
Theoretical Population Biology 148 (2022) 22–27

L

R
A

p
a

h
0

Contents lists available at ScienceDirect

Theoretical Population Biology

journal homepage: www.elsevier.com/locate/tpb

When canwe reconstruct the ancestral state? A unified theory
am Si Tung Ho a,∗, Vu Dinh b

a Department of Mathematics and Statistics, Dalhousie University, Halifax, Nova Scotia, Canada
b Department of Mathematical Sciences, University of Delaware, USA

a r t i c l e i n f o

Article history:
eceived 18 November 2021
vailable online 24 September 2022

Keywords:
Ancestral state reconstruction
Consistency
Big bang condition
Phylogenetic comparative methods

a b s t r a c t

Ancestral state reconstruction is one of the most important tasks in evolutionary biology. Conditions
under which we can reliably reconstruct the ancestral state have been studied for both discrete and
continuous traits. However, the connection between these results is unclear, and it seems that each
model needs different conditions. In this work, we provide a unifying theory on the consistency of
ancestral state reconstruction for various types of trait evolution models. Notably, we show that for
a sequence of nested trees with bounded heights, the necessary and sufficient conditions for the
existence of a consistent ancestral state reconstruction method under discrete models, the Brownian
motion model, and the threshold model are equivalent. When tree heights are unbounded, we provide
a simple counter-example to show that this equivalence is no longer valid.

© 2022 Elsevier Inc. All rights reserved.
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1. Introduction

The evolution of biological features, such as genotypes and
henotypes, is often assumed to follow Markov processes along
phylogenetic tree (Edwards, 1970; Felsenstein, 2004). Under

these models, each internal node in the tree depicts a specia-
tion event when an ancestral lineage splits into two new ones.
The descendant lineages inherit the ancestral state of their most
recent common ancestor and then evolve independently from
each other (Steel, 2016). One important task in evolutionary
biology is reconstructing the ancestral state from observations at
the leaves of a given tree. This problem, usually referred to as
ancestral state reconstruction or root reconstruction, helps answer
many questions about the underlying evolutionary process and
directly affects the efficiency and accuracy of other phylogenetic
estimates (Maddison, 1994; Liberles, 2007; Thornton, 2004; Ho
and Susko, 2022). One important application is to infer the origin
of epidemics (Faria et al., 2014; Gill et al., 2017).

In recent years, evolutionary data for a wide variety of species
are increasingly available, and the problem of ancestral recon-
struction based on thousands of leaves is becoming common-
place. It is well-known that sampled data at the leaves of the tree
cannot be considered independent since closely related species
are expected to have similar characteristics (Felsenstein, 1985).
Previous works in the field indicate that in this setting, basic
statistical properties should not be taken for granted (Ané, 2008;
Li et al., 2008; Ho and Ané, 2013, 2014; Ané et al., 2017; Ho and
Susko, 2022). For example, one of the most desired properties of
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ood estimation methods is consistency (which dictates that the
stimator converges to the true value as the number of leaves in-
reases), but even rigorous methods such as Maximum likelihood
stimator (MLE) could be inconsistent in phylogenetic settings.
haracterizing conditions under which the ancestral state can be
eliably estimated has become an active research direction.

Perhaps, Ané (2008) provides the most notable result for re-
onstructing the ancestral state of continuous traits. In this paper,
he author derives a necessary and sufficient condition for the
onsistency of the MLE under the Brownian motion (BM) model.
he condition involves the covariance matrix Vn whose compo-
ents are the times of shared ancestry between leaves, that is, the
lement in ith-row and jth column, [Vn]ij, is the length shared by
he paths from the root to the leaves i and j. Specifically, the MLE
s consistent if and only if 1⊤V−1

n 1 → ∞. For discrete models, Fan
nd Roch (2018) show that under a certain root density assump-
ion, referred to as the big bang condition, it is possible to identify
subset of leaves that are sufficiently independent. This enables
he derivations of a necessary and sufficient condition for the
xistence of a consistent ancestral state reconstruction method
nder discrete models.
Despite the usefulness of these results, the connection be-

