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We present the first examples of formally asymptotically flat black hole solutions with horizons of
general lens space topology L(p, g). These five-dimensional static or stationary spacetimes are regular on
and outside the event horizon for any choice of relatively prime integers 1 < ¢ < p; in particular, conical
singularities are absent. They are supported by Kaluza-Klein matter fields arising from higher dimensional
vacuum solutions through reduction on tori. The technique is sufficiently robust that it leads to the explicit
construction of regular solutions, in any dimension, realizing the full range of possible topologies for the
horizon as well as the domain of outer communication, that are allowable with multi-axisymmetry. Lastly,
as a by-product, we obtain new examples of regular gravitational instantons in higher dimensions.
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What are the possible shapes of a black hole? Fifty years
ago, Hawking [1] provided an answer to this fundamental
question in spacetime dimension 4, with his horizon
topology theorem. This result asserts that cross sections
of the event horizon, in asymptotically flat stationary black
hole spacetimes satisfying the dominant energy condition,
must be topologically a 2-sphere S%. In 2002, Emparan-
Reall [2] discovered the first regular asymptotically flat
nonspherical black hole, a five-dimensional black ring with
horizon topology S' x S2. Not only did this give impetus to
the question above, but it also showed that the traditional
black hole no hair theorem is false in higher dimensions [3].
Shortly thereafter, Galloway-Schoen [4] generalized
Hawking’s theorem to higher dimensions, stating that
horizon cross-sections must be of positive Yamabe invari-
ant. This condition is equivalent to the underlying topology
admitting a metric of positive scalar curvature, and leads to
a concise list of possible horizon topologies in five
dimensions [5]. Namely, orientable horizons in this setting
must be either a quotient of the 3-sphere S (spherical space
form), the ring S' x S?, or a finite connected sum thereof.
Further restrictions are possible in the case of extreme black
holes [6]; in particular, all but one connected sum can be
ruled out.

The basic question of whether each topology on the list is
achieved by a black hole solution has remained unresolved.
The totality of nonspherical black holes found to date
consists of the ring S' x $? [2,7], and the lens spaces
L(p,1) discovered initially by Kunduri-Lucietti when
p =2 [8] and extended to all positive integers p by
Tomizawa-Nozawa [9], see also [10]. While the ring is a
vacuum solution, the lenses are solutions of minimal
supergravity [11]. Moreover, there is evidence that suggests
regular asymptotically flat vacuum black lenses do not exist
[12], and proposals to balance black lenses in a bubble of
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nothing [13] have been unsuccessful [14] (although it is
possible for black rings [15]).

Symmetry yields further restrictions on topology.
Indeed, the rigidity theorem [16,17] guarantees that generi-
cally stationary black holes come with at least one rota-
tional symmetry, and, in fact, almost all known solutions in
five dimensions have U(1)? rotational symmetry; see
Ref. [10] for recent examples admitting only U(1) sym-
metry. In this setting of bi-axisymmetry, the list of possible
horizon topologies reduces to the sphere S3, the ring
S' % $?, and the lens spaces L(p,q) = $°/Z, for any
choice of relatively prime integers 1 < g < p. It is also
possible to classify the list of possible domain of outer
communication (DOC) topologies [18-20] in this regime.
Namely, the compactified Cauchy surfaces within the
DOC must either be the 4-sphere S* a connected sum
of §% x §2’s, or in the nonspin case a connected sum of
complex projective planes CP? and CP2. There have been a
number of attempts to realize all the topologies in these
lists, however, they have all suffered from the presence of
either naked singularities [21,22], conical singularities on
the axes [12,19,23], or closed timelike curves [24] when
trying to implement the more complicated configurations.
In spacetime dimensions greater than 5 very little is known,
although a systematic study of static vacuum generalized
Weyl solutions was given in [25] and stationary vacuum
solutions with possible conical singularities were produced
in [19].

The purpose of this note is the following. We show that
all possible horizon topologies, and DOC topologies from
the classification, including all combinations of multiple
horizon configurations, are realized by regular formally
asymptotically flat black hole solutions. In particular, this
includes the first examples of general lens space topology
L(p, q), involving a topology change between the horizon
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and asymptotic end. These black holes can be either static
or stationary, and are supported by Kaluza-Klein matter
fields in that they arise from higher dimensional vacuum
solutions through reduction on tori. The methods also
extend to all higher dimensions, allowing for the con-
struction of solutions, realizing the full range of possible
topologies for the horizon as well as the DOC, that are
compatible with multiaxisymmetry in which the orbit space
is two dimensional. Furthermore, as a by-product, we
obtain new examples of regular gravitational instantons
[26] in higher dimensions.

