluing process. This leaves the circle S1 unaccounted for. Since

the automorphism must respect the action of T 3 on B2 × D2 × S1, the image of

this S1 can be represented uniquely by an element of π1(T 3) ∼= Z
3. Note, however,

that the image of S1 in Z
3 does not necessarily coincide with the polar circle, but

rather an S1 ⊂ T 3 which acts upon it. These circle actions are not unique as there

are two Killing fields, the ones associated to B2 and D2, which vanish on the polar
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circle. The Lie group homomorphism from T 3 to T 3 arising from these circle

actions should be an isomorphism. This is the same as requiring that the image

of the polar S1, together with the circle actions on B2 and D2, forms an integral

basis for Z
3. The plumbing vector p2 ∈ Z

3 may then be interpreted as representing

the image of the polar circle, with the integral basis criteria being equivalent to the

primitivity property (6-5c).

Writing a simple T n-manifold as a toric plumbing of disk bundles

P(ξ 1, . . . , ξ l | p2, . . . ,pl)

facilitates the analysis of rod diagrams. Indeed

P(ξ 1, . . . , ξ l | p2, . . . ,pl) and P(ξ ′
1, . . . , ξ

′
l | p′

2, . . . ,p
′
l)

can be distinguished easily, as they are equivariantly homeomorphic if and only if

ξ j
∼= ξ ′

j and pk = p′
k for all j and k. To see this, use Proposition 6.5 to obtain rod

structures {w1, . . . ,wl+2} and {w′
1, . . . ,w

′
l+2} from the disk bundles and plumbing

vectors. These rod structures are automatically in their unique Hermite normal

form, and therefore the two simple T n-manifolds are equivariantly homeomorphic

if and only if the rod structures are identical.

Remark 6.7. Given a set of bundles {ξ 1, . . . , ξ l}, it may be difficult to determine

all possible sets of vectors {p2, . . . ,pl} for which the plumbing relations (6-5)

are satisfied. However, it is straightforward to check if a given set of vectors

{p2, . . . ,pl} satisfies the plumbing relations for the bundles {ξ 1, . . . , ξ l}. Namely,

first confirm that each pi is a primitive vector. Then simply follow the recursion

equations (6-5a) to find all the wi . If each successive pair {wi , wi+1} is admissible,

that is, if their second determinant divisor is 1, then {w1, . . . ,wl+2} does indeed

give a well defined rod diagram for a manifold. Lastly, check that {w1, . . . ,wl+2}
is in Hermite normal form. If so, then {p2, . . . ,pl} are valid plumbing vectors for

the manifold arising from {w1, . . . ,wl+2}.

The strategy to establish Theorem B is illustrated in Figure 5. More precisely,

consider the orbit space of the domain of outer communication, and remove neigh-

borhoods of the horizon rods (corresponding to the gray areas in the diagram). The

axis is then broken into connected components, whose neighborhoods in the orbit

space lift to one of the pieces in the total space of the decomposition (2-8). In

particular, if the neighborhood contains no corners, one corner, or multiple corners

then it is represented by Cn+2
k , B4

m × T n−2, or P(ξ 1, j , . . . , ξ I j , j | p2, j , . . . ,pI j , j )

respectively. The remaining portion of the orbit space lifts to the asymptotic end.

Clearly any rod diagram that arises from a DOC, with the current hypotheses, can

be organized into such pieces. This completes the proof of Theorem B.



GEOMETRY AND TOPOLOGY OF MULTIAXISYMMETRIC BLACK HOLES 89

M5
end

P(ξ1,ξ2 | p2) B4×S1 C5

(1,0,0) (0,1,0) (2,1,5) (2,1,4) (1,1,0) (4,5,0) (0,0,1) (0,0,1)

Figure 5. An example of the decomposition of the domain of outer

communication described in Theorem B. The black hole horizons,

represented by jagged intervals, are deformation retracts of the gray

areas. In the leftmost piece of the decomposition, ξ 1 is formed by

a disk bundle over L(5, 2) with Euler class determined by 1, while

ξ 2 is formed by a disk bundle over L(2, 1) with Euler class 0; the

plumbing vector is p2 = (1, 0, 2). The remaining pieces include a

neighborhood of a corner B4 × S1, a region centered on the interior

of an axis rod C5 = [0, 1]× D2 ×T 2, and the asymptotic end M5
end

which is homeomorphic to R+ × S3 × S1.

