:')

Check for
Updates

EuLER: Detecting Network Lateral Movement via Scalable
Temporal Link Prediction

ISAIAH J. KING and H. HOWIE HUANG, The George Washington University, USA

Lateral movement is a key stage of system compromise used by advanced persistent threats. Detecting it
is no simple task. When network host logs are abstracted into discrete temporal graphs, the problem can
be reframed as anomalous edge detection in an evolving network. Research in modern deep graph learning
techniques has produced many creative and complicated models for this task. However, as is the case in many
machine learning fields, the generality of models is of paramount importance for accuracy and scalability dur-
ing training and inference. In this article, we propose a formalized approach to this problem with a framework
we call EULER. It consists of a model-agnostic graph neural network stacked upon a model-agnostic sequence
encoding layer such as a recurrent neural network. Models built according to the EULER framework can eas-
ily distribute their graph convolutional layers across multiple machines for large performance improvements.
Additionally, we demonstrate that EULER-based models are as good, or better, than every state-of-the-art
approach to anomalous link detection and prediction that we tested. As anomaly-based intrusion detection
systems, our models efficiently identified anomalous connections between entities with high precision and
outperformed all other unsupervised techniques for anomalous lateral movement detection. Additionally, we
show that as a piece of a larger anomaly detection pipeline, EULER models perform well enough for use in
real-world systems. With more advanced, yet still lightweight, alerting mechanisms ingesting the embeddings
produced by EULER models, precision is boosted from 0.243, to 0.986 on real-world network traffic.

CCS Concepts: « Security and privacy — Network security; Intrusion detection systems;; « Computing
methodologies — Neural networks; Anomaly detection

Additional Key Words and Phrases: Lateral movement detection, graph neural network, temporal graph

ACM Reference format:

Isaiah J. King and H. Howie Huang. 2023. EULER: Detecting Network Lateral Movement via Scalable Temporal
Link Prediction. ACM Trans. Priv. Sec. 26, 3, Article 35 (June 2023), 36 pages.

https://doi.org/10.1145/3588771

This article is an extension of a NDSS’22 conference paper by King & Huang [44]. There has been significant addition
to the conference paper, including new experiments augmenting the output of the original models and measuring their
scalability. We show that by continuing the work done in the conference paper, and applying the framework to a more
complex pipeline, we can attain precision high enough for use in real-world systems. There is also additional analysis of
our initial results and extended discussions using new diagrams and tables to improve readability throughout the article.
This work was supported in part by DARPA under agreement number N66001-18-C-4033 and National Science Foundation
grants 1618706, 1717774, and 2127207. The views, opinions, and/or findings expressed in this material are those of the
authors and should not be interpreted as representing the official views or policies of the Department of Defense, National
Science Foundation, or the U.S. Government.

Authors’ address: . J. King and H. H. Huang, Science & Engineering Hall, Dept. of Electrical & Computer Engineering, 800
22nd St NW Washington, DC 20052; emails: {iking5, howie}@gwu.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

2471-2566/2023/06-ART35 $15.00

https://doi.org/10.1145/3588771

ACM Transactions on Privacy and Security, Vol. 26, No. 3, Article 35. Publication date: June 2023.

https://orcid.org/0000-0003-2866-4135
https://orcid.org/0000-0001-8588-7680
https://doi.org/10.1145/3588771
mailto:permissions@acm.org
https://doi.org/10.1145/3588771
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3588771&domain=pdf&date_stamp=2023-06-27

35:2 I. J. King and H. H. Huang

1 INTRODUCTION & MOTIVATION

Lateral movement is a key stage of the MITRE ATT&CK framework [72] describing the behavior
of advanced persistent threats (APTs). At its core, lateral movement is malware propagating
through a network to spread onto new computers in an attempt to find the adversary’s target. This
may involve pivoting through multiple systems and accounts in a network using either legitimate
credentials or malware to accomplish the task [9]. As it is one of the final steps in the kill chain
before complete compromise, detecting it early is of critical importance.

A plethora of machine learning approaches to intrusion detection exist, both signature-based
models [18, 45, 56, 57, 79, 80] and anomaly-based [13, 16, 28, 37, 58, 67, 81]. These latter techniques
are especially well-suited for lateral movement detection, as APT techniques such as “Pass the
Ticket” [7], or even just using stolen credentials [8], are very difficult to formalize into signatures
for signature-based intrusion detection systems [9].

The most robust way to detect malware propagation is not to exhaustively list every known
malicious signature correlating with it; rather, it is to train a model to learn what normal activity
looks like and to alert when it detects behavior that deviates from it. However, detecting anoma-
lous activity in an enterprise network presents unique challenges. The data involved both during
training and the implementation of an anomaly-based intrusion detection system is enormous. Of-
ten the log files that such a system would require as input are terabytes large. To be useful, a lateral
movement detection model must be highly scalable to accommodate such large data. Additionally,
when viewed as a classification problem, any such system would have to be highly precise. Mil-
lions of events occur in an enterprise network on any given day, and only a fraction of a percent
of all interactions are ever anomalous [17]. Therefore, a model must have an extremely low rate
of false alerts so as not to overwhelm its users.

In this work, we formulate anomalous lateral movement detection as a temporal graph
link prediction problem. Interactions occurring in discrete units of time on a network can be
abstracted into a series of graphs G, = {V, &;} called snapshots, where V is the set of entities
in the network that had interactions &; = {(u,v) € V} during a set period of time, ¢. A temporal
link prediction model will learn normal patterns of behavior from previous snapshots and
assign likelihood scores to edges that occur in the future. Edges with low likelihood scores
correlate to anomalous connections within the network. As Reference [16] points out, these
anomalous connections are often indicative of lateral movement. As we will later show, this
reframing of the problem improves precision over standard anomaly-based intrusion detection
techniques.

Recent approaches to temporal link prediction combine a graph neural network (GNN) with a
sequence encoder such as a recurrent neural network (RNN) to capture topological and tempo-
ral features of an evolving network. However, these approaches are either reliant on RNN output
during the GNN stage of embedding [35] or merely incorporate GNNs into the RNN architec-
ture [19, 63, 68]. As Figure 1(a) illustrates, these models are necessarily sequential and, unfor-
tunately, cannot scale to the large datasets that they would need to process to be useful lateral
movement detectors.

Proposed solution. To address this problem, we have observed that the most memory-
intensive part of existing architectures occurs during the message-passing stage within the GNN.
Furthermore, there exists an imbalance between the massive size of node input features and the
comparatively minuscule topological node embeddings. This means the most work and the most
memory usage occurs in the GNN before the simpler forward pass of the RNN is calculated, nec-
essarily in serial. If several replicated GNNs operate on snapshots independently, then they can
execute concurrently, as shown in Figure 1(b). Amdahl’s Law [11] would suggest that by distribut-
ing such a large portion of work, performance improvements will ensue.

ACM Transactions on Privacy and Security, Vol. 26, No. 3, Article 35. Publication date: June 2023.

EuLEr: Detecting Network Lateral Movement via Scalable Temporal Link Prediction 35:3

Worker 0 _Worker1

Nods Embeddings

(a) Sequential temporal link predictors (b) EuLer parallel framework

Fig. 1. (a) Prior approaches rely on RNN output during the GNN stage of embedding or merely incorporate
GNNs into the RNN architecture, which forces models to work in serial, one snapshot at a time. In contrast,
(b) the EuLER framework can utilize several worker machines to hold consecutive snapshots of a discrete
temporal graph. These workers process snapshots in parallel through a replicated GNN shared across each
machine. The output of these GNNs is returned to the leader machine, which runs them through a recurrent
neural network to create temporal node embeddings that may be used for link prediction. The framework is
explained in detail in Section 5.

In this work, we have developed EULER,! a formalized approach for scalable dynamic link predic-
tion and anomalous edge detection. The framework involves stacking a model-agnostic GNN upon
a sequence encoder such as an RNN. In this way, a network’s topology at discrete moments in time
is encoded by the GNN, and the dynamic changes in connections are encoded by the RNN. The
embeddings produced by this model provide prior probabilities for future states of the network
given what is embedded about the past structure. Most importantly, the framework is designed
such that GNNs may be replicated across several worker machines, and execute independently,
allowing disjoint sets of snapshots to be processed concurrently. When the GNNs’ work occurs in
parallel for each snapshot, the topological data for an entire series of graphs can theoretically be
encoded in the time it takes to encode the snapshot with the most edges. With these immense per-
formance enhancements, detecting anomalous user activity in industry-scale, real-world networks
using powerful GNN models becomes tractable.

Experimental evaluation. There are two things this work aims to show: that despite its sim-
plicity, EULER can outperform slower, more complicated temporal link prediction methods, and
that link prediction is an effective method for anomalous lateral movement detection. To evalu-
ate the first contention, we compare the effectiveness of a model following the EULER framework
against several state-of-the-art temporal link prediction models on three general-purpose tempo-
ral graph datasets. The results of these experiments show that despite its simplicity, the EULER
framework performs as well or better than the state-of-the-art. With EULER proven as an effective
link prediction model, the next step is to show link prediction can be used for lateral movement
detection in larger, real-world event logs.

Implementation as an intrusion detection system. To evaluate the second contention, we
test several models following the EULER framework on the LANL comprehensive multi-source
cyber-security events dataset [41]. This dataset includes labeled event data from 58 consecutive
days of real-world computer network use interspersed with red team activity. There are approxi-
mately 1.6 billion events in total. This is a test not only of the EULER framework’s precision, but
also its ability to scale. Our tests show that EULER-based models outperform prior works in both
precision and compute time.

We further augment these results by using EULER as a stage in a longer anomaly detection
pipeline. The embeddings produced by link prediction models contain vital information about the

Source code available at https://github.com/iHeartGraph/Euler.

ACM Transactions on Privacy and Security, Vol. 26, No. 3, Article 35. Publication date: June 2023.

https://github.com/iHeartGraph/Euler

35:4 I. J. King and H. H. Huang

structure of dynamic graphs, but Reference [62] points out that anomaly detection requires more
data than just graph structure. By using the outputs of EULER models as inputs to an additional
distributed anomaly detection network, we can extract even more information. These experi-
ments showed that this strategy significantly improves precision and remains scalable to large
datasets.

In summary, our research contributions are:

e We present, to the best of our knowledge, the first use of temporal graph link prediction for
anomaly-based intrusion detection. Other research in applying graph analytics to anomaly
detection either does not consider the temporal nature of the data or does not use a powerful
GNN model. By incorporating both elements into EULER, models built on this framework
outperform other unsupervised anomaly-based intrusion detection systems and yield more
informative alerts.

e We demonstrate that for temporal link prediction and detection, the simple framework we
propose is equally or more accurate and precise than state-of-the-art temporal graph au-
toencoder models. EULER models attain higher area under the curve and average precision
scores by 4% in inductive link detection tests, and about equal metrics to the state-of-the-art
in transductive link prediction tests.

e We propose a scalable framework for distributed temporal link prediction for use on big
data. The EULER framework is simple and makes message-passing lightweight even over
large graphs. By breaking edge lists into temporal chunks and processing them in parallel,
the computational complexity of the message-passing stage of the model is theoretically
bound by only the snapshot with the most edges. Other optimizations allow the RNN to
operate in parallel with some of the GNN workers, further improving performance.

Please note that this work is an extension of our previously published conference paper [44].
Novel contributions of this work are the additional experiments in Sections 9 and 10 as well as a
more complete literature review in Section 2, and a discussion of the assumptions we make about
the threat model in Section 7. Additionally, Section 8 contains extended discussion and analysis of
the results from our previous work.

2 RELATED WORK
2.1 Intrusion Detection Systems

Many techniques exist to use machine learning on cyber-security data for intrusion detection.
They can be broadly categorized as signature-based intrusion detection systems (SIDS) and
anomaly-based intrusion detection systems (AIDS).

Signature-based intrusion detection systems are used by many popular monitoring sys-
tems [18]. They have a distinct advantage in speed, simplicity, and effectiveness so long as
the attack has been previously observed [43]. The primary focus of research involving graphs
for signature-based intrusion detection, is on the analysis of provenance graphs [45]. Refer-
ences [56, 57] accomplish this through subgraph matching. They generate provenance graphs from
kernel log files that can be quickly identified as malicious if they contain a previously identified
subgraph correlating to compromise. References [79, 80] follow a similar approach, however, they
use vector embeddings of the provenance graphs to measure similarity between observed and
known malicious graphs. This approach to subgraph matching, while sometimes less sound than
exhaustive search, is much faster. We use a similar embedding approach in this work. Despite
these methods’ effectiveness at identifying known threats, advanced attackers will endeavor not
to use a method with a previously discovered signature. For this reason, we turn to anomaly-based
intrusion detection methods.

ACM Transactions on Privacy and Security, Vol. 26, No. 3, Article 35. Publication date: June 2023.

EuLEr: Detecting Network Lateral Movement via Scalable Temporal Link Prediction 35:5

Anomaly-based intrusion detection systems must first define a baseline for normal behavior,
then generate alerts when events occur that significantly deviate from this baseline. The defini-
tion for normalcy is highly contingent on the abstraction used to represent the system. Frequency-
based AIDS define normalcy through observed distributions of events’ frequencies or other sto-
chastic processes present in the network [37, 81]. Midas [14] incorporates structural data with fre-
quency counts; however, it can only detect bursts of anomalous events and would struggle to iden-
tify individually anomalous connections. Similarly, Whisper [29] analyzes ongoing packet features
in the frequency domain; they find anomalous traffic incurs phase anomalies in sliding windows
that are difficult to hide. Supervised learning approaches such as References [10, 24, 55] analyze
features of individual events with data-mining approaches. Like the EULER approach, many un-
supervised systems use deep autoencoders. However, they, too, embed event features rather than
network interactions [13, 28]. Kitsune [58] uses temporal patterns in addition to event features;
however, temporal information is used as an input feature rather than for sequence encoding.

Network-level anomaly-based intrusion detection systems in the field of graph analytics are
lacking. Only Reference [16] has proposed a method for detecting anomalous events in host logs
that leverages the rich graph structure inherent to the medium. This approach only considers the
network as a static graph, so edge embeddings that occurred at different points in time always
have the same anomaly score.

2.2 Temporal Link Predictors

Temporal link prediction is defined as finding a function that takes two nodes in a graph at a
point in time, and outputs the probability of an edge existing between them. This problem has
applications in fraud detection [35], contact tracing [19], traffic prediction [84], and as we will
show, anomalous lateral movement detection.

A great deal of research has been done in this field, however, there are very few approaches
that use graph neural networks. Despite the massive improvements in accuracy they offer [47],
many papers still opt to use traditional deep learning approaches. Models such as Triadic Clo-
sure [85], DyLink2Vec [65], and DynGEM [33] use n-tuples of nodes known to be connected as
inputs to generate embeddings using multilayer perceptrons (MLPs), rather than taking a more
global relational approach. Their loss functions account for this somewhat through neighborhood
sampling, but MLPs cannot leverage the rich topological information the same way a graph convo-
lutional operator can. References [32, 53] also use MLPs to operate on adjacency vectors, however,
they also incorporate a recurrent neural network. This way, both topological and temporal infor-
mation is present in the embeddings. Both models take nodes’ full adjacency vectors as inputs,
and their embeddings represent the dynamics of nodes’ neighbors over time. Our work extends
this idea and incorporates better structural information by instead using a graph convolutional
operator.