The basic strategy consists of the following steps. Given
the desired DOC M”*3 for a (n + 3)-dimensional static or
stationary spacetime admitting U(1)" symmetry with
n > 1, we show how to encode its topology in a higher
dimensional DOC M""3* having a relatively simple
topological structure. On this higher dimensional spacetime
manifold, we solve the static or stationary vacuum Einstein
equations with U(1)"** symmetry, and take advantage of
the simple topology to balance any conical singularities
(choose parameters to achieve a cone angle of zero). A
dimensional reduction, or quotient procedure, is then
carried out in order to obtain a regular solution with
Kaluza-Klein matter on the original topology M"+3,

Because of global hyperbolicity, the topology of the
spacetimes considered here will always be of the form
M3 = R x M"*2, The time slice M"*? is assumed to
admit an effective action by the torus 7" = U(1)", and
hence the quotient map M"*? — M"+2/T" exhibits M"+>
as a 7" bundle over a two-dimensional base space with any
degenerate fibers occurring on the boundary. In particular,
while fibers over interior points are n-dimensional, fibers
over boundary points can be (n — 1) or (n — 2) dimensional.
Those points where the fiber is (n — 1) dimensional are
called axis rods, and the points with an (n — 2)-dimensional
fiber are discrete and called corners. Consistency with
topological censorship demands that the base space
M"2/T" is homeomorphic to a half plane R2 [27].

The entire topology of M"*? may be recorded in the
boundary 0R? of this half-plane. This is achieved by
dividing it into disjoint intervals separated by corners or
horizon rods (assumed to be finite) where the fibers do not
degenerate. Associated to each axis rod interval I'; C dR%
is a vector v; € Z" referred to as the rod structure, which
determines the 1-dimensional isotropy subgroup R -v; +
7" Cc R"/7" = T" for the action of T" on points that lie
over I';. See Refs. [19,25,28] for further discussion con-
cerning rod structures. We then have

M2 = (RY xT")/~, (1)

where the equivalence relation ~ is given by (p,¢) ~
(p,¢ + Av;) withp € T;, A € R/Z, and ¢p € T". Together,
the rod structures form a (n-dimensional) rod dataset D =
{(vi,T}), ..., (v;, Tt)} that enshrines the topology of the

DOC. Rod datasets may be chosen arbitrarily except for an
admissibility condition when n > 2 that guarantees the total
space is a manifold [19] (Sec. 3), namely, if rod structures
v;.V;y arise from neighboring rods separated by a corner
then the 2nd determinant divisor

dety (v, Vi) = ged{|Q;,;, 1}

1s 1, where Qj|j2 i1s the determinant of the 2 x 2 minor
obtained from the matrix defined by the column vectors
V;, v,y by picking rows j; and j,. We may assume without
loss of generality that each rod structure v; is primitive, in
the sense that its components are relatively prime
ged(vl, ..., v") = 1, since this does not change the asso-
ciated isotropy subgroup.

Given a topology M"*3 that we wish to realize as the
DOC for a static or stationary solution of the Einstein
equations, and which is characterized by a n-dimensional
admissible rod dataset D, the first goal is to encode this into
a higher dimensional rod dataset having a simpler structure.
To this end, we define a new (n + k)-dimensional rod
dataset D = {(¥,,T"))..... (¥.T})} by ¥; =V, + e, for
i =1,...,k, where e; is an element of the standard basis for
Z"** having 1 in position j and zeros elsewhere, and
¥; = (v;,0) € Z"*. Note that each vector ¥; is primitive
since the same is true for v;, and similarly since det,(¥;,¥,)
divides det,(v;, v;) the dataset D inherits the admissibility
property from D. In particular, the analogous quotient
M2 as in (1) defined with respect to D yields an
(n + k + 2)-dimensional manifold admitting an effective
action by U(1)"**, which will serve as a DOC time slice for
a static or stationary spacetime.