7. Classification of compact spaces

Theorem C arises from the classification of compact simply connected T n-manifolds

of cohomogeneity two in dimensions 4, 5, and 6. In dimensions 7 and higher, a

complete classification is not known, and the technique used by Oh [33; 34] in

the lower-dimensional cases does not appear to generalize to higher dimensions.

On the other hand, the fundamental groups of (n + 2)-dimensional T n-manifolds

can be readily computed in all dimensions by the Seifert±Van Kampen theorem, as

recorded in the next result. Note that a portion of part (i) was established within

the proof of Theorem 4 in [12].

Theorem 7.1. (i) Let Mn+2, n ≥ 1 be a closed orientable manifold with an effective

T n-action. If Mn+2 is simply connected then it is either the 3-sphere, or a simple

T n-manifold where the integral span of its rod structures is Z
n .

(ii) Let Mn+2 be a connected simple T n-manifold, possibly with boundary. Suppose

that the rod diagram representing Mn+2 is given by rod structures {v1, . . . , vm}⊂Z
n .

Then the fundamental group takes the form

(7-1) π1(Mn+2) ∼= Z
n/spanZ{v1, . . . , vm} ∼= Z

n−l ⊕ Zs1
⊕ · · · ⊕ Zsl

,

where si |si+1 and si is the i-th entry in the Smith normal form of the matrix composed

of column vectors vi , and l = dim spanR{v1, . . . , vm}.

Proof. Consider part (i). The fundamental group of a T n-manifold of dimen-

sion n +2 can be calculated from the topology of the quotient space and the bundle

structure, using the Seifert±Van Kampen theorem. This was carried out by Orlik

and Raymond [36, p. 94] in the case when the quotient space is an orbifold without
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boundary, yielding the group presentation

(7-2) π1(Mn+2) ∼=
〈
τ1, . . . , τn, α1, . . . , αa, γ1, . . . , γg, δ1, . . . , δg |
[τi , τ j ], [τi , α j ], [τi , γ j ], [τi , δ j ] for all i and j;
[γ1, δ1] · · · [γg, δg] ·α1 · · · αa · τ c1

1 · · · τ cn
n ;

α
ql

l · τ pl1

1 · · · τ pln
n for l = 1, . . . , a

〉
.

The generators τ arise from the torus fibers, the α’s represent loops around each of

the a orbifold points, and the γ ’s and δ’s are generators associated with each of the

g handles. In the first line of relations we see that the τ ’s commute with themselves

as they are the generators of a torus, and commute with the α’s, γ ’s, and δ’s since

the former are generators of the fiber and the latter are generators in base space

Mn+2/T n . In analogy with the presentation of the fundamental group of a genus g

surface, the second line of relations represents the obstruction to contractibility of

the circumscribing loop around all of the handles and orbifold points. That loop is

homotopic to the loop around the fibers described by c= (c1, . . . , cn)∈Z
n ∼=π1(T n).

The last line of relations indicates how each orbifold point singularity is to be

resolved, namely, going around the i-th orbifold point qi ̸= 1 times is equivalent to

going around each of the torus fibers pi j times.

We wish to show in this case that Mn+2 ∼= S3. To do that, let the list of generators

in (7-2) be denoted by G and the list of relations by R, so that π1(Mn+2) ∼= ⟨G | R⟩
is trivial. Clearly then the group H1 = ⟨G | R ∪ {[αi , α j ], γk, δk}⟩ is also trivial.

This is an abelian group which can be presented as

(7-3) H1 = (Za ⊕ Z
n)/spanZ{(1, c), (q1e1, p1), . . . , (qaea, pa)},

where 1 ∈ Z
a is the vector consisting of all 1’s and pl = (pl1, . . . , pln) ∈ Z

n . The

number of generators is a + n, and the number of relations is a + 1, hence H1 can

only be trivial if n ≤ 1. If n = 1 then Mn+2 is a simply connected closed 3-manifold,

and thus is homeomorphic to S3.

