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Abstract

Equilibrium Propagation (EP) is a powerful and
more bio-plausible alternative to conventional
learning frameworks such as backpropagation
(BP). The effectiveness of EP stems from the fact
that it relies only on local computations and re-
quires solely one kind of computational unit during
both of its training phases, thereby enabling greater
applicability in domains such as bio-inspired neu-
romorphic computing. The dynamics of the model
in EP is governed by an energy function and the
internal states of the model consequently converge
to a steady state following the state transition rules
defined by the same. However, by definition, EP
requires the input to the model (a convergent RNN)
to be static in both the phases of training. Thus
it is not possible to design a model for sequence
classification using EP with an LSTM or GRU
like architecture. In this paper, we leverage re-
cent developments in modern hopfield networks to
further understand energy based models and de-
velop solutions for complex sequence classifica-
tion tasks using EP while satisfying its conver-
gence criteria and maintaining its theoretical sim-
ilarities with recurrent BP. We explore the possibil-
ity of integrating modern hopfield networks as an
attention mechanism with convergent RNN mod-
els used in EP, thereby extending its applicability
for the first time on two different sequence clas-
sification tasks in natural language processing viz.
sentiment analysis (IMDB dataset) and natural lan-
guage inference (SNLI dataset). Our implementa-
tion source code is available at https://github.com/
NeuroCompLab-psu/EqProp-SeqLearning.

1 Introduction

Equilibrium Propagation (EP) [Scellier and Bengio, 2017]

is a biologically plausible learning algorithm to train artifi-
cial neural networks. It requires only one computational cir-
cuit and single type of network unit during the two phases
of training, whereas backpropagation (BP) requires a spe-
cialised type of computation during the backward phase to

explicitly propagate errors which is different from the compu-
tational circuitry needed during the forward phase, thus it is
essentially considered to be biologically implausible [Crick,
1989]. In EP, errors are propagated implicitly in the energy
based model through local perturbations being generated at
the output layer, unlike in BP. Moreover, strong theoretical
connections [Scellier and Bengio, 2019] between EP and re-
current BP [Almeida, 1990; Pineda, 1987] as well as the for-
mer’s similarity regarding weight updates with spike-timing
dependent plasticity (STDP) [Scellier and Bengio, 2017;
Bi and Poo, 1998] (a feasible model to understand synaptic
plasticity change in neurons) makes EP a solid foundation to
further understand biological learning [Lillicrap et al., 2020].
Intrinsic properties of EP also provides the opportunity to de-
sign energy efficient implementations of the former on hard-
ware unlike BP through time [Martin et al., 2021].

The idea that neurons collectively adjust themselves to
configurations according to the sensory input being fed into
a neural network system such that they can better predict
the input data has been a popular hypothesis [Hinton, 2002;
Berkes et al., 2011]. The collective neuron states can be in-
terpreted as explanations of the input data. EP also consists
of this central idea where the network, which is essentially
a dynamical system following certain dynamics, converges to
lower energy states which better explains the static input data.

In this paper, we have primarily discussed EP in a discrete
time setting and used the scalar primitive function ϕ [Ernoult
et al., 2019; Laborieux et al., 2021] to derive the transition
dynamics instead of an energy function as used in the initial
works [Scellier and Bengio, 2017]. Primarily, algorithms us-
ing EP have been designed for convergent RNNs [Laborieux
et al., 2021] which are neural networks that take in a static
input and through the recurrent dynamics (as governed by
the transition function ± scalar primitive function of the sys-
tem in our case) converges to a steady state which denotes
the prediction of the network for that input. Training using
EP primarily comprises of two distinct phases. During the
first phase i.e. the ªfreeº phase, the network converges to a
steady state following only the internal dynamics of the sys-
tem. In contrast, in the second phase the output layer (which
acts as the prediction after the ªfreeº phase has converged) is
ªnudgedº closer to the actual ground truth and the local per-
turbations resulting from that change propagates to the other
layers of the convergent RNN, forming local error signals in



time which matches the error propagation associated with BP
through time [Ernoult et al., 2019]. The state updates and the
consequent weight updates of the system can be done through
local in space and time [Ernoult et al., 2019] computations,
thus making learning algorithms using EP highly suitable for
developing low-powered energy efficient neuromorphic im-
plementations [Martin et al., 2021].