We claim that topologically the new higher dimensional
manifold is relatively simple, in that it is the product of a
torus with a connected sum consisting of products of
spheres, and can be described by a rod structure having
only standard basis elements. To see this, we note that
changing coordinates on the torus fibers 7"k~
R”*k /7"t does not change the topology of M"H+2,
Such a coordinate change may be described by a matrix
U € SL(n + k., Z) defined by U(e;) =e; for j=1,....n
and U(V;) = e, for i = 1,...,k so that

U_l_[l,, V}
Lo L)

where [, is the n x n identity matrix, I, is the k x k identity
matrix, and V is the n X k matrix consisting of the rod
structures [vy, ..., v;]. Thus, after this coordinate change the
rod dataset becomes D' = {(e,.1.T}). ..., (e, - T%)}, 50
that according to [29] (Theorem 3.4) (see also the dis-
cussion in the proof of [30] [Theorem 2 (iv)]) the topology
of the compactified manifold M”+**2 is given by

3 (k=2
{ # f( )Sz““’f X S""f] x T" (2)
A\ g
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for k > 4, whereas for k = 2, 3 the topology is S x 1",
§> x T", respectively. In this expression binomial coeffi-
cients are used to indicate the number of times the
connected sum is taken for each #. Here the compactified
manifold is obtained from M"***? by filling-in each
horizon as well as infinity with a 4-ball cross a torus B* x
k=2 (attach along common boundaries), since horizons
are characterized by neighboring rod structures e;, e;
showing that they have topology S* x T"*%=2, and similarly
for the cross section at infinity.

We will now solve the Einstein equations on M"™¥+3 =
R x M"™*+2 to obtain a regular static vacuum spacetime
realizing this DOC topology; at the end it will be explained
how to similarly obtain the rotating stationary analogs. An
ansatz, studied initially by Emparan-Reall [25], will be
imposed that restricts the metric along the torus fibers to be
given as a diagonal matrix function yielding the following
form for the spacetime metric

n+k
5 — _pze—zi:f “dp? 4 e2(dp? + dz?) + Zeu, (dy')?,

i=1

where all coefficients depend only on p > 0, z which
parametrize the orbit space half-plane R%, and the Killing
fields 9, generate the U(1)"™* rotational isometries with
0 <y’ <2x. In this setting the static vacuum Einstein
equations reduce to finding n + k axisymmetric harmonic
functions u; on R3\I', where R3 is parametrized in
cylindrical coordinates (p,z,¢) with 0 < ¢ <27z and T’
denotes the z axis. The remaining metric coefficient @ may
be solved by quadrature, using harmonicity of the u; as an
integrability condition

p 4

a, = 3 [(Zui,p)z - (Zu,»,z)2 + Z(u%p - u%z) —;Zu,»,p] ,
p 2

% =7 (Zujp)(Zu ;) + Zu; u; , — ;Z”Lz .

Observe that with the spacetime metric ansatz, axes can
only exhibit rod structures of type e;, i=1,....n+k.
Moreover, for an axis rod I'; having the rod structure e;, we
find that the corresponding logarithmic angle defect [30] is
given by

1
b, = lim(logp+a——u1>. (3)
p—0 2

Recall that nonzero logarithmic angle defect is associated
with a force exerted by the axis, which arises from the
geometric singularity [31] (Sec. 5). It is known that the
limit (3) is constant along the axis I';, a fact which may be
derived from the equations defining @ and the asymptotic

expansion of u; with respect to p. In a more general setting
this was established in [28] (Sec. 3.1).

The harmonic functions will be taken as potentials for a
uniform charge distribution along associated axis rods;
note, however, that g will solve the vacuum equations so
Maxwell fields are not present. More precisely, suppose
that the axis rods consist of the intervals I'; = (—o0, b,],
I, =|a;,b;] fori=2,....k—1, and T'; = [a;, o), where
a; < b; < a;,; < by for each i. We then set

Upyi = 10g<ra,» - Za,») - log(rbi - Zbi)

fori=2,....,k—1, and

Upy1 = 210g/) - log(rb] - Zbl)’ Upyp = log(rak - Zak)’
where r, = \/p* + (z — a)? and z, = z — a. Each of the
individual logarithm expressions is harmonic. Furthermore,
observe that the functions with i =2,...,k—1 are neg-
atively valued and satisfy the following properties: u,,,; ~
2logp near Ty, and u, ;= (a;—b;)/r+ O(r ) as
r — co. The remaining functions are set to u; =0, j =
1, ..., n since they are not linked to axis rods. Clearly then,
these harmonic functions guarantee that the desired rod
dataset D' is achieved through the metric §.