We now consider the case where the quotient has boundary, i.e., ∂(Mn+2/T n) ̸=∅.

The fundamental group in this case was calculated by Hollands and Yazadjiev [12,

Theorem 3] which takes the form

(7-4) π1(Mn+2) ∼=
〈
τ1, . . . , τn, α1, . . . , αa, β1, . . . , βb, γ1, . . . , γg, δ1, . . . , δg |
[τi , τ j ], [τi , α j ], [τi , β j ], [τi , γ j ], [τi , δ j ] for all i and j;
[γ1, δ1] · · · [γg, δg] ·α1 · · · αa · β1 · · · βb;
α

ql

l · τ pl1

1 · · · τ pln
n for l = 1, . . . , a;

τ
vk1

1 · · · τ vkn
n for k = 1, . . . , m

〉
.
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The extra generators β represent the b boundary components of the orbit space

which are homeomorphic to circles; on these components the torus action does not

degenerate. Additional relations are included for these generators showing that they

commute with the generators of the torus fibers. Moreover, the last line of relations

is given by rod structures {v1, . . . , vm} for Mn+2 where each vk = (vk1, . . . , vkn)

represents a generator of the isotropy subgroup along the corresponding rod. As

before denote the generators of (7-4) by G and the list of relations by R. We can

immediately determine that g = 0 by examining ⟨G | R∪ {τi , α j , βℓ}⟩, which is

in fact the fundamental group of a genus g surface. Next consider the subgroup

⟨G |R∪{τi , α j }⟩=⟨β1, . . . , βb |β1 · · · βb⟩, and observe that it is trivial only when all

βi = 1, or rather b = 1. Now consider the abelian group H2 =⟨G |R∪{τi , [αi , α j ]}⟩,
which may be presented as

(7-5) H2 = Z
a/spanZ{1, q1e1, . . . , qa ea}.

This group cannot be trivial unless q1 = · · · = qa = 1, however this contradicts the

nature of qi , and thus a = 0. We then find that

(7-6) ⟨G | R⟩ = Z
n/spanZ{v1, . . . , vm}

and note that this is trivial only if the integral span of the rod structures is Z
n .

Lastly, we will establish part (ii). Notice that (7-4) reduces to the first equality

in (7-1) when Mn+2 is a simple T n-space, since in this situation Mn+2/T n has

no holes, handles, or orbifold points. Furthermore, recall that the Smith normal

form of the matrix (v1, v2, . . . , vm) is obtained by both left and right actions using

unimodular matrices. This does not alter the integral span of the columns. Thus, as

in the classification of finitely generated abelian groups, by a change of basis given

by these unimodular matrices, we obtain the second equality in (7-1). □

Theorem 7.1 may be used as a tool to analyze the topology of the domain of outer

communication for stationary vacuum n-axisymmetric spacetimes. A conjecture

providing a topological classification of the DOCs in the asymptotically Kaluza±

Klein setting, and under a spin assumption, has been put forth by Hollands±Ishibashi

in [10, Conjecture 1]. We now recall the original statement.

Conjecture (Hollands±Ishibashi). Assume that Mn+3, n ≥ 2 is the domain of outer

communication of a well-behaved asymptotically flat or asymptotically Kaluza±

Klein spacetime which is spin, has Ricci tensor satisfying the null-convergence

condition, and admits an effective U(1)n action. Then any Cauchy surface Mn+2

can be decomposed as

(7-7) Mn+2 ∼= (#n
i=2mi · (Si × Sn+2−i )#(asymptotic region)) \ (black holes),
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where the asymptotic region depends on the precise boundary conditions, e.g., in

the standard Kaluza±Klein setup R
3 × T n−1.