ween them is unclear. In principle, they consider different
tochastic processes, study distinct aspects of the problem and
ocus on conditions with seemingly unrelated mathematical for-
ulations. For example, Ané (2008) specifically studies the MLE,
hile Fan and Roch (2018) consider a more abstract question
f the existence of a consistent estimator. It seems that the
onsistency property for each trait evolution model needs dif-
erent conditions. In this work, we attempt to bridge this gap
y showing that when the sequences of trees are nested and
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Fig. 1. Visualization of a BM process on a tree (right). The distance from the root to the most recent common ancestor of leaves i and j is tij , and the distance from
he root to leaf k is tkk .
ave bounded heights, which corresponds to the natural setting
here data from new species are continually being collected,
he two geometric conditions of Ané (2008) and Fan and Roch
(2018) are equivalent. As a consequence, they are the necessary
and sufficient condition for the existence of a consistent ancestral
state reconstruction method under the BM model and discrete
models. We also show that the results extend to the threshold
model (Felsenstein, 2012; Revell, 2014), thus providing a unifying
perspective on the consistency of ancestral state reconstruction
procedures across a wide range of popular phylogenetic Markov
processes. Finally, we give a simple counter-example to show
that when tree heights are unbounded, these conditions are not
equivalent and neither of them is a sufficient condition for the
existence of a consistent ancestral state reconstruction method
under discrete models.

2. Settings

We consider a sequence of nested rooted trees Tn, meaning
Tn−1 is a subtree of Tn for all n. It is worth noticing that this
setting represents the situation when more species are contin-
ually sampled and added to the data set. This is a common setup
for theoretical studies of trait evolution models (Fan and Roch,
2018; Ho and Ané, 2013). Without loss of generality, we assume
that Tn has n species and the root of all trees is the same species.
We denote the observed trait values at the leaves of Tn by Yn =

(Yk)nk=1. Furthermore, we assume that distances from this root to
the leaves are uniformly bounded by H . The goal of ancestral state
reconstruction is to estimate the trait value of this root from the
trait values at the leaves.

In this paper, we study three different types of trait evolution
models: BM, discrete, and threshold models. As we already dis-
cussed, all three (types of) models follow Markovian dynamics
along phylogenetic trees where at each internal node, descendant
lineages inherit the value from the parent lineage just prior to the
speciation event. Conditional of their starting value, each lineage
then evolves independently of the sister lineages. We focus on the
consistency property of ancestral state reconstruction methods.

Definition 1. Let µ be the ancestral state. An estimator µ̂n
constructing from n observations is consistent if and only if for
any ϵ > 0, we have

lim
n→∞

P
{
|µ̂n − µ| > ϵ

}
→ 0.

In other words, an estimator µ̂n is consistent if it converges
(in probability) to the true ancestral state µ as the number of
observations increases to infinity.
23
Brownian motion model. The BM model assumes that a contin-
uous phenotype evolves along a tree according to a Brownian
motion. Under the BM model, the observations Yn = (Yk)nk=1 fol-
low a Gaussian distribution N (µ1, σ 2Vn). Here, µ is the ancestral
state, σ 2 is the variance of the BM, and Vn = (tij) depends on
the tree where tij is the distance from the root to the most recent
common ancestor of leaves i and j (Ané, 2008). We visualize the
evolution of a trait along a tree under the BM model in Fig. 1.

Maximum likelihood estimator (MLE) is the most popular
method for reconstructing the ancestral state. Under the BM
model, the MLE has an analytic formula

µ̂n = (1⊤V−1
n 1)−1(1⊤V−1

n Yn).

Ané (2008) provides the following necessary and sufficient con-
dition for the consistency of the MLE:

Lemma 1 (Ané (2008)). Under the BM model, the MLE of the
ancestral state is consistent if and only if 1⊤V−1

n 1 → +∞.

