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1 Introduction

Our understanding of the strong interaction is tested by our ability to unravel the pattern
and production mechanism behind its bound states and resonances. The exploration of this
non-trivial and very rich spectrum is the main motivation behind the large international
experimental programs at, e.g., MAMI (Germany), ELSA (Germany), Jefferson Labora-
tory (USA), Spring-8 (Japan) or CERN (Switzerland), see [1-7] for some recent reviews.
Unravel-ing the pattern of the resonance spectrum and the mechanism behind its gener-
ation has also prompted the develop-ment of many theoretical tools such as quark mod-
els [8-10], or Dyson-Schwinger approaches [11-13]. While some features of the resonance
spectrum seem to be captured by such approaches, they also include some uncontrolled
approximations and do not allow for a first-principle connection to Quantum Chromody-
namics (QCD). Lattice QCD provides such an approach, which already reshaped the field
of hadron spectroscopy leading to many valuable insights on, e.g., the ground state spec-
trum of baryons [14] and many excited states, see e.g. refs. [15-24] as recently reviewed in
ref. [25].



Two paramount examples of the puzzles in the baryon spectrum are the negative
strangeness A(1405)1/27-resonance with its double pole structure (see for example the
recent reviews [26-28]) and the first excited state of the nucleon, the Roper resonance
N(1440)1/2%. The latter is considerably lighter than the parity partner of the nucleon, the
N(1535)1/27. This is at odds with the quark model expectation [29, 30], associated there
with the second radial excitation of the nucleon. More recent phenomenological analyses
revealed the complex analytic structure of the Roper [31-34] including the strong coupling
to the three-body (7w N) channels distorting its shape from the usual Breit-Wigner form.
Ab-initio access to such three-body systems from lattice QCD has been obscured for a long
time due to computational complexity and, equally importantly, by the lack of theoretical
tools relating lattice results to real-world quantities. The need for such tools is simply ne-
cessitated by the fact that in lattice methodology QCD Green’s functions are determined
numerically in a finite volume. Ultimately, this leads to a discretization of the obtained
real-valued spectrum to be related to the infinite-volume (real-world) interaction spectrum,
where, in general, complex-valued amplitudes occur. This cannot be overcome in an adia-
batic enlargement of the considered volume and mathematical mapping is required, usually
referred to as the quantization condition, for dedicated reviews see refs. [35-37]. Lattice
results for such systems are becoming available, see refs. [38-51]. This is also partially
fostered by the recent progress deriving three-body quantization conditions [52-80)].

In the present work we propose and test a new approach to the three-body quantization
conditions which can serve as a transparent approach to access resonant systems in a finite-
volume. Our formalism builds on the previous work [81] and is based on the particle-dimer
framework [59, 82-85], which conveniently allows us to express the self-energy diagram
of a resonant field in terms of either ordinary (asymptotically stable) meson and baryon
fields or, alternatively, one of these fields can also be replaced by an unstable field from
the particle-dimer Lagrangian. The latter in turn acquires a complex-valued self-energy
due to the coupling to stable fields going on-shell. Obviously, the interplay of these two
effects leads to an on-shell configuration of three stable intermediate particles. Indeed,
these are precisely the configurations which lead to power-law finite-volume effects. These
finite-volume effects fall into two different categories: first, effects that scale as a power
of 1/L, where L is the length of the cubic volume with periodic boundary conditions in
which finite-volume calculations are performed, and, second, the so-called exponentially
suppressed finite-volume effects. The latter are for example proportional to exp(—M; L),
where M, denotes the mass of the pion, i.e. the lightest asymptotic particle in QCD.

Thus, neglecting these exponentially suppressed contributions, one can separate off the
volume-dependent from the volume-independent quantities which ultimately allows one to
map finite- to infinite-volume quantities. To demonstrate the advantages and limitations of
the present work, we concentrate specifically on the complicated Roper resonance including
the 7N and 77w N dynamics using A and ¢ auxiliary dimer-fields. Given the presently still
scarce lattice results in this sector [38—40] we estimate the volume-independent quantities
from phenomenology. The predicted finite-volume spectrum is then compared to lattice
results both in the two- and three-body sector [38, 86].



The manuscript is organized in the following way: first, we introduce the theoretical
framework in section 2. Then, we determine the self-energy of the Roper resonance within
our theory in section 3. The sections 4 and 5 discuss the particle-dimer fields and their
contributions to the Roper self-energy, respectively. After that, the finite-volume formalism
is introduced in section 6. Our numerical calculations are discussed in section 7 and the
results are given in 8. Finally, we conclude with a brief summary and outlook in section 9.

2 Covariant non-relativistic framework

We begin with an introduction of the covariant non-relativistic effective field theory, fol-
lowing the general formalism of refs. [58, 59, 85, 87, 88], see also ref. [89] for a pedagogical
introduction. To describe a few-particle system containing pions (7) and nucleons (N),
such as the three-particle Nwrw-system, we introduce the following Lagrangian

LorN = Lagn + 1010700 + capTdTdip + e3¢ (¢ + ¢ b + carpT@ o oy + ... . (2.1)

Here, ¢ is the non-relativistic pion field and 1 the non-relativistic nucleon field. The
interaction between these particles is parameterized by the low-energy constants (LECs)
c1,2,3.4. The ellipses denote terms with higher numbers of (pion) field insertions not required
for the purpose of this work and terms with derivatives, which are not taken into account
for now. Containing short-range physics, the LECs are in general not known, but can be
determined from experimental data or lattice QCD results. The LEC c¢1, for example, can
be related to the mm scattering length. The dynamical part of the covariant Lagrangian
for the pions and nucleons is given by [88]

Lagn = Ly + Ly = ¢12W, (10, — W) ¢ +9T2Wy (10, — W) ¥, (2.2)

where

1/2

Wy = [M2—V2]"?, Wy =[m3 - V?] (2.3)

The differential operators W, and Wy contain the pion mass M, and the nucleon mass
mpy, respectively. The square root structure of these operators leads to the relativistic
energy-momentum relation in momentum space and ensures that the resulting amplitudes
(e.g. two-particle scattering amplitudes) are relativistically invariant. This is not the case
in the commonly used alternative non-relativistic treatment, which uses the Schrodinger
equation to describe the dynamics of the free particles, see e.g. ref. [85].

The Lagrangian (2.1) defines the pattern of the interactions driving the construction of
various n-particle scattering amplitudes. However, already the case of three particles would
result in a tremendous amount of Feynman diagrams. This is where the particle-dimer
formalism becomes particularly handy, which we, therefore, utilize to address the Roper
resonance. In the particle-dimer formalism one introduces an auxiliary field, called dimer
field (sometimes also referred to isobar, see e.g. ref. [90]), that incorporates two-particle
dynamics and scattering. This means one effectively reduces a three-body problem to a
two-body problem, which can be solved with much more ease. A common example to



show the strength of the dimer formalism is the calculation of the scattering amplitude of
three identical bosons, see e.g. ref. [85]. In this case one introduces a dimer field, which
describes the two-particle scattering of these bosons. Then, to obtain the three-particle
scattering amplitude, one calculates the scattering of one boson with the dimer field, which
is equivalent to three-particle scattering. The validity of this formalism has been discussed
already several times in the literature, see e.g. refs. [58, 59, 76, 85, 91]. However, the
situation becomes more complex if one has three non-identical particles, like in our case
with nucleons and pions. To investigate the Roper resonance in the N7w7-system, we need
to introduce three different dimer fields. The first dimer field is the A(1232) resonance
(from here on called the A) with quantum numbers J = 3/2%. This dimer field takes into
account intermediate P-wave nucleon-pion interactions and its quantum numbers together
with a pion overlap with the Roper resonance. The second dimer field is the ¢ with the
quantum numbers JI = 07, ie. the scalar-isoscalar resonance fo(500), formerly known
as the o-meson. It accounts for intermediate S-wave pion-pion interactions. Also here
the quantum numbers of the f3(500) with a nucleon can have an overlap with the Roper.
Finally, the third dimer field R is for the Roper resonance itself, which has the quantum
numbers of the nucleon (J¥ = 1/2%) but a larger mass.! Considering all above dimer-fields,
the particle-dimer Lagrangian takes the form

