
The Power of Greedy for Online Minimum Cost Matching on
the Line
ERIC BALKANSKI, Columbia University, IEOR department, USA
YURI FAENZA, Columbia University, IEOR department, USA
NOÉMIE PÉRIVIER, Columbia University, IEOR department, USA

In the online minimum cost matching problem, there are = servers and, at each of = time steps, a request
arrives and must be irrevocably matched to a server that has not yet been matched, with the goal of minimizing
the sum of the distances between the matched pairs. Online minimum cost matching is a central problem
in applications such as ride-hailing platforms and food delivery services. Despite achieving a worst-case
competitive ratio that is exponential in = even on the line, the simple greedy algorithm, which matches each
request to its nearest available server, performs well in practice and has a number of attractive features such
as strategyproofness. A major question is thus to explain greedy’s strong empirical performance. In this paper,
we aim to understand the performance of greedy on the line over instances that are at least partially random.

When both the requests and the servers are drawn uniformly and independently from [0, 1], we obtain
a constant competitive ratio for greedy, which improves over the previously best-known bound of $ (

p
=)

for greedy in this setting. We also show that this constant competitive ratio also holds in the excess supply
setting where there is a linear excess of servers, which improves over the previously best-known bound of
$ (log3 =) for greedy in this setting.

We moreover show that in the semi-random model where the requests are still drawn uniformly and
independently but where the servers are chosen adversarially, greedy achieves an $ (log=) competitive ratio.
Even though this one-sided randomness allows a large improvement in greedy’s competitive ratio compared to
the model where the requests are fully adversarial or arrive in a random order, we show that it is not su�cient
to obtain a constant competitive ratio by giving a tight ⌦(log=) lower bound. These results invite further
investigation about how much randomness is necessary and su�cient to obtain strong theoretical guarantees
for the greedy algorithm for online minimum cost matching, on the line and beyond. A full version of this
paper can be found at https://arxiv.org/abs/2210.03166.

CCS Concepts: • Theory of computation! Online algorithms; • Computing methodologies!Model
development and analysis; •Mathematics of computing ! Graph algorithms.

Additional Key Words and Phrases: online algorithm, online matching, beyond-worst case analysis, greedy
algorithm, semi-random model

ACM Reference Format:
Eric Balkanski, Yuri Faenza, and Noémie Périvier. 2023. The Power of Greedy for Online Minimum Cost
Matching on the Line. In Proceedings of the 24th ACM Conference on Economics and Computation (EC ’23), July 9–
12, 2023, London, United Kingdom. ACM, New York, NY, USA, 21 pages. https://doi.org/10.1145/3580507.3597794

1 Introduction
Matching problems are a core area of discrete optimization. In the 90s, a seminal paper by Karp et al.
[1990] introduced online bipartite maximum matching problems and showed that, in the worst-case
scenario, no deterministic algorithm can beat a simple greedy procedure, and no randomized

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for pro�t or commercial advantage and that copies bear this notice and the
full citation on the �rst page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior speci�c permission and/or a fee. Request permissions from permissions@acm.org.
EC ’23, July 9–12, 2023, London, United Kingdom
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0104-7/23/07. . . $15.00
https://doi.org/10.1145/3580507.3597794

185

HTTPS://ORCID.ORG/0000-0001-6876-7919
HTTPS://ORCID.ORG/0000-0002-3148-2159
HTTPS://ORCID.ORG/0000-0001-7854-4057
https://arxiv.org/abs/2210.03166
https://doi.org/10.1145/3580507.3597794
https://doi.org/10.1145/3580507.3597794
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3580507.3597794&domain=pdf&date_stamp=2023-07-07

EC ’23, July 9–12, 2023, London, United Kingdom Balkanski et al.

algorithm can beat ranking, which is a greedy procedure preceded by a random shu�ing of the
order of the nodes. These elegant results and their natural application to online advertising spurred
much research, especially from the late 2000s on (see, e.g., [Mehta et al., 2013] and the references
therein for a survey). While more complex algorithms have been devised for models other than
worst-case analysis, greedy techniques are often used as a competitive benchmark for comparisons,
see, e.g., [Feldman et al., 2010, Li et al., 2020, Xu et al., 2019].

In the last few years, motivated by the surge of ride-sharing platforms, a second online matching
paradigm has received much attention: online (bipartite) minimum cost matching. In this class
of problems, one side of the market is composed of servers (sometimes called drivers) and is fully
known at time 0. Nodes from the other side, often called requests or customers, arrive one at a
time. When request 8 arrives, we must match it to one of the servers 9 , and incur a cost 28 9 . Server
9 is then removed from the list of available servers, and the procedure continues. The goal is to
minimize the total cost of the matching.

Given the motivating application to ride-sharing, it is natural to impose the condition that both
servers and requests belong to some metric space (e.g., [Gairing and Klimm, 2019, Kalyanasundaram
and Pruhs, 1993, Kanoria, 2022, Raghvendra, 2016, Tsai et al., 1994]). Many algorithms in this area
involve non-trivial, in some cases computationally expensive, procedures like randomized tree
embeddings [Bansal et al., 2007, Meyerson et al., 2006], iterative segmentation of the space [Kanoria,
2022] or primal-dual arguments based on the computation of o�ine optimal matchings at each
time step [Raghvendra, 2018]. Other algorithms use randomization to bypass worst-case scenarios
for deterministic algorithms [Gupta and Lewi, 2012].
The predominant objective of this line work has been to design algorithms that achieve the

strongest possible performance guarantees in terms of quality of the solution found, which is
measured by an algorithm’s competitive ratio. However, there are other important considerations
when deploying systems that match individuals in real time, such as simplicity, strategyproofness,
running time, and explainability. An extremely simple algorithm that is highly desirable with
respect to all these factors is the greedy algorithm, also called nearest neighbor, that matches each
incoming request to the closest available server. But does it perform well?

Somehow surprisingly, this algorithm often works very well in practice: experiments have shown
that greedy was more e�ective than other existing algorithms in most tests and has outstanding
scalability [Tong et al., 2016]. This performance substantiates the choice of many ride-sharing
platforms to actually implement greedy procedures, in combination with other techniques [Brown,
2016, Jackson, 2019]. However, current theory exhibits a mismatch with such strong computational
results: if we assume that = servers and = requests are adversarially placed on a line, the greedy
algorithm only achieves a 2= � 1 competitive ratio [Kalyanasundaram and Pruhs, 1993, Tsai et al.,
1994]. It is therefore important to develop a theory that closes the gap with practice and gives solid
ground to the use of the greedy algorithm. This motivates the �rst guiding question of the paper.

Can we �nd a theoretical justi�cation for the strong practical performance of the greedy
algorithm for online minimum cost matching problems?

A standard approach to the question above is to make a distributional assumption on the input.
Obviously, stronger assumptions may lead to stronger positive results – but such assumptions may
not be veri�ed in practice. Ideally, we would like to identify the hypotheses that are necessary to
guarantee a strong performance for the greedy procedure. These results can provide important
guidance to practitioners: depending on whether or not they believe such hypothesis to be veri�ed
by their data, they can choose to either apply the greedy algorithm or to resort to a more re�ned
procedure. This discussion motivates the second guiding question of the paper.

186

The Power of Greedy for Online Minimum Cost Matching on the Line EC ’23, July 9–12, 2023, London, United Kingdom

What are necessary and su�cient assumptions to guarantee that the greedy procedure
outputs a solution whose quality is asymptotically optimal?

These questions have important implications since they aim to characterize the scenarios where a
simple greedy algorithm can be used instead of signi�cantly more complex algorithms for a problem
central to multiple large modern markets such as ride-sharing and food delivery. Understanding the
strong practical performance of simple algorithms has motivated a lot of work on beyond the worst-
case analysis of algorithms. Some examples include using properties such as curvature, stability,
sharpness, and smoothness to obtain improved guarantees for greedy for submodular maximization
[Chatziafratis et al., 2017, Conforti and Cornuéjols, 1984, Pokutta et al., 2020, Rubinstein and Zhao,
2022] and di�erent semi-random models for analyzing :-means for clustering [Arthur et al., 2009,
Manthey and Röglin, 2013], local search for the traveling salesman problem [Balkanski et al.,
2022, Englert et al., 2014, 2016, Künnemann and Manthey, 2015], and greedy for online maximum
matching [Arnosti, 2022, Devanur et al., 2011, Goel and Mehta, 2008, Mastin and Jaillet, 2013]. In
the context of online minimum cost matching, our understanding of the performance of greedy is
very limited. Despite its simplicity, greedy is hard to analyze because a greedy match at some time
step can have complex consequences on the available servers in a di�erent region at a much later
time step. In other words, “the state of the system under the standard greedy algorithm is hard to
keep track of analytically" [Kanoria, 2021].
As a step towards understanding the power and limits of greedy, we focus on a fundamental,

deceptively simple setting, which is in fact one of the most studied in the area: online minimum
cost matching on the line. Despite much work [Akbarpour et al., 2022, Fuchs et al., 2003, Gupta and
Lewi, 2012, Gupta et al., 2020, Koutsoupias and Nanavati, 2004, Megow and Nölke, 2020, Nayyar and
Raghvendra, 2017, Peserico and Scquizzato, 2021, Raghvendra, 2018], the performance of simple
algorithms for this model are far from being understood.
We �rst consider the fully random model, where the = servers and = requests are all drawn

uniformly and independently from [0, 1]. In this model, the best known bound on the competitive
ratio of greedy is a trivial $ (

p
=) bound,1 and there are more sophisticated algorithms such as

hierarchical greedy [Kanoria, 2022] and fair-bias [Gupta et al., 2019] that are constant competitive
in Euclidean spaces and on the line, respectively.2 Our �rst main result settles the asymptotic
performance of greedy for matching on the line in the fully random model by showing that greedy
achieves a constant competitive ratio.

T������ 1.1. For online matching on the line in the fully random model, the greedy algorithm
achieves a constant competitive ratio.