Discrete models. These models assume that traits evolve along
the tree according to a continuous-time Markov chain with finite
state–space. Fan and Roch (2018) focus on models that satisfy the
‘‘initial-state identifiability’’: all rows of the transition probability
matrix Pt of the Markov chain are distinct for all t . Throughout the
paper, we also require that for two states i, j (do not necessarily
distinct), Pij(t) > 0 for some t > 0. We refer to models
satisfying those two conditions as regular discrete models. It is
worth noticing that popular evolution models, such as two-state,
Jukes–Cantor (Jukes and Cantor, 1969), and GTR (Lanave et al.,
1984; Tavaré, 1986) (with positive transition rates) are regular
discrete models. Fan and Roch (2018) derive a necessary and
sufficient condition for the existence of a consistent estimator for
the ancestral state, called the big bang condition. To understand
the big bang condition, let us first introduce some notations. For a
tree T, a truncated tree at level s of T, denoted by T(s), is the tree
obtained by truncating T at distance s from the root. We denote
the set of leaves of a tree T by ∂T and denote the cardinality of
a set A by |A|.

Definition 2 (Big Bang Condition). A sequence of nested trees
(Tn)∞n=1 satisfies the big bang condition if for all s > 0, we have
|∂Tn(s)| → ∞ as n → ∞.

Lemma 2 (Fan and Roch (2018)). Under regular discrete models,
there exists a consistent estimator for the ancestral state if and only
if the big bang condition holds.
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Fig. 2. Visualization of an underlying BM process and corresponding
observations under the threshold model.

We note that the ‘‘downstream disjointness’’ condition in Fan
nd Roch (2018) is not satisfied for regular discrete models and
an be removed.

hreshold model. Threshold model (Wright, 1934a,b; Felsenstein,
005, 2012; Revell, 2014) assumes that a binary phenotype (±1)

is driven by an underlying process that evolves along a tree
according to a BM. Let Zn be the underlying process and Yn be
the observations at the leaves of the tree. Under threshold model,
Zn ∼ N (µ, σ 2Vn) and

Yi =

{
1 Zi ≥ 0
−1 Zi < 0.

Fig. 2 visualizes the evolution of the underlying BM process and
the corresponding observations.

We want to estimate the ancestral state at the root ρ =

sign(µ). To the best of our knowledge, there are no theoretical
results for the problem of reconstructing the ancestral state under
this threshold model.

3. Necessary and sufficient condition for consistency of ances-
tral state reconstruction

While the results of Lemmas 1 and 2 are very useful, the
connection between them is unclear. The derived conditions of
the two models focus on seemingly unrelated mathematical for-
mulations, and it seems that the consistency property for each
model needs to be studied separately. In this work, we aim to
bridge this gap by showing that in our setting, the two geometric
conditions for discrete and continuous models are equivalent.
We then extend the results to threshold models to showcase
the generalizability of the result across a wide range of popular
phylogenetic Markov processes.

Theorem 1. Under our settings (a sequence of nested trees with
bounded heights),

• The big bang condition is equivalent with the condition
1⊤V−1

n 1 → +∞.
• These conditions are the necessary and sufficient condition for

the existence of a consistent estimator for the ancestral state
under the BM, regular discrete, and threshold models.
24
The flow of our proofs is as follows. First, we prove that
the condition 1⊤V−1

n 1 → +∞ is a necessary condition for
the existence of a consistent estimator for the ancestral state
under the BM model (Theorem 2). Together with Lemma 1, we
conclude that 1⊤V−1

n 1 → +∞ is also the necessary and suf-
ficient condition. Next, we show that the big bang condition is
also the necessary and sufficient condition for the existence of a
consistent estimator for the ancestral state under the BM model
(Theorem 3). Therefore, big bang condition and the condition
1⊤V−1

n 1 → +∞ are equivalent. Finally, we prove that under the
threshold model, the condition 1⊤V−1

n 1 → +∞ is a necessary
condition (Theorem 4) and the big bang condition is the sufficient
condition (Theorem 5) for the existence of a consistent estimator
for the ancestral state .