EDimer = ﬁdyn + £T ) (24)
where the dimer fields and their interactions are contained in L, which reads

Lp = R12Wg (i0; — Wg) R+ axmAATA + a, Moo
+ fiIRT¢'OR — fo[ Riow + Ro™yT] — f3[RI9A + ATGTR] — fa[Rioy + 4Tl R]
+ g ATSTOA — go[AToyp + AgTpT] + hivloToy — haloTog + 0T o]
— Gro[R'¢ot + ¥T0T¢R] — GralRToToA + AT¢TGR] — Gag[AldToy + platpA] .
(2.5)

An important detail to note is that the dimer fields A and o are not dynamical, i.e. the
Lagrangian does not contain time or spatial derivatives of these fields. For the Roper res-
onance, on the other hand, the same dynamical Lagrangian as for the nucleon and pion is
introduced with Wg = [m%, — V212 for the bare mass of the Roper mpo. Making the
Roper resonance dynamical should give a more accurate treatment of its properties. Over-
all, the dimer fields are auxiliary fields and the choice of their kinetic energy term should
depend on the overall goal of the calculation. Naturally, the introduction of derivative
terms for the dimer fields results in more complex calculations, since these terms will enter
the dimer propagators. Therefore, to simplify our analysis, we keep the A- and o-dimer
static. Additionally, it should be stressed that the Lagrangian in eq. (2.5) does not posess

'Note that there is in principle also a nucleon pole appearing in the Roper system, due to the identical
quantum numbers. This pole has to be taken into account in a lattice QCD calculations, for a recent
example of a lattice calculation of a 3-point function see ref. [92]. However, in our work we look at energies
larger than the nucleon mass so that an explicit inclusion is not necessary.



any spin- or isospin-structure. Also here the Lagrangian can be modified to include these
effects, but we do not consider them for now in this pioneering work.

There are several coupling constants in eq. (2.5) accompanying the terms describing
the interactions between the particles and dimer fields. The LECs f1234, 91,2, h1,2 and
GRro.rA,Ac can be related to the LECs in eq. (2.1) after integrating out the dimer fields.
We also have two real mass scales ma and M, for the A- and o-dimer, respectively. Very
often in the literature these mass scales are absorbed inside the definition of the auxiliary
dimer fields. We, on the other hand, want to make sure that all appearing fields have the
same dimension and later use the physical masses for our numerical calculations. Both of
these mass scales come with prefactors

an=+1, ap==+1, (2.6)

which depend on the signs of the corresponding LECs in eq. (2.1). For example, integrating
out the o-field yields
h3
a, M7

c1 = (2.7)
It can be seen that the sign of ¢; dictates the value of a,, since h3/M2 is a positive
number. Later in the manuscript, we will see how 77 scattering information (e.g. the
S-wave scattering length or the corresponding phase shifts) determine this LEC.

Another notable difference between eq. (2.5) and most other Lagrangians in the particle-
dimer picture are the interactions among the dimer fields. The Roper dimer R is allowed
to decay in one of the other dimer fields, i.e. R can decay into o N, or Ax pairs through
the interactions proportional to f3 and fy, respectively. An example for a particle-dimer
theory with two dimer fields that can interact with each other can be found in ref. [93].
After integrating out the dimer fields, interactions with an odd number of pion fields can be
obtained, e.g. the term proportional to cs in eq. (2.1) can change the number of particles.
This yields the feature that a two-particle N7 initial state could result in a three-particle
N7 final state and vice versa. Obviously, this then also means that there can in princi-
ple be a four-particle Nwwr final state when starting with an initial three-particle Nz
state, etc.. However, in practice we avoid such a four-particle (and higher) final state by a
suitable energy /momentum cutoff.

The particle-dimer Lagrangian eq. (2.5) yields the following Feynman rules for the
propagators:

ISy (.7) = g [po_in@Hd @ =, (28)

and

) = S @ ) £ P VIR (29

Looking at wy and w;, one notes that the square root differential operator in the dynamical
part of the Lagrangian leads to the well-known energy-momentum relation. Our notation



for the propagators follows the common sign convention used in the literature, see e.g. [88].
For the dimer fields, we have the bare propagator of the Roper resonance

0007 = g T < =, O

and the bare A and o propagators

_ZDOA (p07]5> = 2 _ZDS (p()vm =

2.11
QA a, M2’ (2.11)

where the latter are constant with respect to the particle energy. An explicit momentum
dependence can be given to DOA and DY by either adding higher order terms in the particle-
dimer Lagrangian eq. (2.5) or by “dressing” the propagators with the respective dimer
self-energies. The latter is discussed in detail in section 4.

3 Self-energy of the Roper resonance

The dressed propagator of the Roper resonance is given by

1
2wR(P) [wr(P) — po — i€] — Xr(po,p) ’

S (po, 7) = (3.1)

where Y r(po, p) is Roper self-energy. The pole of the propagator is obtained by finding the
zeros of the denominator, i.e.

2wR(P) [wr(D) — po] — Er(po,p) =0. (3.2)

In the infinite volume, one possibility to parameterize the pole is to choose the rest-frame,
p =0, and set pg = z for z = mpr — il'gr/2, with mp the physical mass of the Roper
resonance and I'g its width. The equation for the pole then reads

2mR0 [mRQ — Z] — ER(Z,6> =0 y (33)

which can be reordered to give

1 1 .
S Yr(z) =mpo — CTo- (Re {Zr(2)} +ilm {ZR(z)}) , (3.4)

Z=MRo —

where the self-energy has been separated into its real and imaginary part. It is then
straightforward to identify the physical mass and width

1
MRo

MR = MRy — 5 Re{Xgr(z)} , and T'p= n;m)lm {Zr(2)} . (3.5)
These two relations can, of course, only be solved iteratively, since the self-energy depends
on z itself. If the imaginary part of the self-energy vanishes, the width I'p is zero. A
vanishing real part, on the other hand, allows to set the bare mass equal to the physical
mass, i.e. mrp = MRpo.

Looking at the full particle-dimer Lagrangian in eq. (2.5), we see that there are several
interactions which lead to different contributions to the self-energy, as depicted in figure 1.



Figure 1. Feynman diagrams contributing to the Roper resonance mass at one-loop order. The
thick solid line with an arrow, the solid line with an arrow and the double solid line with an arrow
refer to the Roper resonance, the nucleon, and the A-dimer field, respectively. The dotted line
represents pions and the double solid line the o-dimer fields.

