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Abstract
Reconstructing the ancestral state of a group of species helps answer many important
questions in evolutionary biology. Therefore, it is crucial to understand when we
can estimate the ancestral state accurately. Previous works provide a necessary and
sufficient condition, called the big bang condition, for the existence of an accurate
reconstruction method under discrete trait evolution models and the Brownian motion
model. In this paper, we extend this result to a wide range of continuous trait evolution
models. In particular, we consider a general setting where continuous traits evolve
along the tree according to stochastic processes that satisfy some regularity conditions.
We verify these conditions for popular continuous trait evolution models including
Ornstein–Uhlenbeck, reflected Brownian Motion, bounded Brownian Motion, and
Cox–Ingersoll–Ross.
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1 Introduction

The main task of the ancestral state reconstruction problem is to estimate the trait
value of the most recent common ancestor of a group of species from their observed
trait values. This problem has many applications in ecology and evolution, such as
reconstructing ancestral diets (Maritz et al. 2021), studying female song in songbirds
(Odom et al. 2014), and inferring the origin of infectious disease epidemics (Faria et
al.. 2014; Gill et al. 2017).Moreover, ancestral state reconstructionmethods have been
applied to reconstruct the place of origin of a language family (Bouckaert et al. 2012;
Neureiter et al. 2021). Therefore, it is important to assess whether the ancestral state
can be reconstructed with high certainty. In particular, we are interested in whether
reconstruction methods converge to the true ancestral trait value (in probability) as the
number of sampled species increases to infinity. This property is called consistency, a
desired characteristic for any reconstruction method.

The consistency property of ancestral state reconstructionmethods has been studied
previously for both discrete and continuous traits. Since species are related to each
other according to an evolutionary tree, it is natural that consistency depends heavily
on the structure of this tree. For continuous traits, Ané (2008) derived a necessary
and sufficient condition for the consistency of the Maximum likelihood estimator
(MLE) of the ancestral state under the Brownian motion (BM) model. This condition
is 1�V−1

n 1 → ∞ where n is the number of sampled species, 1 is an n × 1 vector
whose elements are 1, andVn is an n×n matrix whose i th-row and j-th column is the
distance from the root to the most recent common ancestor of leaves i and j . Under
mild assumptions, Fan and Roch (2018) provided a necessary and sufficient condition,
called big bang, for the existence of a consistent ancestral state reconstruction method
for discrete traits. The big bang condition is satisfied if for any positive number ε,
the number of intersection points between the circle with radius ε centred at the root
and the tree converges to infinity as the number of sampled species increases. In
other words, the number of branches in the proximity of the root is large. A natural
question is whether the condition 1�V−1

n 1 → ∞ and the big bang condition are
equivalent. Recently, Ho and Dinh (2022) gave a positive answer to this question when
the sequence of trees is nested and has bounded height as the sample size increases.
In particular, they showed that both conditions are necessary and sufficient conditions
for the existence of a consistent ancestral state reconstruction method under the BM
model. The result unifies the theory of ancestral state reconstruction between discrete
trait evolution models and the BM model. What remains unknown is whether this
unified theory also holds for other evolution models of continuous traits. In this paper,
we will address this open question.

Researchers often model the evolution of a continuous trait along an evolutionary
tree using a diffusion process.At a node of the tree, the children lineages inherit the trait
value of the parent lineage as their starting trait value and evolve independently from
each other. The simplest evolution model for continuous traits is the BMmodel, which
only considers neutral evolution (Felsenstein 1985). Later, Hansen (1997) proposed
theOrnstein–Uhlenbeck (OU)model to incorporate natural selection. TheBMandOU
models are themost popular evolutionmodels for continuous traits due to the existence
of efficient computational methods (Ho andAné 2014). Recently, much effort has been
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made tomove away from theseGaussianmodels (Boucher andDémery 2016; Boucher
et al. 2018; Blomberg et al. 2020; Jhwueng 2020). Following this spirit, we consider
a general setting where the evolution of traits follows a general stochastic process on
trees. We will show that under mild assumptions, the big bang condition is a necessary
and sufficient condition for the existence of a consistent ancestral state reconstruction
method. Our setting includes several popular evolution models for continuous traits
such as the OU model (Hansen 1997), the reflected Brownian motion (RBM) model
(Boucher and Démery 2016), the bounded Brownian motion (BMM) model (Boucher
and Démery 2016), and the Cox–Ingersoll–Ross (CIR) model (Lepage et al. 2006;
Blomberg et al. 2020).