3.1. Equivalence of consistency condition for discrete and continuous
models

Theorem 2. Under the BM model, a necessary condition for the ex-
istence of a consistent estimator for the ancestral state is 1⊤V−1

n 1 →

+∞.

Proof. We only need to prove that if there exists a constant
C > 0 such that 1⊤V−1

n 1 ≤ C for all n, then there is no consistent
estimator for the ancestral state. Let Pµ,σ2 be the joint distribution
of the observations Yn under the BM model with mean µ and
variance σ 2. We have

KL(Pµ1,σ2 , Pµ2,σ2 ) =
1

2σ 2 1
⊤V−1

n 1(µ1 − µ2)2 ≤
C

2σ 2 (µ1 − µ2)2.

ere, KL(Pµ1,σ2 , Pµ2,σ2 ) denotes the Kullback–Leibler divergence
from Pµ2,σ2 to Pµ1,σ2 . Let dTV(Pµ1,σ2 , Pµ2,σ2 ) be the total variation
distance between Pµ1,σ2 and Pµ2,σ2 . That is, dTV(Pµ1,σ2 , Pµ2,σ2 ) =

supA |Pµ1,σ2 (A) − Pµ2,σ2 (A)|. Applying Vajda’s inequality (Vajda,
1970), we have

KL(Pµ1,σ2 , Pµ2,σ2 )

≥ log
(
1 + dTV(Pµ1,σ2 , Pµ2,σ2 )
1 − dTV(Pµ1,σ2 , Pµ2,σ2 )

)
−

2dTV(Pµ1,σ2 , Pµ2,σ2 )
dTV(Pµ1,σ2 , Pµ2,σ2 ) + 1

.

Since KL(Pµ1,σ2 , Pµ2,σ2 ) is bounded from above, we deduce that
dTV(Pµ1,σ2 , Pµ2,σ2 ) ≤ d0 < 1. Assume that there exists a consistent
estimator µ̂n for the ancestral state. For a sufficiently small ϵ, we
define Aϵ = {|µ̂n − µ1| ≤ ϵ}. By the definition of consistency, we
have

Pµ1,σ2 (Aϵ) → 1 and Pµ2,σ2 (Aϵ) → 0,

where µ1 ̸= µ2. This is a contradiction with the fact that
dTV(Pµ1,σ2 , Pµ2,σ2 ) ≤ d0 < 1. Therefore, there is no consistent
estimator for the ancestral state. □

Theorem 3. Under the BM model, there exists a consistent estimator
for the ancestral state if and only if the big bang condition holds.

Proof. First, we will prove that if the big bang condition does not
hold, then there exists a constant C > 0 such that 1⊤V−1

n 1 ≤ C .
When the big bang condition does not hold, there exist s > 0,
K > 0 and N > 0 such that |∂Tn(s)| = K for all n ≥ N . Let
ϵ be the smallest distance from the root to the internal nodes
and leaves of TN (s). We note that, by this construction, Tn(ϵ) is a
fixed ultrametric star tree with height equal to ϵ for all n ≥ N .
Let I1, I2, . . . , Iℓ be the leaves of Tn(ϵ) and S1, S2, . . . , Sℓ be the
subtree of Tn stemming from I1, I2, . . . , Iℓ. Then,

Vn =

⎛⎜⎜⎝
VS1 + ϵ11⊤ 0 · · · 0

0 VS2 + ϵ11⊤
· · · 0

...
...

. . .
...

⊤

⎞⎟⎟⎠

0 0 · · · VSℓ

+ ϵ11
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here VS1 ,VS2 , . . . ,VSℓ
are the covariance matrices of the leaves

of S1, S2, . . . , Sℓ respectively. By the Woodbury matrix identity,
we have

1⊤V−1
n 1 =

ℓ∑
i=1

1⊤(VSi + ϵ11⊤)−11

=

ℓ∑
i=1

1
(1⊤V−1

Si 1)
−1 + ϵ

≤
ℓ

ϵ
.