Additional studies have been done on the effectiveness of random walk-based embeddings over
time. Reference [61] found that enforcing temporal order in random walks, with no other changes,
outperforms LINE [74], DeepWalk [64], and node2vec [34]. However, as Reference [70] points
out, random walk-based approaches are very slow and memory-intensive. Furthermore, these ap-
proaches cannot take into account node features and lose out on the rich information they can
provide. Additionally, Reference [61] only provides one embedding of each node; that is to say,
the embeddings of nodes do not change over time. This may not be the best approach, as nodes’
functions in a network may be dynamic. They can, however, consider edge weights, which is some-
thing the MLP approaches lack. These are also dynamic and provide important information about
the future of the graph’s structure. This is something we keep in mind with the framework we
propose and is easily incorporated into EULER models depending on the choice of GNN.

ACM Transactions on Privacy and Security, Vol. 26, No. 3, Article 35. Publication date: June 2023.

35:6 I. J. King and H. H. Huang

Many temporal link prediction approaches that do use graph neural networks are preoccupied
with incorporating them into recurrent neural networks in lieu of linear layers. References
[19, 35, 68] all modify existing RNN architectures to incorporate graph convolutions. VGRNN [35],
however, uses a more modular approach, much like we are proposing. The inputs passed to their
graph RNN are embeddings generated with a variational graph autoencoder [48]. In this way,
the information propagated through time by the RNN is strongly influenced by the changing
structure of the graph. However, the topological encoders are dependent on the output of the
recurrent layer at the previous timestep, so they cannot be implemented with our framework.
EvolveGCN [63] takes an interesting approach where the parameters of the GCN themselves are
passed through a recurrent unit. Their technique shows vast improvements over the state-of-the-
art in link prediction tests where edges are unknown for long periods of time. However, we are
primarily interested in anomaly detection, where the structure of a graph at any given time slice
is likely available. We will show that their model does not perform as adequately as others in this
domain.

There are several models that could readily fit into the framework we propose. However,
none take advantage of the potential parallelism present in their own models. The first of these
was Reference [68], which mentions and tests stacking Chebyshev filter convolutions on an LSTM,
however, much of this work is focused on modifying LSTMs to incorporate graph convolutions.
DySAT [66] uses a graph attention network fed into temporal self-attention layer; it follows the in-
dependent topological encoder to serial temporal encoder framework we propose. DyGGNN (73]
stacks gated graph neural networks on an LSTM, however, their model is only tested on full graph
classification. T-GCN [84] consists of a GCN stacked on a GRU following the framework, but it
was used for node regression, not temporal link prediction. However, we will show their model
is an excellent link predictor as well. It is evident that many state-of-the-art models already use
this approach in multiple problem domains. This means by formalizing and optimizing it, it has
the potential to improve several existing works. These papers are the main motivation for our
work.

2.3 Distributed Machine Learning

Techniques for distributed machine learning can generally be separated into two broad categories:
data parallel and model parallel [77, 82]. Under model parallelism, portions of a model’s parameters
are split across multiple workers and updated by those same workers. This is how we implement
the separation between the GNN and RNN layers. With data parallelism, one assumes that training
and real-world data are independent and identically distributed; thus, it is perfectly acceptable to
partition training data and use disjoint subsets to train replicas of one model [82]. The forward
pass and gradient calculations are done in parallel by multiple workers, and the parameter update
stage is done by some centralized or otherwise coordinated means.

One such method to coordinate parameter updates of a replicated model is the parame-
ter server [50]. Here, one machine, the parameter server, holds a master-copy of a model’s
parameters. Several workers hold replicas of the model and a subset of the training data.
These workers then calculate gradients from the loss generated by the data they each hold
and send these gradients to the parameter server. The parameter server aggregates the gra-
dients, updates the model’s parameters accordingly, and sends the updated parameters back
to each replica. The PyTorch DistributedDataParallel (DDP) further extends this idea [52]
using collective communication. This allows workers to broadcast partial gradients as they
are backpropagated, allowing for communication during computation. Because their method
enjoys near-linear scalability, we use it to implement the data parallel within the GNN layer
of EULER.

ACM Transactions on Privacy and Security, Vol. 26, No. 3, Article 35. Publication date: June 2023.

EuLEr: Detecting Network Lateral Movement via Scalable Temporal Link Prediction 35:7

3 BACKGROUND

Our approach to anomaly-based intrusion detection represents network activity as discrete tempo-
ral graphs. From there, detecting evidence of lateral movement betrayed by anomalous network
activity is equivalent to anomalous edge detection, which we accomplish via temporal link predic-
tion. In this section, we will briefly define these terms and define the symbolic notation we will
use throughout this work.

Lateral Movement Detection

Lateral movement is the stage in an attack where an adversary roams the network in an attempt
to find high-value hosts, services, and data in an attempt to spread from a compromised node
throughout the network [51]. It is very difficult to detect in enterprise systems, because it is a slow
process [26] that utilizes normal looking tools [71] such that individual malicious system events
do not appear out of the ordinary. However, it is not completely invisible: As the objective of
lateral movement is to propagate to more valuable nodes, there are often communications between
entities that are not normally related to each other.

References [15, 16, 42, 54] have shown that this stage of the attack is most easily detected in
unusual communications, and in particular authentications, between users or machines within a
network. When data are represented as a graph, unusual authentications are understood as paths or
edges that connect nodes with low link prediction probabilities. For this reason, we are motivated
to represent cyber security data as a temporal graph.

Discrete Temporal Graphs

A discrete temporal graph? G = {G1, Gs, . . . Gr} is defined as a series of graphs G; = {V, E:, X, },
which we refer to as snapshots, representing the state of a network at time ¢. Here, V' denotes a
set of all nodes that appear in the network, &; denotes relationships between nodes at time ¢, and
X, represents any features associated with the nodes at time ¢. In this work, all graphs are directed,
and some have weighed edges, W : & — R representing edge frequencies during the time period
each snapshot encompasses.

Let the interactions I between users and machines in a network at specific times be represented
as a multiset of tuples <src,dst,ts>. Here, src is an entity interacting with entity dst at time ¢s. From
this multiset, we can build the temporal graph G = {Gy, . . ., Gr} with time window §. The set of
all nodes V is the set of every src and dst entity that appears in 7. The set of edges at time t, &,
is constrained such that for all edges (u,v) € &; there exists an interaction < u,v, w >€ 7 where
t<w<t+90.

Temporal Link Prediction

Temporal link prediction is defined as finding a function that describes the likelihood that an edge
exists in a temporal graph at some point in time, given the previously observed snapshots of a
network. By representing an enterprise network as a temporal graph, we can further extend this
definition to encompass anomaly detection. This follows from the assumption that anomalous
edges in a temporal graph will have a low probability of occurring given what is known about the
network’s behavior in the past.

Lateral movement detection with temporal link prediction is then defined as finding a function
learned from the temporal graph G of network activity that predicts the likelihood of future inter-
actions occurring in unseen snapshots. An observed interaction between entities with a likelihood
score below a certain threshold is said to be anomalous. These anomalous edges, in the context of
network monitoring, are often indicative of lateral movement [16].

2For simplicity, for the remainder of this work, we refer to these simply as “temporal graphs”.

ACM Transactions on Privacy and Security, Vol. 26, No. 3, Article 35. Publication date: June 2023.

35:8 I. J. King and H. H. Huang

SHARED SHARED SHARED SHARED SHARED
DRIVE DRIVE DRIVE DRIVE DRIVE

(Aiice | [Bob | (Aiice | [Bob | [Aiice | [Bob | (Aice | [Bob | [Alice| [Bob |

[] [a] | [a] [«w] [a]
t=2 t=3 t=4

(o] [a]

Fig. 2. A simple example of hard-to-detect temporally anomalous activity in a network with three machines
and two users. The normal sequence of events is that a user authenticates with a computer, then that com-
puter makes a request to the shared drive. However, suppose C1 is compromised with Mimikatz or a similar
malicious process with access to LSASS memory [6]. After Bob’s initial connection to C1, his credentials are
harvested, and at time ¢t = 5, Computer 1 makes a request to the shared drive without Bob’s involvement.
Though this exact edge has been seen before, in this temporal context it is now indicative of C1’s compromise
manifested as anomalous network activity.

4 MOTIVATION

Anomaly detection is strongly dependent on how data are represented. The way in which we model
the network determines what is considered anomalous activity. An anomaly is simply a deviation
from an observed pattern of behaviors; for attacks to appear anomalous, they must cause some
unexpected representation of the system to emerge. The way in which the underlying data are
represented will ultimately shape and constrain how this is defined. Historically, there have been
two main ways of abstracting data for anomaly detection: frequency-based and events-based [17].
Frequency-based methods, such as References [14, 29, 37, 81], define anomalous behavior as ac-
tivity that significantly deviates from observed temporal patterns. Events-based methods, such
as References [10, 13, 24, 28, 55, 58], identify commonalities in features, such as packet count, pro-
tocols, and so on, associated with individual events within a system. Anomalies are then defined
as events with unexpected features.

The problem with these two approaches is that they ignore the inherently structural nature of
network data. This is readily apparent by observing that one of the most influential datasets for
intrusion detection [4, 60] has no features for source or destination entities. All that matters with
these models are the details of the events themselves in isolation, not the machines between which
they occur. It is impossible to capture anomalous interactions between entities in a network us-
ing the traditional data representation. Attacks that use stolen credentials, for example, may have
features that look entirely normal, and may occur at rates that are non-anomalous as seen in the
DARPA Transparent Computing dataset [75]. Indeed, the lateral movement stage of a compromise
is often “low-and-slow” and intentionally similar to normal network traffic both in frequency and
features, making them indistinguishable from normal activity at the network level when repre-
sented with traditional means [26]. During the lateral movement stage of an attack, anomalies
instead manifest as unusual connections between entities [20]. Networks are webs of relational
data, fluctuating over time; the most natural way to represent and analyze relational data is as a
graph.

There has been growing interest in static graph-based methods for intrusion detection, such
as the work of Bowman et al. 2020 [16]. Here, normalcy is defined in terms of interactions be-
tween entities within systems, but time is not considered. Anomalies are defined as edges with
low probability given what is known about the graph’s structure.

To demonstrate the advantages and disadvantages of the above intrusion detection systems,
consider the example shown in Figure 2. The first two time slices show normal activity in the
network: First, at 0, Alice and Bob authenticate with their computers A and B, then at t1 computers
A and B make a request to the shared drive. At times t2 and ¢3, we see that when Bob does not first
authenticate with computer B, it does not communicate with the shared drive. A simple probability

ACM Transactions on Privacy and Security, Vol. 26, No. 3, Article 35. Publication date: June 2023.

EuLEr: Detecting Network Lateral Movement via Scalable Temporal Link Prediction 35:9

distribution is apparent:
P((CI’SD) € 8l+l | (B7C1) € 8[) =1

P((C1,SD) € &4y | (B,C1) 2 &) = 0.)

However, in t4 and t5, something unusual occurs: Computer B requests data from the shared drive
without Bob authenticating with it first! Suppose C1 was compromised with Mimikatz or a simi-
lar malicious process with access to LSASS memory [6]. After Bob’s initial connection to C1, his
credentials have been harvested. After lying in wait, with the newfound stolen credentials, the
APT could be using attack techniques (as catalogued by the MITRE ATT&CK framework) T1563,
remote service hijacking, or attempting T1080, tainting shared content [9].

To detect attacks such as the one in the example, a model would need to consider events with
reference to those that occurred previously and with reference to the other interactions within the
network. An event between two entities that happens at one point in time cannot be considered
identical to the same event occurring in the future under a different global context. Unfortunately,
existing graph-based approaches, which do not consider time, and many event-based approaches
that look at each event in isolation such as References [16, 28, 58] would see no difference between
(C1,5D) at time t1 and (C1,SD) at time t4. What makes it stand out as anomalous is something
lacking in the previous state of the graph—something that would only be detected by considering
prior probabilities for the next state of the system.

Frequency-based and event-based approaches such as References [10, 24, 37, 55, 81] would have
similar trouble, as they lack the relational data present in the network; Bob’s activities a timestep
earlier would have little import on the interpretation of the shared drive’s activity later on. If the
interaction between (C1, SD) at time t4 was sufficiently similar to the interaction at time ¢1, then
these approaches would see no difference between the two. They lack the ability to capture the
importance of interactions occurring between other entities in the network and how they may
relate to a separate event.

Our proposed solution, to represent the network as a temporal graph, ensures the global struc-
ture of a network at individual points in time is captured without losing the temporal dependencies
of the changing connections. We make the more difficult assumption that malicious events can
have the same event features as normal ones; if this is the case, then traditional event-based ap-
proaches will not work. We also assume attackers can make similar connections, or even the same
connections as observed in normal activity, meaning available graph-based approaches and statis-
tical approaches are insufficient. With temporal graphs, assuming they have enough granularity,
these problems, as well as those tackled by prior works, are solvable.

5 EULER

In this section, we describe our proposed framework, which we call EULER. This framework aims
to learn a probability function conditioned on previous states of a temporal graph to determine
the likelihood of an edge occurring at a later state. Furthermore, it is the goal of this work to
offer an approach that is not just precise, but also highly scalable. We first describe the basic
components of the system, then how they are distributed across multiple machines and how these
components interact. Finally, we describe how different training objectives are implemented on
the EULER interface.

5.1 The Encoder-Decoder

The EULER framework is a generic extension of the traditional graph autoencoder model [48] to
temporal graphs. It consists of a model-agnostic graph neural network (GNN) stacked upon
a model-agnostic recurrent neural network (RNN). Together, these models aim to find an

ACM Transactions on Privacy and Security, Vol. 26, No. 3, Article 35. Publication date: June 2023.

35:10 I. J. King and H. H. Huang

encoding function f(-) and a decoding function g(-). The encoding function maps nodes in a tem-
poral graph with T snapshots to T low-dimensional embedding vectors. The decoding function
ensures minimal information is lost during the encoding process and aims to reconstruct the input
snapshots from the latent Z vectors. More formally, we can describe the behavior of the encoder as

Z = f({g09 . ',gT})

= RNN([GNN(Xy, Ag), . .., GNN(XT1,A7)]),
where A; is the |V| X |V| adjacency matrix representation of the snapshot at time ¢. This
T x |V| X d dimensional tensor Z is optimized to contain information about both the structure of

the graph and the dynamics of how it changes over time.
This is enforced by a decoder function, g(-), which attempts to reconstruct the original graph

structure given the embeddings. More formally,

g(Z;) = Pr(At+n =1 | Zt)» (3)
where Z; = Z[t] is the embedding of graph G; and n > 0. As was done by References [16, 34, 35, 48],

we use the inner product decoding as this g(-) function:

9(Z:) = 0(Z,Z]) = Apin, (4)

@)

where o (-) denotes the logistic sigmoid function, and A, , represents the reconstructed adjacency
matrix at time ¢ + n. As a consequence of using inner product decoding, the dot product of vectors
Z[u] and Z,[v] represents the log-odds that an edge, (u, v) exists at time t + n. In this way, the
g(+) function is used to detect anomalous edges.

5.2 Workflow

The core of the EULER framework is a simple design. It simply stacks the replicas of a model-
agnostic GNN that we refer to as the topological encoder upon a model-agnostic recurrent layer with
afew simple constraints. When fit into the leader/worker paradigm® with one recurrent layer as the
leader, and multiple topological encoders as workers, it has the potential for massive parallelism.