The spacetime (M"3 &) has the desired topology,
satisfies the static vacuum equations, and is asymptotically
Kaluza-Klein in the sense that when distances are very far
from the horizon the spacetime is approximately the
product of five-dimensional Minkowski space with a flat
torus of dimension n + k — 2. However, it may possess
conical singularities along axis rods. Nevertheless, due to
the diagonal matrix structure of the torus fiber metrics, any
conical singularity along an axis rod I'; may be resolved by
adding an appropriate constant to the associated harmonic
function u,,; = u,.; + c¢;, where the constant c; is chosen
to ensure that the logarithmic angle defect b; = 0 in (3).
This translation in the harmonic functions does not alter
any of the properties listed above for the spacetime. We
note that a related balancing procedure was employed by
Emparan-Reall in [25] for certain examples; it was also
used more recently in [30,32]. Furthermore, absence of
conical singularities leads to full regularity of the spacetime
metric, a fact which may be established analogously to [32]
(Sec. 5.1). A similar procedure may be used to produce
regular stationary vacuum solutions having the same rod
dataset, with prescribed angular momenta for each black
hole, by utilizing the results of [19]; although we do not
pursue this here.

We now record two auxiliary results, concerning the
ability to achieve certain DOC topologies, that are conse-
quences of the above arguments. Notice that the
assumption n > 1 is not required when constructing the
higher dimensional static vacuum spacetime, and this leads
to the following statement.
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Theorem 1.—For each pair of integers n > 0 and k > 2,
the compactified domain of outer communication topology
M52 given by (2), is realized by time slices of a regular,
asymptotically Kaluza-Klein (or asymptotically flat when
n =0, k= 2), static vacuum solution with up to k—1
horizons of topology 3 x T+ =2,

In fact, the construction proceeds just as well if no
horizons are present. In this case, the z-axis consists
entirely of axis rods. Furthermore, in this case, for some
constant ¢ the function f’:lk u; —2log p — c is harmonic
on [R3\F, tends to zero at infinity, and remains bounded
upon approach to I'. Therefore, a version of the maximum
principle (or Weinstein Lemma [33] [Lemma 8]) shows that
this function vanishes identically, that is > " Fu, =
2logp + ¢ and hence the static potential is constant. It
follows that the time slice is a complete Ricci flat
Riemannian manifold, yielding new examples of higher
dimensional gravitational instantons.

Corollary 2.—For each pair of integers n > 0 and k > 2,
the topology M” 2 gives rise to a gravitational instanton.
More precisely, on the complement of a B* x T""*=2 this
manifold admits a regular, complete, Ricci flat Riemannian
metric which is asymptotically Kaluza-Klein (or asymp-
totically flat when n = 0, k = 2).

In order to proceed with the original problem of realizing
a static solution on the given topology M"*3 with rod
dataset D, we will perform a dimensional reduction (or
quotienting procedure) on the constructed static spacetime
Mk having rod dataset D. First note that the static
vacuum metric g is expressed above with coordinates ',
on the torus fibers, that yield the simplistic rod dataset 2’ in
terms of standard basis vectors, however, we may change
back to the original coordinates ¢’ in which the rod dataset
is given by D. This is achieved with the unimodular matrix
U = (U;) through the relation y' = U'¢y/. It follows that in
these coordinates

n+k
§=—"p2dr + ] (dp? +d2) + Y Fiydgidgp,

ij=1

where (f;;) = UTdiag(e",...,e")U, f = det(f;;), and
26 = 2a + log f where a is defined above (3).

The reduction procedure will be carried out using a
k-dimensional torus whose action is free (devoid of fixed
points) on M3 In fact, the desired subtorus action is
defined by
’en+k}'

T* =~ spang{e, . ,...,€,. }/spang{e, |, ...

To confirm that this is indeed free, we will show that the
circle action of R/Z-w C R"*/7" is free for any
primitive vector w € spanz{e, ,...,e, s }. Proceeding

by contradiction, assume that for some w the action is
not free. Since fixed points can only occur at axis rods or
corners, this implies that for some i € {1, ...,k — 1} there
are 1, a,f € R with 0 <1< 1, and z € Z"*¥, such that
AWz =aV;+ pV,,,. If 1 1is irrational then utilize the
transformation matrix U to obtain the equation
AUW+ Uz = ae,; + fe, ;. |, and observe that then all
components of Uw and Uz vanish except possibly those in
the n+i, n+ i+ 1 positions. Writing Uz as a linear
combination of e,.;, e,.;.;, and applying the inverse
transformation then shows that w=d'¥V,+ f'V,.
However, this is impossible since w/ = 0 for j =1,....n
while v; and v; | are linearly independent. It follows that 4
is rational, and hence so are a and f.

