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We present the first examples of formally asymptotically flat black hole solutions with horizons of

general lens space topology Lðp; qÞ. These five-dimensional static or stationary spacetimes are regular on

and outside the event horizon for any choice of relatively prime integers 1 ≤ q < p; in particular, conical

singularities are absent. They are supported by Kaluza-Klein matter fields arising from higher dimensional

vacuum solutions through reduction on tori. The technique is sufficiently robust that it leads to the explicit

construction of regular solutions, in any dimension, realizing the full range of possible topologies for the

horizon as well as the domain of outer communication, that are allowable with multi-axisymmetry. Lastly,

as a by-product, we obtain new examples of regular gravitational instantons in higher dimensions.
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What are the possible shapes of a black hole? Fifty years

ago, Hawking [1] provided an answer to this fundamental

question in spacetime dimension 4, with his horizon

topology theorem. This result asserts that cross sections

of the event horizon, in asymptotically flat stationary black

hole spacetimes satisfying the dominant energy condition,

must be topologically a 2-sphere S2. In 2002, Emparan-

Reall [2] discovered the first regular asymptotically flat

nonspherical black hole, a five-dimensional black ring with

horizon topology S1 × S2. Not only did this give impetus to

the question above, but it also showed that the traditional

black hole no hair theorem is false in higher dimensions [3].

Shortly thereafter, Galloway-Schoen [4] generalized

Hawking’s theorem to higher dimensions, stating that

horizon cross-sections must be of positive Yamabe invari-

ant. This condition is equivalent to the underlying topology

admitting a metric of positive scalar curvature, and leads to

a concise list of possible horizon topologies in five

dimensions [5]. Namely, orientable horizons in this setting

must be either a quotient of the 3-sphere S3 (spherical space

form), the ring S1 × S2, or a finite connected sum thereof.

Further restrictions are possible in the case of extreme black

holes [6]; in particular, all but one connected sum can be

ruled out.

The basic question of whether each topology on the list is

achieved by a black hole solution has remained unresolved.

The totality of nonspherical black holes found to date

consists of the ring S1 × S2 [2,7], and the lens spaces

Lðp; 1Þ discovered initially by Kunduri-Lucietti when

p ¼ 2 [8] and extended to all positive integers p by

Tomizawa-Nozawa [9], see also [10]. While the ring is a

vacuum solution, the lenses are solutions of minimal

supergravity [11]. Moreover, there is evidence that suggests

regular asymptotically flat vacuum black lenses do not exist

[12], and proposals to balance black lenses in a bubble of

nothing [13] have been unsuccessful [14] (although it is

possible for black rings [15]).

Symmetry yields further restrictions on topology.

Indeed, the rigidity theorem [16,17] guarantees that generi-

cally stationary black holes come with at least one rota-

tional symmetry, and, in fact, almost all known solutions in

five dimensions have Uð1Þ2 rotational symmetry; see

Ref. [10] for recent examples admitting only U(1) sym-

metry. In this setting of bi-axisymmetry, the list of possible

horizon topologies reduces to the sphere S3, the ring

S1 × S2, and the lens spaces Lðp; qÞ ≅ S3=Zp for any

choice of relatively prime integers 1 ≤ q < p. It is also

possible to classify the list of possible domain of outer

communication (DOC) topologies [18–20] in this regime.

Namely, the compactified Cauchy surfaces within the

DOC must either be the 4-sphere S4, a connected sum

of S2 × S2 ’s, or in the nonspin case a connected sum of

complex projective planesCP2 andCP2. There have been a

number of attempts to realize all the topologies in these

lists, however, they have all suffered from the presence of

either naked singularities [21,22], conical singularities on

the axes [12,19,23], or closed timelike curves [24] when

trying to implement the more complicated configurations.

In spacetime dimensions greater than 5 very little is known,

although a systematic study of static vacuum generalized

Weyl solutions was given in [25] and stationary vacuum

solutions with possible conical singularities were produced

in [19].