The overall workflow for EULER is shown in Figure 3. It occurs in 5 basic stages: (1) The leader
spawns the workers and instructs them on which snapshots to load; (2) the leader initiates the
training loop, and workers generate topological embeddings; (3) as the topological embeddings
are received, the leader processes them through an RNN; (4) the output of the RNN is sent back to
the workers to calculate loss or for scoring; (5) in training mode, loss is returned to the leader to be
backpropagated. During evaluation, anomaly scores are returned. In this section, we describe how
these 5 steps are implemented in greater detail. For more detailed technical information about the
Euler interface, we direct the reader to Table 7 in the conference version of this work [44].

Loading Data

When the program first starts, several processes are spawned. The PyTorch multiprocessing library
automatically assigns each spawned process a unique ID from 0 to k + 1; for convenience the
machine with id:0 becomes the leader, and all others are workers. The leader machine, which
holds remote references to all workers in addition to the recurrent layer, issues commands to the
other processes to spin up all worker instances.

Upon their creation, workers connect to the leader and await instructions. After the initialization
of all workers, the leader assigns them contiguous subsets of temporal graph data to load, shown
in step 1 of Figure 3. For example, given a set W = {wy, ..., wi} of k workers, and a temporal
graph split into T snapshots, the leader assigns each worker s = [%J snapshots. Then worker

SHistorically called the master/slave paradigm.

ACM Transactions on Privacy and Security, Vol. 26, No. 3, Article 35. Publication date: June 2023.

EuLER: Detecting Network Lateral Movement via Scalable Temporal Link Prediction 35:11

(1) Loading Data (2) Topological Encoding (3) Temporal Encoding (4) Loss Calculation & Scoring (5) Backpropagation

-
LH
O

il

Fig. 3. The complete series of interactions between the leader and worker machines during one training
step. In step (1), the leader machine initiates each worker and issues a command for each of them to load
a disjoint subset of the snapshots from memory. When this has occurred, the training loop can begin. At
step (2), the leader issues a command to each worker to perform a forward pass on their graphs through
their GNNs. As they complete this, workers send the topological embeddings, Z;, to an ordered queue in the
leader. Upon receiving the embedding for t = 0, step (3) begins. The leader runs embeddings from the queue
through its RNN as they come in to produce the final Z embeddings. Then, in step (4), the leader sends the
embeddings back to the workers to decode and calculate loss. Finally, (5), the leader and workers perform
a backward pass on the aggregated loss functions according to the DDP gradient bucketing algorithm [52].
During evaluation, the steps are nearly identical, but on step (4) workers return their scores for each edge i,
instead of loss.

w; holds {Gsi., ..., Gsiv(s—1)}. In the likely case where k does not divide T, extra units of work
are assigned to workers holding snapshots later in time. This is because the recurrent layer of
the model processes the topological encoders’ output in order, as it comes in. Thus, the RNN can
perform the necessarily sequential forward pass on earlier embeddings while future snapshots are
still being processed by workers.

After the workers have been assigned their snapshots, they concurrently read them in. The
leader waits for each worker to signal that all data are loaded, then moves on to the next phase of
the workflow.

Topological Encoding

During the forward pass—shown in step 2 of Figure 3—the recurrent layer issues asynchronous
calls to forward on each worker machine. To minimize network traffic, the only thing the leader
sends to the workers is an enum representing which partition of edges to process, as some are held
out for validation and testing. Workers then process every snapshot they hold. Further reducing
network traffic, the matrices returned by the workers are far smaller than those used as inputs, as
each worker is essentially a graph autoencoder [48].

For performance optimization, and to ensure consistency, we impose just one constraint for this
stage: topological encoders must not be dependent on any temporal information. They provide a
purely spatial encoding of the state of each snapshot they hold, using only features observable at
a single point in time. With this constraint satisfied, all encoders can operate in parallel, as no one
worker is dependent on the output of another. Theoretically, with as many workers as snapshots,
the time complexity of a forward pass is constrained only by the snapshot with the greatest number

of edges.

Temporal Encoding

The leader maintains an ordered list of future objects that point to the eventual output of the
workers and waits for the future pointing to the first embeddings to finish executing. When the
leader receives this tensor, it is immediately processed by its RNN, shown in step 3 of Figure 3. Note
that so long as tasks are slightly imbalanced such that workers holding later snapshots contain
more work units, the leader’s recurrent layer can execute concurrently with at most k — 1 workers’
topological encoders. Workers with earlier snapshots hold fewer work units, and therefore finish

ACM Transactions on Privacy and Security, Vol. 26, No. 3, Article 35. Publication date: June 2023.

35:12 I. J. King and H. H. Huang

ALGORITHM 1: Leader machine forward method
1 def forward(self, workers, partition):

/* Leader tells each worker to begin executing */
2 futures = [];
3 for w € workers do
1 future = asynchronously execute w.forward(partition);
5 L futures.append(future);

/* As workers return their embeddings, the leader processes them in order, as they arrive x/
6 h=NULL;

7 zs =[]

8 for f € futures do

9 z, h = self RNN(f.wait(), h);
10 zs.append(z);

11 return concat(zs)

executing earlier, so the leader can process their outputs while workers holding greater quantities
of snapshots further in time are still processing.

When the recurrent layer has finished processing the output of one worker, the hidden state
and outputs from the RNN are saved. The leader waits for the next topological embedding to finish
processing, then uses the saved RNN hidden state and the next embedding to repeat the process
until all workers have finished executing. This procedure is described in more detail in Algorithm 1.

Decoding
When the leader finishes generating the final embeddings, they are sent back to the workers to
decode, and if the model is training, to calculate loss. This process occurs in parallel on the worker
machines. In general, graph functions such as those used to find edge likelihoods are more compute-
and memory-intensive, so we endeavor to run them in parallel whenever possible. This stage is
shown in step 4 of Figure 3.

During evaluation, instead of returning loss, the workers return edge likelihoods 7j; and the
ground-truth edge labels y;. The process for decoding the embeddings is the same, however, loss
is not calculated.

Backpropagation & Evaluation

When loss has been calculated and returned to the leader machine, gradients are calculated via
backpropagation, first through the recurrent layer, then components of the loss function generated
by each topological encoder are backpropagated in parallel and broadcast between workers in
accordance with the bucketing algorithm described in Reference [52]. After the backpropagation
step, and collective communication between workers, gradients across all workers’ model replicas
are equal. Finally, the recurrent layer and the topological encoders all update their parameters
using an Adam optimizer [46], and the leader repeats steps 2-5 until convergence.

If the model is in evaluation mode, then the leader machine instead uses the 7, likelihoods the
workers generate, and the known labels y;, also returned by the workers, to calculate precision
and accuracy metrics, which are saved. In a real-world implementation without labels, it would
instead raise alerts on observed edges with likelihoods below a certain threshold.

5.3 Training

There are two modes of training EULER models: as a link detector or a link predictor. These two
modes are distinguished by which Z, embeddings are sent to the workers at step 4 to calculate loss.

ACM Transactions on Privacy and Security, Vol. 26, No. 3, Article 35. Publication date: June 2023.

EuLER: Detecting Network Lateral Movement via Scalable Temporal Link Prediction 35:13

3535 i3

1 t2 3 t4 s

(a) Link Detection (b) Link Prediction

Fig. 4. How embeddings are generated and the interpretation of their decoded values for static and dynamic
models. In link detection, embeddings Z; generated from partial snapshot G are used for evaluating the
likelihood of unseen edges in snapshot G;. For link prediction, embeddings Z; generated from snapshot G;
are used to predict the likelihood of edges in a future snapshot G;+p, (in this figure, n = 1).

Link detectors are inductive; they generate Z; using partially observed snapshots { Gos ..., Gt}
and attempt to reconstruct the full adjacency matrix A; with g(Z,). This process is illustrated in
Figure 4(a). In practice, link detectors would be used for forensic tasks, where one is performing
an audit to identify anomalous connections that have already occurred.

Link predictors are transductive; they generate Z; using snapshots {Gy, . . ., G+} to predict the
future state, A;y, where n > 0. Figure 4(b) illustrates this process when n = 1. In practice, they
could be used as a live intrusion detection tool, as predictive models can score edges as they are
observed—before they have been processed into full snapshots. For example, when n = 1, given
what has been observed about the network up until time ¢ — 1, it is the goal of predictive imple-
mentation of EULER to score edges observed at time ¢. Such a model can use embeddings learned
from previous states of the network to process connections as they occur.

To ensure these objectives, the reconstruction loss function aims to minimize the negative log
likelihood of Equation (3), where n = 0 when training detectors, and n > 0 for predictors. For larger
graphs, operating over the entire adjacency matrix quickly becomes intractable. Instead, as is done
by graph autoencoders [48], we approximate this value by minimizing binary cross-entropy on the
likelihood scores for known edges, and a random sample of non-edges at time t + n: P;,, and Nyip,
respectively. Consider Equation (4) on a per-edge level:

P((4,0) € Agen | Zy) = 0(ZMWZ)T), (5)

where Ziv) represents the embedding of node v at snapshot t. Then, the reconstruction loss func-
tion for snapshot ¢ + n

L, =E[- 10g(Pr(At+n | Z:))] (6)
can be approximated by taking the sample mean.
-1 -1
L~ — Z log P((u,v) € Atyn | Z;)— log(1-P((u,v) € Atyn | Z)) (7)
|Pt+n| (u,0)€Pysn |Nt+n| nENry1

New negative edges are randomly sampled on each epoch by workers for each snapshot they
hold. The leader machine coordinates which slices of the Z tensor are sent to each worker to
generate the probabilities, and each worker independently calculates loss on the training data
they hold.

On predictive models, Z; represents the latent space of nodes n snapshots in the future. Conse-
quently, predictive models cannot calculate loss on the first n snapshots of the graph. To account
for this, the leader pads Z with a n |V| X d zero matrices at the beginning, and the final n matrices
are removed before returning the embeddings to the workers. This way, Z[¢] predicts the snapshot

ACM Transactions on Privacy and Security, Vol. 26, No. 3, Article 35. Publication date: June 2023.

35:14 I. J. King and H. H. Huang

ALGORITHM 2: Calculate loss

1 def worker_loss(zs, n_jobs, workers, n=1):

/* Pad the Z tensor if predictive */
2 zeros = n X |V| X d 0 matrix;
3 zs = concat(zeros, zs[:-n]);
4 futures = [J;
5 start=0; end=n_jobs[0]; loss = 0; i=0;
/* Send the correctly offset embeddings to the workers to calculate loss */
6 for w € workers do
7 f = asynchronously execute w.loss(zs[start:end]);
8 futures.append(f);
9 start=end; end=start+n_jobs[i++];
10 return sum([f.wait() for f in futures]) / len(workers)

indexed at t on all workers except the one holding the initial snapshots, which ignores embeddings
that equal the zero matrix. This process is shown more clearly in Algorithm 2.

5.4 Classification

Though for much of our evaluation, we rely on regression metrics relating to the fitness of scores
assigned to edges, it is useful to automate the process of deciding the threshold for what counts
as anomalous to obtain classification scores. To this end, when training the model, we hold out
one or more full snapshots to act as an extra validation set. Using the final hidden state h of the
RNN from the training snapshots as input for the validation snapshot, a training partition of edges
is passed through the model. From there, finding an optimal cutoff threshold for edge likelihood
scores becomes a simple optimization problem.

Given a set of scores for edges that exist in the validation snapshots, but were held out of the
training set, and a set of scores for non-edges, the optimal cutoff threshold 7 is the one that satisfies

argmin ||(1 — A)TPR(r) — AFPR(7)||, (8)

where TPR(r) and FPR(7) refer to the true and false positive rate of classification given cutoff
threshold 7, and A is a hyperparameter in [0 — 1] biasing the model to optimize for either a high
true positive rate or a low false positive rate. Experiments have shown that for anomaly detection,
where low false positive rates are critical, A = 0.6 is very effective. For any metric involving
classification for the remainder of the article, this is how classes were determined from the edge
likelihood scores, and unless otherwise specified A = 0.6.

5.5 High-performance Temporal Encoding

When distributing workloads to workers, it is assumed that each worker has equivalent processing
power and memory. We also assume that each snapshot constitutes roughly the same amount of
work. This is not always the case, especially with natural graphs that follow cyclical patterns (e.g.,
the ebb and flow of network activity at night and during the day), however, this provides a rough
upper bound on the maximum amount of work one worker is expected to accomplish. For this
reason, we use snapshots as the unit of work assigned to each worker. As previously stated, units
of work are evenly distributed between workers, with any extra units of work given to workers
processing later snapshots; this allows the RNN to process earlier, completed graph embeddings
while later embeddings are still being computed. If workers cannot be assumed to be equivalent in

ACM Transactions on Privacy and Security, Vol. 26, No. 3, Article 35. Publication date: June 2023.

EuLER: Detecting Network Lateral Movement via Scalable Temporal Link Prediction 35:15

Table 1. Dataset Metadata

Dataset Nodes FEdges Avg. Density Timestamps

FB 663 23,394 0.00591 9
COLAB 315 5,104 0.01284 10
Enron10 184 4,784 0.00514 11

processing power, or memory, then jobs could be assigned according to a greedy interval partition
algorithm [49] or similar, but we leave this as a topic for future work.

Synchronization between workers is handled by PyTorch. Communication between workers to
randomly initialize model weights and share gradients is accomplished through the Distributed
Data Parallel module [52]. Communication between the workers and the leader is implemented
using the PyTorch remote procedure call framework [2], which communicates over TCP via Ten-
sorPipes [3]. The leader issues asynchronous calls to workers, who send their output to a socket
when their work is concluded. Thus, as the workers’ output is in the form of a list of promises
pointing to memory addresses, their order is guaranteed. In the event that a worker faults in some
way, the leader process will shut down if some timeout period has passed without receiving the
worker’s result. To prepare for such a situation (though it never arose in our experiments) the
leader saves a copy of the model’s weight dictionary every training step that can be reloaded into
the workers and leader so training may resume if it were to crash.

6 BENCHMARK EVALUATIONS

To determine if temporal link prediction is a viable method for lateral movement detection, it is
necessary to show that EULER is a viable temporal link predictor. Thus, before transitioning to
larger cyber security datasets, we evaluate the effectiveness of EULER on link prediction in gen-
eral. In this section, we briefly present the results of our experiments on smaller, general purpose
temporal graph datasets from our prior work. Details of these datasets are reported in Table 1.
For a more detailed explanation of the experimental setup, we direct the reader to the conference
version of this work [44].

Prior works VGRNN [35] and Evolving GCN (EGCN) [63] both assert that simply embedding
graph snapshots with a GNN and running these embeddings through an RNN, as was done by Ref-
erences [68, 84], does not adequately capture the shifting distribution of nodes in a dynamic net-
work. Reference [63] demonstrates that this is the case for inferring complete graph structure
several timesteps in the future, but Reference [35] does not evaluate their model against the very
model they so thoroughly disregard. To remedy this, we present a comparison between several
existing temporal autoencoder models and a simple stacked GCN [47] and GRU [21] following
the EULER framework. We select these two layers because of their lack of parameters—they are
the most generalized of the models in their respective domains [22, 69]. For all experiments, we
set all models evaluated to have the same dimensionality and number of layers. As each model
evaluated uses a single weight matrix per encoding layer, and three per RNN layer (apart from
DynAE, which does not use an RNN, and DynRNN, which does not use an encoding layer), this
caps the parameter count to a uniform level across all tests. For reference, a brief summary of the
other methods tested is presented in Table 2.