2 Mathematical formulation

In this paper, we consider the common setting for studying the asymptotic theory
of trait evolution models where the sequence of trees (Tn)

∞
n=1 is nested. That is, Tn

is a subtree of Tn+1 for all n. Without loss of generality, we assume that tree Tn

has n species and all trees in the sequence have the same root. We make a standard
assumption that the tree topology and edge lengths of Tn are known. In this paper, we
consider the scenario where the height of the sequence of trees (Tn)

∞
n=1 is uniformly

bounded from above. Specifically, let ti be the distance from the root to a leaf i . The
height of tree Tn is defined by hn = max{ti : i = 1, 2, . . . , n}. Under our setting,
h∗ := supn hn < +∞.

For a tree T, we denote the leaf set of T by ∂T and the tree obtained by truncating
T at distance s from the root by T(s). It is worth noticing that ∂T(s) is called a cutset
corresponding to time s away from the root (Ané et al. 2017). Let |A| be the number
of elements of the set A. The big bang condition (Fan and Roch 2018) is defined as
follows:

Definition 2.1 (big bang condition) A sequence of nested trees (Tn)
∞
n=1 satisfies the

big bang condition if limn→∞|∂Tn(s)| = ∞ for all s > 0.

A layman’s explanation of the big bang condition is that the number of branches
in the proximity of the root is large. We will prove that the big bang condition is the
necessary and sufficient condition for the existence of a consistent ancestral state recon-
struction method for a general class of continuous trait evolution models. Throughout
this paper, we assume that all other parameters of the model are known. Specifically,
we assume that the model satisfies the following regularity conditions:

(A1) The trait evolves along a tree according to a time-homogeneous Markovian
stochastic process {Y (t)}t≥0 on a state-space S ⊂ R and there exist functions
u, v, φ such that

IE{φ[Y (t)] | Y (0)} = u(t)φ[Y (0)] + v(t), (2.1)

and

var{φ[Y (t)] | Y (0)} ≤ Ct, ∀t ∈ [0, h∗], (2.2)
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where C is a constant that does not depend on t ; u, v are continuous functions;
φ is a continuous, injective function from S to R and the inverse function φ−1

is also continuous; and u(t) > 0 for all t ≥ 0. Note that u(0) = 1 and v(0) = 0.
(A2) We denote the trait values at the leaves of a tree T by YT and the trait value

at the root by ρ. Let Pρ,T be the joint distribution of the observations YT at
the leaves of the tree T given that the ancestral state is ρ. We assume that for
any tree T, there exists ρ1 �= ρ2 such that the overlapped support of Pρ1,T and
Pρ2,T is not trivial. Here, an overlapped supportA of Pρ1,T and Pρ2,T is trivial
if min{Pρ1,T(A), Pρ2,T(A)} = 0. Furthermore, we assume that Pρ,T admits a
probability density function fρ,T.

Condition (A1) ensures that the observations contain sufficient information about
the root. Specifically, (2.1) means that the information about the root is contained in
the expected value of the observations. On the other hand, (2.2) controls the decay
rate of the information about the root through time. Condition (A2) is similar to the
Downstream Disjointness condition in Fan and Roch (2018). The main purpose of
this condition is to remove trivial scenarios. If (A2) does not hold, Pρ1,T and Pρ2,T

are disjoint for any ρ1, ρ2. In this case, it is trivial to reconstruct the ancestral state
because each observed vector of values at the leaves only corresponds to one value at
the root. However, that is too good to be true for practical settings.

3 A necessary and sufficient condition for the existence of a
consistent estimator for the ancestral state

We recall the definition of a consistent estimator:

Definition 3.1 An estimator ρ̂n of ρ is consistent if and only if for all ε > 0, we have

Pρ,Tn (|ρ̂n − ρ| > ε) → 0.

In other words, ρ̂n converges to ρ in probability (ρ̂n →p ρ).