At one-loop order, the first option is a pion and a nucleon inside the loop. Since both are
stable particles and we know that the Roper R can decay into a N7 final-state, we expect
this diagram to be of great importance. The next option is N and the o-dimer inside the
loop. This diagram is interesting, because the dimer itself is an unstable particle. We know
that the Roper can decay into the No pair, but we expect that the o decays further into
two pions, which would leave us with the three particle (N77) final-state. This is similar
to the third option, a 7 and A-dimer inside the loop. Also here, the A can decay further
into a N7 state, which again results in a three-particle N7wm-system. Note, further that
one-loop tadpole diagrams do not appear in the non-relativistic theory. We can summarize
these statements, see figure 1, into the following equation

Yr(po,P) = Enx(po, D) + Xno(po. D) + Xax(po, D) , (3.6)

and our goal is to calculate the different self-energy contributions.
We start by evaluating the self-energy Xy (po,p). Applying the Feynman rules, we
obtain

4 4
S (0) = [ (i [iSno = W] iS00 = 7 [ Gz Swo = BSa(h) . (37)

From here on, we use the four-vector p as a shorthand notation for (pg,p). After dividing
by ¢ on both sides we find

XN (p) = fQQJNW (p) ’ (3'8)
with
d*k 1 1
Ine )= [ 2oy (F— R) [ (F— R) — (po — ko) — i€] 2un (k) [wn (F) — o — i€]
(3.9)

This is the main one-loop scalar integral appearing in the covariant non-relativistic frame-
work. The evaluation of this integral is non-trivial, due to the square root structures
appearing in the denominator, see e.g. ref. [94]. However, the first step is straightforward,
integrating over the time component of the loop momentum ko, i.e.

J ()—/MdkO/ = :
N (P oo 271 (271')3 4wN(ﬁ— E)WW(E)

(3.10)

1
{ [wn (5= &) — (po — ko) — i€] [wn (E) — ko — ic] } ‘



Looking at the denominator inside the brackets, we see that it has two poles in the complex
ko-plane, namely one in the upper half (positive imaginary part) and one in the lower half
(negative imaginary part). Using Cauchy’s theorem, we can solve the integral by calculating
a contour integral around one of the poles. Choosing a contour around the upper pole,?
we obtain

d>k 1
I (p) = / (2m)* dwp (p'— k)wn (k) [wn (5 — k) + wr (k) — po — i€]

(3.11)

We are left with a three-dimensional integral over the spatial momentum components,
which will also be our starting point when we consider the finite-volume case later in
section 6. One observes that the integral has a pole for py > 0 (taking ¢ — 0) and
that the integral is logarithmically divergent. It is therefore practical to use dimensional
regularization for the further evaluation. In D dimensions eq. (3.11) takes the form

dPk 1
Ie )= | (2m)P duon (57— F)eon (F) [wn (7 — F) + wr (k) — po —ie] -

(3.12)

The main complexity still comes from the square root terms in the denominator. To
)

simplify matters, let us consider the same integral in the rest frame, i.e. p = (E,0)

dPk 1
I (E) = / (2m)P 4wy (k)wr (B) [wn (k) + wr (k) — E — i€] (3.13)
such that we can rewrite the integrand as
1 _ L
dwn (K)wr (k) [wn (k) + wr (k) — E—ie] 2B |2 — ¢2(E) —ie’
+ = = ﬁl =
dwn (k)wr (k) [wn (k) + wr (k) + E + ie]
+ = = } =
4wy (k)wr (k) [wn (k) — wr(k) — E + i€]
+ = = 1~ = ’
4wy (k)wr (k)| — wn (k) + wr (k) — E + ie]
(3.14)
with
P(E) =2 (B2 miy, My) (3.15)

4FE? ’

where we used the Killén triangle function \(z,y, z) = 22 + y% + 22 — 20y — 222 — 2y2.
The rearrangement of the integrand allows us to isolate the pole of the quotient, ¢*(E),
which can be seen in the first term on the right-hand side of eq. (3.14). The remaining
three terms on the right-hand side are regular, which means that they do not contain a
pole anymore for physical values of E. Note that in this work we consider energies above

2The result of the integral does not change, if one would choose the pole in the lower half.



the nucleon mass. Therefore, these terms can be expanded in powers of the integration
momentum k leading to polynomials in |k| which vanish in dimensional regularization. We
are left with

1 dPk 1
JNW (E) - ﬁ/ (27T)D ‘];”2 _ q2(E) i )

(3.16)

which is evaluated with standard methods. After taking the limit D — 3 we obtain
N1/2 (2,02 2
L e e N B
8TE 167 B2 ’

where we used that limg o +/—¢?(E) + ie/ = +ig(E). The result of eq. (3.17) in an arbi-
trary reference frame reads [94]

JNTr (E) =

(3.17)

iINY2 (p?,mi, M2) A2 (s,m3, M2)
i _ y ) T _ ) ’ ™ , 1
Im (p) 167p? 167s (3.18)

with s = p? = p3 — |p]? the usual Mandelstam variable. Thus, the self-energy of the Roper
resonance becomes

¥ = ﬁxm 2 m2. M2 3.19
N (p) — 167rp2 D ,my, T ) ( . )

which is a notable result. Specifically, the function Jy, and with it the Roper self-energy
2

is purely imaginary at the energies of interest, i.e. p*> = m B
Next, we consider the self-energy contributions with dimer fields, i.e. o N and Aw
loop-diagram contributions. Taking ¥ A, as an example, we obtain
d*k

. o 0, o 73 d*k 1
iSar(p) = f3 / ami Dol —F)Sx(k) = aAmg/ (2m)* 20, () [ (K) — ko — €]

(3.20)

which is basically a tadpole integral, i.e. an integral over a single propagator, due to the
constant DOA propagator. These tadpole diagrams usually do not exist in non-relativistic
EFTs, since they vanish within time-ordered perturbation theory. However, if such a
diagram shows up, a common way to treat the kg-integral is to rewrite it as a contour
integral according to Cauchy’s theorem. For example, one can evaluate the kg-integral by
choosing the contour in the upper ko-plane excluding the pole. Then, YA, (p) vanishes
like the other tadpole contributions, which is the usual procedure, see ref. [89] and the
references therein for more information. On the other hand, if one would decide to include
the pole (lower plane), the following would happen: the ko-integral is replaced by 2mi
and a spatial E—integral over 1 /ww(/z) remains. But this expression does not posses a pole
and, thus, one can expand the denominator in powers of the momentum \E\, like before,
to obtain a polynomial. Dimensional regularization is then used to make the polynomial
terms disappear, so that again Y, (p) = 0. This illustrates that the loop integral vanishes
no matter how the kg-integral is performed. An analogous calculation for the No-case
shows that also Xn,(p) = 0.



This of course cannot be the final answer, which roots in the fact that the dimer
propagators are not dynamical, see eq. (2.5). Interestingly, and as we will discuss below,
improving this by dressing dimer propagators actually introduces three-particle dynamics
in the intermediate states.

4 Dressed dimer fields

We have seen that a constant dimer propagator leads to a vanishing particle-dimer self-
energy. Obviously, the constant propagator is just a first approximation and higher correc-
tions have to be taken into account. To do this, we consider the self-energies of the dimer
fields and dress the propagators as

1
DA (p) = —aAmz SROK (4.1)

for the A-dimer propagator and
1

Dy(p)=—— 4.2
for the o-dimer. The self-energies YA and Y, are given by
d*k g3
> :2/7 VS (K) = 92 A2 ()2 2 a2 n
2 =98 | GorSn e = RS:(b) = 1 2o (i a2) L (43)
and
1 d*k ih3
)y = —(2h 2/ Se(p— k)Sy (k) = —Z N2 (p?, M2, M? 4.4
P () = 5@h)* [ 5 SSnlp = W)Sn(k) = Lo GAE (9P MEALZ) L (1)

respectively. Note the additional symmetry factor of 1/2 in front of the o self-energy. The
evaluation of these self-energies is analogous to the proof of eq. (3.19) in the last section.
Due to the simpler structure of the Kéllén function in the case of two equal masses, i.e.