6.1 Results

As was done by Reference [35], we conducted three different benchmarking tests to compare Eu-
LER to other temporal link prediction methods: inductive dynamic link detection, transductive
dynamic link prediction, and transductive dynamic new link prediction. Link detection and link

ACM Transactions on Privacy and Security, Vol. 26, No. 3, Article 35. Publication date: June 2023.

35:16 I. J. King and H. H. Huang
Table 2. Prior Works Evaluated

Model GNN RNN Description

(SI)VGRNN [35] v/ v' At the time of writing, the most effective temporal link
prediction model in the literature. A GCN stacked upon a
GC-LSTM [19].

E-GCN [63] Vv v' A powerful model that uses an RNN to update the parameters
of a GNN at each timestep. Especially good at link prediction
far into the future, but untested in short-term predictions.

DynAERNN X v A family of models that pass adjacency vectors into a

DynRNN [65] X v multilayer perceptron and/or an RNN to capture graph

DynAE X X dynamics using traditional deep learning techniques.

VGAE 48] Vv X A simple two-layer variational graph autoencoder. This model

does not consider time at all. Instead, it views every
interaction as one large graph.

Table 3. Comparison of EULER to Related Work on Dynamic Link Detection

Metrics \ Methods \ Enron COLAB Facebook

VGAE 88.26 £ 1.33 7049 £ 6.46 80.37 £ 0.12

DynAE 84.06 £ 3.30 66.83 £2.62 60.71 = 1.05
DynRNN 77.74 £ 5.31 68.01 £ 5.50 69.77 £ 2.01
DynAERNN | 91.71 £0.94 77.38 £3.84 81.71 +1.51
EGCN-O 93.07 £ 0.77 90.77 £ 0.39 86.91 + 0.51

AUC EGCN-H 92.29 £ 0.66 87.47 +£091 85.95 £ 0.95
VGRNN 94.41 £ 0.73 88.67 = 1.57 88.00 £ 0.57
SI-VGRNN 95.03 + 1.07 89.15 + 1.31 88.12 + 0.83

EULER 97.34 £+ 0.41 91.89 +0.76 92.20 + 0.56

VGAE 89.95+ 145 73.08£5.70 79.80 + 0.22

DynAE 86.30 £ 243 6792 +2.43 60.83 + 0.94
DynRNN 81.85 + 4.44 73.12 £ 3.15 70.63 £ 1.75
DynAERNN | 93.16 £ 0.88 83.02 +2.59 83.36 + 1.83
EGCN-O 92.56 £ 0.99 91.41+0.33 84.88 +£0.52

AP EGCN-H 92.56 £ 0.72 88.00 £ 0.85 82.56 £ 0.91
VGRNN 95.17 £ 0.41 89.74 £ 1.31 87.32 + 0.60
SI-VGRNN 96.31 £ 0.72 89.90 + 1.06 87.69 + 0.92

EULER 97.06 + 0.48 92.85+0.88 91.74 +£0.71

prediction are implemented as described in Section 5.3. On link detection tests the objective func-
tion is Equation (3) with n = 0. On (new) link prediction tests, n = 1. New link prediction is an
extra evaluation of predictive models. This test is identical to link prediction, but the set of true
positives only includes edges that were not in the snapshot immediately before.

Dynamic Link Detection

As shown in Table 3, the simplistic EULER model outperforms the more modern ones in almost
every test. In tests where it does not outperform the state-of-the-art methods, it is equivalent,
despite its simplicity. Compared to the static VGAE, which does not consider time at all, the benefit

ACM Transactions on Privacy and Security, Vol. 26, No. 3, Article 35. Publication date: June 2023.

EuLER: Detecting Network Lateral Movement via Scalable Temporal Link Prediction 35:17

Table 4. Comparison of EULER to Related Work Table 5. Comparison of EULER to Related Work
on Dynamic Link Prediction on Dynamic New Link Prediction
Metrics [Methods | Enron COLAB Facebook ~ Metrics [Methods [Enron COLAB Facebook
DynAE 74.22 £ 0.74 63.14 £ 1.30 56.06 + 0.29 DynAE 66.10 £0.71 58.14 + 1.16 54.62 + 0.22
DynRNN | 86.41+136 757 +109 73.18 = 0.60 DynRNN | 83.20 £1.01 7171073 73.32 % 0.60
DynAERNN | 87.43 £1.19 76.06 + 1.08 76.02 = 0.88 DynAERNN | 83.77 £ 1.65 71.99 + 1.04 76.35 % 0.50
EGCN-O 84.28 £ 0.87 78.63 +2.14 77.31 £0.58 EGCN-O 84.42 £0.82 79.06 +1.60 75.95+ 1.15
AUC | EGCN-H 88.29 £ 0.87 80.80 +£0.95 75.88 +0.32 AUC | EGCN-H 87.00 £0.85 78.47 +1.27 74.85 £ 0.98
VGRNN 93.10 £ 0.57 85.95 +0.49 89.47 + 0.37 VGRNN 88.43 +0.75 77.09+0.23 87.20 £0.43
SI-VGRNN | 93.93 = 1.03 85.45+0.91 90.94 % 0.37 SI-VGRNN | 88.60 = 0.95 77.95+0.41 87.74 = 0.53
EULER 93.15 + 0.42 86.54 + 0.20 90.88 + 0.12 EULER 87.92 £0.64 78.39 +0.68 89.02 + 0.09
DynAE 76.00 £ 0.77 64.02 £ 1.08 56.04 + 0.37 DynAE 66.50 £ 1.12 58.82 + 1.06 54.57 £ 0.20
DynRNN | 85.61+1.46 78.95+ 1.55 75.88 = 0.42 DynRNN | 80.96 137 7534 +0.67 7552 % 0.50
DynAERNN | 89.37 +1.17 81.84 £0.89 78.55+ 0.73 DynAERNN | 85.16 + 1.04 77.68 £ 0.66 78.70 + 0.44
EGCN-O 86.55+1.57 8143 +1.69 76.13 £0.52 EGCN-O 86.92 £0.39 81.36 +£0.85 73.66 £ 1.25
AP EGCN-H 89.33 £1.25 8387 +0.83 74.34+0.53 AP EGCN-H 86.46 £ 142 79.11 £2.26 73.43 £1.38
VGRNN 9329 £0.69 87.77 +£0.79 89.04 £+ 0.33 VGRNN 87.57 £0.57 79.63 +£0.94 86.30 £ 0.29
SI-VGRNN | 94.44 = 0.85 88.36 £ 0.73 90.19 + 0.27 SI-VGRNN | 87.88 = 0.84 81.26 + 0.38 86.72 = 0.54
EULER 94.10 + 0.32 89.03 + 0.08 89.98 + 0.19 EULER 88.49 + 0.55 81.34 +0.62 87.54 +0.11

of the additional RNN layer is clear. We further observe the benefit of graph neural networks
over MLPs when EULER and the state-of-the-art methods are compared to the DynGraph2Vec
methods. However, the experiments do not support claims that much is gained by the complex
models beyond what is afforded simply by using a GNN and RNN. Both highly engineered models,
the EGCN and VGRNN variants, do not perform significantly better than the simplistic stacked
GCN on a GRU, and in some cases perform worse.

Significantly, the dataset where EULER performed better than prior works with p < 0.05 was the
Facebook dataset. This dataset contains the most nodes and edges and has the fewest snapshots
in the training set. Despite these difficulties, our simple EULER model achieves a 4% improvement
over prior work in both AUC and AP, signifying its ability to learn very complex spatio-temporal
patterns even on larger datasets. We observe that the model is generalized enough not to become
overfit on the smallest datasets, but not so simple it cannot handle larger ones. This supports our
claim that this model design, despite its simplicity, is highly precise.

Dynamic (New) Link Prediction

In these cases where temporal data are more significant, the results are less clear. As shown in
Tables 4 and 5, between our method and (SI-)VGRNN models, the results are almost all within
each methods’ margin of error. We note that on the dynamic new link prediction test for Enron10,
though our method’s observed mean AUC and AP were lower than both VGRNN methods, a t-test
showed that this disparity was not statistically significant. We can conclude that neither method is
significantly better than the other. Furthermore, we observe that on the Facebook dataset, which
has roughly the same edge density as Enron, but 3.5X as many nodes, EULER performs significantly
better than other methods in new link prediction. As variance and complexity increases in the data,
EULER adapts better than the other methods while retaining precision on simpler data without
becoming overfit.

In both tests, models that process graph embeddings using an RNN were significantly better
than DynAE, which does not. This component enables temporal attributes of the data to be car-
ried over from previous timesteps. If a new edge has been seen in the distant past, or a pattern that
indicates a new edge is likely to appear has previously been observed, then this history is carried
over by the RNN into future embeddings. From this, we can again infer that the benefit derived
from the (SI-)VGRNN models has more to do with the components of those models, which are also
GCNs connected with an RNN. The espoused benefit of the topological embedders ingesting tem-
poral information does not appear to be as great as simply using those components; by removing

ACM Transactions on Privacy and Security, Vol. 26, No. 3, Article 35. Publication date: June 2023.

35:18 I. J. King and H. H. Huang

the GNNSs’ reliance on temporal information, our models can embed at least the same quality of
information in a more efficient manner.

With these data, it is clear that the simplicity of models following the EULER framework is not a
hindrance, and in many cases is actually advantageous. The purpose of EULER is chiefly to improve
efficiency and scalability, so the fact that it is only a small improvement, or about equal to state-of-
the-art models, is adequate for our purposes. The real benefit of building models within the EULER
framework is their ability to scale. With larger datasets, this advantage is more evident.

7 THREAT MODEL & ASSUMPTIONS

As we have shown, the EULER framework is capable of outperforming prior works on temporal
link prediction generally. The next step is to show that temporal link prediction is an effective
method of lateral movement detection. In the following sections, we will show that EULER can
efficiently detect anomalies indicative of lateral movement under the minimal constraints defined
in this section.

Like many other anomaly detection models [15, 16, 42, 54], we make the assumption that a
large sample of benign data is available from which to learn a baseline for normal behavior offline.
This means the framework has certain limitations: If there is not enough normal behavior to learn
from, then the false positive rate may be higher. Additionally, in a real-world setting, if there was
malicious activity in what is thought to be the clean training data, then the model could learn
that certain patterns in connections are normal when they are not. Unique to temporal anomaly
detection is the difficulty in knowing how fine-grained the graph snapshots ought to be. Certain
events may be anomalous simply because they happened at a certain time of day [31], which would
evade our system if snapshots spanned a full day of activity. Finally, we note that, depending on
how EULER is implemented, there may be some delay in detection time. With a predictive model,
new edges can be scored as they appear, which takes a negligible amount of time. However, if
EULER uses the detection mode, then it must wait for an entire snapshot to be generated before it
may score the events that occurred. However, experiments showed smaller snapshots resulted in
better performance for the model; the delay incurred waiting for a snapshot would be between 6
and 30 minutes using our hyperparameters. As lateral movement is a “low-and-slow” process, this
would likely not be a problem.

To alleviate some of these difficulties, we focus on datasets with large bases of training data from
which to learn these patterns. In a real-world setting, there are countless commercial and academic
systems for network security monitoring that could be employed to build a large database for
training [1, 23, 40]. This assumes that the logged data does not contain anomalous activity, but this
can be verified using a signature-based system during its collection, or other expert analysis. Our
focus on lateral movement detection means only internal communications are used for training,
further reducing the risk of anomalous behavior in the training set (e.g., users visiting websites for
the first time, novel events that are “anomalous” but not malicious). This means that our models
will be unable to detect the initial compromise but are trained to find irregularities in inter-host
communications, a signature indicative of lateral movement [20].

To capture these suspect communications, at a minimum, we need the information about the
sources and destinations of traffic sources within an organization. In our experiments, we used
authentication records and data flow objects as the means of tracking these things. Both data
sources largely represent the same thing: a user or system attempting to use a service on a remote
device. As a threat-actor attempts to traverse a large network of computers, they will endeavor to
do so slowly and sneakily, so it is unlikely they would use a service that is not monitored by these
tracking services in the datasets [71]. However, we concede that if there are holes in a systems
auditing that ignore certain services, then an attacker could utilize them for lateral movement and

ACM Transactions on Privacy and Security, Vol. 26, No. 3, Article 35. Publication date: June 2023.

EuLER: Detecting Network Lateral Movement via Scalable Temporal Link Prediction 35:19

Table 6. LANL Dataset Metadata

Nodes 17,685
Events 45,871,390
Anomalous Edges 518
Duration (Days) 58

evade our (and other similar) systems’ alerts. Thus, we assume that all relevant remote tools and
services are monitored by a logging system. Beyond unique identifiers for entities within a system
to track their communications, EULER needs very little. As a temporal graph analyzer, timestamps
are required or may be inferred from the ordering of the logging events. Features for each entity,
while they may aid in false positive reduction, are not strictly needed. In this work, we use only
features that can be inferred from the unique names of system entities (whether they are users or
computers, if they are administrators, etc.). We leave additional research in feature extraction for
the nodes as a topic of future work.

8 EXPERIMENTS ON LANL

In the previous section, all datasets tested were rather small. It is not until a real-world application
of the EULER framework is tested that the true performance improvements are evident.

To demonstrate the impressive speedup achieved by this framework when compared to related
work, we evaluate several EULER models on the LANL 2015 Comprehensive Multi-Source Cyber
Security Events dataset [41]. The dataset consists of 57 days of log files from five different sources
within the Los Alamos National Laboratory’s internal corporate network as it underwent both
normal activity and a red team campaign. Specific details about this dataset are reported in Table 6.
The edge count in the table represents the number of weighted edges; multiple events between the
same entities in the same time period may be compressed into a single weighted edge. Because
events from the authentication logs have been labeled as normal or anomalous, this dataset has
been widely used for cyber security research [13, 16, 37, 81]. The labels make it especially apt for
lateral movement detection research. When an APT-level threat is attempting to traverse a system,
one possible warning sign will be authentications that should not normally occur, a sign indicative
of lateral movement on a network level [38, 42, 54].

In this section, all distributed models were implemented with four worker nodes unless other-
wise specified. All experiments are run on a server with two Intel Xeon E5-2683 v3 (2.00 GHz)
CPUs, each of which has 14 cores with 28 threads, and 512 GB of memory [5].

We will first present the utility of models following the EULER framework as an anomaly-based
intrusion detection system on the LANL dataset, then an analysis of the immense scalability af-
forded by splitting models in this way.

8.1 Graph Construction

We construct a weighted, directed graph from the authentication logs by mapping which entities
authenticate with one another. As nodes, we use the entities denoted source and destination com-
puters in the LANL documentation. For all authentications that occur from time ¢ to ¢ + J, an edge
is created between the source computer and destination computer. If an edge already exists, then
a tally keeping track of the number of authentications between the two machines is updated. Ex-
periments have shown that the most effective method to normalize these tallies into usable edge
weights is to take the logistic sigmoid of the edges’ standardized values. Mathematically, it can be
represented as

©)

W((w,0) € &) = U(M)

DY

ACM Transactions on Privacy and Security, Vol. 26, No. 3, Article 35. Publication date: June 2023.

35:20 I. J. King and H. H. Huang

where o (-) represents the sigmoid function, C(u, v) represents the frequency of an authentication
between u and v in the time window, and pig and 3 g represent the mean and standard deviation of
all edge frequencies in the time window. In this way, edges that occur very infrequently are given
lower weight during training to appear less “normal,” and edges that occur with high frequency,
such as edges from computers to domain controllers or ticket-granting servers, have high weight
and appear routine.