Now, we are ready to state our main result:

Theorem 3.1 Assume that the regularity condition (A1) and (A2) are satisfied. Then,
the big bang condition is the necessary and sufficient condition for the existence of a
consistent ancestral reconstruction method.

First, let us review briefly about properties of the total variation distance. For any
two probability measures μ1 and μ2, the total variation distance between them is
defined as

dTV(μ1, μ2) = sup
A

|μ1(A) − μ2(A)|

= 1

2

∫
|μ1(x) − μ2(x)|dx

= 1

2

∫
[μ1(x) ∨ μ2(x) − μ1(x) ∧ μ2(x)]dx,
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where a ∨ b := max{a, b} and a ∧ b := min{a, b}. On the other hand, since

1

2

∫
[μ1(x) ∨ μ2(x) + μ1(x) ∧ μ2(x)]dx = 1,

we have

dTV(μ1, μ2) = 1 −
∫

μ1(x) ∧ μ2(x)dx . (3.1)

This implies that if the overlapped support of μ1 and μ2 is not trivial, then their total
variation distance is strictly less than one.

The proof of Theorem 3.1 is divided into two parts. In Sect. 3.1, we prove that the
big bang condition is a necessary condition. The main idea is to show that if the big
bang condition does not hold, the total variation distance between Pρ1,Tn and Pρ2,Tn

is bounded away from 1 for some ρ1 �= ρ2. This implies that there is no consistent
estimator for the ancestral stateρ. In Sect. 3.2,we provide a simple consistent estimator
for the ancestral state when the big bang condition is satisfied.

3.1 Necessary condition

Theorem 3.2 Given that the condition (A2) holds, then the big bang is the necessary
condition for the existence of a consistent estimator for the ancestral state.

Proof We will use the contra-positive approach: no big bang condition implies no
consistent estimator for the ancestral state. That is, we need to prove that if there
exists s0 > 0, n0 ≥ 1, and K > 0 such that |∂Tn(s0)| = K for all n ≥ n0, then there
is no consistent estimator for the ancestral state.

Recall that Pρ,Tn is the joint distribution of the observations YTn at the leaves of
tree Tn with the ancestral state ρ. Note that, since |∂Tn(s0)| = K for all n ≥ n0,
Tn(s0) is a fixed K -species star tree with edge lengths all equal to s0 for all n ≥ n0.
From (A2) the overlapped support of Pρ1,Tn(s0) and Pρ2,Tn(s0) is not trivial for some
ancestral state ρ1 �= ρ2. Since this overlapped support is fixed for all n ≥ n0, by (3.1),
we have dTV(Pρ1,Tn(s0), Pρ2,Tn(s0)) ≤ C0 < 1 for all n ≥ n0.

Let fT|T(s)(· | τ) be the conditional probability density function of YT given
YT(s) = τ . Note that fT|T(s)(· | τ) does not depend on the ancestral state ρ at the root
of T due to Markov property. We have

dTV(Pρ1,Tn , Pρ2,Tn ) = 1

2

∫
| fρ1,Tn (y) − fρ2,Tn (y)|dy

= 1

2

∫ ∣∣∣∣
∫ [

fTn |Tn(s0)(y | τ) fρ1,Tn(s0)(τ ) − fTn |Tn(s0)(y | τ) fρ2,Tn(s0)(τ )
]
dτ

∣∣∣∣ dy

= 1

2

∫ ∣∣∣∣
∫

fTn |Tn(s0)(y | τ)
[
fρ1,Tn(s0)(τ ) − fρ2,Tn(s0)(τ )

]
dτ

∣∣∣∣ dy
≤ 1

2

∫ ∫
fTn |Tn(s0)(y | τ)

∣∣ fρ1,Tn(s0)(τ ) − fρ2,Tn(s0)(τ )
∣∣ dτdy
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= 1

2

∫ ∣∣ fρ1,Tn(s0)(τ ) − fρ2,Tn(s0)(τ )
∣∣
∫

fTn |Tn(s0)(y | τ)dydτ

= 1

2

∫ ∣∣ fρ1,Tn(s0)(τ ) − fρ2,Tn(s0)(τ )
∣∣ dτ

= dTV(Pρ1,Tn(s0), Pρ2,Tn(s0)) ≤ C0 < 1. (3.2)