Hopfield networks were one of the earliest energy based
models which were based on convergence to a steady state
by minimizing an energy function which is an intrinsic at-
tribute of the system. Hopfield networks were primarily used
as associative memory, where we can store and retrieve pat-
terns [Hopfield, 1982]. Classical hopfield networks were de-
signed for storage and retrieval of binary patterns and the ca-
pacity of storage was limited since the energy function used
was quadratic in nature. However, modern hopfield networks
[Krotov and Hopfield, 2016; Krotov and Hopfield, 2018;
Ramsauer et al., 2020] follow an exponential energy function
for state transitions which allows storing exponential num-
ber of continuous patterns and allows for faster single step
convergence [Demircigil et al., 2017] during retrieval. The
modern hopfield layer has been used previously for sequence-
attention in conventional deep learning models with BP as
the learning framework [Widrich et al., 2020]. In this paper,
we integrate the capability of modern hopfield networks as a
transformer-like [Vaswani et al., 2017] attention mechanism
inside a convergent RNN and consequently train the resulting
model using the learning rules defined by EP.

2 Motivation and Primary Contributions

Until now, EP has been confined in the domain of image clas-
sification, the primary reason being the constraint associated
with convergent RNNs which requires the input to be static.
Developing an LSTM like network, which is fed with a time-
varying sequence of data instead of static data, is not possi-
ble while maintaining the constraints of EP. Results obtained
for tasks such as sentiment analysis or inference problems by
feeding the entire input sequence as input also results in poor
solutions since the dependencies between the different parts
of the sequence cannot be captured in that technique. How-
ever, with recent developments in the domain of modern hop-
field networks, we have the ability to extend the capability of
algorithms using EP to perform efficient sequence classifica-
tion.

Modern hopfield networks fit perfectly with convergent
RNNs since both of them are energy-based models which are
governed by their respective state transition dynamics. In a
discrete time setting - which is primarily discussed in this pa-
per - both of them follow a certain state transition rule at every
time step which is governed by their defining energy function
or a scalar primitive function in case of a convergent RNN. As
we will see in later sections, the one step convergence guar-
antee of modern hopfield networks allows us to seamlessly
interface them with a convergent RNN allowing both the net-
works to settle to their respective equilibrium states as the
system converges as a whole.

Neuromorphic Motivation for EP: The bio-plausible local
learning framework that EP provides can be best utilised in

a neuromorphic system. Spiking implementation of the pro-
posed method following the works of [Martin et al., 2021]

allows for low-powered solution for real-time scenarios such
as intrusion detection, real-time natural language processing
(NLP), etc. Implementing EP in a neuromorphic system al-
lows for orders of magnitude more energy savings than in
GPUs and is more efficient because of its single computa-
tional circuit and STDP like weight updates.
Algorithmic and Theoretical contributions: The primary
contributions of our paper are as follows -

• We explore for the first time how hopfield networks can
operate with a convergent RNN model and how we can
leverage the attention mechanism of the former to solve
complex sequence classification problems using EP.

• We illustrate mathematically and empirically how to
combine the state transition dynamics of both the hop-
field network and underlying convergent RNN to con-
verge to steady states during both phases of EP thus
maintaining the latter’s theoretical equivalence with re-
current BP w.r.t. gradient estimation.

• We report for the first time the performance of EP as a
learning framework on widely known NLP tasks such as
sentiment analysis (IMDB dataset) and natural language
inference (NLI) problems (SNLI dataset) and compare
the results with state-of-the-art architectures for which
neuromorphic implementations can be developed.

3 Methods

In this section, we will formulate the workings of EP and its
theoretical connections with backpropagation through time
(BPTT). We will then delve into the details of the modern
hopfield layer and demonstrate its attention mechanism. We
will elaborate on the scalar primitive function defined for
state transition and further investigate the metastable states
that arises in modern hopfield networks and will discuss how
we can leverage them to form efficient encoding of the input
sequences for our sequence classification problems.