The purpose of this note is the following. We show that

all possible horizon topologies, and DOC topologies from

the classification, including all combinations of multiple

horizon configurations, are realized by regular formally

asymptotically flat black hole solutions. In particular, this

includes the first examples of general lens space topology

Lðp; qÞ, involving a topology change between the horizon
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and asymptotic end. These black holes can be either static

or stationary, and are supported by Kaluza-Klein matter

fields in that they arise from higher dimensional vacuum

solutions through reduction on tori. The methods also

extend to all higher dimensions, allowing for the con-

struction of solutions, realizing the full range of possible

topologies for the horizon as well as the DOC, that are

compatible with multiaxisymmetry in which the orbit space

is two dimensional. Furthermore, as a by-product, we

obtain new examples of regular gravitational instantons

[26] in higher dimensions.

The basic strategy consists of the following steps. Given

the desired DOC Mnþ3 for a (nþ 3)-dimensional static or

stationary spacetime admitting Uð1Þn symmetry with

n ≥ 1, we show how to encode its topology in a higher

dimensional DOC M̃
nþ3þk having a relatively simple

topological structure. On this higher dimensional spacetime

manifold, we solve the static or stationary vacuum Einstein

equations with Uð1Þnþk symmetry, and take advantage of

the simple topology to balance any conical singularities

(choose parameters to achieve a cone angle of zero). A

dimensional reduction, or quotient procedure, is then

carried out in order to obtain a regular solution with

Kaluza-Klein matter on the original topology Mnþ3.

Because of global hyperbolicity, the topology of the

spacetimes considered here will always be of the form

Mnþ3 ¼ R ×Mnþ2. The time slice Mnþ2 is assumed to

admit an effective action by the torus Tn ¼ Uð1Þn, and
hence the quotient map Mnþ2

→ Mnþ2=Tn exhibits Mnþ2

as a Tn bundle over a two-dimensional base space with any

degenerate fibers occurring on the boundary. In particular,

while fibers over interior points are n-dimensional, fibers

over boundary points can be (n − 1) or (n − 2) dimensional.

Those points where the fiber is (n − 1) dimensional are

called axis rods, and the points with an (n − 2)-dimensional

fiber are discrete and called corners. Consistency with

topological censorship demands that the base space

Mnþ2=Tn is homeomorphic to a half plane R
2
þ [27].

The entire topology of Mnþ2 may be recorded in the

boundary ∂R
2
þ of this half-plane. This is achieved by

dividing it into disjoint intervals separated by corners or

horizon rods (assumed to be finite) where the fibers do not

degenerate. Associated to each axis rod interval Γi ⊂ ∂R
2
þ

is a vector vi ∈ Z
n referred to as the rod structure, which

determines the 1-dimensional isotropy subgroup R · vi þ
Z

n ⊂ R
n=Zn ≅ Tn for the action of Tn on points that lie

over Γi. See Refs. [19,25,28] for further discussion con-

cerning rod structures. We then have

Mnþ2 ≅ ðR2
þ × TnÞ=∼; ð1Þ

where the equivalence relation ∼ is given by ðp;ϕÞ ∼
ðp;ϕþ λviÞ with p ∈ Γi, λ ∈ R=Z, and ϕ ∈ Tn. Together,

the rod structures form a (n-dimensional) rod dataset D ¼
fðv1;Γ1Þ;…; ðvk;ΓkÞg that enshrines the topology of the

DOC. Rod datasets may be chosen arbitrarily except for an
admissibility conditionwhen n ≥ 2 that guarantees the total
space is a manifold [19] (Sec. 3), namely, if rod structures
vi; viþ1 arise from neighboring rods separated by a corner
then the 2nd determinant divisor

det2ðvi; viþ1Þ ¼ gcdfjQj1j2
jg

is 1, where Qj1j2
is the determinant of the 2 × 2 minor

obtained from the matrix defined by the column vectors
vi; viþ1 by picking rows j1 and j2. We may assume without
loss of generality that each rod structure vi is primitive, in
the sense that its components are relatively prime

gcdðv1i ;…; vni Þ ¼ 1, since this does not change the asso-
ciated isotropy subgroup.
Given a topology Mnþ3 that we wish to realize as the

DOC for a static or stationary solution of the Einstein
equations, and which is characterized by a n-dimensional
admissible rod datasetD, the first goal is to encode this into
a higher dimensional rod dataset having a simpler structure.
To this end, we define a new (nþ k)-dimensional rod

dataset D̃ ¼ fðṽ1;Γ1Þ;…; ðṽk;ΓkÞg by ṽi ¼ v̄i þ enþi for
i ¼ 1;…; k, where ej is an element of the standard basis for

Z
nþk having 1 in position j and zeros elsewhere, and

v̄i ¼ ðvi; 0Þ ∈ Z
nþk. Note that each vector ṽi is primitive

since the same is true for vi, and similarly since det2ðṽi; ṽjÞ
divides det2ðvi; vjÞ the dataset D̃ inherits the admissibility

property from D. In particular, the analogous quotient

M̃nþkþ2 as in (1) defined with respect to D̃ yields an
(nþ kþ 2)-dimensional manifold admitting an effective

action by Uð1Þnþk, which will serve as a DOC time slice for
a static or stationary spacetime.