Amain bene�t of greedy is that it is customer-strategyproof, meaning that the customers arriving
online have no incentive to misreport the location of their requests.We note that this result improves
the best-known competitive ratio of any mechanism that is customer-strategyproof from $ (

p
=)

to constant for this setting (in fact, we are not aware of any non-trivial customer-strategyproof
mechanism besides greedy). We refer to the full version of the paper for a discussion and a formal
de�nition of customer-strategyproofness.
We show that this constant competitiveness of greedy also holds in the fully random n�excess

model, for every constant n > 0. This is a modi�cation of the fully random model where there is a
linear excess of servers, i.e., (1 + n)= servers. This results improves over the previously best-known
competitive ratio for greedy of $ (log3 =) in this setting [Akbarpour et al., 2022].
1There is a known ⌦ (

p
=) bound on the optimal cost (see, e.g., [Tsai et al., 1994]) and the cost of any algorithm is trivially

upper bounded by =.
2Note that hierarchical greedy is constant competitive only for 3 = 1 or 3 � 3. For 3 = 2, Kanoria [2022] shows that an
adapted version of the gravitational matching algorithm by Holden et al. [2021] is constant competitive.

187

EC ’23, July 9–12, 2023, London, United Kingdom Balkanski et al.

T������ 1.2. For any constant n > 0, greedy is $ (1)-competitive in the fully random n-excess
model.

It is widely acknowledged (see, e.g., [Feige, 2021]) that i.i.d. instances often do not resemble
“real” instances. We next therefore consider whether strong guarantees for greedy can also be
obtained in a semi-random model. In particular, we consider a model that we call the random
requests model where the = servers are adversarially chosen and the requests are, as in the fully
random model, drawn uniformly and independently. In ride-sharing, this is motivated by the fact
that there have been examples of drivers that behave adversarially to increase the prices of the
rides, see, e.g., [Hamilton, 2019]. Our next result shows that greedy is logarithmic competitive in
the random requests model.

T������ 1.3. For online matching on the line in the random requests model, the greedy algorithm
achieves an $ (log=)-competitive ratio.

In the model where the servers and requests are chosen adversarially but where the arrival
order is random, $ (=) and ⌦(=0.22) upper and lower bounds are known for the competitive ratio
of greedy [Gairing and Klimm, 2019]. Combined with this ⌦(=0.22) lower bound, our result shows
that the performance of greedy improves exponentially when the locations of the requests are
also random. We note that hierarchical greedy only achieves a polynomial competitive ratio in
the random requests model (see the full version of the paper). Our last main result shows that this
competitive ratio of greedy in the random requests model is tight.

T������ 1.4. For online matching on the line in the random requests model, the greedy algorithm
achieves an ⌦(log=)-competitive ratio.

Combined with Theorem 1.3, we obtain that greedy is ⇥(log=)-competitive in the random
requests model. The combination of our four results give a �rst partial characterization of the
scenarios in which greedy is guaranteed to perform well for online minimum cost matching, but
there remain many intriguing questions. In particular, we believe that it would be interesting to
study semi-random requests and/or semi-random servers, for example, in a model where some
fraction of the servers are adversarial and some fraction are random. Another interesting model,
especially in the context of ride-sharing, would be one where the location of a small number of
servers can be chosen (i.e., a mix of best-case and worst-case). Considering more general metric
spaces beyond the line is of course also a direction for future work. Finally, it would be interesting
to explore empirically which semi-random models exhibit a structure that most closely resembles
the structure of real-world instances.

1.1 Technical overview
The main di�culty in analyzing the greedy algorithm is that there can be complex dependencies
between a greedy match that occurred at some time step in some region of the line and the set of
remaining servers that are available at a later time step in a completely di�erent region of the line.
In other words, a single greedy match at some time step can have a butter�y e�ect on the servers
that will be available in the future in di�erent regions. Algorithms such as hierarchical greedy that
partition the interval in di�erent regions have been designed to prevent matching decisions in one
region from impacting the future available servers in another region. This does not necessarily
lead to algorithms that are better than greedy but does give algorithms that are simpler to analyze.
A high-level contribution of our paper is to develop a general framework for analyzing the

greedy algorithm, for both upper and lower bounds, that, we believe, also provides foundations for
analyzing greedy in higher dimensions and other partially random models. The starting point of

188

The Power of Greedy for Online Minimum Cost Matching on the Line EC ’23, July 9–12, 2023, London, United Kingdom

our analysis is to consider a hybrid algorithm H
<
A
that matches the �rst< requests according to

an algorithm A and then greedily matches each of the remaining requests to the closest available
server. The algorithm A is di�erent for each of our results. To derive our upper bound results, we
�rst show a hybrid lemma that upper bounds, for any algorithmA that satis�es some fairly general
properties, the di�erence 2>BC (H<�1

A
) � 2>BC (H<

A
) (i.e., between the total costs incurred by H

<�1
A

and H
<
A
) as a function of the cost incurred by A to match the<C⌘ request. This hybrid algorithm

idea was also used in [Gupta and Lewi, 2012] to show a$ (log(=)) upper bound on the competitive
ratio of a randomized greedy algorithm for online matching, but with three main di�erences. The
�rst is that their hybrid algorithm is used to analyze a randomized algorithm on a deterministic
instance (instead of a deterministic algorithm on a randomized instance). The second is that their
hybrid algorithm uses an optimal o�ine algorithm A, which we cannot use because we need to
exploit the randomness of the instance, so we instead use existing online algorithms. The third
is that our bound on 2>BC (H<�1

A
) � 2>BC (H<

A
) is tighter, which was a necessary improvement to

obtain a constant competitive ratio in the fully random model.
The second part of the analysis of the upper bounds leverages the hybrid lemma. For the

fully random model, we consider the hybrid algorithmH
<
A
where A is the constant-competitive

hierarchical greedy algorithm by Kanoria [2022]. We note that a direct application of the hybrid
lemma with this hybrid algorithm would only give an$ (log=) competitive ratio for greedy. Instead,
we also show that the total cost of the hierarchical greedy algorithm A is dominated by the cost of
requests that are matched to servers at a constant distance away, which is needed to show that
the di�erence between the costs of greedy and hierarchical greedy is $ (

p
=). Since the expected

optimal total cost is known to be ⇥(
p
=) and hierarchical greedy is constant competitive, we get

that greedy is also constant competitive. For the random requests model, we again use the hybrid
lemma but with a di�erent algorithm A, which is a simple modi�cation of the fair-bias algorithm
by Gupta et al. [2019], to show that greedy achieves an $ (log=) competitive ratio.
For the ⌦(log=) lower bound in the random requests model, we consider an instance where

there is a large number of servers at location 0, no servers in (0,=�1/5
], and the remaining 1 � > (1)

servers uniformly spread in (=�1/5, 1] . We again analyze the di�erence 2>BC (H<�1
A

) � 2>BC (H<
A
),

but where A is the tailored algorithm that matches any request in [0,=�1/5
] to a server at 0 and

greedily matches any other request to the closest available server. We show that at any time step
C , the set of available servers for H<�1

A
and H

<
A

di�er in at most one server. We then consider
the distance XC at time C between these two di�erent servers that are available to only one of the
algorithms and we show that 2>BC (H<�1

A
) � 2>BC (H<

A
) can be lower bounded as a function of

maxC�< XC . Due to the randomness of the requests, the main di�culty is to lower bound maxC�< XC
(e.g., the gap XC can either shrink or expand at each time step), which we do by giving a careful
partial characterization of the remaining servers ((0, . . . , (=) for H<

A
at each time C that allows to

analyze ((0, . . . , (=) and (X0, . . . , X=) separately.

1.2 Additional related work
In general metric spaces with adversarial requests and servers, Kalyanasundaram and Pruhs [1993]
gave a 2= � 1 deterministic competitive algorithm and proved that this competitive ratio is optimal
for deterministic algorithms. On the line, Kalyanasundaram and Pruhs [1993] showed that the
competitive ratio of greedy is at least 2= � 1. A deterministic algorithm with a sublinear competitive
ratio was presented in [Antoniadis et al., 2014]. A few years later, Nayyar and Raghvendra [2017]
gave a $ (log2 =) competitive deterministic algorithm, which was then shown to be $ (log=)-
competitive in [Raghvendra, 2018]. Regarding lower bounds, Fuchs et al. [2003] showed that no
deterministic algorithm can achieve a competitive ratio strictly less than 9.001 on the line.

189

EC ’23, July 9–12, 2023, London, United Kingdom Balkanski et al.

For randomized algorithms, still for adversarial requests and servers, Meyerson et al. [2006] and
Csaba and Pluhár [2007] obtained a $ (log3 =) competitive ratio in general metric spaces using
randomized tree embeddings, which was later improved to$ (log2 =) by Bansal et al. [2007]. On the
line, and for doubling metrics, Gupta and Lewi [2012] showed that a randomized greedy algorithm
is $ (log=) competitive. Recently, Peserico and Scquizzato [2021] improved the lower bound from
[Fuchs et al., 2003] to obtain an ⌦(

p
log=) lower bound for the line that also holds for randomized

algorithms. For general metrics, it was previously known that no randomized algorithm can achieve
a competitive ratio better than ⌦(log=) [Meyerson et al., 2006].
When the arrival order of the requests is random, Gairing and Klimm [2019] showed that

greedy is $ (=) and ⌦(=0.22) competitive. Raghvendra [2016] gave a deterministic algorithm that
achieves a $ (log=) competitive ratio, which is optimal even for randomized algorithms. When the
requests are drawn i.i.d. from any distribution over the set of servers, Gupta et al. [2019] gave a
$ ((log log log=)2) competitive algorithm in general metric spaces that is also constant competitive
on the line and for tree metrics. When the servers and requests are uniformly and independently
distributed, Tsai et al. [1994] showed that greedy achieves an 2.3

p
= competitive ratio on the unit

disk and Kanoria [2022] showed that an algorithm called hierarchical greedy is constant competitive
on the unit hypercube (and also analyzed the more challenging fully dynamic setting where the
servers also arrive online).