3.1 Equilibrium Propagation

EP applies to convergent RNNs whose input at each time
step is static. The state of the network eventually settles to a
steady-state following a state update rule that is derived from
the scalar primitive function ϕ. Moreover, the weights de-
fined between two layers are symmetric in nature i.e. if the
weight between layers si and si+1 is wi, then the weight of
the connection between si+1 and si is wT

i . The state transi-
tion is defined as,

st+1 =
∂ϕ

∂s
(x, st, θ) (1)

where, st = (s1t , s
2
t , . . . , s

n
t ) is the collective state of the con-

vergent RNN with n layers at time t, x is the input to the
convergent RNN and θ represent the network parameters i.e.
it comprises of the weights of each of the connections be-
tween layers. We do not consider any skip connection or self-
connection in the convergent RNNs discussed but there has
been some work done in that area [Gammell et al., 2021].



The state transitions result in a final convergence to a steady
state s∗ after time T , such that st = s∗ ∀t ≥ T and it satisfies
the following condition,

s∗ =
∂ϕ

∂s
(x, s∗, θ) (2)

Training of convergent RNNs using EP comprises mainly of
two different phases. During the first phase or the ªfreeº
phase, the RNN follows the transition function as shown in
Eq. (1) and eventually reaches the steady state defined as
the free fixed point s∗ after T time steps. We use the out-
put layer of the steady state s∗ i.e. sn

∗
to make the prediction

for the current input x. In the second phase or the ªnudgeº
phase, an additional term −β ∂L

∂s
is added to the state dynam-

ics which immediately results in the state of the output layer
being slightly nudged in the direction to minimize the loss
function L (as defined between the target y and the output of
the last layer of the convergent RNN). Though the internal
states of the hidden layers are initially at the free fixed point
state, they are eventually nudged to a different fixed point -

weakly clamped fixed point sβ∗ - because of the perturbations
initially originated at the output layer. β is a small scaling fac-
tor defined as the ªinfluence parameterº or ªclamping factorº
i.e. it controls the influence of the loss on the actual primitive
scalar function during the second phase.

Thus the initial state of the second phase is sβ0 = s∗ and
the transition function is defined as,

sβt+1 =
∂ϕ

∂s
(x, sβt , θ)− β

∂L

∂s
(sβt , y) (3)

Following Eq. (3), the convergent RNN settles to the steady

state sβ∗ after K timesteps. After the two phases are done, the
learning rule to update the model parameters in order to min-
imize the loss L∗ = L(s∗, y) is defined as, ∆θ = η∇EP

θ (β),
[Scellier and Bengio, 2017] where η is the learning rate and
∇EP

θ (β) can be defined as,

∇EP
θ (β) =

1

β
(
∂ϕ

∂θ
(x, sβ

∗
, θ)− ∂ϕ

∂θ
(x, s∗, θ)) (4)

The defined convergent RNN can also be trained by
BPTT [Laborieux et al., 2021]. According to the prop-
erty of Gradient-Descent Updates (GDU) [Ernoult et al.,
2019], the gradient updates computed by the EP algorithm
is approximately equal to the gradient computed by BPTT
(∇BPTT (t)), according to relative mean squared error met-
ric (RMSE), provided the convergent RNN has reached its
steady state in T −K steps during the first phase and β → 0.
Thus for initial K steps of the ªnudgeº phase we can state ,
∀t = 1, 2, ...,K

∇EP
θ (t, β) =

1

β
(
∂ϕ

∂θ
(x, sβt , θ)−

∂ϕ

∂θ
(x, s∗, θ)) (5)

∇EP
θ (t, β) −−−→

β→0
∇BPTT (t) (6)

In the traditional implementations of EP, two phases are in-
volved, one with β = 0 i.e. the ªfreeº phase and the other
with β > 0 i.e. the ªnudgeº phase. In order to circumnavigate
the first order bias that is induced into the system by assuming

β > 0, a new implementation of EP was proposed [Laborieux
et al., 2021] which comprises of a second ªnudgeº phase with
−β as the influence factor. Thus the algorithm comprises of
three phases. The symmetric EP gradient estimates are thus
free from first order bias and are more close to the values
computed using BPTT and is defined as,