We claim that topologically the new higher dimensional

manifold is relatively simple, in that it is the product of a

torus with a connected sum consisting of products of

spheres, and can be described by a rod structure having

only standard basis elements. To see this, we note that

changing coordinates on the torus fibers Tnþk ≅

R
nþk=Znþk does not change the topology of M̃nþkþ2.

Such a coordinate change may be described by a matrix

U ∈ SLðnþ k;ZÞ defined by UðejÞ ¼ ej for j ¼ 1;…; n

and UðṽiÞ ¼ enþi for i ¼ 1;…; k so that

U−1 ¼
�

In V

0 Ik

�

;

where In is the n × n identity matrix, Ik is the k × k identity

matrix, and V is the n × k matrix consisting of the rod

structures ½v1;…; vk�. Thus, after this coordinate change the
rod dataset becomes D̃

0 ¼ fðenþ1;Γ1Þ;…; ðenþk;ΓkÞg, so
that according to [29] (Theorem 3.4) (see also the dis-

cussion in the proof of [30] [Theorem 2 (iv)]) the topology

of the compactified manifold M̃nþkþ2
c is given by

�

#

k−3

l¼1

l

�

k − 2

lþ 1

�

S2þl × Sk−l
�

× Tn ð2Þ
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for k ≥ 4, whereas for k ¼ 2, 3 the topology is S4 × Tn,

S5 × Tn, respectively. In this expression binomial coeffi-

cients are used to indicate the number of times the

connected sum is taken for each l. Here the compactified

manifold is obtained from M̃nþkþ2 by filling-in each

horizon as well as infinity with a 4-ball cross a torus B4 ×

Tnþk−2 (attach along common boundaries), since horizons

are characterized by neighboring rod structures ei; eiþ1

showing that they have topology S3 × Tnþk−2, and similarly

for the cross section at infinity.

We will now solve the Einstein equations on M̃
nþkþ3 ¼

R × M̃nþkþ2 to obtain a regular static vacuum spacetime

realizing this DOC topology; at the end it will be explained

how to similarly obtain the rotating stationary analogs. An

ansatz, studied initially by Emparan-Reall [25], will be

imposed that restricts the metric along the torus fibers to be

given as a diagonal matrix function yielding the following

form for the spacetime metric

g̃ ¼ −ρ2e−
P

nþk

i¼1
uidt2 þ e2αðdρ2 þ dz2Þ þ

X

nþk

i¼1

euiðdψ iÞ2;

where all coefficients depend only on ρ > 0, z which

parametrize the orbit space half-plane R2
þ, and the Killing

fields ∂ψ i generate the Uð1Þnþk rotational isometries with

0 ≤ ψ i < 2π. In this setting the static vacuum Einstein

equations reduce to finding nþ k axisymmetric harmonic

functions ui on R
3nΓ, where R

3 is parametrized in

cylindrical coordinates ðρ; z;ϕÞ with 0 ≤ ϕ < 2π and Γ

denotes the z axis. The remaining metric coefficient α may

be solved by quadrature, using harmonicity of the ui as an
integrability condition

αρ ¼
ρ

8

�

ðΣui;ρÞ2 − ðΣui;zÞ2 þ Σðu2i;ρ − u2i;zÞ −
4

ρ
Σui;ρ

�

;

αz ¼
ρ

4

�

ðΣui;ρÞðΣui;zÞ þ Σui;ρui;z −
2

ρ
Σui;z

�

:

Observe that with the spacetime metric ansatz, axes can

only exhibit rod structures of type ei, i ¼ 1;…; nþ k.
Moreover, for an axis rod Γl having the rod structure el, we

find that the corresponding logarithmic angle defect [30] is

given by

bl ¼ lim
ρ→0

�

log ρþ α −
1

2
ul

�

: ð3Þ

Recall that nonzero logarithmic angle defect is associated

with a force exerted by the axis, which arises from the

geometric singularity [31] (Sec. 5). It is known that the

limit (3) is constant along the axis Γl, a fact which may be

derived from the equations defining α and the asymptotic

expansion of ul with respect to ρ. In a more general setting

this was established in [28] (Sec. 3.1).