M (p? M2, M2) = p? (p? - AM2) (4.5)
we proceed with the o-dimer propagator. We start by reformulating the dressed propaga-
tor as

1 h3
D - , =2 4.6
O = TN M T b (&6

Subsequently, we simplify the denominator by expanding the above expression so that

_aUM3p4 —icp? \Y2 (p?, M2, M2)
agMgp* + ¢ (p* — 4MZp?)

D, (p) = (4-7)

From our initial definitions we know that a2 = 1 and we can rewrite the denominator as

a; Myp* + ¢ (p4 - 4M§p2) = (Mﬁ + 62) (p2 - ui) P, (4.8)

~10 -



where we have introduced a new mass parameter

p2 = % (4.9)
7 Mi+c '
From eq. (4.8) it is evident that u, is, indeed, one of the poles of the o-dimer. Coming
back to eq. (4.7), we can split up the expression into a real and an imaginary part

_aeMz  p? L ie AP (p? Mz M)
Mg +c2 p?—p2 M3+ c? p? — 2 '

Do (p) = (4.10)

In this form, we observe that D, (p) possesses an imaginary part above the two-particle
threshold, i.e. for p? = s > 4M2. Below threshold, D, (p) is a real-valued function. This
is in perfect agreement with the general properties of scattering amplitudes, which in this
case (mm — 7w scattering) is simply proportional to the dimer propagator

Trnorr(s) x Dy (S) (4.11)

see, e.g., refs. [25, 83]. This relation allows us to connect the coefficients appearing in D, (s)
with observables from wm-scattering. The first quantity one can look at is the scattering

length a defined via an effective range expansion?
1
q] cotd (5) = +— + O a%), (4.12)
where
Re {Tﬂ'ﬂ‘*)ﬂﬂ’(s)}
cotd (s) = . 4.13
( ) Im {Tﬂ'ﬂ'*)ﬂ'ﬂ'(s)} ( )

Here, 0 (s) is the phase shift and ¢ is the center-of-mass (CMS) three-momentum above
threshold. It can be deduced that |qg] = /s —4M2/2. To calculate the cotangent of
the phase shift, we use the proportionality between the mw-scattering amplitude and the
o-dimer propagator. We find

Re{Trr—rr(s)}  Re{D,(s)} a M? s

I {Trrnrn(s)}  Im{D, (5)} T (s, M2, 02) ’ (4.14)

and we can simplify the triangle function to A\'/2 (s, M2, M2) = 2,/s|q]. Utilizing these
identities, we obtain

a, M2 /s o, M? a, M2M,
|q] coté(s):—c\g:—c\/q_]Q—FM?r:—c+O(|(j12) . (4.15)

A comparison with eq. (4.12) shows that the scattering length «a is given by

c c h3

- & aM_ = — = — . 4.16
a, M2M, —— a, M?2 8ma, M2 (4.16)

a =

%Note that the sign in front of the 1/a term varies in the literature depending on the definition of the
effective range expansion.
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This is a very useful result, because it fixes the ratio h3/M2 and the value for a,. If the
scattering length is positive (attractive interaction) then we must set o, = —1, since all
other constants in eq. (4.16) are positive. Analogously, we set a, = +1 for a < 0 (repulsive
interaction). The mr-scattering length in the isospin I = 0 channel, where the o resonance
appears, is measured to be a!=0 M, = 0.2220+0.0128(stat.)40.0050(syst.)4-0.0037(th.), see
ref. [95]. Therefore, we conclude that a, must be —1, leading to an attractive interaction
that produces the ¢ resonance.

Instead of using the scattering length to fix the LECs of the particle-dimer Lagrangian,
one can also fit them directly to the phase shifts 0 (s). It is convenient to use the tangent
of §(s) for this
_Im{Dy(s)} e AP (s, M2 MZ) oMol Mz (4.17)

Re{D, (s)} a, M?2 s s

tand (s)

We can see that the function tan§ (s) is zero at the threshold (s = 4M2) and reaches aM,
for s — oo. Therefore, we expect that the above function is only able to describe the phase
shift in the low-energy region. However, this does not come as a surprise, since the o-dimer
field is a constant at leading order, constructed specifically to approximate the low-energy
regime. Another method to calculate the parameters of the o-dimer is to use mass and
decay width of the o-resonance. Here, one assumes that the o-dimer has the same dynamic
properties as the Roper dimer and fulfills an equation analogous to eq. (3.5). Then, one
can approximate the width of the o resonance I';, as
_ 3
o=,  STM?

T, ~ —Im{%,(p)) A2 (M2, M2, M2) (4.18)
MO'

Using phenomenological values for the mass and width of the o-resonance, one can then
fix the coupling ho. This method is more speculative, because we introduced the dimer as
a constant field and not as a dynamical one. Nonetheless, we do not abandon this method
yet, using it as an additional cross-check.

Our analysis of the o-dimer can be repeated analogously for the A-dimer. First, we
take the dressed propagator in eq. (4.1) and expand it like before to obtain

_aAmQAp4 — ibp? A2 (p?, m;, M2)
map* + 02\ (p?, miy, M2)

2
. b= (4.19)

D = —
A(p) 167’

where we again used that OéQA = 1. The two different masses inside the Kéllén function
give the propagator a more complex structure. After some algebra the denominator can
be rewritten as

mhp" + 02X (p2, my, M2) = mAp' + 02 (p' = 292 (m}; + M2) + (m}, — M2)?)

- <m4A + b2> <p2 - M2A + iv) (p2 - MQA — i1/> , (4.20)

b2 (m% + M2) b 5

- 12 —



In the case of two equal masses in the Kéllén function, the result from the o-dimer can be
restored. All together, we have

oA P! i pPAV2 (5, i, M2)

Da(p) = —
ma+ 0 (p2 —R) w2 maA+0 (p2 - pd) + 02

(4.22)

One observes that the propagator does not have poles on the real axis, in contrast to the o
case. An imaginary part emerges above the pion-nucleon threshold, p? = s > (my + M;)?,
and the relation to the mN-scattering length a,n reads

Re {Tﬂ'NAHTN(S)}
Im {TﬂN—MrN(S)}

gt PO L o). aas)

|41 cot oxn (s) = |q] Im {Dn (s)} arN

The pion-nucleon phase shift is denoted by 0,y (s) and Trn—zn(s) x Da(s) is the pion-
nucleon scattering amplitude. With A2 (s, m3, M2) = 2/5|q] and /5 = \/m% + |q1* +

VM2 + |q?, we find
2 M, M,

arNM; = — = - .
N ami (my + M) 8maxmi (my + M)

(4.24)

The experimental value of the scattering length in the isospin I = 3/2 channel from the
Roy-Steiner analysis is af\,:meﬂ = (—86.341.8) x 1073 [96], which fixes the value of aa to
be +1. Analogously to the o-case, one can also use the decay width to deduce the coupling
g2. We then have

1 95 12 2 2 g
FA~ —Im{% =22 __\V .m3, M?) | 4.25
A A {Zal@)} R 167rm5A (mA N 71') ( )

where we again stress that the above method of determining the coupling might be more
speculative than using the scattering length. The insights from this section will help us
to determine the dimer contributions to the Roper resonance self-energy. The numerical
calculation of the dimer LECs will be discussed later in section 7.