∇EPsym
θ (β) =

1

2β
(
∂ϕ

∂θ
(x, sβ

∗
, θ)− ∂ϕ

∂θ
(x, s−β

∗
, θ)) (7)

3.2 Hopfield Network as Attention Mechanism

The recent developments in modern hopfield networks [Ram-
sauer et al., 2020] offers exponential storage capacity and one
step retrieval of stored continuous patterns. The increased
storage capacity and the attention-like state update rule of
modern hopfield layers can be leveraged to retrieve complex
representation of the stored patterns which consists of richer
embedding similar to that of attention mechanism in trans-
formers. In order to allow for continuous states, the energy
function of the modern hopfield network is modified accord-
ingly [Widrich et al., 2020], and it can be represented as,

E = −lse(β,XT ξ) +
1

2
(ξT ξ) + β−1logN +

1

2
M2 (8)

lse(β, x) = β−1log(

N∑

i=1

exp(βxi))

where, X = (x1, x2, ...xN ) are N continuous stored patterns,
ξ is the state pattern, M is the largest norm of all the stored
patterns and β > 0. In general, the energy function of modern

hopfield networks can be defined as, E = −
∑N

i=1
F (xT

i ξ)
[Krotov and Hopfield, 2016]. For example, if we use the func-
tion F (x) = x2, we describe the classical hopfield network
which had limitations in storage capacity and also supported
only binary patterns. However, with the introduction of
an exponential interaction function like log-sum-exponential
(lse) function, the storage capacity can be increased exponen-
tially while enabling continuous patterns to be stored. Using
Concave-Convex-Procedure (CCCP) [Yuille and Rangarajan,
2001; Yuille and Rangarajan, 2003], the state update rule for
the modern hopfield network [Ramsauer et al., 2020] can be
defined as,

ξnew = Xsoftmax (βXT ξ) (9)

where, ξnew is the retrieved pattern from the hopfield net-
work.

We can define Query (Q = RWQ) as ξT and Key (K =
YWK) as XT . Thus the new form can be represented as,

Qnew = softmax (
1√
dk

RWQW
T
KY T )YWK

Qnew = softmax (
1√
dk

QKT )K (10)

where, dk is the encoding dimension of Key (K). The above
representation [Ramsauer et al., 2020] is to show the similar-
ity of the update rule of modern hopfield networks and the
attention mechanism in transformers involving Query-Key
pairs. Q represents the state pattern whereas Qnew represents



Figure 1: Simplistic scenario of application of HopAttn modules in convergent RNN for a sequence classification problem with c classes
has been described. The input X is directly fed as the Key K to the HopAttn module. During the ªfreeº phase (as described here), the
model evolves through time following the defined state transition dynamics and converges to a steady state configuration after T time steps
to settle to the prediction. The operations inside the HopAttn module are also illustrated in details.

the state pattern retrieved after the transition. The projection
matrices are defined as, WQ ∈ R

dr×dk and WK ∈ R
dy×dk .

Following the state transition as defined in Eq.
(10), the Hopfield Attention module can be defined as
HopAttn(Q,K), which has two critical inputs, viz. the
Query (Q) which can be interpreted as the state pattern and
the Key (K) which can be considered as the stored pattern.
The dimension of the hopfield space is dk. The underlying
operations are illustrated in details in Fig. 1. The output of
the HopAttn function is defined as,

HopAttn(Q,K) = softmax(
1√
dk

QKT )K (11)

HopAttn module plays a critical role in our network by
providing an attention based embedding of the input sequence
resulting from their convergence to metastable states at every
time step. In order to form the Query (Q) for the HopAttn
module, we define the layers connected to the input as projec-
tion layers (as demonstrated in Fig. 1) whose weight is anal-
ogous to WQ. At every timestep t during the state transitions
in the convergent RNN, the recurrent dynamics of the conver-
gent RNN computes the Query (Q) to be fed to the HopAttn
module as illustrated in Eq. (14). The stored sequence of
patterns K is fed directly into the HopAttn module.