We may now find relatively prime integers a, b, ¢, and
1 < d < m, such that A = d/m and

d - -
c—W+Hcz=av,+bv,,.
m

Let x € Z" and y,w; € Z* be such that z = (x,y) and
w = (0, w,), then this equation splits into two parts

cX =av; +bv;q, cdw, = m(ae; + be; | —cy).
Clearly m cannot divide d, and also m cannot divide every
component of w, = (w1, ... w"k) since w is primitive.
It follows that m must divide ¢, and thus ¢ = mc’ for some

integer ¢’. Since the rod structures making up D satisfy the
admissibility condition, we then have

b = dety(v;, av; + bv;y,) = mdety (v;, ¢'x).

Hence m divides b. By a similar argument we can see that
m divides a as well. We have now reached a contradiction
since m > 1 divides a, b, and ¢ which are relatively prime.
Therefore, the subtorus action must be free.

The free subtorus action rotates the last k circles in
the fibers of M"™*3 which are parametrized by
(¢!, ..., ¢"*F), while keeping the first n circles fixed.
Hence, viewing the spacetime as a bundle with torus fibers,
the projection map MK o AR/ TR may  be
described by

(P! .. ) > (p.pl .. 9"),

where p € R3. To show that the quotient space is indeed
homeomorphic to the given topology M"*3, we observe
that the projection map implies that the rod dataset D
encoding the higher dimensional topology, descends down
to the rod dataset D for M"**+3 /T*; this will be shown in
detail below.

Lastly, since the free subtorus action is by isometries,
and the static vacuum total space MRS g regular, the

041402-4



PHYSICAL REVIEW LETTERS 131, 041402 (2023)

same is true of the quotient M"*3. In particular, this
solution is devoid of conical singularities. We note that
as a consequence of the dimensional reduction on tori,
Kaluza-Klein matter fields will be present. Indeed, the
metric on M"™*"3 may be expressed in Kaluza-Klein
format as

n+k
+ Y hy(dgf + Aldg')(dgr + Avdg),
pu.v=n+1
where i,j=1,...n, h, =f,. h,A"=Ff,, and the

Mn+3

(quotient) metric g on
Papapetrou [28] form by

is given in Weyl-

= —(fh)~'p2di* + (fh)~'e* (dp® + dz?)
+mew

i.j=

with fi; + h, AfAY = F;. f = det(f;), and h = det(h,).
The d1mens10nally reduced Lagrangian on M"*3 may then
be expressed [34] (Sec. 11.4) as

L= \/@<R - % (|Te(h='Vh)[2 + Tr(h~'Vh)? + |J—“|2)> :

where R is the scalar curvature of g, |F|* = h, F*FY,

with 7# = dA* and i, j labeling the coordinates of g, and
g = —detg. The second and third terms in the Lagrangian
give rise to the action for a sigma model (harmonic map)
with target space SL(k, R)/SO(k) (see Ref. [19]), while the
fourth term yields the action for Abelian gauge fields. In
particular, the associated stress-energy-momentum tensor
will satisfy the dominant energy condition. This property is
verified, and the relevant equations of motion are given, in
the Appendix.

To see directly that D is the rod dataset for A" *+3 / Tk,
consider an axis rod I'; with rod structure v, =V, + e,
within M"7*+3. Then fm]vl + fm atr) = 0 on the axis
rod for m =1, ...,n + k. It follows from relations above
that

fijvl + h, AlA]

= JNCijUf = —fi(nH)»

and hWA’;v{ = fﬂjv{ = —fﬂ<n+,). Therefore

fijvl fz n+l)

fﬂnJrl fln+l_h n+l

showing that v is the rod structure for I'; within the
quotient.

We now record what has been established. A globally
hyperbolic spacetime of dimension n + 3 will be referred to

as multi-axisymmetric, if a (noncompact) Cauchy slice
admits the symmetry group U(1)" with a simply connected
two-dimensional orbit space, so that its topology is com-
pletely determined by an admissible rod dataset D.