Now suppose that there exists a consistent estimator ρ̂n for the ancestral state ρ.
Consider the event Aε := {|ρ̂n − ρ1| ≤ ε} where ε is sufficiently small. Then, we
have

Pρ1,Tn (Aε) → 1 and Pρ2,Tn (Aε) → 0,

for any ρ1 �= ρ2. Thus,

dTV(Pρ1,Tn , Pρ2,Tn ) = sup
B

∣∣Pρ1,Tn (B) − Pρ2,Tn (B)
∣∣ ≥ ∣∣Pρ1,Tn (Aε) − Pρ2,Tn (Aε)

∣∣ → 1,

which is a contradiction to (3.2). Therefore, there is no consistent estimator for the
ancestral state in the absence of the big bang condition.

��

3.2 Sufficient condition

Theorem 3.3 Assume that the condition (A1) is satisfied. Then, the big bang condition
implies that there exists a consistent estimator for the ancestral state.

Proof Wewill construct a consistent estimator for the ancestral state ρ. Under big bang
condition, there exists an increasing sequence {nk}∞k=1 such that |∂Tnk (1/k)| ≥ k for
all k. This implies that there exists a k-species subtree of Tnk such that the distances
from the root to all internal nodes are at most 1/k. Let (Yi,k)ki=1 be the observations
at the leaves and (ti,k)ki=1 be the distance from the root to the i-th leaf of this subtree.
Denote the trait value of the most recent common ancestor of i-th, j-th leaves of the
subtree by Yi j,k , and the distance from the root to this ancestor by ti j,k . It is worth
noticing that ti,k ≤ h∗ and ti j,k ≤ 1/k. We consider the following estimator for the
ancestral state ρ:

ρ̂ = φ−1

(
1

k

k∑
i=1

φ(Yi,k) − v(ti,k)

u(ti,k)

)
.

Since φ is a continuous, injection function, the proposed estimator is well-defined.
Moreover, φ−1 is a continuous function. So, to prove that ρ̂ is consistent, it is sufficient
to show

1

k

k∑
i=1

φ(Yi,k) − v(ti,k)

u(ti,k)
→p φ(ρ).
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Indeed, we have

IE

(
1

k

k∑
i=1

φ(Yi,k) − v(ti,k)

u(ti,k)

)
= 1

k

k∑
i=1

IE[φ(Yi,k)] − v(ti,k)

u(ti,k)

= 1

k

k∑
i=1

[u(ti,k)φ(ρ) + v(ti,k)] − v(ti,k)

u(ti,k)

= φ(ρ).

On the other hand,

var

(
1

k

k∑
i=1

φ(Y i, k) − v(ti,k)

u(ti,k)

)

≤ 1

k2m2

⎛
⎝ k∑

i=1

var[φ(Y i, k)] +
∑

1≤i< j≤k

Cov[φ(Yi,k), φ(Y j,k)]
⎞
⎠

where m := mint∈[0,h∗] u(t) > 0. Note that var[φ(Y i, k)] ≤ Cti,k ≤ Ch∗ and

Cov[φ(Yi,k), φ(Y j,k)] = Cov{IE[φ(Yi,k) | Yi j,k], IE[φ(Y j,k) | Yi j,k]}
+ IE{Cov[φ(Yi,k), φ(Y j,k) | Yi j,k]}

= u(ti j,k)
2var[φ(Y i, k)]] ≤ M2Cti j,k ≤ CM2

k
,

where M := maxt∈[0,h∗] u(t) < ∞. Therefore

var

(
1

k

k∑
i=1

φ(Y i, k) − v(ti,k)

u(ti,k)

)
≤ Ch∗

km2 + CM2

km2 → 0 as k → ∞.

For any ε > 0, by applying Chebyshev’s inequality, we have

Pr

(∣∣∣∣∣
1

k

k∑
i=1

φ(Yi,k) − v(ti,k)

u(ti,k)
− φ(ρ)

∣∣∣∣∣ > ε

)
≤ 1

ε2
var

(
1

k

k∑
i=1

φ(Y i, k) − v(ti,k)

u(ti,k)

)
→ 0.