Next, we will prove that if the big bang condition holds, then
here exists a consistent estimator for the ancestral state. By
he big bang condition, for any positive integer m, there exists
m > km−1 such that |∂Tkm (1/m)| ≥ m with a convention that
0 = 0. Thus, there exists a subtree of m leaves of Tkm such that

distances from the root to all internal nodes are less than 1/m.
Let Y1,m, . . . , Ym,m be the leaves of this subtree. We define our
estimator as follows:

µ̂n =
Y1,m + Y2,m + · · · + Ym,m

m
, km ≤ n < km+1.

ote that E(µ̂n) = µ and Cov(Yi,m, Yj,m) = σ 2tij,m ≤ σ 2/m where
ij,m is the distance from the root to the most recent common
ncestor of the leaves Yi,m and Yj,m. Therefore,

ar(µ̂n) =
1
m2

⎛⎝ m∑
i=1

Var(Yi,m) + 2
∑

1≤i<j≤m

Cov(Yi,m, Yj,m)

⎞⎠
≤

1
m2

(
mHσ 2

+ m(m − 1)
σ 2

m

)
≤

H + 1
m

σ 2
→ 0.

y Chebyshev’s inequality, for all ϵ > 0, we have

(|µ̂n − µ| ≥ ϵ) ≤
Var(µ̂n)

ϵ2 → 0.

Hence, µ̂n is a consistent estimator. □

Remark 1. We note that the first part of the proof of Theorem 3
also shows that the condition 1⊤V−1

n 1 → +∞ implies the big
bang condition even without the assumption of bounded tree
heights.

3.2. Necessary and sufficient condition for consistency of ancestral
state reconstruction for threshold models

Theorem 4. Assume that 1⊤V−1
n 1 are bounded. Then, there is

no consistent estimator for the ancestral state under the threshold
model.

Proof. Let Pµ,σ2 and Qµ,σ2 be the joint distribution of Z and Y
espectively. We have

L(Qµ1,σ2 ,Qµ2,σ2 ) ≤ KL(Pµ1,σ2 , Pµ2,σ2 ) =
1

2σ 2 1
⊤V−1

n 1(µ1 − µ2)2.

pplying Vajda’s inequality (Vajda, 1970), we have

L(Qµ1,σ2 ,Qµ2,σ2 ) ≥ log
(
1 + dTV(Qµ1,σ2 ,Qµ2,σ2 )
1 − dTV(Qµ1,σ2 ,Qµ2,σ2 )

)
−

2dTV(Qµ1,σ2 ,Qµ2,σ2 )
dTV(Qµ1,σ2 ,Qµ2,σ2 ) + 1

.

ence,

TV(Qµ1,σ2 ,Qµ2,σ2 ) ≤ c < 1.

Assume that there exists a consistent estimator ρ̂n for the ances-
tral state ρ = sign(µ). Define A = {ρ̂n = 1}, we have

Q (A) → 1 and Q (A) → 0,
1,1 −1,1

25
which implies

dTV(Q1,1,Q−1,1) = sup
A

(|Q1,1(A) − Q−1,1(A)|)

≥ |Q1,1(A) − Q−1,1(A)| → 1.

This is a contradiction. Therefore, there is no consistent estimator
for ρ = sign(µ). □

Lemma 3 (Lancaster (1957)). Let (X, Y ) be a bivariate normal
distribution and two functions f , g such that E(f (X)2) < +∞ and
E(g(Y )2) < +∞. Then

|Cov(f (X), g(Y ))|
√
Var(f (X))Var(g(Y ))

≤
|Cov(X, Y )|

√
Var(X)Var(Y )

.

Theorem 5. Assume that big bang condition is satisfied. Then,
there is a consistent ancestral state reconstruction method under the
threshold model.

Proof. Let km be the increasing sequence constructed in the proof
of Theorem 3. There exists a subtree of m leaves of Tkm such that
distances from the root to all internal nodes are less than 1/m.
Let Y1,m, . . . , Ym,m be the leaves of this subtree. Let ti,m be the
distance from the root to the leaf Yi,m, and tij,m be the distance
from the root to the most recent common ancestor of the leaves
Yi,m and Yj,m.