Empirical evaluations of di�erent algorithms on real spatial data have shown that greedy performs
well in practice [Tong et al., 2016]. The excess supply setting was studied by Akbarpour et al. [2022],
who showed that the total optimal cost is $ (1) and the total cost of greedy is $ (log3 =) when the
number of excess servers is linear and when the requests and servers are random (but the arrival
order can be adversarial). The results for hierarchical greedy from [Kanoria, 2022] also extends to
the excess supply setting. Kalyanasundaram and Pruhs [2000] showed a $ (min(<, log(=))) bound
on the “double-competitive ratio” of greedy in an adversarial model with resource augmentation
where there are< possible server locations and the adversary has only half as many servers at
each location as greedy. Recourse, i.e. allowing matching decisions to be revoked to some extent,
has been considered in [Gupta et al., 2020, Megow and Nölke, 2020]. In the o�ine non-bipartite
version of the problem with 2= point drawn uniformly from [0, 1], Frieze et al. [1990] showed that
greedy achieves a ⇥(log=) approximation.

2 Preliminaries
In the online matching on the line problem, there are =B servers (= {B1, . . . , B=B } and = = =A requests
' = (A1, . . . , A=) such that B8 , A8 2 [0, 1] for all 8 . Hence, an instance is given by a pair ((,'). The
servers are known to the algorithm at time C = 0. At each time step C 2 [=], the algorithm observes
request AC and must irrevocably match it to a server that has not yet been matched. We denote by
BA(AC) the server that gets matched to request AC by (the current execution of) algorithm A and by
(A,0 ◆ · · · ◆ (A,= the sets of free servers obtained through the execution of A, where (A,0 is the
initial set of servers, and for all C 2 [=], (A,C is the set of remaining free servers just after matching
AC . The cost incurred from matching AC to BA(AC) is costC (A, AC) = |AC � BA(AC) | and the total cost
of the matching produced by A on instance � is cost(A, �) =

Õ=
C=1 costC (A, AC). We often abuse

notation and write costC (A), cost(A), and (C instead of costC (A, AC), cost(A, �), and (A,C .
All models studied in the paper can be represented by a triple (=D,=3 ,=). Here, =D (resp. =) is the

cardinality of the set (D of servers (resp. of the set ' of requests) sampled independently from the
uniform distributionU[0,1] . =3 is the number of adversarily placed servers (hence, =D + =3 = =B).
The performance of an algorithm A is measured by its competitive ratio:

190

The Power of Greedy for Online Minimum Cost Matching on the Line EC ’23, July 9–12, 2023, London, United Kingdom

max
(3 2 [0,1]=3

E(D ,'⇠U[0,1] ,A [cost(A, ((3 [(D,'))]

E(D ,'⇠U[0,1] [cost($%) , ((3 [(D,'))]
.

where $%) is the o�ine optimal matching when the requests are known at time C = 0. We say
that an algorithm is U-competitive if its competitive ratio is upper bounded by U . Although some
papers in online optimization use a di�erent notion of competitive ratio (see, e.g., survey [Mehta,
2013]), in the context of online matching on the line, most literature we are aware of use the same
de�nition as ours. This is true, in particular, for papers over which we build [Gairing and Klimm,
2019, Gupta et al., 2019, Kanoria, 2022] or whose results we improve [Akbarpour et al., 2022, Tsai
et al., 1994].

The three models investigated in this paper can then be formalized as follows.
• In the fully random model, (=D,=3 ,=) = (=, 0,=), i.e., all servers (and requests ' are drawn
uniformly and independently from [0, 1] and there is an equal number of servers and requests.

• For a constant n > 0, we de�ne the fully random n�excess model, in which (=D,=3 ,=) =
((1 + n)=, 0,=), i.e., all servers (and requests ' are drawn uniformly and independently from
[0, 1] and there is a linear excess of n= servers.

• In the random requests model, (=D,=3 ,=) = (0,=,=), i.e., the requests ' are still drawn uni-
formly and independently from [0, 1] but the servers are now chosen adversarially over all
potential sequence of = requests in [0, 1].

The greedy algorithm, denoted by G, is the algorithm that matches each request AC to the closest
available server, i.e., BG (AC) = argminB2(G,C�1 |B �AC |. We say that an algorithmA makes neighboring
matches if it matches every request AC either to the closest available server to its left or to its right.
For any algorithm A (possibly randomized) and< 2 {0, . . . ,=}, we de�ne the hybrid algorithm
H

<
A
that matches the �rst< requests according to A and then greedily matches the remaining

requests to the closest available server. The following key lemma (proved in the full version of
the paper) bounds E

⇥
2>BC (H<�1

A
) � 2>BC (H<

A
)] as a function of cost< (A) – that is, the cost for

algorithm A to match the<C⌘ request.

L���� 2.1. (The Hybrid Lemma). There exists a constant⇠ > 0 such that for any online algorithm
A thatmakes neighboringmatches, for any instance with= arbitrary servers (= {B1, . . . , B=},= requests
' = (A1, . . . , A=) uniformly and independently drawn from [0, 1], for any< 2 [=], we have

E
⇥
2>BC (H<�1

A
) � 2>BC (H<

A
)|(<�1, A<]  ⇠ · E

h �
1 + log

� 1
cost< (A)

� �
cost< (A)

���(<�1, A<
i
.

Note that the expectation is taken over the randomness in the requests sequence as well as any
possible source of randomization in the algorithm A. The idea of using hybrid algorithms for
analyzing online matching algorithms was used in [Gupta and Lewi, 2012], who also introduce a
hybrid lemma (see Section 1.1 for additional discussion). A key component of the proof of Lemma
2.1 relies on Lemma 2.2 given below, that describes, for a �xed< 2 [=], the di�erence between the
executions ofH<

A
andH<�1

A
on the same sequence '. Lemma 2.2 in fact shows that, at every step C

(i.e., just after matching request AC), the free servers for both algorithms coincide, with the exception
of at most a pair of servers, that we denote by 6!C < 6'C (see Figure 1) ; there is no other free server
in between 6!C and 6'C ; and that strong bounds can be obtained on XC := 6!C �6

'
C . These properties, in

turns, will allow us to control the di�erence in the costs incurred by the two algorithms, eventually
leading to the bound from Lemma 2.1.
To ease the exposition, we drop the reference to the algorithms in the indices and write (C and

B (AC) instead of (H<
A
,C and BH<

A
(AC) to denote, respectively, the set of free server forH<

A
just after

191

EC ’23, July 9–12, 2023, London, United Kingdom Balkanski et al.

Fig. 1. Set of servers (C (free servers at time C forH<
�) and (0C (free servers at time C forH<�1

�) in the case
where (C < (0C , where the squares are the servers in (C and the circles the servers in (0C .

matching AC and the server to which H
<
A
matches AC . Similarly, we write (0C and B0 (AC) instead of

(H<�1
A

,C and BH<�1
A

(AC) for the equivalent objects forH<�1
A

.
If (C = (0C , then we write 6!C = 6'C = ; and XC = 0. We also de�ne B!C = max{B 2 (C [(0C \ {6

!
C ,6

'
C } :

B  6!C } and B'C = min{B 2 (C [(0C \ {6!C ,6
'
C } : B � 6'C } (with the convention that B!C = ; if

{(C [(0C \ {6
!
C ,6

'
C } : B  6!C } = ; or if 6!C = ;, and similarly for B'C), which are the nearest servers of

(C (or equivalently, of (0C) on the left of 6!C and on the right of 6'C .

L���� 2.2. Let A be any online algorithm that makes neighboring matches, (0 be = arbitrary
servers and ' be = arbitrary requests. Let ((0, . . . , (=) and ((00, . . . , (

0
=) denote the set of free servers for

H
<
A
andH<�1

A
at each time steps. Then, the following propositions hold for all C 2 {<, . . . ,=}:

(1) Di�erence in at most one server. |(C \ (0C | = |(0C \ (C |  1.
(2) Consecutiveness of the di�erent servers. If 6!C ,6'C < ;, there is no server B 2 (C [(0C such

that 6!C < B < 6'C .
(3) Gap remains zero a�er disappearing. If XC = 0, then XC 0 = 0 for all C 0 � C .

The proof is given in the full version of the paper. For all C < = and (C < (0C , we also characterize the
values of B (AC+1), B0 (AC+1), XC+1,6!C+1,6

'
C+1, and give an upper bound on �costC+1 := |costC+1 (H<�1

) �

costC+1 (H<
) | (see the full version of the paper).

3 Greedy is Constant Competitive in the Fully Random Model
In this section, we show that greedy achieves a constant competitive ratio in the fully random
model where both the servers and requests are drawn uniformly and independently from [0, 1]. In
addition, we show that this result also holds when there is a linear excess supply of servers.

The setting with = servers. We recall that in this setting, the competitive ratio of any algorithm
A is given by:

E(',()⇠U(0,1)=⇥U(0,1)=,A [cost(A, ((,'))]

E(',()⇠U(0,1)=⇥U(0,1)= [cost($%) , ((,'))]
.

The main idea of the analysis is to consider a hybrid algorithm that �rst runs the hierarchical
greedy algorithm from [Kanoria, 2022], and then greedily matches the remaining requests to the
closest available server.

We �rst present the hierarchical greedy algorithm introduced in [Kanoria, 2022], which we denote
byA� (note that [Kanoria, 2022] considers two models: a semi-dynamicmodel similar to ours, and a
fully-dynamic model where the servers also arrive online. We only present here the algorithm corre-
sponding to the semi-dynamicmodel). To describe it, we need to de�ne the sequenceI✓0 , ...,I0, where
✓0 = log(=), which are increasingly re�ned partitions of [0, 1]. More precisely, I✓0 = {[0, 1]} and for
each ✓  ✓0 � 1, I✓ is the partition obtained by dividing each interval in I✓+1 into two intervals of
equal length, i.e., I✓ =

�
[[0,~]2I✓+1 {[0,~/2],]~/2,~]}

�
[

�
[]G,~]2I✓+1 {]G, (G + ~)/2],] (G + ~)/2,~]}

�
.

The partitions obtained through this process can be organized in a binary tree, where the nodes at
level ✓ are the intervals of I✓ and the leafs are the intervals of I0.