Hence,

1

k

k∑
i=1

φ(Yi,k) − v(ti,k)

u(ti,k)
→p φ(ρ),

which means ρ̂ is consistent.
��
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We note that the estimator in this proof is sub-optimal since it only uses a subset of
the observations.

4 Applications

In this section, we will apply our results to several popular trait evolution mod-
els including Ornstein–Uhlenbeck (OU), reflected Brownian motion (RBM) model,
bounded Brownian motion (BBM) model, and Cox–Ingersoll–Ross (CIR) models.
Since we focus on the ancestral state reconstruction problem, we consider the classi-
cal setting where other parameters of the models are known.

4.1 Ornstein–Uhlenbeck (OU) model

The OU model assumes that a continuous trait evolves along a phylogeny according
to an OU process. The process is equipped with a “selection optimum” parameter
μ which captures the optimal trait value; a “selection strength” parameter α which
represents the strength of the selection force that pulls the trait toward μ; and the
variance parameter σ 2 of the neutral drift. Themodel has been used extensively to take
into account natural selection in evolutionary studies (Beaulieu et al. 2012; Rohlfs et al.
2014; Uyeda and Harmon 2014; Bastide et al. 2021). Although the consistent property
of estimators for μ and α have been studied thoroughly (Ho and Ané 2013; Bartoszek
and Sagitov 2015; Ané et al. 2017), the consistency of ancestral state reconstruction
methods under the OU model is not well-understood. Here, we will fill in this gap.
Applying Theorem 3.1, we derive the following result:

Theorem 4.1 Under the OU model, the big bang condition is the necessary and suffi-
cient condition for the existence of a consistent ancestral reconstruction method.

Proof It is sufficient to check the regularity conditions (A1) and (A2) for the OU
model. Let (Yt )t≥0 be an OU process, we have

E[Y (t) | Y (0)] = e−αt Y (0) + (1 − e−αt )μ,

and

Var[Y (t) | Y (0)] = σ 2

2α
(1 − e−2αt ) ≤ σ 2t .

The condition (A1) is satisfied with C = σ 2; u(t) = e−αt ; v(t) = (1 −
e−αt )μ;φ(y) = y. On the other hand, Pρ1,T and Pρ2,T are multivariate normal distri-
butions. Therefore, the condition (A2) is trivial since the overlapped support is R|∂T|.

��
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4.2 Reflected Brownianmotion (RBM)model

A limitation of both BM andOUmodels is that they cannot accommodate hard bounds
on trait values. Unfortunately, hard bounds do exist in nature. For example, morpho-
logical measurements, such as body size and body mass, can only take positive values.
Some trait values are proportion (e.g., allele frequencies and genomic GC content) and
thus are bounded between 0 and 1. Boucher and Démery (2016) propose the Bounded
Brownian motion (BBM) model, which assumes traits evolve under BM with two
reflecting boundaries. A particular case of this model for traits with positive values
is the RBM model (Boucher and Démery 2016). Recall that if X(t) is a BM starting
from X(0) > 0, then Y (t) = |X(t)| is a RBM starting from Y (0) = X(0). That is,
the RBM model assumes that traits evolve according to a BM with a single reflecting
boundary at zero. We have the following theorem:

Theorem 4.2 Under the RBM model, the big bang condition is the necessary and
sufficient condition for the existence of a consistent ancestral reconstruction method.

Proof Again, we only need to verify that the RBMmodel satisfies the regularity condi-
tions (A1) and (A2). Note that X(t) | X(0) follows a normal distributionN (X(0), σ 2t)
and its moment generating function is ψ(s) = exp(X(0)s + σ 2ts2/2). Therefore,

E[X(t)2 | X(0)] = ∂2ψ

(∂s)2
(0) = X(0)2 + σ 2t

E[X(t)4 | X(0)] = ∂4ψ

(∂s)4
(0) = X(0)4 + 6σ 2t X(0)2 + 3σ 4t2.

Since Y 2(t) = X2(t) and Y (0) = X(0), we have

E[Y (t)2 | Y (0)] = Y (0)2 + σ 2t,

and

Var[Y (t)2 | Y (0)] = E[Y (t)4 | Y (0)] − (E[Y (t)2 | Y (0)])2
= 4σ 2tY (0)2 + 2σ 4t2

≤ (4σ 2Y (0)2 + 2σ 4h∗)t, ∀t ∈ [0, h∗].