The LANL dataset has no node features by default, however, some information can be gleaned
from the naming convention used in the log files. Entities have unique, anonymized identifiers
that start with either a U or a C denoting users and computers, respectively. There are also nodes
with non-anonymized names that have important roles in the system such as TGT, the Kerberos
key distribution center, DC, the domain controller, and so on. To leverage this additional data, we
concatenate a 1-hot vector denoting user, computer, or special administrative machine to each
node’s one-hot ID vector.

For quicker file scanning, and data-loading times, the full 69 GB auth. txt file is split into
chunks, which each hold 10,000 seconds (approximately 3 hours) of logs. Worker machines are
issued instructions to read in certain ranges of the log files and build the temporal graphs. Work-
ers accomplish this by spawning several child processes to load multiple snapshots in parallel. The
associated edge lists and edge weight lists from each child process are combined to form the final
TGraph object, which holds a list of all edge lists, edge weights, node features, and tensor masks
to take partitions of each edge list for training.

For all experiments, the training set consists of all snapshots that occur before the first anoma-
lous edge appears in the authentication logs. This allows models to learn what normal activity
looks like. From this set, we remove the final 5% of snapshots for tuning the classifier and mask
5% of edges from each snapshot for validation.

8.2 Experimental Setup

We test three encoders in conjunction with two recurrent neural networks as well as models with
no recurrent layer to measure how much value temporal data adds to the overall embeddings.
The encoder models are GCN [47], GAT [76], and GraphSAGE [36]. The recurrent models are
GRU [21] and LSTM [39]. The models are trained in the same manner as the link detection and
link prediction models in Section 6. However, experiments showed that once a local optimum was
found and validation scores ceased improving, it rarely improved after further iterations. As such,
early stopping occurs after only 10 epochs of no improvement.

Experiments showed for every model that using smaller time windows always lead to better
results. As such, we only present the output of tests on temporal graphs with time window § =
1,800 seconds (30 minutes).

The GAT encoder uses three attention heads, which was found to be optimal via hyperparame-
ter tuning. The SAGE encoder uses maxpooling as its aggregation function, as this was found to
be optimal in their paper, and this makes it capable of discerning between certain graphs GCN
cannot [83].

Unfortunately, many other works that experiment with the LANL dataset either do not use the
dataset in full, as is the case with References [37, 81], or conduct tests on portions of the data
other than purely the authentication logs, as was done by Bai et al. [13], so it would not be fair or
meaningful to compare our results to theirs. Bowman et al. [16] does use the full authentication log
as its dataset, however, it trains on a larger set of data, using all days that contained no anomalous
activity as the training set, rather than just the days before the attack campaign. We include their
results, nonetheless. We also include the TPR and FPR of a rules-based Unknown Authentication
(UA) model reported by Reference [16]. This rule simply marks any edge that did not exist in the

ACM Transactions on Privacy and Security, Vol. 26, No. 3, Article 35. Publication date: June 2023.

EuLER: Detecting Network Lateral Movement via Scalable Temporal Link Prediction 35:21

Table 7. Performance of EULER Models on the LANL Dataset when § = 0.5

Dynamic Link Detection Dynamic Link Prediction

Encoder RNN AUC AP TPR FPR P Encoder RNN AUC AP TPR FPR P
GRU 0.9912 0.0523 86.10 0.5698 0.0054 GRU 0.9906 0.0155 85.49 0.6088 0.0050

GCN LSTM 0.9913 0.0169 89.65 0.5723 0.0056 GCN LSTM 0.9885 0.0166 78.91 0.5987 0.0047
None 0.9916 0.0116 88.57 0.4798 0.0066 None 0.9902 0.0092 86.42 0.5425 0.0057
GRU 0.9872 0.0307 84.71 0.6874 0.0044 GRU 0.9847 0.0200 86.30 1.6542 0.0019

SAGE LSTM 0.9887 0.0389 83.55 0.6591 0.0045 SAGE LSTM 0.9865 0.0228 85.29 0.8037 0.0038
None 0.8652 0.0052 79.58 24.5669 0.0001 None 0.9284 0.0020 86.23 16.525 0.0002
GRU 0.9094 0.0076 85.21 21.533 0.0001 GRU 0.8826 0.0020 87.82 21.971 0.0001

GAT LSTM 0.8713 0.0022 96.83 19.873 0.0002 GAT LSTM 0.8383 0.0002 83.42 29.297 0.0001
None 0.9867 0.0079 99.88 23.174 0.0002 None 0.9352 0.0079 88.83 20.093 0.0002

VGRNN 0.9315 0.0000 59.69 4.938 0.0000 VGRNN 0.9503 0.0004 70.00 0.280 0.0004

UA - - 72.00 4.400 0.0010

GL-LV [16] - - 67.00 1.200 0.0034

GL-GV [16] - - 85.00 0.900 0.0051

training data as anomalous. This system acts as a baseline to which we compare all other models.
Models that outperform UA’s FPR show they are capable of anticipating probable edges despite no
prior knowledge of them; models that outperform its TPR show an understanding of edge context
within the greater neighborhood, both temporal and spatial. They can detect edges that, though
previously observed, in a new context, are malicious.

By default, VGRNN operates on full adjacency matrices, however, we modified it to use sparse
edge lists for our experiments. This way it was able to scale to the large size of the LANL dataset.
Unfortunately, the E-GCN and DynGraph2Vec models could not scale to the LANL dataset. Dyn-
Graph2Vec relies on dense adjacency matrices, and the size of the 1-hot vectors used as inputs
was too large for E-GCN to process. As a result, our hardware was unable to fully evaluate these
methods, and their results are not compared to those of EULER.

All models evaluated use 32-dimensional hidden layers, and 16-dimensional embeddings. All
EuLER models use a tanh activation function between the encoder and the recurrent layers and an
edge dropout layer before the GNNs. They all determine the classification threshold according to
Equation (8) with A = 0.6, except the GraphSAGE models. For this encoder, experiments showed
A = 0.5 was more appropriate. All reported results are average scores from five independent tests
on link detection and link prediction.

8.3 Anomalous Edge Detection

It is difficult to properly evaluate methods for classifying imbalanced data, especially anomaly
detection, where small false positive rates are so critical. For this reason, in addition to the raw
true positive and false positive rates, we report precision (P), area under the curve (AUC), and
average precision (AP). This latter method is recommended for anomaly detection by Reference
[25] as especially adept for imbalanced datasets. The AUC and AP metrics evaluate the overall
quality of scores given to edges, as opposed to the quality of classification, and provide better
measurements of the model if the anomalous score threshold was to be changed. The precision
metric provides further context to the quality of classification at the specific threshold. The average
results of five experiments are shown in Table 7.

As a baseline, consider the TPR of the UA rules-based approach. This implies that 28% of
anomalous connections are those that have occurred before in the network. This supports our
claim that temporal information about the context of connections is just as important as the
entities that are authenticating. This system is an excellent baseline model to compare to, as
any model that has a higher TPR than UA must be using a more advanced metric than simply
memorizing every legitimate connection observed in normal activity. If a model has a TPR above

ACM Transactions on Privacy and Security, Vol. 26, No. 3, Article 35. Publication date: June 2023.

35:22 I. J. King and H. H. Huang

72% with an FPR lower than 4.4%, then it must be leveraging topological or temporal context
judge the validity of connections.

The results show that the GCN is the most effective encoder for link detection, and SAGE is
most effective for link prediction; this supports our claim and those of Halilaj et al. [69] that more
generalized models are more effective. The GAT models, which have 3X as many parameters as
GCN and SAGE performed quite poorly both in quality of scores and quality of classification.

Also worth noting is the way using an RNN affects the output. Surprisingly, the best AUC in
the link detection tests were from a GCN with no temporal encoder. However, this metric is not a
good indicator of model quality on datasets with imbalance as extreme as LANL. The dramatically
higher AP score of all models that use RNNs suggests temporal data strongly affects FPR and
cannot be ignored. Similarly, the models without an RNN have high precision on the GCN models.
However, again, the AP scores would indicate that while at this specific threshold omitting the
RNN is beneficial, over all thresholds, models that take time into account perform better.

In the more realistic transductive link prediction tests, though the difference between the two
RNNs tested is small in every case, the benefit they add is unquestionable. The best-performing
encoder, GraphSAGE, enjoyed a 10X improvement in AP when used in conjunction with any RNN.
The next best-performing encoder, GCN, achieved a 1.6x improvement in AP. This is evidence that
temporal information carries important context for the topological state of the network, particu-
larly for filtering false positives. Where one authentication may appear anomalous in isolation,
when viewed in the context of previous authentications, it can be correctly identified as benign.

The GL-LV and GL-GV methods do not consider time at all; the network is viewed as a static
graph. Here, we again see the benefit of using a sequence encoder in conjunction with a pure
topological embedder. The best EULER methods outperform their random walk-based approach in
terms of both TPR and FPR. Also worth noting is that because our model uses temporal graphs,
the alerts from EULER-based models come with a timestamp, making them more informative and
valuable in a real-world scenario. The prior work ranks any duplicate edges, regardless of their
temporal context, as equally anomalous.

Like EULER, VGRNN combines a sequence encoder with a temporal one. They claim that by
using temporal information as input during the topological encoding phase, complex temporal
dependencies are better encoded than without it. However, this method performs no better than
the purely statistical UA method. Even still, the false positive rate is excellent in the predictive test,
outperforming every EULER model. It is worth noting, however, the quality of likelihood scores is
very poor with this method, which implies that had the threshold for the EULER models been set
lower, their FPR would be lower with equivalent TPRs. This is readily apparent in the GCN-based
models where the FPR is only a few 10ths of a percent larger than the dynamic VGRNN, but their
TPRs are almost 10% higher.

Finally, we must concede that while the EULER models do outperform prior works, their FPRs
are still too high to be useful as an intrusion detection system on their own. Some of this can be
attributed to the dataset itself; labeled anomalous events are very coarse-grained. There are likely
many events the compromised entities engaged in that should be considered anomalous, and may
have even been detected by our models, but that are treated as false positives due to the lack of
fine-grained label information. Indeed, the red log only tracks “compromise events” and not the
further malicious activity that ensues [41].

However, even if this is not fully the case, this method has great potential as a filtering device for
further analysis tools. The low cost of processing time, which we will demonstrate later on, makes
this an efficient way to minimize the number of interactions that need to be analyzed by a signature-
based technique, for example. As we will show in Section 9, this approach can be further improved
as a step in a longer pipeline. However, even without additional analysis, we have demonstrated

ACM Transactions on Privacy and Security, Vol. 26, No. 3, Article 35. Publication date: June 2023.

EuLER: Detecting Network Lateral Movement via Scalable Temporal Link Prediction 35:23

0.99 _— —— Detection
—— Prediction
0.98
0.97 -
S 0.96
2

3 4
Snapshot Size (Hours)

Fig. 5. Change in AUC score as § increases for link prediction and detection with GCN+GRU models. Scores
are the average of five tests on the LANL dataset.

that compared to all other anomaly-based works that analyze this dataset, EULER models are the
most effective.

8.4 Parameter Analysis

Time window size, the hyperparameter §, has significant tradeoffs associated with it. As this value
decreases, the number of edges increases, requiring more processing time. As this value increases,
more repeat edges are condensed into single, weighted edges; additionally, there will be fewer
discrete timesteps for the recurrent networks to process, all contributing to faster processing time
at the expense of less precise data. With more edges, and more temporal granularity, models are
more capable of learning useful patterns across time. Figure 5 illustrates this phenomenon.

As is evident from the figure, small window sizes are more optimal for quality of scores; however,
due to the longer processing time required, and the relatively small performance improvements
as window size decreases after a certain point, it may be adequate to leave the snapshot duration
a little higher than is optimal for faster training and evaluation. Additionally, we observe that
changes in § seem to affect the link prediction model at a higher rate than the link detection one.
We suspect this is caused by the model’s inability to predict short-term temporal patterns like the
one described in Section 4 as § grows, and the predictive model is especially apt to detect this type
of anomaly.

Nonetheless, in both cases, more granular graphs lead to more informative edge scores. We
speculate that at some point, having time slices too granular would have diminishing returns, as
graphs will have too few edges to be useful. But due to the severe training time as ¢ decreases, we
have never managed to reach this point. We leave finding this boundary as an area for future work.

8.5 Interpreting the Results

Table 7 shows the results we found when testing several EULER models, the VGRNN model [35], and
the results reported by Bowman et al. [16] on the LANL dataset. In Reference [44], we concluded
that our method outperformed the others. However, as anomalous link detection is so heavily class
imbalanced, it was at times difficult to properly interpret these results.

A low false positive rate is of paramount importance, but this is very contingent on where the
cutoff threshold is set. But even assuming this threshold is set optimally, how do we factor in
the true positive rate? For our experiments, we were fortunate that EULER models outperformed
prior works in both true positive and false positive rates in many cases but consider VGRNN’s
performance on link prediction. It has the best FPR of any model, but we argue that it still is not
the best model. Looking at any one metric is deceiving. The AUC scores, which give us a glimpse
of how moving the threshold would affect things, are excellent for this.

One way we attempted to quantify this was to generate a lower bound on how much changing
the threshold would affect the TPR. Figure 6(a) demonstrates how to geometrically find the error

ACM Transactions on Privacy and Security, Vol. 26, No. 3, Article 35. Publication date: June 2023.

35:24 I. J. King and H. H. Huang

TPR

FPR FPR2 FPR1

(a) Observed error (b) Worst-case residual error

Fig. 6. Calculating the upper bound of error caused by increasing or decreasing the classification threshold.
The observed error, ¢, in the AUC is the shaded region in Figure 6(a). In the worst case, the residual error, R,
takes up the dotted region in Figure 6(b). This value is bound by AUC + ¢ + R = 1, so the TPR can decrease
by at most x.

guaranteed from the single known TPR and FPR metric. The AUC plus this known amount of error,
and the residual error, must sum to 1. In the worst case, the entire residual error would be to the
left side of the curve. Figure 6(b) places a lower bound on the TPR if the threshold were changed
to match the FPR attained by another model. The full lower bound equation is

1-A-(-1f
f

where f is the desired FPR, A is the AUC score, and ¢ and f are the observed TPR and FPR scores.

Unfortunately, for our tests, this approach did not generate useful results. In most cases, assum-
ing the residual error falls entirely on the left of the known point results in a lower bound less than
zero. However, we believe this approach to model comparison has value and present the equation
for future use.

It is challenging to properly compare models, but we were fortunate that our results were so
unambiguous. Though the TPR and FPR can provide more concrete descriptions of how these
models may perform in the real world, from a more analytic standpoint, the regression metrics
carry more information. These metrics tell us if a good threshold exists, rather than if one was
found. As models’ classification thresholds can always be tuned, metrics that measure the actual
distribution of threat scores are far more telling.

P>t , (10)

8.6 Challenges

Evaluating these temporal link prediction models came with several challenges: setting up the
experiment in a fair manner, accounting for the differences between models, and the nature of the
data itself. In this subsection, we will describe these challenges and by what means we overcame
them.