192

The Power of Greedy for Online Minimum Cost Matching on the Line EC ’23, July 9–12, 2023, London, United Kingdom

Given a request AC , let � (AC) be the leaf interval to which AC belongs and � (AC) be the lowest-level
ancestor interval of � (AC) in the tree such that � (AC) \ (C�1 < ;, i.e., such that � (AC) contains some
free servers when request AC arrives. The hierarchical greedy algorithmmatches AC to any free server
in � (AC). For our purposes, we assume that it matches AC to the closest free server in � (AC). A request
AC is said to be matched at level ✓ if � (AC) 2 I✓ . There are two known results about hierarchical
greedy that are important for our analysis. The �rst one upper bounds the number of requests
matched at each level.

L���� 3.1 ([K������, 2022]). There is a constant⇠0 > 0 such that, for all ✓ 2 {0, . . . , ✓0}, we have
E[|{AC : � (AC) 2 I✓ }|]  ⇠0

p
=2✓�✓02✓0�✓ .

The second important result about hierarchical greedy is its constant competitiveness

T������ 3.2 ([K������, 2022]). In the fully random model, we have that E[cost(A�
)] = $ (

p
=).

Next, we show the following bound on the cost incurred by hierarchical greedy when matching
a request at level ✓ .

L���� 3.3. For all C 2 [=], if AC is matched at level ✓ , then we have

costC (A�
) log(1/costC (A�

))  2✓�✓0 (log(2) (✓0 � ✓) + 1).

P����. Let ✓ 2 {0, . . . , ✓0}. First note that the cost incurred byA� when matching a request AC at
level ✓ satis�es costC (A�

)  2✓�✓0 since the intervals of I✓ have length at most 2✓�✓0 by de�nition
of I✓ . Next, if 2✓�✓0 2 (0, 1/4], then

costC (A�
) log(1/costC (A�

))  2✓�✓0 log(1/2✓�✓0)

since G log(1/G) is non-decreasing on (0, 1/4] and costC (A�
)  2✓�✓0 . If 2✓�✓0 2 [1/4, 1], then

costC (A�
) log(1/costC (A�

))  1/4  2✓�✓0

since argmaxG2 (0,1] G log(1/G) = 1/4 and 1
4 log(

1
1/4) =

1
4 . We conclude that if AC is matched at level

✓ ,

costC (A�
) log(1/costC (A�

))  2✓�✓0 log(1/2✓�✓0) + 2✓�✓0  2✓�✓0 (log(2) (✓0 � ✓) + 1). ⇤

The next lemma is the main lemma of this section and shows that the di�erence between the
total cost of greedy and hierarchical greedy is $ (

p
=).

L���� 3.4. In the fully random model, we have that

E[cost(G) � cost(A�
)] = $ (

p
=).

P����. We �rst note that since the hierarchical greedy algorithm matches every request AC to the
closest free server in � (AC), and since AC 2 � (AC) by de�nition of � (AC), hierarchical greedy makes
neighboring matches, which is the condition needed to apply the hybrid lemma to the hybrid
algorithmH

< . We get that

E[2>BC (G) � 2>BC (A�
)]

=
=’

<=1
E[2>BC (H<�1

) � 2>BC (H<
)] H

= = A
� ,H 0 = G

 ⇠
=’

<=1
E[

�
1 + log

� 1
2>BC< (A�)

� �
cost< (A

�
)] Hybrid lemma

193

EC ’23, July 9–12, 2023, London, United Kingdom Balkanski et al.

 ⇠
=’

<=1
E[log

� 1
2>BC< (A�)

�
cost< (A

�
)] +⇠E[2>BC (A�

)]

 ⇠
=’

<=1
E[log

� 1
2>BC< (A�)

�
cost< (A

�
)] +$ (

p
=) Theorem 3.2

= ⇠
=’

<=1

✓0’
✓=0
P(� (A<) 2 I✓)E[log

� 1
2>BC< (A�)

�
cost< (A

�
) |� (A<) 2 I✓] +$ (

p
=)

 ⇠
=’

<=1

✓0’
✓=0
P(� (A<) 2 I✓) · 2✓�✓0 (log(2) (✓0 � ✓) + 1) +$ (

p
=) Lemma 3.3

= ⇠
✓0’
✓=0

2✓�✓0 (log(2) (✓0 � ✓) + 1) ·
=’

<=1
P(� (A<) 2 I✓) +$ (

p
=)

= ⇠
✓0’
✓=0

2✓�✓0 (log(2) (✓0 � ✓) + 1) · E[|{AC : � (AC) 2 �✓ }|] +$ (
p
=)

 ⇠⇠0
p
=

✓0’
✓=0

2(✓�✓0)/2 (log(2) (✓0 � ✓) + 1) +$ (
p
=) Lemma 3.1

= ⇠⇠0
p
=

✓0’
9=0

2� 9/2
(log(2) 9 + 1) +$ (

p
=)

= ⇠⇠0
p
=

log(2)

✓0’
9=0

9

✓
1
p
2

◆ 9
+

✓0’
9=0

✓
1
p
2

◆ 9 !
+$ (

p
=)

= $ (
p
=). ⇤

The last result needed is that the optimal cost in the fully random model is known to be ⇥(
p
=).

L���� 3.5 ([K������, 2022]). In the fully random model, we have that E[OPT] = ⇥(
p
=).

By combining Theorem 3.2, Lemma 3.4, and Lemma 3.5, we obtain the main result of this section.

T������ 1.1. For online matching on the line in the fully random model, the greedy algorithm
achieves a constant competitive ratio.

The excess supply setting. We consider here an extension of the previous model where there is a
linear excess of servers. For any constant n > 0, we de�ne the fully random n-excess model, where
an instance consist of = requests and =(1 + n) servers all drawn uniformly and independently from
[0, 1]. The competitive ratio of any algorithm A is given by:

E(',()⇠U(0,1)=⇥U(0,1)= (1+n) ,A [cost(A, ((,'))]

E(',()⇠U(0,1)=⇥U(0,1)= (1+n) [cost($%) , ((,'))]
.

In this setting, the hybrid approach with hierarchical greedy used above does not give a constant
competitive ratio. However, we are still able to prove that greedy is constant competitive with a
di�erent argument. Unlike the model with = servers, the analysis for the excess supply setting does
not rely on the hybrid lemma but on concentration arguments. Missing proofs can be found in the
full version of the paper.

194

The Power of Greedy for Online Minimum Cost Matching on the Line EC ’23, July 9–12, 2023, London, United Kingdom

The main technical contribution here lies in showing that, thanks to the excess of servers, there
is an exponentially small probability that there is a large area around the =-th request that contains
no available servers. More formally, for ✓,< 2 [0, 1], we let G (✓,<) = |{C 2 [= � 1] : AC 2 (✓,<)}| be
the number of requests out of the = � 1 �rst requests that arrived in the interval (✓,<), and we let
~ (✓,<) = |{C 2 [=(1 + n)] : BC 2 (✓,<)}| be the total number of servers that lie in the interval (✓,<).
Then, the following lemma holds.

L���� 3.6. Let n > 0 be a constant. There are constants ⇠n ,⇠0
n such that, in the fully random

n-excess model, we have that for all I 2 [
4+n
n= , 1],

P(9✓,< 2 [0, 1] : G (✓,<) = ~ (✓,<) , (A= � ✓ � I or ✓ = 0), (< � A= � I or< = 1) | A=)  ⇠0

n4
�=I⇠n .

Using Lemma 3.6, we then upper bound the expected cost incurred by greedy at the last step.
At a high level, we use in the proof that the free servers at each time step act as "natural barriers"
between di�erent areas of the interval [0, 1] (in the sense that if there is a free server at location
G 2 [0, 1], no request arriving in [0, G] can be matched to a server in (G, 1], and vice-versa). This
allows to quantify precisely the total number of remaining servers in each of those areas. Note
that in [Kanoria, 2022], the analysis also relies on a division of space into distinct regions, and on
a quanti�cation of remaining servers and requests in each region. However, in [Kanoria, 2022],
the division is �xed at the beginning of the time horizon (through the partition I✓0 , ...,I0). The
additional di�culty in our setting is that the "barriers" we consider depend on all previously arrived
requests and are thus random.

L���� 3.7. Let n > 0 be a constant. There is a constant ⇠00
n such that, in the fully random n-excess

model, we have E[2>BC= (G)] 
⇠00
n
= .

P����. To exclude any ambiguity, we condition on the event that all servers are distinct and that
no server or requests are at positions 0 and 1, which occurs almost surely. In the remainder of the
proof, we condition on the variable A= and let B!= = max{B 2 (=�1 : B  A=} and B'= = min{B 2 (=�1 :
B � A=} denote the nearest available servers on the left and on the right of A= when A= arrives; with
the convention that B!= = 0 and B!= = 1 if there are no such servers.
Now, let I 2 [

4(1+n/4)
n= , 1] and assume that cost= (G) � I. Since G matches A= to the closest

available server, we must have A= � B!= � I or B!= = 0, and B'= � A= � I or B'= = 1. In addition, by
de�nition of B!= and B'= , we have that (B!= , B'=) \ (=�1 = ;. Now, recall that all requests A1, . . . , A=�1
have been matched each time to the closest available server. Moreover, for all 9 2 [= � 1], B!= was
either available when A 9 arrives, but A 9 was not matched to it, or B!= = 0; similarly for B'= . Hence, if
A 9 8 (B!= , B

'
=), then BG (A 9) 8 (B!= , B

'
=). Similarly, if A 9 2 (B!= , B

'
=), then BG (A 9) 2 (B!= , B

'
=). Therefore,

|{ 9 2 [= � 1] : BG (A 9) 2 (B!= , B
'
=)}| = |{ 9 2 [= � 1] : A 9 2 (B!= , B

'
=)}|.

In addition, since (B!= , B'=) \ (=�1 = ;, all servers in (B!= , B
'
=) \ (0 must have been matched to some

request before time = � 1, hence

|{ 9 2 [= � 1] : BG (A 9) 2 (B!= , B
'
=)}| = |{ 9 2 [=(1 + n)] : B 9 2 (B!= , B

'
=)}|.