The harmonic functions will be taken as potentials for a

uniform charge distribution along associated axis rods;

note, however, that g̃ will solve the vacuum equations so

Maxwell fields are not present. More precisely, suppose

that the axis rods consist of the intervals Γ1 ¼ ð−∞; b1�,
Γi ¼ ½ai; bi� for i ¼ 2;…; k − 1, and Γk ¼ ½ak;∞Þ, where
ai < bi ≤ aiþi < biþ1 for each i. We then set

unþi ¼ logðrai − zaiÞ − logðrbi − zbiÞ

for i ¼ 2;…; k − 1, and

unþ1 ¼ 2 logρ− logðrb1 − zb1Þ; unþk ¼ logðrak − zakÞ;

where ra ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ2 þ ðz − aÞ2
p

and za ¼ z − a. Each of the

individual logarithm expressions is harmonic. Furthermore,

observe that the functions with i ¼ 2;…; k − 1 are neg-

atively valued and satisfy the following properties: unþi ∼

2 log ρ near Γi, and unþi ¼ ðai − biÞ=rþOðr−2Þ as

r → ∞. The remaining functions are set to uj ¼ 0, j ¼
1;…; n since they are not linked to axis rods. Clearly then,

these harmonic functions guarantee that the desired rod

dataset D̃0 is achieved through the metric g̃.

The spacetime ðM̃nþkþ3; g̃Þ has the desired topology,

satisfies the static vacuum equations, and is asymptotically

Kaluza-Klein in the sense that when distances are very far

from the horizon the spacetime is approximately the

product of five-dimensional Minkowski space with a flat

torus of dimension nþ k − 2. However, it may possess

conical singularities along axis rods. Nevertheless, due to

the diagonal matrix structure of the torus fiber metrics, any

conical singularity along an axis rod Γi may be resolved by

adding an appropriate constant to the associated harmonic

function unþi ↦ unþi þ ci, where the constant ci is chosen
to ensure that the logarithmic angle defect bi ¼ 0 in (3).

This translation in the harmonic functions does not alter

any of the properties listed above for the spacetime. We

note that a related balancing procedure was employed by

Emparan-Reall in [25] for certain examples; it was also

used more recently in [30,32]. Furthermore, absence of

conical singularities leads to full regularity of the spacetime

metric, a fact which may be established analogously to [32]

(Sec. 5.1). A similar procedure may be used to produce

regular stationary vacuum solutions having the same rod

dataset, with prescribed angular momenta for each black

hole, by utilizing the results of [19]; although we do not

pursue this here.

We now record two auxiliary results, concerning the

ability to achieve certain DOC topologies, that are conse-

quences of the above arguments. Notice that the

assumption n ≥ 1 is not required when constructing the

higher dimensional static vacuum spacetime, and this leads

to the following statement.
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Theorem 1.—For each pair of integers n ≥ 0 and k ≥ 2,

the compactified domain of outer communication topology

M̃nþkþ2
c given by (2), is realized by time slices of a regular,

asymptotically Kaluza-Klein (or asymptotically flat when

n ¼ 0, k ¼ 2), static vacuum solution with up to k − 1

horizons of topology S3 × Tnþk−2.

In fact, the construction proceeds just as well if no

horizons are present. In this case, the z-axis consists

entirely of axis rods. Furthermore, in this case, for some

constant c the function
P

nþk
i¼1

ui − 2 log ρ − c is harmonic

on R
3nΓ, tends to zero at infinity, and remains bounded

upon approach to Γ. Therefore, a version of the maximum

principle (or Weinstein Lemma [33] [Lemma 8]) shows that

this function vanishes identically, that is
P

nþk
i¼1

ui ¼
2 log ρþ c and hence the static potential is constant. It

follows that the time slice is a complete Ricci flat

Riemannian manifold, yielding new examples of higher

dimensional gravitational instantons.

Corollary 2.—For each pair of integers n ≥ 0 and k ≥ 2,

the topology M̃nþkþ2
c gives rise to a gravitational instanton.