Theorem 3.—Any possible topology of the domain of
outer communication for a multi-axisymmetric spacetime
of dimension greater than or equal to 4, is realizable by a
regular static solution of the Einstein equations with
Kaluza-Klein matter. In particular, these solutions are
obtained from a higher dimensional asymptotically
Kaluza-Klein vacuum solution by dimensional reduction
on tori.

The five-dimensional case is of particular interest. By
choosing rod structures v; = (1,0) and v; = (0, 1) for the
two semi-infinite rods I'; and I';, cross sections of the time
slice M* near spatial infinity will be 3-spheres, and in this
region the spacetime curvature will approach zero; sol-
utions with these two properties will be referred to as
formally asymptotically flat. It should be noted that various,
often more specialized, notions of asymptotic flatness
appear in the literature, which may not be applicable to
the solutions discussed here. In particular, the two-
dimensional tori that foliate the S® cross sections, which
arise from the Hopf fibration, may not grow in the
asymptotic end. We state the next result with a focus on
the topology of black holes.

Corollary 4.—There exist five-dimensional regular
formally asymptotically flat static bi-axially symmetric
solutions of the Einstein equations with Kaluza-Klein
matter, supporting any finite configuration of nondegen-
erate black hole horizons of the form S, S' x S2%, or
L(p,q), where 1 < g < p with ged(p, q) = 1.

We remark that all solutions discussed may be written
down explicitly in terms of the harmonic functions u; and
rod structures v;. Moreover, it is possible to replace static
solutions with stationary solutions in these results, thus
giving rotation to the constructed black holes. This is
accomplished by utilizing the harmonic map approach of
[19], instead of the harmonic function technique to obtain
the relevant higher dimensional vacuum solutions.
Although these stationary solutions may be shown to exist
with the same underlying topologies of the static solutions
described above, the angular momenta of the individual
black holes cannot be fully prescribed due to the process of
balancing conical singularities.

M. Khuri acknowledges the support of NSF Grant
No. DMS-2104229. The authors would like to thank
Hari Kunduri, Martin Rocek, and Phil Saad for helpful
comments.

Appendix.—Here it is shown that the Kaluza-Klein
matter fields satisfy the dominant energy condition, and
their equations of motion are also derived. Let L
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denote that matter portion of the Lagrangian L, and
consider the stress-energy-momentum tensor defined by

4 sy,
Y Vhg ogl
= Tr(h_ldih)Tr(h_ldjh) + Tr(h_laihh_ldjh)

4T

1
-3 (ITe(h~'Vh) > + Tr(h~'Vh)?)g;;
1
+ 2hﬂyglm‘7_‘lillfgm - 5 |‘;E|2g1.] (Al)
To confirm that T(X,Y) >0 for all future-pointing
g-causal vectors X and Y, it suffices to establish that
T(n.n) > [T(n.-)| (A2)
for any unit timelike vector mn, where - represents
(spacelike) vectors orthogonal to n having norm less
than or equal to 1. Observe that the last line of (Al)
may be interpreted as a sum of stress-energy-momentum
tensors for Abelian gauge fields, each of which satisfies
the dominant energy condition (see Ref. [35]). Therefore

it is enough to show (A2) for the remaining piece Ty of
T. To this end, we compute

Ty(n,n) = = (|Tr(h~'0,h)|> + Tr(h~'0,h)?)

1

2
1 — —

+ 5 (TR V)P + Te(h T )2).

N
where V denotes derivatives in directions perpendicular
to n, and

T,(n.-) = Tr(h~'0,h)Tr(h™' V i) + Te(h~' 9ghh™ V h).

As mentioned previously, the second and third terms of £
constitute the action for a sigma model with target
Riemannian symmetric space SL(k,R)/SO(k). There-
fore, the expressions for Ty(n,n) and Ty (n,-) consist of
inner products between tangent vectors to the target
space. It follows that the Cauchy-Schwarz inequality may
be applied to obtain the desired inequality (A2) for Tp.
Lastly, to find the equations of motion for the matter
fields, it is convenient to conformally change the spacetime
metric on M"*3, namely, set g = e*g where y =
—[1/2(n + 1)]logdet h. The Lagrangian then becomes

-1
L= \/§<R -2 (c,|Tr(h='Vh)?
+ Tr(h™'Vh)? + e‘z"’|.7-"|2)> ,

where §=detg, R is the scalar curvature of &,
¢, =[2n+3)/(n+1)], and all norms are now with

respect to g. A straightforward, albeit tedious compu-
tation, then shows that the associated Euler-Lagrange
equations are

Ohy, — h*Vhy, - Vh,, = ¢,e 2 |F|*h,,,
div(e™h,, F*) =0,

where [J and div are the wave and divergence operators
with respect to g, and ¢! = 4(n*> + 5n + 5).