There is a theoretical guarantee that the modern hopfield
network converges to a steady state (with exponentially small
separation) after a single update step [Ramsauer et al., 2020]

and therefore we successfully navigate to a fixed point at ev-
ery time step in EP. We project the HopAttn output through
WV ∈ R

dk×dv , analogous to the weight of the output connec-
tion, to generate the final output. The HopAttn module thus
provides a rich representation of the stored patterns which
helps in efficient sequence classification.

3.3 Proposed Scalar Primitive function ϕ

The input to our model is the sequence of patterns, x ∈
RN×DK , where N is length of the sequence and DK is the

encoding dimension of the pattern. The state of the system at
time t is st = (s0t , s

1
t , s

2
t , . . . , s

n
t ), where n is the number of

layers in the convergent RNN. θ comprises the list of param-
eters of the network. The scalar primitive function (ϕ), which
defines the state transition rules of the convergent RNN is,

ϕ(x, s, θ) = s1•(x·w1)+s2
T ·w2·F (s1)+

n−1∑

i=2

si+1T ·wi+1·si

(12)
where • represents Euclidean scalar product of two tensors
with same dimensions, (x · w1) represents the linear projec-
tion of x through w1 ∈ RDK×DK and wi+1 is the weight
of the connection between si and si+1. The flattened output
of the first projection layer (F (s1), where F is the flattening
operation from (A,B) to (1, AB)), is then fed into the next
of the n − 1 fully connected layers. In this section, we have
primarily discussed ϕ for cases where we have only one input
sequence like the sentiment analysis task. For multi-sequence
tasks like NLI, we have described ϕ in the technical appendix.

3.4 Transition Dynamics and Convergence

Our methodology seamlessly interfaces modern hopfield net-
works with convergent RNNs, thus allowing sequence classi-
fication using EP. The state transition dynamics of the lay-
ers in the convergent RNN (except the last layer), where
HopAttn is not applied, is given by the following,

sit+1 = σ(
∂ϕ

∂si
(x, st, θ)) (13)

where, σ is an activation function that restricts the range of
the state variables to [0, 1]. However, for the layers where we
apply the hopfield attention mechanism, the state transition
function is updated as follows,

sjt+1 = HopAttn(
∂ϕ

∂sj
(x, st, θ),K) (14)

where, sjt+1 is the final state of the jth layer (with HopAttn
applied) at time t+1 and K is the sequence of stored patterns



in the hopfield network which is usually the input x to the
network.

Thus for the layers where we apply attention, we first fol-
low the transition function of the underlying convergent RNN

as defined by ∂φ
∂sj

(x, st, θ) and then we follow the update rule
as derived from the modern dense hopfield network. Since
convergence to a steady state is guaranteed after a single up-
date step, there is no additional overhead for the hopfield net-
work to converge and thus its state transition rule is only ap-
plied once.

The metastable states, that the HopAttn module converges
to after each timestep t, approach steady state w.r.t the con-
vergent RNN during both the phases of training of EP. The
claim for such concurrent convergence can be further sub-
stantiated empirically by analysing the convergence of the
dynamics of the model, governed by the scalar primitive ϕ
with time. It is evident from Fig. 2b that even after we apply
the HopAttn module (like in Fig. 1), the model still con-
verges to a steady state eventually. Moreover, even after the
integration of HopAttn modules, the GDU property of the
convergent RNN still holds, thus maintaining the equivalence
w.r.t gradient estimation of EP and BPTT (Fig. 2a).

(a)                                                                (b)   

Figure 2: Results taken from experiments run on IMDB dataset. (a)
Symmetric EP gradient estimate as defined in Eq. (7) and gradient
computed by BPTT, for three randomly chosen weights in the con-
vergent RNN integrated with HopAttn module. (b) Convergence
of the scalar primitive function φ with time upon using HopAttn in
ªfreeº phase taken over 50 phase transitions.

For the final layer, whose output is compared with the tar-
get label to calculate the loss function, the state update rule is
defined as,

snt+1 = σ(
∂ϕ

∂sn
(x, st, θ)) + β(y − snt ) (15)

where, y is the target label and snt is the output of the final
layer at time t. β = 0 during the ªfree phaseº and the loss
function L used in this case is mean squared error.