Thus, the condition (A1) is satisfied with C = 4σ 2Y (0)2 + 2σ 4 h∗; u(t) = 1; v(t) =
σ 2t;φ(y) = y2. The condition (A2) is trivial. ��

4.3 Bounded Brownianmotion (BBM)model

The BBM model (Boucher and Démery 2016) assumes that traits evolve under BM
with two reflecting boundaries. For simplicity, we assume that the BM is bounded in
[0, 1]. We have the following theorem:

123
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Theorem 4.3 Under the BBM model, the big bang condition is the necessary and
sufficient condition for the existence of a consistent ancestral reconstruction method.

Proof We will verify the condition (A1) with C = σ 2π2; u(t) = exp(−σ 2tπ2/2);
v(t) = 0;φ(y) = cos(π y). First, we recall that the density function of X(t) | X(0) =
x0 is (Boucher and Démery 2016)

p(x, x0, t) = 1√
2π tσ

⎧⎨
⎩

∞∑
k=−∞

[
exp

(
−(x − x0 − 2k)2

2σ 2t

)
+ exp

(
−(x + x0 − 2k)2

2σ 2t

)]⎫⎬
⎭ .

Therefore,

E[cos(πX(t)) | X(0)] =
∫ 1

0
cos(πx)p(x, X(0), t)dx .

Note that

∫ 1

0
cos(πx) exp

(−(x − x0 − 2k)2

2σ 2t

)
dx =

∫ −2k+1

−2k
cos(πx) exp

(−(x − x0)2

2σ 2t

)
dx

and

∫ 1

0
cos(πx) exp

(−(x + x0 − 2k)2

2σ 2t

)
dx =

∫ −2k+1

−2k
cos(πx) exp

(−(x + x0)2

2σ 2t

)
dx

=
∫ 2k

2k−1
cos(πx) exp

(−(x − x0)2

2σ 2t

)
dx

Hence

E[cos(πX(t)) | X(0)] = 1√
2π tσ

∫ ∞

−∞
cos(πx) exp

(−(x − X(0))2

2σ 2t

)
dx

= �
(

1√
2π tσ

∫ ∞

−∞
eiπx exp

(−(x − X(0))2

2σ 2t

)
dx

)

= �
(
eiπX(0)−σ 2tπ2/2

)

= exp(−σ 2tπ2/2) cos(πX(0))

where �(·) is the real part. Similarly, we have

E[cos2(πX(t)) | X(0)] = E

[
1 + cos(2πX(t))

2
| X(0)

]

= 1 + exp(−2σ 2tπ2) cos(2πX(0))

2
.
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Thus,

Var[cos(πX(t)) | X(0)] = E[cos2(πX(t)) | X(0)] − (E[cos(πX(t)) | X(0)])2

= 1 + exp(−2σ 2tπ2) cos(2πX(0))

2
− exp(−σ 2tπ2) cos2(πX(0))

= 1

2

(
1 − exp(−σ 2tπ2)

) [
1 − exp(−σ 2tπ2) cos(2πX(0))

]

≤ 1

2

(
1 − exp(−σ 2tπ2)

)
2 ≤ σ 2tπ2.

We conclude that the condition (A1) is satisfied with C = σ 2π2; u(t) =
exp(−σ 2tπ2/2); v(t) = 0;φ(y) = cos(π y). The condition (A2) is trivial. ��

4.4 Cox–Ingersoll–Ross (CIR) model

The CIR model is an evolution model for traits that have positive values. This model
has been utilized for modelling evolutionary rate (Lepage et al. 2006), longevity of
carnivores and ungulates (Blomberg et al. 2020), and rate of adaptive trait evolution
(Jhwueng 2020). Similar to theOUprocess, theCIRprocess has a “selection optimum”
parameter μ and a “selection strength” parameter α. Let Y (t) be a CIR process, then
Y (t) follows the following stochastic differential equation:

dY (t) = α(μ − Y (t))dt + σ
√
Y (t)dB(t),

where B(t) is the standard BM. We have

E[Y (t) | Y (0)] = Y (0)e−αt + μ(1 − e−αt ),

and

Var[Y (t) | Y (0)] = Y (0)
σ 2

α
(e−αt − e−2αt ) + μσ 2

2α
(1 − e−αt )2

≤ [Y (0) + μ/2]σ
2

α
(1 − e−αt )

≤ [Y (0) + μ/2]σ 2t, ∀t ∈ [0, h∗].