By combining the two previous equalities and by de�nition of G
(B!= ,B

'
=)
, and ~

(B!= ,B
'
=)
, we get that

G
(B!= ,B

'
=)

= |{ 9 2 [= � 1] : A 9 2 (B!= , B
'
=)}| = |{ 9 2 [=(1 + n)] : B 9 2 (B!= , B

'
=)}| = ~

(B!= ,B
'
=)
.

Since we have that A= � B!= � I or B!= = 0, and B'= � A= � I or B'= = 1, we thus have that

P(cost= (G) � I | A=)

 P(9✓,< 2 [0, 1] : G (✓,<) = ~ (✓,<) , (A= � ✓ � I or ✓ = 0), (< � A= � I or< = 1) | A=). (1)

195

EC ’23, July 9–12, 2023, London, United Kingdom Balkanski et al.

Now, by Lemma 3.6, we have that for some constants ⇠n ,⇠0
n > 0:

P(9✓,< 2 [0, 1] : G (✓,<) = ~ (✓,<) , (A= � ✓ � I or ✓ = 0), (< � A= � I or< = 1) | A=)  ⇠0

n4
�=I⇠n .

Combining this with (1) and by the law of total probability, we get P(cost= (G) � I)  ⇠0
n4

�=I⇠n .
Hence, we obtain

E[2>BC= (G)] 
4(1+n/4)

n= +

π 1

I=
4(1+n/4)

n=

P(2>BC= (G) � I)dI


4(1+n/4)

n= +

π 1

I=
4(1+n/4)

n=

⇠0

n4
�=I⇠ndI


4(1+n/4)

n= +
⇠0
n

⇠n=
. for some ⇠n > 0

=
⇠00
n

=
for some ⇠00

n > 0 ⇤

We underscore that a simple application of Cherno� bounds between all initial pairs of servers
locations would only lead to a weaker version of the above lemma, involving poly-logarithmic
terms. Since our objective was to present a sharp analysis of greedy, we introduced the re�ned
analysis above.
Last, we observe that, because of servers getting less and less dense as requests arrive, the

expected cost at each step of the greedy algorithm increases.

L���� 3.8. Let n > 0 be a constant. Then, in the fully random n-excess model, we have that for all
8 2 [= � 1], E[2>BC8 (G)]  E[2>BC8+1 (G)].

Using Lemma 3.7 and Lemma 3.8, we conclude that E[2>BC (G)] =
Õ=

8=1 E[2>BC8 (G)]  = ·

E[2>BC= (G)]  ⇠00
n . We have thus shown the following.

L���� 3.9. Let n > 0 be a constant. There exists a constant ⇠00
n > 0 such that in the fully random

n-excess model, we have E[cost(G)]  ⇠00
n .

In order to conclude the proof of Theorem 1.2, it su�ces to lower bound the cost of the optimal
solution in the fully random n-excess model.

L���� 3.10 ([K������, 2022]). For any constant n > 0, we have that in the fully random n-excess
model, E[OPT] = ⇥(

1
n).

We can then conclude the following result on the performance of the greedy algorithm.

T������ 1.2. For any constant n > 0, greedy is $ (1)-competitive in the fully random n-excess
model.

4 Greedy is Logarithmic Competitive in the Random Requests Model
In this section, we show that greedy achieves an ⇥(log=) competitive ratio in the random requests
model where the servers are chosen adversarially and the requests are drawn uniformly and
independently from [0, 1]. Thus, unlike in the fully random model, servers and requests can be
distributed in a signi�cantly di�erent manner in this model.

4.1 Greedy is $ (log=)-competitive
We �rst show the$ (log=) upper bound. We note that, even though hierarchical greedy and greedy
are both constant-competitive in the fully random model, hierarchical greedy is only ⌦(=1/4)-
competitive in the random requests model (see the full version of the paper). The main lemma

196

The Power of Greedy for Online Minimum Cost Matching on the Line EC ’23, July 9–12, 2023, London, United Kingdom

(Lemma 4.2) shows that greedy is at most a logarithmic factor away from any online algorithm
that makes neighboring matches. To prove Lemma 4.2, we �rst need to lower bound the probability
that the cost incurred by any online algorithm at any time step is small. First, for all C 2 [=], we let
G((C�1) = {A 2 [0, 1] : 9B 2 (C�1, |A � B | < 1

=4 } be the set of points in [0, 1] that are close to servers
in (C�1.

L���� 4.1. In the random requests model, for any online algorithm A and any time step C 2 [=],
we have that E[costC (A)] �

1
2(=+1) and that P(AC 2 G((C�1)) 

2
=3 .

The proof is in the full version of the paper. Next, to show that Lemma 4.2 holds for any online
algorithm A that makes neighboring matches, we use the hybrid lemma on the hybrid algorithm
H

<
A
(and we abuse notation by writingH<).

L���� 4.2. In the random requests model, there exists a constant ⇠ > 0 such that for any online
algorithm A that makes neighboring matches,

E[2>BC (G)]  ⇠ log(=)E[2>BC (A)] .

P����. We write

E[2>BC (H<�1
) � 2>BC (H<

)]

= E[2>BC (H<�1
) � 2>BC (H<

) | A< 8 G((<�1)] · P(A< 8 G((<�1))

+ E[2>BC (H<�1
) � 2>BC (H<

) | A< 2 G((<�1)] · P(A< 2 G((<�1))

 E[2>BC (H<�1
) � 2>BC (H<

) | A< 8 G((<�1)] · P(A< 8 G((<�1)) + = · 2/=3

 ⇠ · E[
�
1 + log

� 1
2>BC< (A)

� �
cost< (A) | A< 8 G((<�1)] · P(A< 8 G((<�1)) + 2=�2

 ⇠ (1 + 4 log(=)) · E[cost< (A) | A< 8 G((<�1)] · P(A< 8 G((<�1)) + 2=�2

 ⇠ (1 + 4 log(=)) · E[cost< (A)] + 2=�2

= ⇠0 log(=) · E[cost< (A)],

where the �rst inequality is by Lemma 4.1, the second one by the Hybrid Lemma (Lemma 2.1 ;
noting that {A< 8 G((<�1)} is an event that depends only on (<�1 and A< and that A makes
neighboring matches) and the third one is since for any algorithm A, cost< (A) � 1/=4 when
A< 8 G((<�1). The last equality is by Lemma 4.1.

SinceH= = A andH
0 = G, we conclude that

E[2>BC (G) � 2>BC (A)] =
=’

<=1
E[2>BC (H<�1

) � 2>BC (H<
)]

 ⇠0 log(=)
=’

<=1
E[2>BC< (A)]

= ⇠0 log(=) · E[2>BC (A)] . ⇤

It remains to show the existence of a$ (1)-competitive online algorithm that makes neighboring
matches in the random requests model, which is the case for a simple modi�cation of the algorithm
fair-bias from [Gupta et al., 2019]. The proof is deferred to the full version of the paper.

L���� 4.3. In the random requests model, there exists a $ (1)-competitive algorithm that makes
neighboring matches.

We are now ready to prove the main result of Section 4.1.

197

EC ’23, July 9–12, 2023, London, United Kingdom Balkanski et al.

Fig. 2. The lower bound instance. There are =4/5 + 4 log2 (=)
p
= servers at 0, no server in the dashed area, and

= � (=
4
5 + 4 log2 (=)

p
=) servers uniformly distributed in the gray area.

T������ 1.3. For online matching on the line in the random requests model, the greedy algorithm
achieves an $ (log=)-competitive ratio.

P����. By Lemma 4.3, there exists an algorithm A that is $ (1)-competitive algorithm in the
random requests model andmakes neighboringmatches.We have, by Lemma 4.2, thatE[2>BC (G)] 

⇠ log(=)E[2>BC (A)]. We conclude that greedy is $ (log=)-competitive. ⇤

4.2 Overview of the lower bound
The ⌦(log=) lower bound is the main technical proof of this paper. It is obtained by analyzing
another hybrid algorithm to show that, on some instance, greedy makes mistakes that have an
intricate cascading e�ect on the cost of future requests. In this section, we give an overview of the
proof of the lower bound. The complete analysis and proofs of all lemmas can be found in the full
version of the paper.

4.2.1 Description of the instance. We de�ne the set of servers (0 such that there are =4/5 +

4 log(=)2
p
= servers located at point 0, there are no servers in the interval (0,=�1/5

] and the
remaining = � (=4/5 + 4 log(=)2

p
=) servers are uniformly spread in the interval (=�1/5, 1]. More

precisely, for all 9 2 [=4/5+4 log(=)2
p
=], we set B 9 = 0. Then, we let =̃ := =�4 log(=)2

p
=/(1�=�1/5

),
and for all 9 2 [= � (=4/5 � 4 log(=)2

p
=)], we set B (=4/5+4 log(=)2

p
=)+9 = =�1/5

+
9
=̃ (see Figure 2 for

an illustration of the instance). We note that, interestingly, the servers are almost uniform since a
1 � > (1) fraction of the servers are uniformly spread in an interval (> (1), 1].

4.2.2 Analysis of the instance. We compare the greedy algorithm to the algorithm A that, for
all C 2 [=], matches AC to a free server at location 0 if AC 2 [0,=�1/5

] and (A,C�1 \ {0} < ;, and,
otherwise, matches AC greedily. Note that for the instance de�ned above, A is a better algorithm
than greedy since the expected total number of requests in [0,=�1/5

] is =�1/5
· = = =4/5, which

is less than the number of servers at position 0. The main part of the proof is to lower bound
E[2>BC (H<�1

A
) � 2>BC (H<

A
)], i.e., the increase in cost from switching from algorithm A to the

greedy algorithm G one step earlier in hybrid algorithm H
<�1
A

compared to H<
A
. As we will show,

matching a request in [0,=�1/5
] greedily at time C =< instead of matching it to a server at location

0 causes a cascading increase in costs at future time steps forH<�1
A

compared toH
<
A
due to the

di�erent available servers, even though these two algorithms both match requests greedily at time
steps C > <.