*khuri@math.sunysb.edu
J(jordan.rainone@stonybrook.edu
rainonej @gmail.com

[1] S. Hawking, Commun. Math. Phys. 25, 152 (1972).

[2] R. Emparan and H. S. Reall, Phys. Rev. Lett. 88, 101101
(2002).

[3] R. Emparan and H. Reall, Living Rev. Relativity 11, 6
(2008).

[4] G. Galloway and R. Schoen, Commun. Math. Phys. 266,
571 (2006).

[5] G. Galloway, in Black Holes in Higher Dimensions, edited
by G. Horowitz (Cambridge University Press, Cambridge,
England, 2012), p. 159.

[6] M. Khuri, E. Woolgar, and W. Wylie, Lett. Math. Phys. 109,
661 (2019).

[7] A. Pomeransky and R. Sen’kov, arXiv:hep-th/0612005.

[8] H. K. Kunduri and J. Lucietti, Phys. Rev. Lett. 113, 211101
(2014).

[9] S. Tomizawa and M. Nozawa, Phys. Rev. D 94, 044037
(2016).

[10] D. Katona and J. Lucietti, Commun. Math. Phys. 399, 1151
(2023).

[11] E. Cremmer, in Superspace and Supergravity (Cambridge
University Press, Cambridge, England, 1981), p. 267.

[12] J. Lucietti and F. Tomlinson, J. High Energy Phys. 02
(2021) 005.

[13] E. Witten, Nucl. Phys. B195, 481 (1982).

[14] S. Tomizawa and R. Suzuki, Phys. Rev. D 106, 124029
(2022).

[15] M. Astorino, R. Emparan, and A. Vigano, J. High Energy
Phys. 07 (2022) 007.

[16] S. Hollands, A. Ishibashi, and R. Wald, Commun. Math.
Phys. 271, 699 (2007).

[17] V. Moncrief and J. Isenberg, Classical Quantum Gravity 25,
195015 (2008).

[18] S. Hollands, J. Holland, and A. Ishibashi, Ann. Inst. Henri
Poincaré 12, 279 (2011).

[19] V. Kakkat, M. Khuri, J. Rainone, and G. Weinstein, Pac. J.
Math. 322, 59 (2023).

[20] M. Khuri, Y. Matsumoto, G. Weinstein, and S. Yamada,
Trans. Am. Math. Soc. 372, 3237 (2019).

[21] Y. Chen and E. Teo, Phys. Rev. D 78, 064062 (2008).

[22] J. Evslin, J. High Energy Phys. 09 (2008) 004; P. Figueras,
M. Kunesch, L. Lehner, and S. Tunyasuvunakool, Phys.
Rev. Lett. 118, 151103 (2017).

[23] M. Khuri, G. Weinstein, and S. Yamada, Commun. Partial
Differ. Equations 43, 1205 (2018).

041402-6



PHYSICAL REVIEW LETTERS 131, 041402 (2023)

[24] S. Tomizawa and T. Mishima, Phys. Rev. D 99, 104053
(2019).

[25] R. Emparan and H. Reall, Phys. Rev. D 65, 084025 (2002).

[26] S. Hawking, Phys. Lett. A 60, 81 (1977).

[27] S. Hollands and S. Yazadjiev, Commun. Math. Phys. 283,
749 (2008).

[28] T. Harmark, Phys. Rev. D 70, 124002 (2004).

[29] D. McGavran, Trans. Am. Math. Soc. 251, 235 (1979).

[30] M. Khuri, M. Reiris, G. Weinstein, and S. Yamada,
arXiv:2204.08048 [Contribution to volume honoring D.
Christodoulou (to be published)].

[31] G. Weinstein, Commun. Pure Appl. Math. 43, 903
(1990).

[32] M. Khuri, G. Weinstein, and S. Yamada, J. High Energy
Phys. 12 (2020) 002.

[33] G. Weinstein, Duke Math. J. 77, 135 (1995).

[34] T. Ortin, Cambridge Monographs on Mathematical
Physics (Cambridge University Press, Cambridge, England,
2015).

[35] A. Alaee, M. Khuri, and H. Kunduri, Int. J. Mod. Phys. D
30, 2142022 (2021).

041402-7