Validation and Tuning

When tuning a model’s hyperparameters, it is important to only measure their effect on a valida-
tion set. Tuning them with respect to the test data is a form of p-score hacking [78] and generally in
poor form. However, for our experiments, we did not have an especially representative validation
set. As our model was meant to be entirely unsupervised, in lieu of holding out some of the labeled
data for validation, we used a held-out set of unlabeled, benign data. In doing so, the validation
did not reflect the eventual class imbalance that would be present in the test data. Nor did it reflect
the actual nature of the test data.

ACM Transactions on Privacy and Security, Vol. 26, No. 3, Article 35. Publication date: June 2023.

EuLER: Detecting Network Lateral Movement via Scalable Temporal Link Prediction 35:25

The test data contained anomalous edges that affected the overall graph structure. As a result,
these edges would be considered in the GNN during node embedding. The negative edges in the
validation set, however, were not. This raises questions about the value of this method of validation.
Because of this, there was a large discrepancy between the validation results and the test results.
Nonetheless, it was all we could do. This may explain why more complex models such as the
GAT had such poor performance. It was very difficult to properly tune their hyperparameters on
a validation task that was dissimilar to the final test objective.

Fair Comparison

Another difficulty we faced was fair comparison of EULER to the other models. For example, the
models from Reference [16] use entirely different training parameters and experimental setups.
These approaches view the underlying graph structure as static. This entails that every interaction
between entities through time is analyzed at once. This makes it so their model is considering
fewer edges overall in its evaluation. Because EULER considers a temporal graph, duplicate edges
count more than once; false positives can occur more than once while the number of true positives
remains the same. Even if the two models classified edges in exactly the same manner, just the fact
that there are more edges in the temporal graph makes it harder to have a false positive rate lower
than the prior works.

Additionally, their models were trained on more data than ours was. Every day that does not
contain an attack was used in the training set, while only attack days were used for evaluation. Nev-
ertheless, even with these setbacks, EULER outperforms these approaches. Though the comparison
is not fair, it is biased against our model, not theirs. We believe this strengthens our argument for
EULER. We feel that unfair comparison is acceptable so long as it works in the competing methods’
favor.

Labeling the Data

The LANL dataset came with certain events that were labeled as anomalous. However, they give
very little context to what these anomalous events were. It may be the case that the labeled au-
thorizations only represent initial compromises or successful compromises. There could be many
other unlabeled anomalous authorization events that follow from these labeled events.

Furthermore, as the dataset is from a real-world system, there could still be more anomalous
events just from the users doing unusual, potentially malicious things unrelated to the documented
campaign. As these events are unlabeled, we cannot know for sure without expert assistance. How-
ever, as all methods were evaluated using the same labels, we still feel this is a fair assessment of
each of their abilities.

We did run tests under the assumption that compromised hosts compromise all other hosts they
authenticate with in the future, but the results were inconclusive. The first compromise occurs
only 2 days into the 57 days of logs. Using this new labeling system, very quickly, almost every
authentication is marked as anomalous. This is obviously not realistic or adding any value. More
likely, after a day or so the campaign ended, and the compromised hosts were reset, but again, we
did not have enough information to make such an assessment. We did have fair results by resetting
the list of compromised hosts every 24 hours, but this makes assumptions that are not backed by
the data. Ultimately, we just used the labels they provided and accepted the lower evaluation scores.
So long as we evaluate every model with the same labels, the hindrance is distributed equally.

9 EXPERIMENTS ON OPTC

In this section, we apply the lessons learned from the initial experiments on the LANL and bench-
marking datasets to a new experiment. Additionally, we apply a new augmentation to EULER to
further extract value from its embeddings.

ACM Transactions on Privacy and Security, Vol. 26, No. 3, Article 35. Publication date: June 2023.

35:26 I. J. King and H. H. Huang

Table 8. OpTC Dataset Metadata

Nodes 1,114
Events 7,773,514
Anomalous Edges 21,872
Duration (Days) 7

9.1 The OpTC Dataset

The DARPA Operationally Transparent Cyber Data Release (OpTC) dataset consists of host
logs from 1,000 machines interacting with each other and external hosts over a one-week period.
These logs span four days of benign activity and three days of differing attack campaigns. In total,
the 1.1 TB dataset contains 17.4 billion events [12] stored in a modified CAR format [59]. As we are
primarily interested in lateral movement detection over the network, we only use a small subset
of these events: all FLOW objects undertaking a START action. In this way, we create a temporal
graph of hosts on the network initiating communication with other machines. The decision to
base the graph on successful FLOW-START objects is two-fold: first, because it is a more compressed
way to represent the entirety of several FLON-MESSAGE objects, while retaining the same data;
second, because this is the most direct way in which inter-host communication is represented
in the OpTC dataset. While PROCESS-OPEN events for remote processes also capture this, they
will also always produce a FLOW-START event. Thus, it is the most efficient way to capture all
communication between hosts and where lateral movement will necessarily manifest [51, 71]. The
full metadata of this dataset is shown in Table 8.

To convert from log files to graphs, we preprocess the data to extract all FLOW-START objects and
parse out the source and destination IPs as well as the timestamp. This dataset is not labeled by
default. Rather, the curators provide a red log written by humans describing the malware campaign
and any events of note. As a result, when labeling the data, more context is available. So, unlike in
the original LANL experiments, there is no ambiguity: If an event is labeled as anomalous, then it
is because of lateral movement.

The data are labeled according to the following criteria: If the source IP was involved in a red
team event that happened that day, and if that red team event occurred before or during the time
of the logged event, then it is marked as anomalous. This decision is motivated by the assump-
tion that when a host is compromised, it remains compromised for the duration of the red team
campaign—and these campaigns each last a single day. Rather than guessing if the compromised
state of an entity should be propagated, as we attempted to in Section 8.6, the red log explicitly
states if an attempt at lateral movement was successful. So, only hosts that have been successfully
compromised produce anomalous edges. Each campaign only lasts a single day, so at the end of
each day, the state of each entity in the network returns to normal.

When the event logs have been parsed and labeled, the temporal graph is constructed in parallel
by each worker. Each worker loads a disjoint range of the labeled events, partitions them into
snapshots, and constructs edge lists from the observed interactions between IPs and their labels.
Any self-loops in the data are ignored. Though there is much data describing each node, in our
experiments, nodes have no features, so one-hot encodings of the node IDs (the identity matrix of
size |V |) are used as input features to the GNNs.

9.2 Model Augmentations

As Ouyang et al. [62] point out, the objectives of networks that embed nodes for high-fidelity
reconstruction and those that identify anomalies are often different. There may be irrelevant in-
formation encoded in the Z vectors necessary for reconstruction, but not necessarily required for
anomaly detection.

ACM Transactions on Privacy and Security, Vol. 26, No. 3, Article 35. Publication date: June 2023.

EuLER: Detecting Network Lateral Movement via Scalable Temporal Link Prediction 35:27

Therefore, we also implement their approach to anomaly detection, which we denote EULER-
SM. After embeddings for reconstruction have been generated, they are used as the inputs for
a final anomaly detection layer a(-). This layer aggregates a sample of each node’s neighbors’
embeddings and applies a final transformation upon Z; into a |'V| dimensional vector that acts as
a probability distribution that an edge exists between any two nodes at time ¢ + n. This final layer
is then defined as

P[Atyn =1 | Hy] = a(H;)

a(H;) = Softmax(WH,) (11)

1
H[= —StZt
N

where W is a trainable parameter, and S, is the identity matrix plus s randomly sampled elements
of A; per row. In practice, this is accomplished with message-passing [30], not matrix multipli-
cation. As was done by Reference [62], to create the S; matrix, we sample an equal number of
neighbors with replacement for each node during training and use the full, normalized adjacency
matrix during evaluation. The number of samples drawn, s, is a user-defined hyperparameter.
Experiments showed that s = 5 works well.

As distributing the work of graph processing is still of paramount importance, this is imple-
mented as another distributed model. The anomaly detection layer is replicated across all worker
machines after they have completed training and generated the Z embeddings. The training cy-
cle repeats with the Z embeddings being used as input to optimize the W parameter in the a(-)
function on each worker.

This technique extracts even more data from the latent Z embeddings. Unfortunately, due to
the necessity of the softmax function, this decoding strategy does not scale well with additional
hosts—though it does scale with large time periods and large edge counts—nor can it accommodate
networks that add nodes over time, as the size of the final a(H;) vector must be static. However,
we will demonstrate that there are situations where this decoding strategy is extremely beneficial.

9.3 Experimental Setup

In this section, we compare the effectiveness of several link prediction models on the OpTC dataset.
Models are trained on the first four benign days to learn the pattern of normal interactions within
the network; all snapshots after the first four baseline days are considered the test set. Because
each day in the OpTC test set represents a different attack campaign that is reset the following
day, the final hidden state of the RNNs after they process the training set is saved to be used as the
initial hidden state for the beginning of each campaign. We evaluate models using several different
sizes of snapshots and report test results of models that had the best validation AP.

For EULER(-SM) models, we tested two different RNNs: GRU [21] and LSTM [39]. For the graph
neural network, we only tested GCN [47], as the number of nodes is rather small, and prior works
have shown GCN and other models perform about equally on such datasets [69]. Unfortunately,
because the heuristic we used to label the edges is our own, there are no prior works with which to
compare our method. However, we attempt to present a fair comparison between the EULER(-SM)
models and our own implementations of EGCN and VGRNN [35, 63]. We note that these have been
modified slightly such that edge lists are used as inputs rather than full adjacency matrices, and
the loss functions use negative sampling instead of full adjacency matrix reconstruction.

9.4 Results

As is evident from the results in Table 9, EULER models that make use of the additional softmax
layer achieve the greatest results on the test data. Though the difference between an LSTM and

ACM Transactions on Privacy and Security, Vol. 26, No. 3, Article 35. Publication date: June 2023.

35:28 I. J. King and H. H. Huang

Table 9. Effectiveness of Link Prediction Models on the OpTC Dataset

Dynamic Link Detection Dynamic Link Prediction
Model 6 (h) AUC AP TPR(%) FPR(%) Model 6 (h) AUC AP TPR (%) FPR (%)
EGCN-O 5 0.554 0.003 67.5 58.7 EGCN-O 5 0.563 0.003 72.7 63.2
EGCN-H 3.5 0.484 0.002 83.9 85.4 EGCN-H 3.5 0.507 0.003 80.0 80.2
VGRNN 5 0.988 0.367 99.3 15.0 VGRNN 0.125 0.692 0.008 73.1 42.1
EuLer GRU 2.5 0.888 0.088 17.8 0.473 EuLer GRU 3 0.785 0.180 37.6 10.4
EuLer LSTM 2.5 0.882 0.118 17.8 0.168 EuLer LSTM 3 0.779 0.243 427 6.75

EuLer-SM GRU 0.125 0.995 0.973 97.0 0.021 EuLEr-SM GRU 0.125 0.995 0.969 93.8 0.017
EuLer-SM LSTM 0.125 0.995 0.984 96.7 0.012 EUuLer-SMLSTM 0.5 0.994 0.986 94.9 0.013

a GRU temporal embedding unit is minimal, the LSTM attains slightly higher scores overall. The
large increase in AUC and AP between the inner product decoding models and the softmax de-
coders shows that EULER is not losing information in its encodings; rather, it is being used for re-
construction moreso than anomaly detection. The dedicated network for anomaly detection adds
great value to the overall pipeline.

The competing methods performed quite poorly in comparison, likely because they, too, are
encoding for reconstruction rather than anomaly detection. Though EULER embeddings alone still
have higher metrics than the prior works in link prediction, in link detection, VGRNN is the next
best-performing algorithm behind the softmax ones. We note that VGRNN attained the highest
TPR of all models, but at the expense of a very high FPR.

Using the lower bound formula from Equation (10), we find the residual error is 109.5. Thus,
if we allow the lower bound on the TPR to be 67.5%, that of the lowest ranking model, EGCN-O,
then the FPR drops to 3.45%. VGRNN clearly outperforms the EGCN methods, but we cannot draw
any conclusions about how VGRNN would compare to the EULER-SM models. Setting the desired
FPR to such a low value results in a negative lower bound, which yields very little information.
But from the pure AUC and FPR scores alone, we can say with high confidence, the VGRNN likely
would not be able to attain such a low FPR with a similarly high TPR.

These results show that the decoder algorithm is a good direction for future work, as small
adjustments can produce great improvements without compromising the distributed architecture
of EULER.

10 SCALABILITY

The main benefit of using models that fit into the EULER framework is their scalability. While
evaluation metrics on benchmarks were generally better than prior work, there were certainly
some categories where the advanced models are comparable to our simple ones. However, as we
will show, distributed topological encoding has tremendous performance benefits.

We will first identify theoretical complexities of each model tested. For simplicity, we assume the
models are implemented using a GCN and a GRU, however, the asymptotic analysis for other GNNs
and RNNs are similar, so the following values are general. Using the characteristic equations of
GCN [47] and GRU [21], these components’ individual computational complexities are O(|E|d?L)
and O(Td?L), respectively, where d is the dimensionality of the hidden layer, L is the number of
layers, and there are T elements in each sequence. For temporal models that use the snapshotting
technique for the embedding portion, the GNN computational complexity becomes O(T|E|d%L).
However, if we assume that for EULER models there are T workers, then the complexity is the
same as a traditional GNN, with the caveat that there will be some communication overhead to
synchronize the workers. To account for this, we have added an additional term C(w) to represent
how communication time scales as more workers are added.

ACM Transactions on Privacy and Security, Vol. 26, No. 3, Article 35. Publication date: June 2023.

EuLER: Detecting Network Lateral Movement via Scalable Temporal Link Prediction 35:29

Table 10. Theoretical Runtime Analysis

Framework 0]

EULER O(|8|d:L, + Td?L, + C(w)) o) .
EGCN O(T(|E|d%L, + d?L,)) e Workers .
VGRNN O(T(IE|d*L, + d*L,))

Fig. 7. Performance improvements as more workers
are added for varying numbers of snapshots from the
LANL dataset. The model used was a GCN stacked on
a GRU. All time windows, &, are 0.5 hours.

512 16384
256

128

4096
P 1024
32 256
I I .| | |
32 64 128 256 51 32 64 128 256 5

2 1024 12 1024
Snapshots Snapshots

Seconds
o

Seconds
(- R
o &

[SNNEEN
IS

BWEGCN-O WEGCN-H mVGRNN Euler WEGCN-O WEGCN-H ®VGRNN Euler
(a) Forward propagation time (b) Backward propagation time

Fig. 8. Performance comparison between the distributed EULER model and competing methods on varying
numbers of snapshots from the LANL dataset. All time windows, §, are 0.5 hours.

For ease of reading, we show time complexities of each model tested in Table 10. As is evident
from this comparison, EULER is the only framework that can remove the T term from the expensive
GNN portion of the forward pass. As the GNN component scales with the number of edges in the
graph, it is clearly the most expensive step. By doing this step just once, rather than T times, as we
will show, there are significant performance improvements that outweigh the cost of w workers.

Figure 7 shows the speedup of a GCN stacked upon a GRU built within the framework of EULER
as more workers are added. For these experiments, we evaluate only workers that are powers of
two to ensure each worker holds the same number of snapshots. As each worker requires two
threads to run—one for the model replica and one for collective communication—our equipment
can only accommodate up to 16 workers. The framework allows for the number of workers to be
a user-defined hyperparameter, so it is effortless to distribute work across a network with enough
nodes to support it. It is evident from the chart that performance improvements are immediate.
As more workers are added, runtime improves rapidly, with negligible improvement after about
8 workers for smaller amounts of data. However, as the amount of data processed increases, per-
formance improvements diminish at a much slower rate. This is because the topological encoding
task, the bulk of which must occur on CPU due to the high number of random accesses, scales
perfectly with additional workers.