This conjecture implies that the fundamental group for the Cauchy surface always

agrees with the fundamental group of the asymptotic region. Indeed, recall that

taking a connected sum with simply connected space Sk × Sn+2−k does not affect

the fundamental group, and neither does removing the black hole regions as can

be seen from topological censorship, or alternatively by using Theorem 7.1. The

next proposition provides an explicit static vacuum counterexample to the above

conjecture.

Proposition 7.2. There exists a well-behaved asymptotically Kaluza±Klein static

biaxisymmetric vacuum spacetime M5 = R × M4, which is devoid of conical

singularities and has two spherical horizons. The domain of outer communication

is spin and simply connected, while its asymptotic region is not simply connected.

In particular, the Cauchy surface M4 violates Conjecture 1 of [10].

Proof. Consider the rod diagram consisting of rod structures {(1, 0), (0, 0), (0, 1),

(0, 0), (1, 0)}. According to Theorem A, there exists a well-behaved asymptotically

Kaluza±Klein static biaxisymmetric vacuum spacetime M5 = R× M4, whose orbit

space M4/T 2 is a half-plane admitting this rod diagram. In fact, in this static setting

with a relatively simple rod structure, the existence result may be obtained through

the superposition of harmonic functions and is in particular analytically regular,

see [18; 20]. The two (0, 0) rods represent S3 horizons, and the two semiinfinite

rods (1, 0) give rise to the asymptotically Kaluza±Klein end M4
end

∼= R
3 × S1.

Moreover, in [15, Section 6] it is shown that there are no conical singularities on the

two semiinfinite rods. The spacetime metric may be expressed in Weyl±Papapetrou

form as in (2-1). Furthermore, since the Killing field ∂φ2 that degenerates on the

middle axis rod (0, 1) does not affect the cone angle at the two semiinfinite rods, or

the asymptotics in M4
end other than the size of the S1 factor, we may scale the φ2

coordinate appropriately to relieve any angle defect on this rod. The spacetime is

then regular.

We will now analyze the topology of the domain of outer communication. First

observe that Theorem 7.1 implies that M4 is simply connected, while clearly

π1(M4
end) = Z. Next, fill in each S3 horizon with a 4-ball B4. This may be

accomplished in the rod diagram by connecting the rods flanking the horizons with

a single corner. As for the asymptotic end, a cross-section has the topology S1 × S2,

and thus may be filled in with an S1 × B3. The asymptotic end is flanked by the

rods (1, 0) and (1, 0), and thus the filling may be achieved in the rod diagram by

extending one of these semiinfinite axis rods until it reaches the other, so that a

single axis rod with the same rod structure is formed out of the two semiinfinite

rods. Note that these fill-ins respect the T 2-structure by construction. After filling
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in the horizons and capping off the asymptotic end, we are left with a closed

simple T 2-manifold having a rod diagram consisting of only two axis rods of rod

structures (1, 0) and (0, 1), which meet at two admissible corners. This is the rod

diagram for S4. Therefore, the DOC M4 is homeomorphic to S4\(B4⊔B4⊔S1×B3)

which is homotopic to R
4 \ ({pt.} ⊔ S1), which is a spin manifold.

Now assume by way of contradiction that Conjecture 1 of [10] is true. Although

the black hole region is unknown, it cannot intersect the asymptotic region, by

definition. We can therefore rearrange terms in (7-7) to find

M4 ∼= ((#m2 · S2 × S2) \ (black holes))#(asymptotic region).

Recall that in three or more dimensions, the fundamental group of a connected sum is

the free product of the fundamental groups of its components. Moreover, as stated in

the conjecture, the asymptotic region for the standard Kaluza±Klein setup is R
3×S1.