Structural properties. The �rst lemma shows that at every time step C , there are at most two
servers in the symmetric di�erence between the sets of free servers (H<

A
,C and (H<�1

A
,C , and that the

potential extra free server in (H<�1
A

,C is always located at 0 whereas the potential extra free server
in (H<

A
,C is the leftmost free server that is not at location 0 (see Figure 3). To ease notation, we write

H
< andH

<�1 instead ofH<
A
andH

<�1
A

and (C and (0C instead of (H<,C and (H<�1,C .

198

The Power of Greedy for Online Minimum Cost Matching on the Line EC ’23, July 9–12, 2023, London, United Kingdom

Fig. 3. Sets of free servers forH< andH
<�1 at all time steps (with the circles denoting servers in (C and the

squares denoting servers in (0C).

L���� 4.4. For any arbitrary sequence ' of = requests, we have that for all C 2 {0, . . . ,< � 1},
(C = (0C , and that for all C � <, either (C = (0C or (0C = (C [{0} \ {min{B 2 (C : B > 0}}.

Lower bounding the cost by the maximum gap XC . To bound E[2>BC (H<�1
) � 2>BC (H<

)], we
analyze the gap XC := min{B 2 (C : B > 0} between the unique available server in (0C \ (C = {0} and
the unique available server in (C \ (0C = {min{B 2 (C : B > 0}}. If (C = (0C , then there is no gap and
we de�ne XC = 0. The next lemma formally bounds E[

Õ=
C=<+1 (2>BCC (H

<�1
) � 2>BCC (H<

) |X<, (<]
as a function of the gap XC .

L���� 4.5. For all< 2 [=], we have that

E
h =’
C=<+1

(2>BCC (H
<�1

) � 2>BCC (H
<
) |X<, (<

i
�

1
2
E
h

max
C 2{0,...,min(C{0},CF)�<}

XC+< � X< |X<, (<
i

� P(C3 > C{0} |X<, (<),

where BC,1 := min{B > 0 : B 2 (C } and BC,2 := min{B > BC,1 : B 2 (C }; CF := min{C � < : BC,2 � BC ,1 >
BC,1, or BC ,2 = ;}, C3 = min{C � < : XC = 0} and C{0} := min{C � < | (C \ {0} = ;}.

To prove Lemma 4.5, we �rst show some structural properties of the process {(XC , (C)}C�0. In
particular, we partially characterize the transitions from (XC , (C) to (XC+1, (C+1) (Lemma 4.9), and
show that if at some time step C , there remains servers at 0 and the gap B2,C �B1,C between the two �rst
servers with positive location in (C is smaller than the gap XC , then E[2>BCC (H<�1

) � 2>BCC (H<
)]

is lower bounded by (XC � XC�1)/2.

Lower bounding the maximum gap XC . By Lemma 4.5, it remains to lower bound the maximum
gap XC , for C � <. To analyze this gap, we �rst need to introduce some additional notation and
terminology. We consider a partition �0, �1, . . . of (0, 1] into intervals of geometrically increasing size,
where �8 = (~8�1,~8] and ~8 = (3/2)8=�1/5 (with the convention ~�1 = 0). In addition, we say that a
sequence of requests is regular if, for any 8 2 [=], the number of requests between any time steps C
and C 0 that are in the interval [(8 � 1)/=, 8/=] "su�ciently concentrates". More formally, we start
by discretizing the interval [0, 1] as D = {

8
= : 8 2 {0, . . . ,=}}. For any interval � = [8!, 8'] ✓ [0, 1],

we also consider 3+(�), the smallest interval with end points in D that contains � , and 3�
(�), the

largest interval with end points in D contained in � .
(1) 3+(�) := [3+! ,3

+

'], with 3
+

! := max{G 2 D|G  8!} and 3+' := min{G 2 D|G � 8'}
(2) 3�

(�) := [3�

! ,3
�

'], with 3
�

! := min{G 2 D|G � 8!} and 3�

' := max{G 2 D|G  8'}.

De�nition 4.6. We say that a realization ' of the sequence of requests is regular if for all 3,3 0 2 D

such that 3 < 3 0, and for all C, C 0 2 [=] such that C < C 0,
(1) |{ 9 2 {C, . . . , C 0}| A 9 2 [3,3 0]}| � (3 0 � 3) (C 0 � C) � log(=)2

p
(3 0 � 3) (C 0 � C),

199

EC ’23, July 9–12, 2023, London, United Kingdom Balkanski et al.

Fig. 4. Requests in and out of �8 up to time C8 := min(C8 , C8�1 + 22 (= � C8�1)), with (A) the total number of
requests that arrived in �8 from time 0 to C8 , (B) the total number of requests that arrived in �8 and were
matched outside �8 from time 0 to C8 , and (⇠) the total number of requests that arrived in [

3
4~8�1,~8�1] and

were matched inside �8 from time C8�1 + 1 + 21 (= � C8�1) to time C8 (note that there are no free servers in the
dashed area for times C � C8�1).

(2) and if (3 0 � 3) (C 0 � C) = ⌦(1), then

|{ 9 2 {C, . . . , C 0}| A 9 2 [3,3 0]}|  (3 0 � 3) (C 0 � C) + log(=)2
p
(3 0 � 3) (C 0 � C).

By standard concentration bounds, a sequence of requests is regular with high probability.

L���� 4.7. With probability at least 1 � =�⌦ (log(=)) , the sequence of requests is regular.

Once the requests of sequence is assumed regular, all events that can be derived by successive
applications of simple Cherno� bounds become deterministic events. In particular, when a sequence
of requests is regular, we can bound, for algorithm H

< , the gap BC, 9+1 � BC, 9 between the 9C⌘ and
9 + 1C⌘ free servers BC, 9 and BC , 9+1 with positive location at time C 2 [(1 � > (1))=].
The main technical lemma of the proof of the ⌦(log(=))-competitive ratio is to lower bound

the maximum gap XC over all C � <, which we do in the next lemma, where 21,31, 23 are positive
constants.

L���� 4.8. For all 8 2 [31 log(=)] and<  21=,

P
⇣

max
C 2{<,...,min(=�=23 ,C{0}) }

XC � ~8�1 |R is regular, X<, (<
⌘
�

X<
~8

� =�⌦ (log(=)) .

Challenges to prove Lemma 4.8. The main di�culty in proving Lemma 4.8 is that the value of
XC at each time step C is dependent on the value of (C . However, (C lies in an exponentially-sized
state space and it is di�cult to compute the exact distribution of (C at all time steps. The key idea is
to separate the analysis of (X1, . . . , X=) and ((1, . . . , (=). We �rst show that with high probability,
the servers in ((1, . . . , (=) become globally unavailable from left to right (see below an overview of
the proof for a more precise statement). Then, we lower bound the probability that for any ~ and
any arbitrary sequence of sets ((1 ◆ . . . ◆ (=), X = 0 before all servers in the interval (0,~] have
become unavailable. Combining these two properties leads to the desired result.

200

The Power of Greedy for Online Minimum Cost Matching on the Line EC ’23, July 9–12, 2023, London, United Kingdom

AC+1 2 . . . [0, XC2] [
XC
2 ,

XC+FC
2] [

XC+FC
2 , XC +

FC
2] [XC +

FC
2 , XC +FC] [XC +FC , 1]

(C+1 (C \ {0} (C \ {XC } (C \ {XC } (C \ {XC +FC } 9B 2 [XC +FC ,

1] \ (C : (C \ {B}

XC+1 XC 0 XC +FC XC XC

E[�costC+1 | . . .] � 0 � 0 �

(
FC
2 ifFC  XC
0 otherwise.

� 0 � 0

Table 1. Values of (XC+1, (C+1) and expected value of �costC+1 conditioning on (XC , (C) and on AC+1, assuming
that (C \ {0} < ;, XC < 0 and |(C \ (XC , 1] | � 1, and whereFC := BC,2 � BC,1.

Overview of the proof of Lemma 4.8. The proof consists of three main parts. The �rst one analyzes
the sets of free servers (0 ◆ . . . ◆ (= obtained with algorithm H

< at each time step, the second
one partially characterizes the values of (XC , (C) and studies the �rst time C � < such that XC = 0.
The last ones combines the �rst two parts.

Part 1 of the proof of Lemma 4.8. We say that an interval � is depleted at time C if (C \ � = ;.
We let C� := min{C � 0|(C \ � = ;}, i.e., C� is the time at which � is depleted. For simplicity, we
write C8 instead of C�8 . We �rst show that (A) there exists a constant 22 2 (1/2, 1) such that if
C8�1  = � (1 � 22)8�1=, then, C8�1 < C8 . Then, we show that (B) if C0 < . . . < C8�1  = � (1 � 22)8�1=
and C8�1 < C8 , then, C8  = � (1 � 22)8=. To show this last result, we lower bound the number of
requests matched in �8 until time C8 = min(C8 , C8�1 + 22 (= � C8�1)). We �rst show (see Figure 4) that

|{ 9 2 [C8] |BH< (A 9) 2 �8 }| �
h
|{ 9 2 [C8] : A 9 2 �8 }| � |{ 9 2 [C8] : A 9 2 �8 , BH< (A 9) 8 �8 }|

i
+ |{ 9 2 {C8�1 + 1 + 21 (= � C8�1), . . . , C8 } : A 9 2 [

3
4~8�1,~8�1], BH< (A 9) 2 �8 }|.

We then lower bound each of these terms separately, using in particular the regularity of the
requests sequence. We deduce from this lower bound that if C8 > = � (1 � 22)8=, then the number of
requests matched in �8 exceeds the initial number of free servers in �8 , which is a contradiction. Hence
the bound C8  =� (1�22)8=. Finally, by combining properties (A) and (B), we show inductively that
there is a constant 31 > 0 such that the intervals {�8 }82 [31 log(=)] are depleted in increasing order,
i.e. that< < C1 < . . . < C31 log(=)  =�=23 and that< < C{0} , which is the main result of this �rst part.