More precisely, on the complement of a B4 × Tnþk−2 this

manifold admits a regular, complete, Ricci flat Riemannian

metric which is asymptotically Kaluza-Klein (or asymp-

totically flat when n ¼ 0, k ¼ 2).

In order to proceed with the original problem of realizing

a static solution on the given topology Mnþ3 with rod

dataset D, we will perform a dimensional reduction (or

quotienting procedure) on the constructed static spacetime

M̃
nþkþ3 having rod dataset D̃. First note that the static

vacuum metric g̃ is expressed above with coordinates ψ i,

on the torus fibers, that yield the simplistic rod dataset D̃0 in
terms of standard basis vectors, however, we may change

back to the original coordinates ϕi in which the rod dataset

is given by D̃. This is achieved with the unimodular matrix

U ¼ ðUi
jÞ through the relation ψ i ¼ Ui

jϕ
j. It follows that in

these coordinates

g̃ ¼ −f̃−1ρ2dt2 þ f̃−1e2σðdρ2 þ dz2Þ þ
X

nþk

i;j¼1

f̃ijdϕ
idϕj;

where ðf̃ijÞ ¼ UTdiagðeu1 ;…; eunþkÞU, f̃ ¼ detðf̃ijÞ, and
2σ ¼ 2αþ log f̃ where α is defined above (3).

The reduction procedure will be carried out using a

k-dimensional torus whose action is free (devoid of fixed

points) on M̃
nþkþ3. In fact, the desired subtorus action is

defined by

Tk ≅ spanRfenþ1;…; enþkg=spanZfenþ1;…; enþkg:

To confirm that this is indeed free, we will show that the

circle action of R=Z · w ⊂ R
nþk=Znþk is free for any

primitive vector w ∈ spanZfenþ1;…; enþkg. Proceeding

by contradiction, assume that for some w the action is

not free. Since fixed points can only occur at axis rods or

corners, this implies that for some i ∈ f1;…; k − 1g there

are λ; α; β ∈ R with 0 < λ ≤ 1, and z ∈ Z
nþk, such that

λw þ z ¼ αṽi þ βṽiþ1. If λ is irrational then utilize the

transformation matrix U to obtain the equation

λUw þ Uz ¼ αenþi þ βenþiþ1, and observe that then all

components of Uw and Uz vanish except possibly those in

the nþ i, nþ iþ 1 positions. Writing Uz as a linear

combination of enþi, enþiþ1, and applying the inverse

transformation then shows that w ¼ α0ṽi þ β0ṽiþ1.

However, this is impossible since wj ¼ 0 for j ¼ 1;…; n

while vi and viþ1 are linearly independent. It follows that λ

is rational, and hence so are α and β.

We may now find relatively prime integers a, b, c, and
1 < d ≤ m, such that λ ¼ d=m and

c
d

m
w þ cz ¼ aṽi þ bṽiþ1:

Let x ∈ Z
n and y;wk ∈ Z

k be such that z ¼ ðx; yÞ and

w ¼ ð0;wkÞ, then this equation splits into two parts

cx ¼ avi þ bviþ1; cdwk ¼ mðaei þ beiþ1 − cyÞ:

Clearly m cannot divide d, and also m cannot divide every

component of wk ¼ ðwnþ1;…; wnþkÞ since w is primitive.

It follows that m must divide c, and thus c ¼ mc0 for some

integer c0. Since the rod structures making up D satisfy the

admissibility condition, we then have

b ¼ det2ðvi; avi þ bviþ1Þ ¼ mdet2ðvi; c0xÞ:

Hence m divides b. By a similar argument we can see that

m divides a as well. We have now reached a contradiction

since m > 1 divides a, b, and c which are relatively prime.

Therefore, the subtorus action must be free.

The free subtorus action rotates the last k circles in

the fibers of M̃
nþkþ3 which are parametrized by

ðϕnþ1;…;ϕnþkÞ, while keeping the first n circles fixed.

Hence, viewing the spacetime as a bundle with torus fibers,

the projection map M̃
nþkþ3

→ M̃
nþkþ3=Tk may be

described by

ðp;ϕ1;…;ϕnþkÞ ↦ ðp;ϕ1;…;ϕnÞ;

where p ∈ R
2
þ. To show that the quotient space is indeed

homeomorphic to the given topology Mnþ3, we observe

that the projection map implies that the rod dataset D̃

encoding the higher dimensional topology, descends down

to the rod dataset D for M̃nþkþ3=Tk; this will be shown in

detail below.