3.5 Metastable States as Attention Embeddings

The factor β, as defined in Eq. (9), plays an important role
in establishing the fixed points in the modern hopfield net-
work [Ramsauer et al., 2020]. The retrieved state pattern (or
Qnew as defined above) settles to the defined fixed points fol-
lowing the state transition rule (Eq. (10)). However, if β is
very high and/or the stored patterns are well separated, then
we can easily retrieve the actual pattern stored in the hopfield
networks. On the other hand, if β is low and the stored pat-
terns are not all well separated but form cluster like structures

in the encoding dimension of the patterns, then the hopfield
network generates metastable states. Thus, when we try to
retrieve using a particular state pattern i.e a Query, we might
converge to a metastable point comprising of a richer repre-
sentation combining a number of patterns in that region. For
incorporating such attention like behavior, we need to keep
β small and usually β = 1/

√
dk, where dk is the encoding

dimension of the stored patterns.

3.6 Local State & Parameter Updates

The state update rule, as defined earlier, is essentially local in

space since ∂φ
∂si

(x, st, θ) ∀i = 2, ..., n− 1 can be written as,

∂ϕ

∂si
(x, st, θ) = wi · si−1

t + wT
i+1 · si+1

t (16)

and for the final layer the same can be shown as,

∂ϕ

∂sn
(x, st, θ) = wn · sn−1

t (17)

where all the associated parameters for the computation are
locally connected in space and time. The computation re-
quired w.r.t the HopAttn module can also be done locally
in space and time. For the first layer (projection layer),
the local state and weight update property is still preserved:
∂φ
∂s1

(x, st, θ) = (x · w1) + F−1(wT
2 · s2t ).

The STDP like parameter update rule of the network, as
stated in the earlier section, is also local in space, i.e. we can
compute the updated weights directly using the state of the
connecting layers. In this paper, we have used three phase
EP, thus we derive the weight update rule following Eq. (7),

∆wi+1 =
1

2β
(si+1,β

∗
· si,βT

∗
− si+1,−β

∗
· si,−βT

∗
) (18)

where, si,β∗ is the state of layer i after the first ªnudgeº phase

with influence parameter β and si,−β
∗ is the state of layer i

after the second ªnudgeº phase with influence parameter −β.
The detailed final algorithm and calculations are added in

the technical appendix. It is further validated through the ex-
periments reported in the next section that as we continue
updating the states st (following the update rules governed
by the primitive function (ϕ) and the energy function for the
modern hopfield network), we reach steady states during both
the ªfreeº and ªnudgeº phases of EP. Thus, following the
weight update procedure of EP, we can update the weights
through local-in-space update rules. This enables us to de-
velop state-of-the-art architectures for sentiment analysis and
inference problems - potentially implementable in energy ef-
ficient neuromorphic systems.

3.7 Neuromorphic Viewpoint

Implementating EP in a neuromorphic setting reduces the en-
ergy consumption by two orders of magnitude during training
and three orders during inference compared to GPUs [Mar-
tin et al., 2021]. Moreover, EP does not suffer from the
non-differentiability of the spiking nonlinearity that BPTT al-
gorithms encounter since we do not explicitly compute the
error-gradient. In EP, because of the local operations and the
error-propagation being spread across time, the memory over-
head is also much lower compared to BPTT methods where
we need to store the computational graph.



Task Model Method Neuromorphic Implementation Accuracy

Sentiment
Analysis
(IMDB)

Simple Conv RNN EP Local opts.; No Non-diff. problem 79.8± 0.4
ReLU GRU [Dey and Salem, 2017]

BP
Suffers gradient Non-diff. problem;
Complex circuitry

84.8
GRU [Campos et al., 2017] 86.5
Skip GRU [Campos et al., 2017] 86.6
Skip LSTM [Campos et al., 2017] 87.0
LSTM [Campos et al., 2017] 87.2
CoRNN [Rusch and Mishra, 2020] 87.4
UniCORNN [Rusch and Mishra, 2021] 88.4
Our Model EP Local opts.; No Non-diff problem. 88.9 ± 0.3