5 Roper self-energy with dynamical dimer fields

Let us now come back to the self-energy contributions of the Roper resonance. From the
No channel, we obtain the loop-integral

4
Sve ()= £ [ (;T;‘;.SN (p—K) Dy (k) . (5.1)

In section 3 we already discussed that a constant dimer propagator DY leads to a vanishing
integral. Therefore, we now consider the dressed propagator D, (k) from eq. (4.2) and

~13 -



obtain

__ r2 d4k’ 1 1
ENo (p) = — /3 / (2m)%i 2wn (7 — k) [wn (B — k) — (po — ko) — ie] @eMZ + 3, (k)

. r2 d4k' 1 ) )

= —fi / (2m)4 2w (P — E) [WN(ﬁ— E) ~(po — ko) — ie] {OCUMU + 2h5

= .

. / il 1 }1
(2m) % Ao (k — D)wr (D) [wn(k = 1) — (ko — lo) — i€] [we (1) —lo —ie] |
(5.2)

where we have used the o-dimer self-energy from eq. (4.4). We can see that the [y inte-
gration inside the o self-energy can be carried out right away according to our findings in
section 3. We then arrive at

R d% !
Yno (p) = o, M2 / (27m)% 2wy (7 — k) [wn (5 — &) — (po — ko) — ie]

-1

. =

y 2h3 d3l 1
{1 " oy M3 / (27m)3 4w, (k — Dwx (1) [ww(];— )+ wr(l) — ko — i€] }
(5.3)

The next step is to integrate out the remaining time component kg, which is a bit more
challenging. For this, we use again Cauchy’s theorem, going first to the rest-frame of the
No-system, i.e. p = (E, 6) We expand then the propagator of the o-dimer into a geometric

series

B d*k 1
Eve (B) = = / (2m)% 20 (F) [ko — (E — wn (k) + i€)]

= =

2md 1 -
) {1 %M(%/(%r)%w,r(z%—f)w,r( ) [ko — (wa(k — )+wﬂ(f)_ie)]}

___fi / d*k 1
T o, M2 (2m)Yi 2wy (R) [ko — (B — wy (k) + ie)]

= =

213 3l 1
X{”%Mi/ @) door (B — Deon (D) [Fo — (@ (F = 1) + wr () — i0)]

+<2h§ >2l/ &3l 1 r
o, Mz (2m)3 4w (k — Dwr (D) [ko — (wr(k — 1) + wr(l) — ie)]

+<2h§ )3[/ &l 1 r
oy M3 (27)3 de (K — D)wr (D) [ko — (wr(k — 1) + wr () — i€)]

v b

(5.4)

~ 14 -



Note that we rewrote the denominators containing the ko integration variable to better
exhibit the pole structure of the expression. The nucleon propagator has a pole in the
upper complex plane (kg € C), whereas all propagators appearing in the geometric series
have their pole in the lower plane. We choose the pole of the nucleon propagator and close
the contour around the upper half of the complex plane. The first appearing kg-integral is
the already discussed tadpole diagram

o0 dky 1
o _/ 27 (kg — (B — wy (k) 4 i€)] (5:5)

which we replace with its residue in the upper complex plane, i.e. Zy = 1, according to
our arguments from section 3. The next integrals can be summarized by the following
expression

I _/+°°dk‘0 1
" Jeee 2mi (kg — (E — wy(K) + i€)]

n (5.6)

= = 9

5 V 43 1
(27)% 4o (k — Dwn (D) [ko — (wr(k — 1) + wa(l) —i€)]

where n is a positive integer fulfilling n > 1. For n = 1 we obtain a similar kg-integral as
in Jy, from eq. (3.9), which can be evaluated analogously. Choosing the contour around
the upper pole we obtain

d*l 1
=] 7 taor (R~ Den (D) E —aom(F) —wnh D) —nD) i

If n > 1, the integral looks more complicated, however, there is still just one pole in the
upper complex plane resulting in a single residue. We can therefore deduce that

d3l 1
In N [/ (27’(’)3 4WW(E - f)wﬂ(f) [E - WN(E) - WW(E - f) - Wﬂ(f) + iE] . (58)

Using these results, the self-energy is given by

I A
Zve (B) == | G

x{1+ 2h3 / d31 1
agMZ ) (27)3 dwr(k — Dwr (D) [E — wn (k) — wr(k — 1) — wr(l) + ie]

+<2h2>2V &3l 1 ?
ag Mg (27)3 4w (k — Dwr (D) [E — wn (k) — wr(k — 1) — wr(l) + ie]

+}
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which is again a geometric series that can be summed up to

Bk 1
ZNO’( ) f4/< ) 2WN(E){QJM3

d3l 1
+2h§/( — -

-1
27)3 4o (k — Dwr (D) [wn (k) + we(k = 1) + wr(l) — E — i€ }

(5.10)

This remaining expression for the No self-energy now contains only the spatial integration
over an internal loop momentum ['and an external momentum E, which is a useful starting
point for a numerical evaluation. The integral in the denominator of the latter equation
produces poles, when the rest-frame energy E equals the energy of a free nucleon and two
pions

E=wnk) +wr(k—1)+ws(l). (5.11)
In other words, we encounter exactly the three particle on-shell configuration Nzw that
is crucial to describe the dynamics of the Roper system. We can analyze the result in
eq. (5.10) a little further and see what happens, when the o-dimer becomes stable. In
this case, we assume that ho — 0, which leads to a vanishing integral over the internal
momentum l_: so that the dimer propagator becomes constant, i.e.

Sy (E) = 2 /(d3k 117 /(d3k 1 1)

04(7]\4'0.2 271')3 QCUN(E) 20[0M0.2 27(')3 /‘E|2+m%\]’

which is a regular integral and vanishes in dimensional regularization. This we have already

observed in section 3 and, hence, agrees with our expectation.
A similar calculation can also be performed for the A-dimer case. Its self-energy
contribution to the Roper with the dressed dimer propagator is given by

4
San(v) = £} [ Gy (0= H) D2 B)
-k / (27)% 20 (5 — K) [wn (5 — k) — (po — ko) — ie] aamA +Da(k)

and after integrating out the ky component we arrive at

3
Yar (E) = f3/(d]; Zwl(E){QAWQA

=

. 2/ &l 1 }1
%2 ] @ don(® — Deow (D) fon(B) +on(E—1) +on(@)—E—id |
(5.14)

This result looks similar to eq. (5.10), only the LECs differ. Both dimer field self-energy
contributions to the Roper resonance mass will be investigated next. From here on, how-
ever, we will work in a finite volume, which is explored in the next section.
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6 Finite-volume formalism

In this section, we consider the Roper resonance in a finite volume (FV) and introduce the
corresponding formalism. Since lattice QCD calculations are performed on a space-time
lattice of finite size, the system under investigation is always confined in a finite volume,
which limits its spacial (and time) extent. The finite volume influences the particle system
and leads to so-called finite-volume effects. We now place the Roper resonance system in a
cubic box of length L and calculate the finite-volume energy eigenvalues (in the following
referred to as ‘energy levels’). This allows us to compare the energy levels from our effective
approach with lattice QCD spectra of the Roper. Note that for simplicity we keep the time
direction continuous.