Lastly, since the free subtorus action is by isometries,

and the static vacuum total space M̃
nþkþ3 is regular, the
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same is true of the quotient Mnþ3. In particular, this

solution is devoid of conical singularities. We note that

as a consequence of the dimensional reduction on tori,

Kaluza-Klein matter fields will be present. Indeed, the

metric on M̃
nþkþ3 may be expressed in Kaluza-Klein

format as

g̃ ¼ gþ
X

nþk

μ;ν¼nþ1

hμνðdϕμ þ A
μ
i dϕ

iÞðdϕν þ Aν
jdϕ

jÞ;

where i; j ¼ 1;…; n, hμν ¼ f̃μν, hμνA
μ
i ¼ f̃νi, and the

(quotient) metric g on Mnþ3 is given in Weyl-

Papapetrou [28] form by

g ¼ −ðfhÞ−1ρ2dt2 þ ðfhÞ−1e2σðdρ2 þ dz2Þ

þ
X

n

i;j¼1

fijdϕ
idϕj;

with fij þ hμνA
μ
iA

ν
j ¼ f̃ij, f ¼ detðfijÞ, and h ¼ detðhμνÞ.

The dimensionally reduced Lagrangian onMnþ3 may then

be expressed [34] (Sec. 11.4) as

L ¼
ffiffiffiffiffi

hg
p

�

R −
1

4
ðjTrðh−1∇hÞj2 þ Trðh−1∇hÞ2 þ jF j2Þ

�

;

where R is the scalar curvature of g, jF j2 ¼ hμνF
μijF ν

ij

with F μ ¼ dAμ and i, j labeling the coordinates of g, and

g ¼ − detg. The second and third terms in the Lagrangian

give rise to the action for a sigma model (harmonic map)

with target space SLðk;RÞ=SOðkÞ (see Ref. [19]), while the
fourth term yields the action for Abelian gauge fields. In

particular, the associated stress-energy-momentum tensor

will satisfy the dominant energy condition. This property is

verified, and the relevant equations of motion are given, in

the Appendix.

To see directly that D is the rod dataset for M̃nþkþ3=Tk,

consider an axis rod Γl with rod structure ṽl ¼ v̄l þ enþl

within M̃
nþkþ3. Then f̃mjv

j
l þ f̃mðnþlÞ ¼ 0 on the axis

rod for m ¼ 1;…; nþ k. It follows from relations above

that

fijv
j
l þ hμνA

μ
iA

ν
jv

j
l ¼ f̃ijv

j
l ¼ −f̃iðnþlÞ;

and hμνA
ν
jv

j
l ¼ f̃μjv

j
l ¼ −f̃μðnþlÞ. Therefore

fijv
j
l ¼ f̃μðnþlÞA

μ
i − f̃iðnþlÞ ¼ hμðnþlÞA

μ
i − f̃iðnþlÞ ¼ 0;

showing that v is the rod structure for Γl within the

quotient.

We now record what has been established. A globally

hyperbolic spacetime of dimension nþ 3will be referred to

as multi-axisymmetric, if a (noncompact) Cauchy slice

admits the symmetry group Uð1Þn with a simply connected

two-dimensional orbit space, so that its topology is com-

pletely determined by an admissible rod dataset D.

Theorem 3.—Any possible topology of the domain of

outer communication for a multi-axisymmetric spacetime

of dimension greater than or equal to 4, is realizable by a

regular static solution of the Einstein equations with

Kaluza-Klein matter. In particular, these solutions are

obtained from a higher dimensional asymptotically

Kaluza-Klein vacuum solution by dimensional reduction

on tori.

The five-dimensional case is of particular interest. By

choosing rod structures v1 ¼ ð1; 0Þ and vk ¼ ð0; 1Þ for the
two semi-infinite rods Γ1 and Γk, cross sections of the time

slice M4 near spatial infinity will be 3-spheres, and in this

region the spacetime curvature will approach zero; sol-

utions with these two properties will be referred to as

formally asymptotically flat. It should be noted that various,

often more specialized, notions of asymptotic flatness

appear in the literature, which may not be applicable to

the solutions discussed here. In particular, the two-

dimensional tori that foliate the S3 cross sections, which

arise from the Hopf fibration, may not grow in the

asymptotic end. We state the next result with a focus on

the topology of black holes.