Hence, the condition (A1) holds with C = [Y (0) + μ/2]σ 2; u(t) = e−αt ; v(t) =
μ(1 − e−αt );φ(y) = y. Again, the condition (A2) is trivial. By Theorem 3.1, we
have:

Theorem 4.4 Under the CIR model, the big bang condition is the necessary and suf-
ficient condition for the existence of a consistent ancestral reconstruction method.
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Fig. 1 Two sequences of caterpillar trees consider in the simulation. Left: the big bang condition is satisfied
(new branch is closer and closer to the root). Right: the big bang condition is not satisfied (all branches are
far away from the root)

4.5 Simulation under the bounded Brownianmotion (BBM)model

In this section, we will use simulations to illustrate the result in Theorem 4.3. Specif-
ically, we consider two sequences of bifurcating ultrametric caterpillar trees. Recall
that the distance from the root to the leaves of an ultrametric tree is constant and a
caterpillar tree has a path, called the main path, that contains all internal nodes. For
both sequences, we create the n-th tree by adding a new leaf directly to the main path
of the (n − 1)-th tree such that the distance from the n-th leaf to the root is 1. The
first sequence of trees satisfies the big bang condition: the n-th leaf attaches to the tree
at the n-th internal node, whose distance to the root is 1/n (see Fig. 1 – left). On the
other hand, the second sequence does not satisfy the big bang condition: the n-th leaf
attaches to the tree at the n-th internal node, whose distance to the root is 1− 1/n (see
Fig. 1 – right).

In this simulation, we use the R functions provided in Boucher and Démery (2016)
for simulating and fitting under the BBM model.1 We focus on trees with size n =
10, 100, 1000. So, we have 6 trees in total (3 trees for each sequence). For each tree,
we simulate the trait values at the leaves 1000 times under the BBM model with the
ancestral state ρ = 0, variance σ 2 = 1/2, and two bounds ±1 using the R function
Sim_BBM. Then, we use the function fit_BBM_model_uncertainty to fit the
BBMmodel and return the MLE of the ancestral state ρ. When the big bang condition
holds, the estimate ρ̂ is more precise as the number of species increases (see Fig. 2 –
left). On the other hand, when the big bang condition is not satisfied, the precision of
ρ̂ stays the same for all trees.

5 Discussion and Conclusion

In this paper, we prove that under some regularity conditions, the big bang condi-
tion is a necessary and sufficient condition for the existence of a consistent ancestral

1 https://github.com/fcboucher/BBM.
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Fig. 2 Estimates of the ancestral state ρ under the BBM with ρ = 0, σ 2 = 1/2, and two bounds ±1. Left
(the big bang condition holds): the estimates becomemore accurate as the number of leaves increases. Right
(the big bang condition does not hold): the accuracy is the same for all trees

state reconstruction method for continuous traits. We verify these conditions for
Ornstein–Uhlenbeck, reflected Brownian motion, bounded Brownian motion and
Cox–Ingersoll–Ross models.

It is worth noticing that under the BM model, the MLE for the ancestral state is
consistent if and only if the big bang condition holds (Ho and Dinh 2022). However, it
is unclear if this result is still true beyond BMmodels. Since MLE is the most popular
method for reconstructing the ancestral state, studying its consistency property is of
great interest.

The results in this paper assume that both the tree topology and branch lengths are
known. However, we may know the tree topology but not branch lengths in practice.
Many popular tree reconstruction methods such as maximum parsimony, neighbour-
joining, and quartet puzzling only return the tree topology. A recent study shows
that for discrete traits, the big bang condition may not guarantee the existence of a
consistent ancestral state reconstruction method when branch lengths are unknown
(Ho and Susko 2022). An open question is whether the big bang condition is still a
sufficient condition for the existence of a consistent estimator for the ancestral state
of continuous traits.
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