In Figure 8, we compare the best runtimes of our method to the runtimes of the serial GNN
models we used for benchmarking in Section 6. The serial methods were allowed 16 threads for
intraprocess communication for a fair comparison to our 16 worker processes. However, even with
this advantage, these methods are forced to process timesteps one at a time; they simply cannot

ACM Transactions on Privacy and Security, Vol. 26, No. 3, Article 35. Publication date: June 2023.

35:30 I. J. King and H. H. Huang

Table 11. Training Time for the Full Pipelines with § = 0.5-hour Snapshots

LANL OpTC
Training Time (s) TPE (s) | Training Time (s) TPE (s)
VGRNN 649.48 11.31 767.53 25.62
EGCN-H 1,831.46 98.53 488.08 8.47
EGCN-O 5,047.25 120.87 284.57 6.98
GCN-GRU 129.51 6.48 184.11 1.48
SAGE-GRU 145.99 10.73 165.14 1.67
EULER GAT-GRU 272.79 9.64 190.37 2.30
GCN-LSTM 115.82 6.90 170.15 1.44
SAGE-LSTM 149.19 11.06 154.69 1.72
GAT-LSTM 302.94 10.02 237.75 2.57
GCN-GRU 5,186.87 25.06 1,085.43 20.93
SAGE-GRU 4,910.13 25.40 1,024.84 20.95
FULER-SM GAT-GRU 4,835.19 24.14 753.32 21.52
GCN-LSTM 4,499.26 23.89 714.52 19.78
SAGE-LSTM 4,808.62 25.65 728.90 19.28
GAT-LSTM 4,766.39 26.30 762.22 19.33

compete with the efficiency of EULER, especially as the size of data increases. Figure 8(a) shows
that as the size of the data being processed increases, EULER’s forward propagation speed is 2X
that of the fastest competing algorithm. Additionally, by implementing EULER using DDP [52], back-
propagation is sped up dramatically. Figure 8(b) shows EULER has almost a 16X improvement in
backpropagation speed, suggesting backpropagation has near linear scaling as workers are added.

More concretely, we report the exact training time each model took in the previous experiments
in Table 11.

As is evident from these results, EULER is noticeably faster than the serial methods. On the LANL
data, the next-best method, VGRNN achieves an average time per epoch (TPE) of 11.31 s, while
EuLER with GCN+GRU averages almost half that time with the same number of parameters. On the
OpTC data, as there are fewer nodes, and thus a smaller adjacency matrix, the E-GCN models are
the best-performing serial models, attaining a TPE of 6.98 s. But still the EULER model improves
on this, showing a 4.84x speedup with a 1.44 s TPE. Other combinations of models, especially
those using GraphSAGE, which use the more expensive maxpooling aggregation function as well
as an additional parameter matrix, are slower but still outperform the serial models. We also note
that the full training time is faster for every EULER model, likely due to their simplicity. This
means that in addition to individual epochs running faster both forward and backward passes,
fewer epochs are required before convergence to, as we have shown, more accurate models. With
the softmax augmentation, the neighbor sampling and |V |-dimensional output increase latency
significantly. However, we note that their average TPE is still lower than the majority of serial
methods. Considering the evaluation improvement they show on smaller datasets, we feel this is
an acceptable tradeoff.

Of course, as more workers are added, there will eventually be some diminishing returns.
Though we were not able to reach this level with our hardware, it is worth attempting to quan-
tify a theoretical bound on the end of these benefits. To do this, we run a number of experiments.
In these experiments, we time individual components of the EULER model in an attempt to break
down the exact runtime of each component so we can determine the exact latencies of different
phases of the model.

ACM Transactions on Privacy and Security, Vol. 26, No. 3, Article 35. Publication date: June 2023.

EuLER: Detecting Network Lateral Movement via Scalable Temporal Link Prediction 35:31

Factors for Euler Runtime Serial Runtime

Runtime (s)
EoN N W
& 8 & 8
Runtime (s)
T
G 8 & 8

S
)

P | e

0 0

10 375 740 1105 1470 1836 2201 2566 2931 3297 3662 4027 10 375 740 1105 1470 1836 2201 2566 2931 3297 3662 4027
Snapshots Snapshots

mWRNN Communication Encoders mWRNN Single Enc
(a) Components of distributed runtime (b) Components of serial runtime

Fig. 9. Itemized runtimes of a EULER model performing forward propagation on differently sized data with
16 workers.

Figure 9 shows the latency of each phase of the EULER model, broken into runtimes for the
MPNN embedders, communication time to synchronize the workers’ output, and the RNN’s time
to process this output. As is evident from these figures, the time it takes to synchronize the commu-
nication from each worker is far less than the time it would take to run each worker in serial, the
difference between Figures 9(a) and 9(b), respectively. Unsurprisingly, the amount of time it takes
to calculate the embeddings in serial is approximately 16X that of what it takes to calculate them
in parallel. However, the communication time spent waiting for the tensors to be transmitted over
the network, and for the notification that the asynchronous promise has been completed, does take
a significant amount of time: approximately three times as long as the embedding phase itself. And
this latency varies as more workers are added. To quantify a theoretical bound on the benefit en-
joyed as we add additional workers, we must determine how this communication time scales with
additional workers, as well as if larger quantities of data has adverse effects on the waiting time.

In Figure 10, we report the communication latency as more workers are added for varying num-
bers of snapshots the workers process. These values are the average of 10 independent runs across
randomly generated Erdos Rényi graphs [27] to ensure realistic load imbalances with similar node
counts and branch factors as those found in LANL (1,000 nodes, and p = 0.2). Each snapshot
generated has between 10,000 and 20,000 edges, the exact value sampled from the uniform dis-
tribution, and assigned according to the Erdés Rényi formula. We find that when these latencies
are normalized, the size of the data being transmitted has very little effect on performance. How-
ever, latency does scale linearly as more workers are added. It approximately follows the slope
L(w) = 0.017(5% + %) for w > 1. However, this hardly seems realistic given enough processors, so
we will also consider the worst case where L(w) = O(2?). If this is the case on our hardware as
more workers are added, then communication overhead roughly doubles every 16 workers. How-
ever, this value is highly contingent on the interprocess communication method used and will vary
across different implementations of EULER on different hardware.

With this doubling factor found, we present an equation to bound the effectiveness of adding
additional workers:

Es < %(L(w) +E), (12)

where E represents the time to encode a single snapshot, L(w) represents the communication la-
tency for w workers, and s is the number of snapshots. The largest positive value w for which this
inequality holds is the maximum number of workers that will still be beneficial to add.

Through the results found in Figure 10, we see that the number of snapshots per worker has
little effect on its latency. Thus, we can simplify the inequality by assuming, in a perfect scenario,

ACM Transactions on Privacy and Security, Vol. 26, No. 3, Article 35. Publication date: June 2023.

35:32 I. J. King and H. H. Huang

Number of Workers vs Communication Latency
Lw) = 0"
1
z 1 g
§ o9 =
é 0.8
% 0.7
g 0.6 L(w) = O(n)
Z 05 N
04
i 2 3 a4 5 6 T 8 9 10 11 12 13 14 15 16
Workers ¢
=
—] c— 4 8 e 16 w—3) cmm—(l o—08 w—256 0 2 30 % 5% ©
Fig. 10. Effect of new workers on communication Fig. 11. Approximate theoretical bounds on the ben-
latency with varying load sizes, normalized. efit of adding additional workers contingent on how
L(w) scales.

there will be the same number of workers as snapshots. This allows us to rearrange the inequality

as

wﬁ%+l. (13)

Under the assumption that L(w) is linear, this inequality holds for all w > 5, which is dubious. So,

we will instead assume L(w) = 0.0172 1 and find the bound in the worst case. Finally, we input
the values we found for the various variables to find

© <0.017x 2%

+1, 14
0.005 (14)

which we plot in Figure 11, along with the linear case. Note that the two functions do not sig-
nificantly diverge until after 20 workers: beyond our hardware’s ability to evaluate. This is why
we must consider both cases. Thus, after 70 workers, there will be diminishing returns due to the
communication overhead in the worst case.*

11 CONCLUSION

In this work, we presented the EULER framework: a method to exploit the previously untapped po-
tential for distributing the work done to train and execute temporal graph link predictors. When
each topological encoder can operate independently, the most compute-heavy task of generating
node embeddings can be scaled in a highly efficient manner. Though models following this frame-
work are necessarily simple, we have shown that for anomalous link detection and prediction, mod-
els following the EULER framework perform as well, or better, than their complex contemporaries.

Finally, we showed how this framework can be used to train highly precise anomaly-based in-
trusion detection systems when network activity is viewed through the abstraction of a temporal
graph. These intrusion detection systems are scalable and more sound than other unsupervised
techniques despite being trained with less data. Additionally, we found that further improvements
could be made to the classifier by implementing a softmax decoder, rather than the simple in-
ner product logistic regression on the raw embeddings. We showed that while the embeddings
produced by these models have value on their own, we can extract even more information with
additional processing; possibly enough to use this system in a real-world setting.

4If we instead assume L(w) is polynomial, using least squares regression to find the parabola of best fit, then this value
increases to 2,625. The true value is likely somewhere in between.

ACM Transactions on Privacy and Security, Vol. 26, No. 3, Article 35. Publication date: June 2023.

EuLER: Detecting Network Lateral Movement via Scalable Temporal Link Prediction 35:33

Future work may include testing other topological or temporal encoders that we did not. As this
framework allows for scalable message-passing graph neural networks, future work could even
include testing this technique on any large temporal graph dataset previously thought intractable
for GNNs.

REFERENCES

[1] 2023. About zeek — Book of zeek (v5.1.0). Zeek Documentation (2023). https://docs.zeek.org/en/current/about.html.

[2] 2019. Distributed RPC framework. PyTorch Master Documentation (2019). https://pytorch.org/docs/master/rpc.html.

[3] 2022. Pytorch/tensorpipe: A tensor-aware point-to-point communication primitive for machine learning. Py-
torch/tensorpipe (2022). Retrieved from https://github.com/pytorch/tensorpipe.

[4] Stephen D. Bay, Dennis Kibler, Michael J. Pazzani, and Padhraic Smyth.2000. The UCI KDD archive of large data sets
for data mining research and experimentation. ACM SIGKDD Explorations Newsletter 2, 2 (2000), 81-85.

[5] 2014. Intel xeon processor E5-2683 v3 (35M Cache, 2.00 GHz) product specifications. Intel Product Specifications: Pro-
cessors (2014). Retrieved from https://ark.intel.com/content/www/us/en/ark/products/81055/intel-xeon-processor-e5-
2683-v3-35m-cache-2-00-ghz.html.

[6] Ed Williams, SpiderLab Trustwave, and Edward Millington. 2020. OS credential dumping: LSASS memory, sub-
technique T1003.001. Mitre Att&ck (2020). https://attack.mitre.org/techniques/T1003/001/.

[7] Ryan Becwar and Vincent Le Toux. 2020. Use alternate authentication material: Pass the ticket, Sub-technique
T1550.003. Mitre Att&ck (2020). Retrieved from https://attack.mitre.org/techniques/1156T1550/003/.

[8] Jon Sternstein, Mark Wee, Praetorian Netskope, Prasad Somasamduram, Sekhar Sarukkai, Syed Ummar Faroogh,
and Yossi Weizman. 2017. Valid accounts. MITRE ATT&CK (2017). Retrieved from https://attack.mitre.org/techniques/
T1078/.

[9] 2018. Lateral movement, tactic TA0008. MITRE ATT&CK (2018). https://attack.mitre.org/tactics/TA0008/.

[10] Ammar Alazab, Michael Hobbs, Jemal Abawajy, and Moutaz Alazab. 2012. Using feature selection for intrusion detec-
tion system. In Proceedings of the International Symposium on Communications and Information Technologies (ISCIT).
IEEE, 296-301.

[11] Gene M. Amdahl. 1967. Validity of the single processor approach to achieving large scale computing capabilities. In
Proceedings of the Spring Joint Computer Conference. 483-485.

[12] Md Monowar Anjum, Shahrear Igbal, and Benoit Hamelin. 2021. Analyzing the usefulness of the DARPA OpTC dataset
in cyber threat detection research. In Proceedings of the 26th ACM Symposium on Access Control Models and Technolo-
gies. 27-32.

[13] Tim Bai, Haibo Bian, Abbas Abou Daya, Mohammad A. Salahuddin, Noura Limam, and Raouf Boutaba. 2019. A ma-

chine learning approach for RDP-based lateral movement detection. In Proceedings of the IEEE 44th Conference on

Local Computer Networks (LCN). IEEE, 242-245.

Siddharth Bhatia, Bryan Hooi, Minji Yoon, Kijung Shin, and Christos Faloutsos. 2020. MIDAS: Microcluster-based

detector of anomalies in edge streams. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34.

3242-3249.

[15] Haibo Bian, Tim Bai, Mohammad A. Salahuddin, Noura Limam, Abbas Abou Daya, and Raouf Boutaba. 2021. Uncov-
ering lateral movement using authentication logs. IEEE Trans. Netw. Serv. Manag. 18, 1 (2021), 1049-1063.

[16] Benjamin Bowman, Craig Laprade, Yuede Ji, and H. Howie Huang. 2020. Detecting lateral movement in enterprise
computer networks with unsupervised graph AL In Proceedings of the 23rd International Symposium on Research in
Attacks, Intrusions and Defenses (RAID’20). 257-268.

[17] Anna L. Buczak and Erhan Guven. 2015. A survey of data mining and machine learning methods for cyber security
intrusion detection. IEEE Commun. Surv. Tutor. 18, 2 (2015), 1153-1176.

[18] Brian Caswell and Jay Beale. 2004. Snort 2.1 Intrusion Detection. Elsevier.

[19] Jinyin Chen, Xuanheng Xu, Yangyang Wu, and Haibin Zheng. 2018. GC-LSTM: Graph convolution embedded LSTM
for dynamic link prediction. arXiv preprint arXiv:1812.04206 (2018).

[20] Pin-Yu Chen, Sutanay Choudhuri, Luke Rodriguez, Alfred Hero, and Indrajit Ray. 2019. Enterprise cyber resiliency
against lateral movement: A graph theoretic approach. Industrial Control Systems Security and Resiliency, Springer
Nature. DOI : https://doi.org/10.1007/978-3-030-18214-4 5

[21] Kyunghyun Cho, Bart Van Merriénboer, Dzmitry Bahdanau, and Yoshua Bengio. 2014. On the properties of neural
machine translation: Encoder-decoder approaches. arXiv preprint arXiv:1409.1259 (2014).

[22] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. 2014. Empirical evaluation of gated recur-
rent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555 (2014).

[23] Benoit Claise. 2004. Cisco systems netflow services export version 9. The Internet Engineering Task Force (IETF), Net-
work Working Group, Technical Report. Retrieved from https://www.ietf.org/rfc/rfc3954.txt.