Corollary 4.—There exist five-dimensional regular

formally asymptotically flat static bi-axially symmetric

solutions of the Einstein equations with Kaluza-Klein

matter, supporting any finite configuration of nondegen-

erate black hole horizons of the form S3, S1 × S2, or

Lðp; qÞ, where 1 ≤ q < p with gcdðp; qÞ ¼ 1.

We remark that all solutions discussed may be written

down explicitly in terms of the harmonic functions ui and

rod structures vi. Moreover, it is possible to replace static

solutions with stationary solutions in these results, thus

giving rotation to the constructed black holes. This is

accomplished by utilizing the harmonic map approach of

[19], instead of the harmonic function technique to obtain

the relevant higher dimensional vacuum solutions.

Although these stationary solutions may be shown to exist

with the same underlying topologies of the static solutions

described above, the angular momenta of the individual

black holes cannot be fully prescribed due to the process of

balancing conical singularities.
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Appendix.—Here it is shown that the Kaluza-Klein

matter fields satisfy the dominant energy condition, and

their equations of motion are also derived. Let LM
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denote that matter portion of the Lagrangian L, and

consider the stress-energy-momentum tensor defined by

4Tij ¼ −
4
ffiffiffiffiffi

hg
p δLM

δgij

¼ Trðh−1∂ihÞTrðh−1∂jhÞ þ Trðh−1∂ihh−1∂jhÞ

−
1

2
ðjTrðh−1∇hÞj2 þ Trðh−1∇hÞ2Þgij

þ 2hμνg
lmF

μ

ilF
ν
jm −

1

2
jF j2gij: ðA1Þ

To confirm that TðX; YÞ ≥ 0 for all future-pointing

g-causal vectors X and Y, it suffices to establish that

Tðn;nÞ ≥ jTðn; ·Þj ðA2Þ

for any unit timelike vector n, where · represents

(spacelike) vectors orthogonal to n having norm less

than or equal to 1. Observe that the last line of (A1)

may be interpreted as a sum of stress-energy-momentum

tensors for Abelian gauge fields, each of which satisfies

the dominant energy condition (see Ref. [35]). Therefore

it is enough to show (A2) for the remaining piece TH of

T. To this end, we compute

THðn;nÞ ¼
1

2
ðjTrðh−1∂nhÞj2 þ Trðh−1∂nhÞ2Þ

þ 1

2
ðjTrðh−1∇!hÞj2 þ Trðh−1∇!hÞ2Þ;

where ∇
!

denotes derivatives in directions perpendicular

to n, and

THðn; ·Þ ¼ Trðh−1∂nhÞTrðh−1∇
!
hÞ þ Trðh−1∂nhh−1∇

!
hÞ:

As mentioned previously, the second and third terms of L

constitute the action for a sigma model with target

Riemannian symmetric space SLðk;RÞ=SOðkÞ. There-

fore, the expressions for THðn;nÞ and THðn; ·Þ consist of
inner products between tangent vectors to the target

space. It follows that the Cauchy-Schwarz inequality may

be applied to obtain the desired inequality (A2) for TH.

Lastly, to find the equations of motion for the matter

fields, it is convenient to conformally change the spacetime

metric on Mnþ3, namely, set g ¼ e2ψ ḡ where ψ ¼
−½1=2ðnþ 1Þ� log det h. The Lagrangian then becomes

L ¼
ffiffiffi

ḡ
p �

R̄ −
1

4
ðcnjTrðh−1∇hÞj2

þ Trðh−1∇hÞ2 þ e−2ψ jF j2Þ
�

;

where ḡ ¼ det ḡ, R̄ is the scalar curvature of ḡ,

cn ¼ ½ð2nþ 3Þ=ðnþ 1Þ�, and all norms are now with

respect to ḡ. A straightforward, albeit tedious compu-

tation, then shows that the associated Euler-Lagrange

equations are

□hμν − hικ∇hμι ·∇hκν ¼ c̄ne
−2ψ jF j2hμν;

divðe−2ψhμνF νÞ ¼ 0;

where □ and div are the wave and divergence operators

with respect to ḡ, and c̄−1n ¼ 4ðn2 þ 5nþ 5Þ.
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