If there is a sequence of leaves whose distance to the root
converges to 0, then their trait values form a trivial consistent
estimator of the ancestral state. Formally, denote τm = mini ti,m
and sm = argmini ti,m. If there exists a subsequence τmu → 0,
then Ysmu ,mu is a trivial consistent estimator for the ancestral state
ρ = sign(µ).

On the other hand, if there exists α > 0 such that τm ≥ α for
all m, we will prove that

ρ̂n = sign(Ym)

= sign
(
Y1,m + Y2,m + · · · + Ym,m

m

)
, km ≤ n < km+1

s a consistent estimator for the ancestral state. Without the loss
f generality, we assume that ρ = sign(µ) = 1. We have

E(Ym) =
1
m

m∑
i=1

[
P(Zi,m > 0) − P(Zi,m < 0)

]
=

(
2
m

m∑
i=1

P(Zi,m > 0)

)
− 1

=

(
2
m

m∑
i=1

Φ

(
µ

σ
√
ti,m

))
− 1 ≥ 2Φ

(
µ

σ
√
H

)
− 1 > 0

where Φ is the cumulative distribution function of the standard
Normal distribution. Hence,

P(ρ̂n = −1) = P(Ym < 0) = P[Ym − E(Ym) < −E(Ym)]

≤ P[|Ym − E(Ym)| ≥ E(Ym)] ≤
Var(Ym)

E(Ym)2

≤
Var(Ym)[

2Φ
(

µ

σ
√
H

)
− 1

]2 .

Note that Var(Yi,m) ≤ 1 since |Yi,m| = 1. By Lemma 3, we have

|Cov(Yi,m, Yj,m)| ≤
tij,m

√
ti,mtj,m

√
Var(Yi,m)Var(Yj,m)

≤
tij,m

√ ≤
1

.

ti,mtj,m mα
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Fig. 3. An n-species star tree.

Therefore,

Var(Ym) =
1
m2

⎛⎝ m∑
i=1

Var(Yi,m) + 2
∑

1≤i<j≤m

Cov(Yi,m, Yj,m)

⎞⎠
≤

1
m2

(
m + m(m − 1)

1
mα

)
≤

1 + α−1

m
→ 0.

We conclude that

P(ρ̂n = −1) ≤
Var(Ym)[

2Φ
(

µ

σ
√
H

)
− 1

]2 → 0.

Thus, ρ̂n is a consistent estimator. □

Remark 2. We complete the proof of Theorem 1 by combining
Lemmas 1 and 2 with Theorems 2, 3, 4, and 5.

. Unbounded heights

When the tree heights are unbounded, the equivalence be-
ween the condition 1⊤V−1

n 1 → +∞ and the big bang condition
s no longer valid. To see this, let us consider a simple scenario
here (Tn)∞n=1 is a sequence of nested star tree (see Fig. 3). Let Hn
e the distance from the root to the nth species. It is trivial that
he sequence of trees (Tn)∞n=1 satisfies the big bang condition. On
he other hand,

⊤V−1
n 1 = σ 2

∞∑
n=1

1
Hn

.

ence, 1⊤V−1
n 1 → +∞ if and only if

∞∑
n=1

1
Hn

→ +∞.

Therefore, the condition 1⊤V−1
n 1 → +∞ and the big bang

ondition are not equivalent when tree heights are unbounded.
We note that Theorems 2 and 4 do not require the heights of

rees are bounded. Therefore, even without the bounded heights
ondition, 1⊤V−1

n 1 → +∞ is the necessary condition for the
xistence of a consistent ancestral state reconstruction method
nder the BM model and threshold model. On the other hand, the
ig bang condition is the necessary condition for the existence of
consistent estimator under regular discrete models when tree
eights are not bounded (see the proof of Proposition 3.1 in Fan
nd Roch, 2018). A natural question is when tree heights are un-
ounded, whether either the big bang condition or the condition
⊤V−11 → +∞ is a sufficient condition for these models. Ané
n