In a finite volume the loop integral of the spatial momenta is replaced by an infinite,
three-dimensional sum while the integration over the time component remains unchanged

3k 1 - 2,
k

These changes naturally influence the self-energy of the Roper resonance as well. In par-
ticular, the poles of the FV Roper-propagator arise when

2wr(P) [wr(P) — o] — Sk (po, ) =0, (6.2)

where Zﬁ(po, p) denotes the self-energy of the Roper in the finite box. Choosing again the
rest-frame, pp = E and p'= 0, we can reformulate eq. (6.2) so that we obtain an equation
for the energy levels in the finite volume. We find

1

2mR0 (mRO—E) :E%(E) = mRo—E: 5
mRo

»L(E), (6.3)

which is the master equation for the finite-volume energy levels of the Roper resonance
in this framework. A remaining problem is the appearance of the bare mass mpgg in the
equation. However, for the numerical calculation of the energy levels we set the bare mass

equal to the physical mass mg. After this, one arrives at
mp—F — —— 5k (E)=0 (6.4)
p— —_— p— .
R omp ’

which is the equation we will work with. Note that this self-energy equation shares simi-
larities with the usual three-body quantization conditions [55, 59, 64], e.g. by accounting
for three-particle on-shell configurations, see eq. (5.11).

Next, we have to determine the exact form of £ (F). As we have seen in eq. (3.6), the
Roper self-energy consists of three contributions, which is also true in the finite volume,

Sh(E) = S5 (E) + S50 (E) + S3,(E) . (6.5)
Let us start with & _(E), which is given by

EXx(B) = f3 N« (E) (6.6)
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where J& _ is the finite-volume version of integral Jy, from eq. (3.9). We have seen in the
discussion of eq. (3.9), that the first step is integrating over the time component of the
momentum. One then arrives at eq. (3.11) and the spatial integral is now replaced by a
sum leading to

1
Jk - ( = = = )
Ne T Z 4o (R)eom () [on (F) + wr () — E] (6.7)
in the rest-frame. We expand the 1ntegrand again according to eq. (3.14) and get
1
(6.8)

JJL\} (E = —5 - = + P
i L3 2F |F|12 — o2 ’
ZE K2 — ¢2(E)

where the ellipses denote the remaining regular terms. These terms, as we have observed,
vanish in the infinite volume and lead to contributions proportional to exp(—M;,L) in the
finite volume. The latter effects are sub-leading to the other effects discussed here and are
neglected in what follows. Thus, analogous to the infinite-volume case, also in the finite

volume only the term containing the pole survives. Using eq. (6.1), we can write
1 1 1
T (E) = = Zoo (1,8%(E 6.9

where we rescaled the variable ¢(F) as §*(E) = L%*¢*(E)/(27)? and used the standard
Liischer Zeta-function [97]. The finite-volume expression for the N7 contribution is then

given by
f2
432 EL

Next, we turn to the self-energy contribution with the nucleon and o-dimer field, Z%U

Sin(B) = a7 Z00 ( (E)) : (6.10)

For this, we take the result from eq. (5.10) and replace the integrals by sums

2 1
E%a (E):_féz {aUMUZ

L (611)
2h2 1

~ Yoo (k — Dwr (D) [wn (k) + wr(k — 1) +we(l) — E — i€]

Analogously, the finite-volume contribution with pion and A-dimer field has the form

Sky (B) = Z { apnmA
1 L (6.12)

=, =, = =3 =, =,

Vwr(k) + we(k —1) + wn(l) — E — i€

These two expressions can readily be worked out numerically, however, a cutoff is naturally
required to tame the otherwise infinite sums. In our calculations, the outer sum runs to
L|k|/(27) ~ 3 to ensure a similar energy coverage as in ref. [81]. The inner momentum is
carried out until L|I|/(27) ~ 10, so that |I] > |k| is fulfilled. With these results we can now
calculate the energy levels of the Roper resonance numerically.
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7 Numerical calculation

The energy spectrum of the Roper resonance system is determined by numerically finding
solutions of

mp — E = inm (S (B) + 2k, (B) + 55, (E)) | (7.1)
with respect to £ € R. Here ¥4, ¥4  and ©K_(F) are given in egs. (6.10), (6.11)
and (6.12), respectively. Note that during the derivation of eq. (7.1), we have seen that
certain contributions decrease exponentially for large L, which we already neglected. We
therefore have to choose L large enough to justify these approximations. An avoided level
crossing in the energy spectrum is expected around the Roper resonance mass.

For the hadron masses we use the numerical values from ref. [98] and the PDG [99].
Specifically, the Roper resonance mass is mr = 1365 MeV, the pion mass in the isospin-
limit is set to M, = 139 MeV and the nucleon mass is my = 939 MeV. To fix the LECs
{f2, f3, f4, g2, ha}, we need further observables. The self-energy ¥y, for example, is pro-
portional to the LEC fy, see eq. (3.19). This constant is connected to the decay of the
Roper resonance into a nucleon and a pion. According to the PDG [99] the width of the
Roper is ' = 190 MeV, where the decay into a nucleon and a pion contributes to (approx-
imately) 65%, i.e. I'r_snr = 123.5 MeV. The other 35% contribute to the decay with two
pions in the final state, I'r_, yrr = 66.5 MeV. However, this final state can be reached by
the different intermediate No or Ar states. The decay widths into these unstable inter-
mediate states are approximately I'r_,n, = 38 MeV and I'p_ A, = 28.5 MeV [99]. We can
use these decay widths to fit some of the LECs, like fo. From eq. (3.5), we know that the
width is connected to the imaginary part of the self-energy. We find

1 1

FR—>N7r ~ —Im {ZNW(E)} = —Im {ENW(mR)} s (72)
mR E=mp MR

where Y. (mpg) consists solely of known parameters, except fo. Using the PDG estimate

for I'r_ N, we find

Trone =724 x1073f2GeV! & f, =44.13GeV . (7.3)

The sign of fo cannot be determined through this procedure, but this does not matter
for our further analysis. The matter becomes more complicated when looking at the self-
energy contributions including dimer fields. The self-energy Yy, for example, contains
three parameters ho, M, and f4 that have to be determined. We set M, to the physical mass
of the fo(500), since this scale appears in the o-dimer propagator. The PDG [99] estimates
for the fy(500) are M, = (400 — 550) MeV and I', = (400 — 700) MeV. For simplicity we
take the lower values, assuming M, = 400MeV, which also fulfills (M, + my) < mg,
and I', = 400 MeV. For the self-energy contribution from the A-dimer, ¥a,, the unknown
LECs are g2 and f3, and we also set ma to the physical delta mass. The mass and width
of the delta resonance have been more accurately determined, and we set them here to
ma = 1210 MeV and T'a = 100 MeV.

~19 —



Using these phenomenological values we determine the unknown constants as follows.
We begin with an estimate for the constants f3 and fs. Assuming that o and A are stable
final states with the same kinematic behaviour as the nucleons and pions, their self-energy
contributions to the Roper resonance mass are given by

Zstable(E) Z‘f 2\L/2 (EQ MQ) and Zstable(E) _ if?? A\L/2 (EQ m2 M2>
167 E2 N’ 7))’ Am 167 E2 y Tpy Mg )
(7.4)

Taking E“able for example, we can approximate the decay width of Roper going to a No
final state by

f2

1
Frone = miRIm {Z%?yble(E)}’E = = 167m3
=mMmRpR R

AL/2 (mR mN,MQ) . (7.5)
Using our values for the decay width and masses, one arrives at fy = +3.82GeV. An
analogous calculation with Z‘SAtj‘Tble leads to f3 = 44.55GeV, meaning that within this
approximation f3 and fy are of the same magnitude. In the future, one might also consider
lattice QCD data to determine the numerical values for these constants, but, for now, we
use the above estimations.