Therefore, there is an injective homomorphism Z ∼= π1(R
3 × S1) →֒ π1(M4). This

leads to a contradiction, since we have already seen that M4 ∼= R
4 \ ({pt.} ⊔ S1),

which is simply connected. □

Even though Conjecture 1 of [10] is not true as stated, the spirit of the conjecture

which suggests that in the spin case Cauchy surfaces are primarily comprised of

connected sums of products of spheres, may nevertheless remain valid. In fact

Theorem C, which will be proven at the end of this section, confirms this sentiment in

low dimensions. We are thus motivated to formulate a refined version, Conjecture D,

and will give a proof of this conjecture for spacetime dimensions 5, 6, and 7. The

primary difference between the revised and original versions is that instead of

removing the black hole regions and including a connected sum to the asymptotic

end, we consider closed extensions Mn+2 ⊃ Mn+2 \ Mn+2
end . These extensions,

which may be viewed as compactified domains of outer communication, fill in the

asymptotic region as well as every horizon to form a closed manifold. Theorems 3.8

and 7.1 show that it is always possible to perform such fill-ins and obtain a closed,

simply connected T n-manifold, albeit the compactified DOC Mn+2 may not be

spin.

Proposition 7.3. Conjecture D is valid when n = 2, 3, or 4, if the compactified

domain of outer communication is spin.

Proof. Let Mn+2 be a Cauchy surface for the domain of outer communication of

the spacetime Mn+3 satisfying the desired hypotheses. Since all Cauchy surfaces

are homeomorphic, we can without loss of generality assume that Mn+2 admits a

U(1)n symmetry. This, together with the topological censorship theorem, shows

that Mn+2 is a simple T n-manifold [10, Theorem 9]. To construct the compactified

DOC Mn+2 ⊃ Mn+2 \ Mn+2
end , we cap off the asymptotic region and fill in all of

the horizons in such a way that the total space is simply connected, by adding
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additional rods. Theorem 3.8 describes how to construct the fill-ins from the rod

diagram, while (7-1) explains how to make the total space simply connected. If

n = 2, 3, or 4, and if Mn+2 is spin, then by Theorem C it is homeomorphic to a

connect sum of products of spheres. □

It is likely the case that a spin DOC yields a spin compactified DOC in the proof

of this proposition, in which case Conjecture D would be fully verified for n = 2, 3,

or 4. Furthermore, Proposition 7.3 can be generalized to include the nonspin case

where Mn+2 will instead be homeomorphic to a manifold in the third row of the

table from Theorem C. In addition, it should be noted that the refined conjecture can

be extended to the setting where geometric regularity of the spacetime metric is not

required. This is relevant to applications of Theorem A, since generic spacetimes

produced by this result may include conical singularities on the axes.

Remark 7.4. A slightly modified version of Proposition 7.3 holds true when the

spacetime Mn+3 has conical singularities on its axis rods. To see this, observe that

the only place where geometric regularity of the metric becomes relevant, is when the

topological censorship theorem is utilized. Thus, the regularity assumption as well

as the null energy condition may be removed from the hypotheses of Conjecture D, if

the topological censorship principle is added in their place. This principle, together

with the U(1)n symmetry, guarantees that the Cauchy surface Mn+2 is a simple

T n-manifold. The remaining portion of the proof then proceeds without change.

In fact, the conjecture is at its core a purely topological statement.

Conjecture E. Let n ≥ 1. Any closed, spin, simply connected (n +2)-manifold with

an effective T n-action is homeomorphic to either S3, S4, S5, or #n
i=2mi ·Si ×Sn+2−i .

It does not appear that this conjecture has previously been recorded in the

literature. However, it should be noted that McGavran claimed in [29, Theorem 3.6]

(see also [28]) to have proven a similar statement. Oh [34] pointed out flaws in

McGavran’s argument, and in fact provided counterexamples to his claims. Oh’s

work on this topic [33; 34], along with Orlik and Raymond’s classification [35] in

the 4-dimensional case, remains the best evidence towards Conjecture E.

Proof of Theorem C. We may follow the same line of argument as in the proof

of Proposition 7.3. In particular, by applying Theorems 3.8 and 7.1 to cap-off

the asymptotic end and fill-in the horizons, we arrive at a compactified domain

of outer communication Mn+2 which is closed, simply connected, and admits an

effective T n-action. Moreover, this process of capping-off and filling-in may be

accomplished in an algorithmic manner, as explained in the proof of Theorem 3.8.

We may then apply the classification results for such manifolds given in [33; 34;

35] for n = 2, 3, 4, to obtain the chart presented in Theorem C. □
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