Natural
Language
Inference
(SNLI)

100D LSTM encoders [Bowman et al., 2015]

BP
Suffers gradient Non-diff. problem;
Complex circuitry

77.6
Lexicalized Classifier [Bowman et al., 2015] 78.2
Parallel LMU [Chilkuri and Eliasmith, 2021] 78.8
LSTM RNN encoders [Bowman et al., 2016] 80.6
DELTA - LSTM [Han et al., 2019] 80.7
300D SPINN-PI-NT [Bowman et al., 2016] 80.9
Our Model EP Local opts.; No Non-diff. problem 81.4 ± 0.2

Table 1: Comparing our models with other models trained using BP on the IMDB & SNLI datasets.

4 Experiments

Since EP is still in a nascent stage, this is the first work to
report the performance of convergent RNNs that are trained
using EP on the specified datasets for the task of sequence
classification. In the experiments reported in this section, we
focus on benchmarking with models that are trained using
BP such as LSTMs, GRUs, etc. that can be potentially imple-
mented in a neuromorphic setting. Unlike the used baselines,
since existing attention models (transformers) trained using
BP are not directly applicable in a neuromorphic setting; we
have not compared our model with them. In the follow-
ing sub-sections, we define specific architectures for different
subtasks in NLP. For testing our proposed work on sentiment
analysis problems, we chose the IMDB Dataset and for NLI
problems, we chose the Stanford Natural Language Inference
(SNLI) dataset. Though we have not tested our method on all
the tasks in GLUE [Wang et al., 2018], the proposed method
can perform classification after applying simple task-specific
adjustments to the model. Details regarding coding platform
and hardware used for training have been added to the tech-
nical appendix.

4.1 Sentiment Analysis

We have used IMDB dataset [Maas et al., 2011] to demon-
strate the application of our model on sentiment analysis
tasks. IMDB dataset comprises of 50K reviews, 25K for
training and 25K for testing. Each of the reviews are either
classified as positive or negative.

Architecture

300D word2vec embeddings [Mikolov et al., 2013] are used
for generating the word embeddings that are then fed into
the convergent RNN and the maximum sequence length is
restricted to 600. The convergent RNN used for this experi-
ment comprises of two fully connected hidden layers on top
of the first projection layer. We have a single attention mod-
ule applied to the first layer similar to Fig. 1.

Results

The results (Table 1) from our model are the first to report
performance on any sentiment analysis task using EP. The
experimental details are shown in Table 2.

Hyper-params & Perf. Range Optimal

Influence Factor (β) (0.01-0.99) 0.1
T (ªFree Phaseº) (40-200) 50
K (ªNudge Phaseº) (15-80) 25
Epochs (10-100) 40
Layers (Linear & FC) - (1 & 3)
Layer-wise lr - 1e-4,5e-5,5e-5,5e-5
Batch Size (8-512) 128

Memory (GB) - 7 (128 batch size)
Inference Time (sec) - 120 (Test Set)

Table 2: Hyper-parameters & Perf. Metrics for IMDB dataset.

In order to study the advantage of using hopfield net-
works as an attention mechanism, we compare the accuracy
achieved using our model against a vanilla implementation
of EP on a convergent RNN with same depth but without
any HopAttn modules and we see that our proposed model
outperforms with a big margin ( > 9%). The computational
cost increases by only 17% when we use the HopAttn mod-
ule. The case where hopfield attention modules were not used
seems to converge early during training, thereby resulting in
over-fitting. However, as is evident from Fig. 3, usage of
modern hopfield networks results in better generalization.

4.2 Natural Language Inference (NLI) Problems

We have used SNLI [Bowman et al., 2015] dataset to eval-
uate our model on NLI tasks. NLI generally deals with the
classification of a pair of sentences namely, a premise and a
hypothesis. A model, given both the sentences, is able to pre-
dict whether the relationship between the two sentences sig-
nify an entailment, contradiction or if they are neutral. SNLI
dataset comprises of 570K pairs of premises and hypotheses.