Next, we consider the LECs ho and go. As already stated in section 4, these constants
can be related to the two-particle scattering lengths. For hg, we found the relation given
in eq. (4.16). Using the ¢ mass, a, = —1 for an attractive interaction and the value
a’=OM, = 0.222 for the nr-scattering length, we obtain

h3 =8rM2(a’="M,) = hy==+0.95GeV . (7.6)

Now, we take a look what happens if we use the decay width to fix hy. With eq. (4.18)
and the PDG [99] data above, we find

B2 _ 8TM3T,
2=
A2 (M, MZ, M)

= hy=42.36GeV (7.7)

which is interestingly of the same order of magnitude albeit around two times larger than
the prediction from the scattering length. As of the coupling g, we use the wN-scattering
length aI 3/2]\4 = —0.086 with the delta resonance mass, an = +1 and the help of

™

q. (4.24). This yields
g = —8raami(m¥ + M2)a2? = g, = +4.96GeV (7.8)

whereas using eq. (4.25) and the above value for I'a leads to

g% _ 1671'm3AFA
N7Z (3 m3, M2)

= gy =14.22GeV . (7.9)

We see that in the A case both ways to fix the LEC go lead to approximately the same
value. This might be related to the fact that the delta resonance has a Breit-Wigner shape
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to very good accuracy. It is good to see that the particle-dimer approach is consistent with
this by giving go almost equally from the scattering length and the decay width.

Before turning to the prediction of the Roper finite-volume spectrum, we try to test
the quality of the dimer LECs determination presented above. For this we turn to the
o-dimer, and concentrate solely on the two-particle 77 final state. In the finite volume,
the o-dimer propagator is given by

1

% !
agMZ +3L(E)’ a

L3 = 4o, (F)wr (k) 2w (k) — E]
(7.10)

D, (E) = with XIZ(E)

i

where we again restricted ourselves to the rest-frame (pg = E, p'= 0). The poles of the
propagator in eq. (7.10) correspond to the interacting finite-volume energy levels of the 7
system, i.e.

1 |

fo(E) =1+ %Mgzg(E) =0. (7.11)

Using this formula we can compare the energy levels from the particle-dimer picture with
lattice QCD results. Before going to this we wish to remark that the latter condition is
related to the well established Liischer’s method [97, 100]. This can be seen by using a
similar decomposition as shown in eq. (3.14) of the integrand in (7.10). In this pilot study
of the proposed formalism, we stay with the condition (7.11) leaving a more quantitative
discussion to future studies.

Lattice studies on the o resonance have already been performed, see e.g. refs. [86, 101
104]. Here we consider results of the combined I = 0, 1,2 finite-volume analysis [22] of
GWQCD lattice results [86, 105, 106] obtained at two values of pion mass. For both cases
the 77 scattering length a/=%, the ¢ mass M, and the width I', have been determined

Set 1: M, = 0.224GeV , M,L = 3.3,

M, =0.502GeV , Ty = 0.350 GeV , a'="M, = 0.699 , (7.12)
Set 2: My = 0.315GeV , M,L = 4.6,
M, =0.591GeV , Iy, = 0.218GeV , a'="M, = 1.901 . (7.13)

We now take each data set and calculate the LEC hg from the scattering length /=M, and
width I';. For Set 1, we obtain he = 2.10 GeV using the scattering length and eq. (4.16),
and hy = 3.13 GeV using the width and eq. (4.18). For Set 2, the scattering length leads
to he = 4.08 GeV, while eq. (4.18) cannot be used. This is because of the large pion mass
M, = 0.315GeV preventing the decay of the ¢ meson into two pions. In principal, one
could test the above procedure even further by using more lattice QCD data on the ¢ meson
for various pion masses from different working groups. However, this would go beyond the
scope of this work and especially well beyond this qualitative check-up of the numerical
estimation of the dimer LECs. A comparison of those data within our framework could be
dedicated to future works. The predicted two-body finite-volume spectrum for both data
sets is depicted in figure 2. Therein, the left panel of figure 2 shows the function f,(E)
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Figure 2. Predicted energy levels (zeroes of f,(F)) of the wm-system within the o-dimer approach
using Set 1 (7.12) (left panel) and 2 (7.13) (right panel). The blue curves show the function f,(FE)
with he determined from the two scattering lengths a’=M,, in each data set and the orange curve
shows f,(E) with he determined from the decay width I', (only for Set 1). Black circles display the
lattice results with errors from ref. [22] and the grey vertical lines the non-interacting w7 energy
eigenvalues.

for data set 1 with hgy fixed by the scattering length (blue pionts) and by the decay width
(orange pionts). The zeros of this function show the energy levels for this two-pion system.
The black circles are the lattice QCD results from ref. [22]. We observe that the levels from
the blue curve lie very close to the lattice results. The orange curve, on the other hand, still
reproduces the first excited level above the two-pion threshold at ~ 1o, but the ground-
state level is at odds with the lattice result. The zero for the ground state lies very close
to E /My ~ 0. Since the driving term includes only momentum-independent structures we
do not expect any predictive power from this formalism so far below threshold. Therefore,
the constant hs fixed by the scattering length leads to a better reproduction of the lattice
results. The right panel of figure 2 shows f,(F) obtained with data set 2. Here, as stated
before, we only have the result from the scattering length estimation. The lattice results are
again depicted by the black circles. Overall, there is less agreement between the predicted
levels and those from the lattice. The ground-state level lies again well below E/M, =1
and merely the excited levels are somewhat close to the lattice QCD results. We emphasize
again that the data from set 2 are determined by a pion mass much larger than set 1 and
that the o-meson mass is smaller than two pion masses, which forbids the decay of o
into two pions. This is a condition that we did not take into account in our theoretical
framework and it might explain the large deviations between the dimer and lattice results.

There are two take-away messages from this analysis of the o-dimer propagator and
the corresponding 77 finite-volume spectrum: first, we have seen that the particle-dimer
approach works better for smaller pion masses. This does not come as a surprise, since
the dimer propagator is by construction a constant at leading order. Second, we have seen
that for lower pion mass the w7 scattering length ensures a better description of the lattice
QCD spectrum than the decay width of the o meson. Hence, we will use the scattering
length to fix the dimer LECs he and g2 for our calculation of the Roper resonance energy
levels. Finally, we note that no fit to the lattice data and, also, no similar study for the
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Figure 3. Energy levels for different box sizes L considering only pion and nucleon as intermediate
states. The red solid lines display the numerical results for the interacting energy levels and the blue
dashed lines the free (non-interacting) energy levels of the pion and nucleon for |7y 2]? = 1,2, 3,4
(lowest to highest curve). The thick solid black line marks the mass of the Roper resonance.

two-particle N7 scattering in the A channel (some lattice studies of A-resonance can be
found in refs. [107-112]) are performed in this pioneering study.

8 Results

Now that numerical values of constants are determined, we proceed with the determination
of energy levels of the Roper system for the three different channels N7, No and Ax. After
this, we also take a look at the coupled channel N7/No and compare our obtained energy
values with lattice QCD calculations. We note again that A and o fields are allowed to
decay to N7 and 7w channels, respectively. Thus, these states can simply be seen as
auxiliary degrees of freedom accounting for different configurations of the N7 system.