Part 2 of the proof of Lemma 4.8.We start by a partial characterization of the value of (XC , (C)
and of the di�erence of cost �costC+1 := costC+1 (H<�1

) � costC+1 (H<
) between the costs incurred

byH
<�1 andH

< at time step C as a function of XC and (C .

L���� 4.9. All following properties hold at any time C 2 {<, . . . ,= � 1}:
(1) if XC = 0, then for all C 0 � C , we have XC 0 = 0 and �costC+1 = 0,
(2) if (C \ {0} < ;, then �costC+1 � 0.
(3) if (C \ {0} < ;, XC < 0 and |(C \ (XC , 1] | � 1, then the values of (XC+1, (C+1) and the expected

value of �costC+1 conditioning on (XC , (C) and on AC+1 are as given in Table 1, where FC :=
BC ,2 � BC,1 and where we write E[�costC+1 |...] instead of E[�costC+1 | (XC , (C), (C \ {0} < ;, XC < 0,
|(C \ (XC , 1] | � 1, AC+1 2 . . .].

(4) if XC+1 < XC , then (C+1 = (C \ {XC }.
(5) E[1(C\{0}=;,XC<0 · �costC+1 | (XC , (C)] � �1(C\{0}=;,XC<0 · P(XC+1 = 0| (XC , (C)).

201

EC ’23, July 9–12, 2023, London, United Kingdom Balkanski et al.

We recall that for any interval � ✓ [0, 1], C� := min{C � < | (C \ � = ;} is the time at which � is
depleted, and that C3 := min{C � < : XC = 0} is the time at which the gap disappears. Using the
properties given in Lemma 4.9, we next show the following lemma.

L���� 4.10. Conditioning on the gap X< and available servers (< , and for all ~ 2 [X<, 1], we have

P
⇣
min(C (0,~], C{0})  min(C3 , C{0})

���X<, (<⌘
�

X<
~

.

In other words, starting from a gap X< , the probability that the gap has not yet disappeared at
the time all the servers in (0,~] have been depleted, or that all the servers at location 0 are depleted
before either of these events occurs, is lower bounded by X<

~ .

Part 3 of the proof of Lemma 4.8. Since we have shown in the �rst part that the inter-
vals {� 9 } are depleted in increasing order of 9 , we have that just before the time C~8 where
(0,~8] = [98 � 9 is depleted, none of the intervals � 9 for 9 < 8 have free servers left, hence
min{B > 0 : B 2 (C~8 �1} 2 �8 . Hence, if XC~8 �1 < 0, we have by the de�nition of XC that
XC~8 �1 = min{B > 0 : B 2 (C~8 �1} 2 �8 = (~8�1,~8], which, in particular, implies XC~8 �1 � ~8�1.
Thus, to prove the desired result, it su�ces to lower bound the probability that XC~8 �1 < 0 and
that C~8  C{0} and C~8  = � =23 . By using the second part, we show that it is lower bounded by
X<
~8

� =�⌦ (log(=)) .

4.2.3 The main lower bound result. By combining the main lemma (Lemma 4.8) with Lemma 4.5,
we can show the following bounds on E[2>BC (H<�1

) � 2>BC (H<
)].

L���� 4.11.
(1) For any< > 21=, we have: E[2>BC (H<�1

) � 2>BC (H<
) |A< 2 [0,~0]] = �$ (=�1/5

).
(2) For any<  21=, we have: E[2>BC (H<�1

) � 2>BC (H<
) |A< 2 [0,~0]] = ⌦(log(=)=�1/5

).
(3) For any< 2 [=], we have: E[2>BC (H<�1

) � 2>BC (H<
) |A< 2 (~0, 1]] = 0.

The last lemma needed is the following bound on OPT.

L���� 4.12. For any = 2 N, the expected cost OPT of the optimal o�ine matching for our lower
bound instance satis�es: ⇢ [OPT] = $ (=3/5).

By doing a telescoping sum over all< 2 [=] and using that H= = A and H
0 = G, we obtain

from Lemma 4.11 and 4.12 the lower bound.

T������ 1.4. For online matching on the line in the random requests model, the greedy algorithm
achieves an ⌦(log=)-competitive ratio.

P����. Since A0 = G and A
= = A, we have that

E[2>BC (G)] � E[2>BC (A)]

=
=’

<=1
E[2>BC (H<�1

) � 2>BC (H<
)]

=
=’

<=1
E[2>BC (H<�1

) � 2>BC (H<
) |A< 2 (~0, 1]]P(A< 2 (~0, 1])

+

21=’
<=1
E[2>BC (H<�1

) � 2>BC (H<
) |A< 2 [0,~0]]P(A< 2 [0,~0])

202

The Power of Greedy for Online Minimum Cost Matching on the Line EC ’23, July 9–12, 2023, London, United Kingdom

+

=’
<=21=+1

E[2>BC (H<�1
) � 2>BC (H<

) |A< 2 [0,~0]]P(A< 2 [0,~0])

� 0 +
21=’
<=1

⇠0 log(=)=�1/5=�1/5
�

=’
<=21=+1

⇠=�1/5=�1/5 (for some constants ⇠,⇠0 > 0)

= =3/5
⇣
⇠0

(log(=) (21 � 1
=) �⇠ (1 � 21 �

1
=)

⌘
= ⌦(log(=)=3/5),

where the inequality is by Lemma 4.11 and since P(A< 2 [0,~0]) = P(A< 2 [0,=�1/5
]) = =�1/5.

Thus, E[2>BC (G)] � E[2>BC (A)] + ⌦(log(=)=3/5) = ⌦(log(=)=3/5). Since by Lemma 4.12 we have
E[$%)] = $ (=3/5), we conclude that E[2>BC (G)]

E[$%)]
= ⌦(log(=)). ⇤

ACKNOWLEDGMENTS
This research was supported by the National Science Foundation through the grant CAREER:
An algorithmic theory of matching markets, by a Columbia Center of AI Technology (CAIT) in
collaboration with Amazon faculty research award, and by a Columbia Center of AI Technology
(CAIT) PhD Fellowship.

REFERENCES
Mohammad Akbarpour, Yeganeh Alimohammadi, Shengwu Li, and Amin Saberi. 2022. The Value of Excess Supply in Spatial

Matching Markets. (2022), 62. https://doi.org/10.1145/3490486.3538375
Antonios Foivos Antoniadis, Neal Barcelo, Michael Nugent, Kirk Pruhs, and Michele Scquizzato. 2014. A o(n) -Competitive

Deterministic Algorithm for Online Matching on a Line. In Workshop on Approximation and Online Algorithms.
Nick Arnosti. 2022. Greedy matching in bipartite random graphs. Stochastic Systems 12, 2 (2022), 133–150.
David Arthur, Bodo Manthey, and Heiko Röglin. 2009. K-means has polynomial smoothed complexity. In 2009 50th Annual

IEEE Symposium on Foundations of Computer Science. IEEE, 405–414.
Eric Balkanski, Yuri Faenza, and Mathieu Kubik. 2022. The Simultaneous Semi-random Model for TSP. In International

Conference on Integer Programming and Combinatorial Optimization. Springer, 43–56.
Nikhil Bansal, Niv Buchbinder, Anupam Gupta, and Joseph Se� Naor. 2007. An O(Log2k)-Competitive Algorithm for

Metric Bipartite Matching. In Proceedings of the 15th Annual European Conference on Algorithms (Eilat, Israel) (ESA’07).
Springer-Verlag, Berlin, Heidelberg, 522–533.

Timothy Brown. 2016. Matchmaking in Lyft Line — Part 1. Lyft Engineering (2016). https://tinyurl.com/3sdrw7yc
Vaggos Chatziafratis, Tim Roughgarden, and Jan Vondrak. 2017. Stability and Recovery for Independence Systems. In 25th

Annual European Symposium on Algorithms (ESA 2017). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.
Michele Conforti and Gérard Cornuéjols. 1984. Submodular set functions, matroids and the greedy algorithm: tight

worst-case bounds and some generalizations of the Rado-Edmonds theorem. Discrete applied mathematics 7, 3 (1984),
251–274.

Bela Csaba and András Pluhár. 2007. A randomized algorithm for the on-line weighted bipartite matching problem. Journal
of Scheduling 11 (07 2007). https://doi.org/10.1007/s10951-007-0037-5

Nikhil R Devanur, Kamal Jain, Balasubramanian Sivan, and Christopher AWilkens. 2011. Near optimal online algorithms and
fast approximation algorithms for resource allocation problems. In Proceedings of the 12th ACM conference on Electronic
commerce. 29–38.

Matthias Englert, Heiko Röglin, and Berthold Vöcking. 2014. Worst case and probabilistic analysis of the 2-Opt algorithm
for the TSP. Algorithmica 68, 1 (2014), 190–264.

Matthias Englert, Heiko Röglin, and Berthold Vöcking. 2016. Smoothed analysis of the 2-opt algorithm for the general TSP.
ACM Transactions on Algorithms (TALG) 13, 1 (2016), 1–15.

Uriel Feige. 2021. Introduction to Semirandom Models. Beyond the Worst-Case Analysis of Algorithms (2021), 189.
Jon Feldman, Monika Henzinger, Nitish Korula, Vahab S Mirrokni, and Cli� Stein. 2010. Online stochastic packing applied

to display ad allocation. In European Symposium on Algorithms. Springer, 182–194.
Alan Frieze, Colin McDiarmid, and Bruce Reed. 1990. Greedy Matching on the Line. SIAM J. Comput. 19, 4 (1990), 666–672.

https://doi.org/10.1137/0219045 arXiv:https://doi.org/10.1137/0219045

203

https://doi.org/10.1145/3490486.3538375
https://tinyurl.com/3sdrw7yc
https://doi.org/10.1007/s10951-007-0037-5
https://doi.org/10.1137/0219045
https://arxiv.org/abs/https://doi.org/10.1137/0219045

EC ’23, July 9–12, 2023, London, United Kingdom Balkanski et al.