—
—
-

fla

ACM Transactions on Privacy and Security, Vol. 26, No. 3, Article 35. Publication date: June 2023.

https://docs.zeek.org/en/current/about.html
https://pytorch.org/docs/master/rpc.html
https://github.com/pytorch/tensorpipe
https://ark.intel.%20com/content/www/us/en/ark/products/81055/intel-xeon-processor-e5-2683-v3-35m-cache-2-00-ghz.html
https://attack.mitre.org/techniques/T1003/001/
https://attack.mitre.org/techniques/1156T1550/003/
https://attack.mitre.org/techniques/T1078/
https://attack.mitre.org/tactics/TA0008/
https://doi.org/10.1007/978-3-030-18214-4_5
https://www.ietf.org/rfc/rfc3954.txt

35:34 I. J. King and H. H. Huang

[24]
[25]
[26]
[27]
[28]
[29]
[30]
[31]
[32]
(33]
[34]

[35]

[36]
[37]
(38]
[39]
[40]
[41]
[42]
[43]

[44]

[45]
[46]
[47]

(48]
[49]

[50]

L. Dhanabal and S. P. Shantharajah. 2015. A study on NSL-KDD dataset for intrusion detection system based on
classification algorithms. Int. J. Adv. Res. Comput. Commun. Eng. 4, 6 (2015), 446-452.

Aswathy Divakaran and Anuraj Mohan. 2019. Temporal link prediction: A survey. New Gener. Comput. 38 (2019),
213-258.

Mohamed Gamal El-Hadidi and Marianne A. Azer. 2020. Detecting Mimikatz in lateral movements using Mutex. In
Proceedings of the 15th International Conference on Computer Engineering and Systems (ICCES). IEEE, 1-6.

Paul Erdds and Alfréd Rényi. 2011. On the evolution of random graphs. In The Structure and Dynamics of Networks.
Princeton University Press, 38-82.

Fahimeh Farahnakian and Jukka Heikkonen. 2018. A deep auto-encoder based approach for intrusion detection system.
In Proceedings of the 20th International Conference on Advanced Communication Technology (ICACT). IEEE, 178-183.
Chuanpu Fu, Qi Li, Meng Shen, and Ke Xu. 2021. Realtime robust malicious traffic detection via frequency domain
analysis. In Proceedings of the ACM SIGSAC Conference on Computer and Communications Security. 3431-3446.

Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl. 2017. Neural message passing
for quantum chemistry. In Proceedings of the International Conference on Machine Learning. PMLR, 1263-1272.
Joshua Glasser and Brian Lindauer. 2013. Bridging the gap: A pragmatic approach to generating insider threat data.
In Proceedings of the IEEE Security and Privacy Workshops. IEEE, 98-104.

Palash Goyal, Sujit Rokka Chhetri, and Arquimedes Canedo. 2020. dyngraph2vec: Capturing network dynamics using
dynamic graph representation learning. Knowl.-based Syst. 187 (2020), 104816.

Palash Goyal, Nitin Kamra, Xinran He, and Yan Liu. 2018. DynGEM: Deep embedding method for dynamic graphs.
arXiv preprint arXiv:1805.11273 (2018).

Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for networks. In Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 855-864.

Ehsan Hajiramezanali, Arman Hasanzadeh, Krishna Narayanan, Nick Duffield, Mingyuan Zhou, and Xiaoning
Qian. 2019. Variational graph recurrent neural networks. In Advances in Neural Information Processing Sys-
tems, Vol. 32. Curran Associates, Inc., 10701-10711. Retrieved from https://proceedings.neurips.cc/paper/2019/file/
a6b8deb7798e7532ade2a8934477d3ce-Paper.pdf.

William L. Hamilton, Rex Ying, and Jure Leskovec. 2017. Inductive representation learning on large graphs. arXiv
preprint arXiv:1706.02216 (2017).

Nick Heard and Patrick Rubin-Delanchy. 2016. Network-wide anomaly detection via the Dirichlet process. In Proceed-
ings of the IEEE Conference on Intelligence and Security Informatics (ISI). IEEE, 220-224.

Grant Ho, Mayank Dhiman, Devdatta Akhawe, Vern Paxson, Stefan Savage, Geoffrey M. Voelker, and David Wag-
ner. 2021. Hopper: Modeling and detecting lateral movement. In Proceedings of the 30th USENIX Security Symposium
(USENIX Security’21). 3093-3110.

Sepp Hochreiter and Jirgen Schmidhuber. 1997. Long short-term memory. Neural Computat. 9, 8 (1997), 1735-1780.
Hassaan Irshad, Gabriela Ciocarlie, Ashish Gehani, Vinod Yegneswaran, Kyu Hyung Lee, Jignesh Patel, Somesh Jha,
Yonghwi Kwon, Dongyan Xu, and Xiangyu Zhang. 2021. TRACE: Enterprise-wide provenance tracking for real-time
apt detection. IEEE Trans. Inf. Forens. Secur. 16 (2021), 4363-4376.

Alexander D. Kent. 2015. Comprehensive, Multi-source Cyber-security Events Data Set. Technical Report. Los Alamos
National Lab. (LANL), Los Alamos, NM.

Alexander D. Kent, Lorie M. Liebrock, and Joshua C. Neil. 2015. Authentication graphs: Analyzing user behavior
within an enterprise network. Comput. Secur. 48 (2015), 150-166.

Adam Khalid, Anazida Zainal, Mohd Aizaini Maarof, and Fuad A. Ghaleb. 2021. Advanced persistent threat detection:
A survey. In Proceedings of the 3rd International Cyber Resilience Conference (CRC). IEEE, 1-6.

Isaiah J. King and H. Howie Huang. 2022. Euler: Detecting network lateral movement via scalable temporal graph
link prediction. In Proceedings of the Network and Distributed System Security Symposium. Internet Society. DOI : https:
//doi.org/10.14722/ndss.2022.24107

Samuel T. King and Peter M. Chen. 2003. Backtracking intrusions. In Proceedings of the 19th ACM Symposium on
Operating Systems Principles. 223-236.

Diederik P. Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980
(2014).

Thomas N. Kipf and Max Welling. 2016. Semi-supervised classification with graph convolutional networks. arXiv
preprint arXiv:1609.02907 (2016).

Thomas N. Kipf and Max Welling. 2016. Variational graph auto-encoders. arXiv preprint arXiv:1611.07308 (2016).

Jon Kleinberg and Eva Tardos. 2006. Interval scheduling: The greedy algorithm stays ahead. In Algorithm Design.
Addison Wesley.

Mu Li, David G. Andersen, Jun Woo Park, Alexander J. Smola, Amr Ahmed, Vanja Josifovski, James Long, Eugene J.
Shekita, and Bor-Yiing Su. 2014. Scaling distributed machine learning with the parameter server. In Proceedings of the
11th USENIX Symposium on Operating Systems Design and Implementation (OSDI’14). 583-598.

ACM Transactions on Privacy and Security, Vol. 26, No. 3, Article 35. Publication date: June 2023.

https://proceedings.neurips.cc/paper/2019/file/a6b8deb7798e7532ade2a8934477d3ce-Paper.pdf
https://doi.org/10.14722/ndss.2022.24107

EuLER: Detecting Network Lateral Movement via Scalable Temporal Link Prediction 35:35

[51] Meicong Li, Wei Huang, Yongbin Wang, Wenqing Fan, and Jianfang Li. 2016. The study of APT attack stage model. In
Proceedings of the IEEE/ACIS 15th International Conference on Computer and Information Science (ICIS). IEEE, 1-5.

[52] Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar, Pieter Noordhuis, Teng Li, Adam Paszke, Jeff Smith, Brian
Vaughan, Pritam Damania, et al. 2020. PyTorch distributed: Experiences on accelerating data parallel training. arXiv
preprint arXiv:2006.15704 (2020).

[53] Taisong Li, Jiawei Zhang, S. Yu Philip, Yan Zhang, and Yonghong Yan. 2018. Deep dynamic network embedding for

link prediction. IEEE Access 6 (2018), 29219-29230.

Qingyun Liu, Jack W. Stokes, Rob Mead, Tim Burrell, Ian Hellen, John Lambert, Andrey Marochko, and Weidong Cui.

2018. Latte: Large-scale lateral movement detection. In Proceedings of the IEEE Military Communications Conference

(MILCOM). IEEE, 1-6.

[55] Ritika Lohiya and Ankit Thakkar. 2021. Intrusion detection using deep neural network with antirectifier layer. In
Applied Soft Computing and Communication Networks. Springer, 89-105.

[56] Sadegh M. Milajerdi, Birhanu Eshete, Rigel Gjomemo, and V. N. Venkatakrishnan. 2019. Poirot: Aligning attack be-
havior with kernel audit records for cyber threat hunting. In Proceedings of the ACM SIGSAC Conference on Computer
and Communications Security. 1795-1812.

[57] Sadegh M. Milajerdi, Rigel Gjomemo, Birhanu Eshete, Ramachandran Sekar, and V. N. Venkatakrishnan. 2019. Holmes:
Real-time apt detection through correlation of suspicious information flows. In Proceedings of the IEEE Symposium on
Security and Privacy (SP). IEEE, 1137-1152.

[58] Yisroel Mirsky, Tomer Doitshman, Yuval Elovici, and Asaf Shabtai. 2018. Kitsune: An ensemble of autoencoders for
online network intrusion detection. Mach. Learn. 5 (2018), 2.

[59] MITRE. 2022. Data Model | MITRE Cyber Analytics Repository. Retrieved from https://car.mitre.org/data_model/.

Ghulam Mohi-ud din. 2018. NSL-KDD. DOI : https://doi.org/10.21227/425a-3e55

[61] Giang Hoang Nguyen, John Boaz Lee, Ryan A. Rossi, Nesreen K. Ahmed, Eunyee Koh, and Sungchul Kim. 2018.
Continuous-time dynamic network embeddings. In Proceedings of the Web Conference. 969-976.

[62] Linshu Ouyang, Yongzheng Zhang, and Yipeng Wang. 2020. Unified graph embedding-based anomalous edge detec-
tion. In Proceedings of the International Joint Conference on Neural Networks (IJCNN). IEEE, 1-8.

[63] Aldo Pareja, Giacomo Domeniconi, Jie Chen, Tengfei Ma, Toyotaro Suzumura, Hiroki Kanezashi, Tim Kaler, Tao
Schardl, and Charles Leiserson. 2020. EvolveGCN: Evolving graph convolutional networks for dynamic graphs. In
Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34. 5363-5370.

[64] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. DeepWalk: Online learning of social representations. In Pro-
ceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 701-710.

[65] Mahmudur Rahman, Tanay Kumar Saha, Mohammad Al Hasan, Kevin S. Xu, and Chandan K. Reddy. 2018. Dylink2vec:
Effective feature representation for link prediction in dynamic networks. arXiv preprint arXiv:1804.05755 (2018).

[66] Aravind Sankar, Yanhong Wu, Liang Gou, Wei Zhang, and Hao Yang. 2018. Dynamic graph representation learning
via self-attention networks. arXiv preprint arXiv:1812.09430 (2018).

[67] Igbal H. Sarker. 2021. CyberLearning: Effectiveness analysis of machine learning security modeling to detect cyber-
anomalies and multi-attacks. Internet Things 14 (2021), 100393.

[68] Youngjoo Seo, Michaél Defferrard, Pierre Vandergheynst, and Xavier Bresson. 2018. Structured sequence modeling

with graph convolutional recurrent networks. In Proceedings of the International Conference on Neural Information

Processing. Springer, 362-373.

Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Giinnemann. 2018. Pitfalls of graph

neural network evaluation. arXiv preprint arXiv:1811.05868 (2018).

[70] Michele Starnini, Andrea Baronchelli, Alain Barrat, and Romualdo Pastor-Satorras. 2012. Random walks on temporal
networks. Phys. Rev. E 85, 5 (2012), 056115.

[71] Branka Stojanovi¢, Katharina Hofer-Schmitz, and Ulrike Kleb. 2020. APT datasets and attack modeling for automated
detection methods: A review. Comput. Secur. 92 (2020), 101734.

[72] Blake E. Strom, Andy Applebaum, Doug P. Miller, Kathryn C. Nickels, Adam G. Pennington, and Cody B. Thomas.
2018. Mitre attack: Design and philosophy. The MITRE Corporation, Technical Report.

[73] Aynaz Taheri, Kevin Gimpel, and Tanya Berger-Wolf. 2019. Learning to represent the evolution of dynamic graphs
with recurrent models. In Proceedings of the World Wide Web Conference. 301-307.

[74] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei. 2015. Line: Large-scale information
network embedding. In Proceedings of the 24th International Conference on World Wide Web. 1067-1077.

[75] Jacob Torrey. 2020. GitHub - darpa-i2o/Transparent-Computing: Material from the DARPA Transparent Computing
Program. Retrieved from https://github.com/darpa-i2o/Transparent-Computing.

[76] Petar Velickovi¢, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua Bengio. 2017. Graph
attention networks. arXiv preprint arXiv:1710.10903 (2017).

(54

flan)

—
(=)
=]

-

(69

—

ACM Transactions on Privacy and Security, Vol. 26, No. 3, Article 35. Publication date: June 2023.

https://car.mitre.org/data_model/
https://doi.org/10.21227/425a-3e55
https://github.com/darpa-i2o/Transparent-Computing

35:36 I. J. King and H. H. Huang

[77] Joost Verbraeken, Matthijs Wolting, Jonathan Katzy, Jeroen Kloppenburg, Tim Verbelen, and Jan S. Rellermeyer. 2020.
A survey on distributed machine learning. ACM Comput. Surv. 53, 2 (2020), 1-33.

[78] Anthony Yu-Tung Wang, Ryan J. Murdock, Steven K. Kauwe, Anton O. Oliynyk, Aleksander Gurlo, Jakoah Brgoch,
Kristin A. Persson, and Taylor D. Sparks. 2020. Machine learning for materials scientists: An introductory guide toward
best practices. Chem. Mater. 32, 12 (2020), 4954-4965.

[79] Shen Wang and S. Yu Philip. 2019. Heterogeneous graph matching networks: Application to unknown malware detec-
tion. IEEE International Conference on Big Data (2019), 5401-5408. https://doi.org/10.1109/BigData47090.2019.9006464

[80] Renzheng Wei, Lijun Cai, Aimin Yu, and Dan Meng. 2021. DeepHunter: A graph neural network based approach for
robust cyber threat hunting. arXiv preprint arXiv:2104.09806 (2021).

[81] Mark Whitehouse, Marina Evangelou, and Niall M. Adams. 2016. Activity-based temporal anomaly detection in
enterprise-cyber security. In Proceedings of the IEEE Conference on Intelligence and Security Informatics (ISI). IEEE,
248-250.

[82] Eric P. Xing, Qirong Ho, Pengtao Xie, and Dai Wei. 2016. Strategies and principles of distributed machine learning on
big data. Engineering 2, 2 (2016), 179-195.

[83] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2018. How powerful are graph neural networks? arXiv
preprint arXiv:1810.00826 (2018).

[84] Ling Zhao, Yujiao Song, Chao Zhang, Yu Liu, Pu Wang, Tao Lin, Min Deng, and Haifeng Li. 2019. T-GCN: A temporal
graph convolutional network for traffic prediction. IEEE Trans. Intell. Transport. Syst. 21, 9 (2019), 3848-3858.

[85] Lekui Zhou, Yang Yang, Xiang Ren, Fei Wu, and Yueting Zhuang. 2018. Dynamic network embedding by modeling
triadic closure process. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 32.

Received 19 August 2022; revised 3 February 2023; accepted 13 March 2023

ACM Transactions on Privacy and Security, Vol. 26, No. 3, Article 35. Publication date: June 2023.

https://doi.org/10.1109/BigData47090.2019.9006464