26
2008) gives a positive answer for the BM model by showing that
he MLE is consistent if 1⊤V−1

n 1 → +∞. Unfortunately, without
dditional conditions, neither condition is enough to guarantee
hat there is a consistent method for reconstructing the ancestral
tate under regular discrete models. Specifically, we provide a
imple counter-example using a sequence of nested star trees and
he two-state symmetric model.

heorem 6. Consider a sequence of nested star trees (Tn)∞n=1. Let
n be the height of Tn such that Hn/n → 0 and Hn/ log n → ∞.
hen,
∞

n=1

1
Hn

→ +∞,

but there is no consistent ancestral state reconstruction method
under the two-state symmetric model.

Proof. Let Pρ be the joint distribution of the observations Yn =

(Y1, Y2, . . . , Yn) under the two-state symmetric model with an-
cestral state ρ. Denote pk = [1 + exp(−ηHk)]/2 where η is the
mutation rate of the binary trait. We have

KL(P1, P0) =

n∑
k=1

pk log
(

pk
1 − pk

)
+ (1 − pk) log

(
1 − pk
pk

)

=

n∑
k=1

(2pk − 1) log
(
1 +

2pk − 1
1 − pk

)

≤

n∑
k=1

(2pk − 1)2

1 − pk
≤ C

n∑
k=1

(2pk − 1)2

= C
n∑

k=1

exp(−2ηHk) = C
n∑

k=1

(
1
k

)2ηHk/ log k

< +∞.

By the same arguments of Theorems 2 and 4, we deduce that
there is no consistent estimator for the ancestral state. □

5. Conclusion and discussion

In this work, we provide a unified theory for ancestral state
reconstruction across different models for a sequence of nested
trees with bounded heights. We show that the condition 1⊤V−1

n
1 → +∞ arose from the study of the BM model is equivalent to
the big bang condition for discrete models. Furthermore, these
conditions are the necessary and sufficient condition for the
existence of a consistent estimator for the ancestral state under
the BM, regular discrete, and threshold models.

We note that the ‘‘big bang’’ condition does not hold under the
coalescent process because earlier lineages are less likely to be
divided into new species. However, it holds under the coalescent
point process (Lambert and Stadler, 2013), for which the ages
of internal nodes are independent and identically distributed ac-
cording to a probability distribution in [0,H]. Even when the ‘‘big
bang’’ condition does not hold, it still provides an insight into how
to collect data to maximize the information about the ancestral
state. In particular, species stemming close to the root provide
more information than species stemming near the present time.

We provide a simple counter-example to show that when tree
heights are unbounded, the condition 1⊤V−1

n 1 → +∞ and the
big bang condition are no longer equivalent. Moreover, neither
condition is a sufficient condition for the existence of a consis-
tent ancestral state reconstruction method under regular discrete
models. It is worth noticing that the condition 1⊤V−1

n 1 → +∞

is the necessary and sufficient condition for the existence of a
consistent estimator for the ancestral state under the BM model

without the requirement of bounded tree heights. Establishing a
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ecessary and sufficient condition for regular discrete models and
he threshold model when tree heights are unbounded remains
pen.
It is worth noticing that the MLE for the ancestral state is

onsistent under the BM model when the condition 1⊤V−1
n 1 →

+∞ holds (Ané, 2008). Furthermore, by Proposition 6 in Steel
nd Rodrigo (2008), when evolution dynamics of a regular finite-
tate discrete model is known, the MLE for the ancestral state
s consistent if there exists a consistent ancestral state recon-
truction method. However, the consistency of the MLE under
he threshold model remains unknown. In some scenarios, there
xists a better ancestral state reconstruction method than the
LE (Ho et al., 2019; Ho and Susko, 2022). Therefore, the condi-

ion 1⊤V−1
n 1 → +∞, which also implies the big bang condition,

ay not be a sufficient condition for the consistency of the MLE
nder the threshold model.
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