Bernhard Fuchs, Winfried Hochstättler, and Walter Kern. 2003. Online Matching On a Line. Electronic Notes in Discrete
Mathematics 13 (03 2003), 49–51. https://doi.org/10.1016/S1571-0653(04)00436-6

Martin Gairing and Max Klimm. 2019. Greedy metric minimum online matchings with random arrivals. Oper. Res. Lett. 47, 2
(2019), 88–91. https://doi.org/10.1016/j.orl.2019.01.002

Gagan Goel and Aranyak Mehta. 2008. Online budgeted matching in random input models with applications to Adwords..
In SODA, Vol. 8. 982–991.

Anupam Gupta, Guru Guruganesh, Binghui Peng, and David Wajc. 2019. Stochastic Online Metric Matching. In 46th
International Colloquium on Automata, Languages, and Programming, ICALP 2019, July 9-12, 2019, Patras, Greece (LIPIcs,
Vol. 132), Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi (Eds.). Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 67:1–67:14. https://doi.org/10.4230/LIPIcs.ICALP.2019.67

Anupam Gupta and Kevin Lewi. 2012. The Online Metric Matching Problem for Doubling Metrics. In Automata, Languages,
and Programming - 39th International Colloquium, ICALP 2012, Warwick, UK, July 9-13, 2012, Proceedings, Part I (Lecture
Notes in Computer Science, Vol. 7391), Artur Czumaj, Kurt Mehlhorn, Andrew M. Pitts, and Roger Wattenhofer (Eds.).
Springer, 424–435. https://doi.org/10.1007/978-3-642-31594-7_36

Varun Gupta, Ravishankar Krishnaswamy, and Sai Sandeep. 2020. PERMUTATION Strikes Back: The Power of Recourse in
Online Metric Matching. In APPROX-RANDOM.

Isobel Asher Hamilton. 2019. Uber drivers are reportedly colluding to trigger ’surge’ prices because they say the company
is not paying them enough. Insider (2019). https://www.businessinsider.com/uber-drivers-arti�cially-triggering-surge-
prices-reports-abc7-2019-6

Nina Holden, Yuval Peres, and Alex Zhai. 2021. Gravitational allocation for uniform points on the sphere. The Annals of
Probability 49, 1 (2021), 287 – 321. https://doi.org/10.1214/20-AOP1452

Joab Jackson. 2019. How Uber Eats Uses Machine Learning to Estimate Delivery Times? The New Stack (2019). https:
//thenewstack.io/how-uber-eats-uses-machine-learning-to-estimate-delivery-times/

Bala Kalyanasundaram and Kirk Pruhs. 1993. Online Weighted Matching. J. Algorithms 14, 3 (1993), 478–488. https:
//doi.org/10.1006/jagm.1993.1026

Bala Kalyanasundaram and Kirk Pruhs. 2000. The Online Transportation Problem. SIAM J. Discret. Math. 13, 3 (2000),
370–383. https://doi.org/10.1137/S0895480198342310

Yash Kanoria. 2021. Dynamic Spatial Matching. https://doi.org/10.48550/ARXIV.2105.07329
Yash Kanoria. 2022. Dynamic Spatial Matching. In Proceedings of the 23rd ACM Conference on Economics and Computation

(Boulder, CO, USA) (EC ’22). Association for Computing Machinery, New York, NY, USA, 63–64. https://doi.org/10.1145/
3490486.3538278

Richard M Karp, Umesh V Vazirani, and Vijay V Vazirani. 1990. An optimal algorithm for on-line bipartite matching. In
Proceedings of the twenty-second annual ACM symposium on Theory of computing. 352–358.

Elias Koutsoupias and Akash Nanavati. 2004. The Online Matching Problem on a Line. In Approximation and Online
Algorithms, Roberto Solis-Oba and Klaus Jansen (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 179–191.

Marvin Künnemann and Bodo Manthey. 2015. Towards understanding the smoothed approximation ratio of the 2-opt
heuristic. In International Colloquium on Automata, Languages, and Programming. Springer, 859–871.

Yiming Li, Jingzhi Fang, Yuxiang Zeng, Balz Maag, Yongxin Tong, and Lingyu Zhang. 2020. Two-sided online bipartite
matching in spatial data: experiments and analysis. GeoInformatica 24, 1 (2020), 175–198.

Bodo Manthey and Heiko Röglin. 2013. Worst-case and smoothed analysis of k-means clustering with Bregman divergences.
Journal of Computational Geometry (Old Web Site) 4, 1 (2013), 94–132.

Andrew Mastin and Patrick Jaillet. 2013. Greedy online bipartite matching on random graphs. arXiv preprint arXiv:1307.2536
(2013).

Nicole Megow and Lukas Nölke. 2020. Online Minimum Cost Matching with Recourse on the Line. In Approximation,
Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2020, August 17-19, 2020,
Virtual Conference (LIPIcs, Vol. 176), Jaroslaw Byrka and Raghu Meka (Eds.). Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 37:1–37:16. https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2020.37

Aranyak Mehta. 2013. Online Matching and Ad Allocation. Foundations and Trends in Theoretical Computer Science 8 (4)
(2013), 265–368. http://dx.doi.org/10.1561/0400000057

Aranyak Mehta et al. 2013. Online matching and ad allocation. Foundations and Trends® in Theoretical Computer Science 8, 4
(2013), 265–368.

AdamMeyerson, Akash Nanavati, and Laura Poplawski. 2006. Randomized Online Algorithms for MinimumMetric Bipartite
Matching. In Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithm (Miami, Florida) (SODA
’06). Society for Industrial and Applied Mathematics, USA, 954–959.

Krati Nayyar and Sharath Raghvendra. 2017. An Input Sensitive Online Algorithm for the Metric Bipartite Matching
Problem. In 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS). 505–515. https://doi.org/10.
1109/FOCS.2017.53

204

https://doi.org/10.1016/S1571-0653(04)00436-6
https://doi.org/10.1016/j.orl.2019.01.002
https://doi.org/10.4230/LIPIcs.ICALP.2019.67
https://doi.org/10.1007/978-3-642-31594-7_36
https://www.businessinsider.com/uber-drivers-artificially-triggering-surge-prices-reports-abc7-2019-6
https://www.businessinsider.com/uber-drivers-artificially-triggering-surge-prices-reports-abc7-2019-6
https://doi.org/10.1214/20-AOP1452
https://thenewstack.io/how-uber-eats-uses-machine-learning-to-estimate-delivery-times/
https://thenewstack.io/how-uber-eats-uses-machine-learning-to-estimate-delivery-times/
https://doi.org/10.1006/jagm.1993.1026
https://doi.org/10.1006/jagm.1993.1026
https://doi.org/10.1137/S0895480198342310
https://doi.org/10.48550/ARXIV.2105.07329
https://doi.org/10.1145/3490486.3538278
https://doi.org/10.1145/3490486.3538278
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2020.37
http://dx.doi.org/10.1561/0400000057
https://doi.org/10.1109/FOCS.2017.53
https://doi.org/10.1109/FOCS.2017.53

The Power of Greedy for Online Minimum Cost Matching on the Line EC ’23, July 9–12, 2023, London, United Kingdom

Enoch Peserico and Michele Scquizzato. 2021. Matching on the line admits no > (
p
;>6=)-competitive algorithm. In 48th

International Colloquium on Automata, Languages, and Programming (ICALP 2021). Schloss Dagstuhl-Leibniz-Zentrum
für Informatik.

Sebastian Pokutta, Mohit Singh, and Alfredo Torrico. 2020. On the unreasonable e�ectiveness of the greedy algorithm:
Greedy adapts to sharpness. In International Conference on Machine Learning. PMLR, 7772–7782.

Sharath Raghvendra. 2016. A Robust and Optimal Online Algorithm for Minimum Metric Bipartite Matching. In Approxima-
tion, Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2016, September
7-9, 2016, Paris, France (LIPIcs, Vol. 60), Klaus Jansen, Claire Mathieu, José D. P. Rolim, and Chris Umans (Eds.). Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 18:1–18:16. https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2016.18

Sharath Raghvendra. 2018. Optimal Analysis of an Online Algorithm for the Bipartite Matching Problem on a Line. In 34th
International Symposium on Computational Geometry (SoCG 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

Aviad Rubinstein and Junyao Zhao. 2022. Budget-Smoothed Analysis for Submodular Maximization. In 13th Innovations in
Theoretical Computer Science Conference (ITCS 2022). Schloss Dagstuhl-Leibniz-Zentrum für Informatik.

Yongxin Tong, Jieying She, Bolin Ding, Lei Chen, Tianyu Wo, and Ke Xu. 2016. Online Minimum Matching in Real-Time
Spatial Data: Experiments and Analysis. Proc. VLDB Endow. 9, 12 (2016), 1053–1064. https://doi.org/10.14778/2994509.
2994523

Ying The Tsai, Chuan Yi Tang, and Yunn Yen Chen. 1994. Average Performance of a Greedy Algorithm for the On-Line
Minimum Matching Problem on Euclidean Space. Inf. Process. Lett. 51, 6 (1994), 275–282. https://doi.org/10.1016/0020-
0190(94)00116-2

Pan Xu, Yexuan Shi, Hao Cheng, John Dickerson, Karthik Abinav Sankararaman, Aravind Srinivasan, Yongxin Tong, and
Leonidas Tsepenekas. 2019. A uni�ed approach to online matching with con�ict-aware constraints. In Proceedings of the
AAAI Conference on Arti�cial Intelligence, Vol. 33. 2221–2228.

205

https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2016.18
https://doi.org/10.14778/2994509.2994523
https://doi.org/10.14778/2994509.2994523
https://doi.org/10.1016/0020-0190(94)00116-2
https://doi.org/10.1016/0020-0190(94)00116-2

	Abstract
	1 Introduction
	1.1 Technical overview
	1.2 Additional related work

	2 Preliminaries
	3 Greedy is Constant Competitive in the Fully Random Model
	4 Greedy is Logarithmic Competitive in the Random Requests Model
	4.1 Greedy is O(n)-competitive
	4.2 Overview of the lower bound

	Acknowledgments
	References