(a)                                                                       (b)   

Figure 3: (a) Train Accuracy and (b) Test Accuracy comparison of
two different convergent RNN models trained with EP - one with a
HopAttn module applied (as shown in Fig. 1) and one without it.
Results are reported on IMDB dataset over 5 different runs.

Hyper-params & Perf. Range Optimal

Influence Factor (β) (0.01-0.99) 0.5
T (ªFree Phaseº) (40-200) 60
K (ªNudge Phaseº) (15-100) 30
Epochs (10-100) 50
Layers (Linear & FC) - (4 & 2)
Layer-wise lr - 4 * 5e-4,2e-4,2e-4
Batch Size (8-1024) 256

Memory (GB) - 1.9 (256 batch size)
Inference Time (sec) - 40 (Test Set)

Table 3: Hyper-parameters & Perf. Metrics for SNLI dataset.

Architecture

The premise and the hypothesis are encoded as a sequence
of 300D word2vec word embeddings [Mikolov et al., 2013]

with max sequence length of 25. The hopfield attention mod-
ules are used as specified in Fig. 4. The architecture de-
fined for this problem is inspired from the decomposable at-
tention model [Parikh et al., 2016]. We denote the premise as
A = (a1, a2, ..., am) and hypothesis as B = (b1, b2, ..., bn),
where ai, bj ∈ Rd, d is the dimensionality of the word
vector and m and n are the length of the sequences of the

premise and hypothesis. We compute the new vectors A
′

=

HopAttn(s11, A) and B
′

= HopAttn(s14, B), where s11

and s14 are values of the layers as shown in Fig. 4. These two
vectors represent self-attention within A and B respectively.
We compute two other vectors, α = HopAttn(s13, A) which
encode the soft alignment of premise with the hypothesis B
and β = HopAttn(s12, B) which represents the soft align-
ment of hypothesis with the premise A, where s13 and s12 are
values of the layers (see Fig. 4). We then concatenate all the
sequences and feed them to the next layer (see Fig. 4).

Results

The results obtained by our model (Table 1) are compared
with other models trained using BP reported in literature that
can be potentially implemented in a neuromorphic setting.
The results from our model are the first to report performance
on any NLI task using EP as a learning framework. The ex-
perimental details are shown in Table 3.
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Figure 4: High-level overview of the architecture used in case of
SNLI dataset. HopAttn modules are used to capture dependencies
within different parts of a text as well as cross-attention between two
separate texts. The output of each of the layers are concatenated.
The network converges over time during both phases of EP.

5 Conclusion

The ability to think of neural networks as a dynamical system
helps to further deepen our understanding regarding learning
frameworks and intrigues us to delve deeper into the learning
processes inside the brain. In this paper, we explore the ap-
plication of EP as a learning framework in convergent RNNs
integrated with modern hopfield networks to solve sequence
classification problems. We report for the first time the per-
formance of EP on datasets such as IMDB and SNLI. The
constraint of EP requiring static input to the convergent RNNs
makes it really difficult to train on datasets with sequence of
data, thus an attention-like-mechanism provided by modern
hopfield networks is ideal to encode the long-term dependen-
cies in the sequence. The spatially (and potentially temporal)
local weight update feature of EP still holds even after intro-
ducing the modern hopfield networks and therefore it can be
easily converted into a neuromorphic implementation follow-
ing the works of [Martin et al., 2021].

Certain unexplored areas in the paper can be investi-
gated in the future. Firstly, due to limitations of EP,
we employed fixed word-embeddings instead of learnable-
embeddings used in sophisticated language models. Thus
circumnavigating that challenge to achieve even better accu-
racy can be an interesting problem. Secondly, another intrin-
sic restriction of the convergent RNN model used in the ex-
periments is that the weights of the connections needs to be
symmetric. In order to make the model more bio-plausible
with asymmetric connections, the Vector Field [Scellier et
al., 2018] can be further explored. Finally, although storing
small sequence lengths like that of SNLI is not a big concern,
the memory overhead increases with increased sequence sizes
like that of IMDB dataset. Thus a future endeavor can be
made to modify EP such that it supports time-varying inputs.
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