8.1 N channel

First of all, we perform a numerical calculation including only the ¥ contribution. That
means only pion and nucleon intermediate states are considered and we neglect the self-
energy with the o-dimer and A-dimer, i.e. we set f3 = f4 = 0 for now. The obtained levels
can be compared with the results from ref. [81], which serves as a test for the theoretical
framework. The results are displayed in figure 3, where the energy is given in units of the
nucleon mass my and the box length L is multiplied by the pion mass M, to obtain a
dimensionless quantity for the box size. The red solid lines denote the numerical results of
FE for the respective energy levels while the blue dashed lines denote the free energy levels
of the pion-nucleon final states (also in units of my)

Efe (7 ﬁ2)=\/ +(T) |n1|2 ¢M2 |n2|2. (8.1)
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Figure 4. Roper energy levels for different box sizes L considering only nucleon and o-dimer as
intermediate states. Red solid lines display the numerical results for the interacting energy levels
and grey dashed lines the free (non-interacting) lowest-lying three-particle N7m energy levels. The
thick solid black line marks the mass of the Roper resonance.

Here, 711 and 715 are the discretized momenta of the nucleon and pion with 77; +7s = 0. We
restrict ourselves to the first four levels for simplicity. The thick solid black line corresponds
to the real part of the Roper resonance mass, i.e. mr/my ~ 1.45, which is from here on
called the “critical value”. We can see clear signs of avoided level crossing at small box sizes
around the critical value, i.e. the energy levels switch from one free energy level to another,
most notably between the free levels |71 2| = 3 and |fi1 2| = 4 in figure 3. Overall, figure 3
is in very good agreement with the result obtained in ref. [81] (for more comparisons, see
ref. [113]). This is a noteworthy result considering that the present formalism is much
simpler. In ref. [81] the full Lagrangian from baryon chiral perturbation theory has been
used including Lorentz-, spin- and isospin-structure. Slight deviations in the numerical
results can be observed mostly for small values of M, L which is expected. However, the
general similarity between the numerical results is striking, making us optimistic to proceed
with this approach.

8.2 No channel

Next, we include the dimer fields starting with the o-dimer, which we studied in detail
throughout this work. We set fs and f3 to zero, leaving us with the self-energy Yy, only.
The numerical results for the No contribution are displayed in figure 4. In this system,
the free, non-interacting three-particle N7m energies are determined as

R 27r2_, 27r2_, 27r2_,
R O L OO N R R CON
(8.2)
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There are, naturally, more free energy levels in this three-particle system, but some of them
overlap with each other. Also, it should be noted that not all possible combinations of the
free Nww system have the quantum numbers of the Roper resonance Lojor = Pi1. Since
we did not include isospin, spin and angular momentum structures in our fundamental
Lagrangian, we simply show all interacting energy levels that appear in our calculation. In
figure 4 the lowest lying free N7 levels N(0)7(0)7(0) (the Nzm threshold), N(1)w(1)=(0),
N(0)r(1)m(1), and N(2)7(2)7w(0) are shown. We observe that all our obtained energy lev-
els lie very close to the non-interacting three-particle levels and converge to them for large
box sizes, similar to the two-particle case from figure 3. The energy shift is negative
caused by setting a, = —1 for the o-dimer field. We tested what happens in the case
that o, = 41 and, indeed, the interacting levels then approach the free levels from above.
There are no clear signs of avoided level crossing near the critical value. Solely the be-
haviour of the energy level between the free levels N (0)7(1)7(1) and N(2)7(2)7(0) may be
affected by avoided level crossing, being first closer to N(0)7(1)7(1), but then approaching
N(2)m(2)m(0) for ML > 5. A possible explanation why no other signs of avoided level
crossing are visible might be the fact that the interacting energy levels lie too close to the
free levels, which can mitigate the typical signature of avoided level crossing. We tested
that an increase of the constants hs and f; within reasonable limits does not change this
picture significantly. In future studies, one should reconsider the numerical estimates of all
involved LECs, perhaps with the help of newly acquired lattice data.

8.3 Am channel

Now, we take a look at the second dimer-field, the A-dimer. Analogously to the cases
before, we set the LECs fs and fy to zero, leaving us with the self-energy contribution XA,
only. The results are shown in figure 5. Like in the o-dimer spectrum, the obtained energy
levels lie very close to the non-interacting levels and asymptotically approach them for
larger box sizes. This time the free levels are approached from above due to ap = +1 and
the distance between the interacting and non-interacting levels is overall much smaller than
in the No case. Also, in figure 5 there are no visible signs of avoided level crossing. Instead,
another interesting effect appears in this spectrum: above the free levels N(1)7(1)7(0) and
N (2)7(2)m(0) there are two interacting energy levels visible, which lie very close, but do not
cross each other when increasing M L, see the zoom-in in figure 5. Indeed, these energy
levels belong to the same free energy eigenvalue, i.e. the lower energy double line belongs to
N(1)m(1)m(0) and the upper one to N(2)7(2)7(0). We tested this by reducing the coupling
g2, which causes both double lines to move closer to their respective free energy levels and
also decreases the splitting between the levels. The splitting of these interacting energy
levels comes from the fact that in the Ax system either a spectator pion or a pion within the
A-dimer propagator (A — 7N — A) can carry momentum away. Since both possibilities
come with a different LEC, f3 or g, respectively, there is a small splitting between the
levels. This also explains why we did not see such a splitting of the interacting levels in
the No spectrum. There, the nucleon is the spectator particle and the two pions interact
with each other in the o-dimer propagator, so that it does not matter which pion carries
away the momentum. The question whether this splitting should be observed in a full
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Figure 5. Energy levels for different box sizes L considering only pion and A-dimer as intermediate
states. Red solid lines display the numerical results for the interacting energy levels and grey dashed
lines the free (non-interacting) lowest-lying three-particle N7 energy levels. The thick solid black
line marks the mass of the Roper resonance. The small pictures on the right-hand side show more
precisely the behaviour of the close lying energy levels.

coupled-channel (7 N/Am/oN) calculation brings us to an interesting point. In particular,
a coupled Am/oN system allows for the appearance of a (pion) exchange diagram. These
exchange diagrams enable transitions between A- and o-dimer fields, which are important
to fulfill unitarity. Such contributions, however, cannot be included at leading one-loop
order in the self-energy, but enter at two-loop order. This issue is left out for a future work.

8.4 Nm/No coupled-channel

For our final analysis we take a look at a coupled N7/No system. This means that we
include both self-energy contributions at once in eq. (7.1), neglecting only the 7A (f3 = 0)
part for the reasons discussed before. The results of the coupled-channel energy levels are
depicted in figure 6. We restricted ourselves to ML < 5, since many energy levels appear
in this case, many of which lie too close to the non-interacting ones. Furthermore, we
note that the free levels can naturally cross as a function of ML, see the grey lines in
figure 6. However, a crossing of interacting levels would be in conflict with the hermiticity
of the perturbation theory Hamiltonian [114]. Indeed, this does not occur as shown in the
close-ups on the right-hand side of figure 6. Furthermore, we observe that the avoided
level crossing signature of the two-particle N7 spectrum seen in figure 3 is now washed
out in the coupled channel case, i.e. the interacting levels now lie much closer to the free
energy levels for small M, L. This is probably caused by the large contribution from the
double sum in the No self-energy contribution, which gives the whole self-energy function
an offset, that pushes the zeros of the function (interacting energy levels) closer to its poles
(non-interacting energy levels).
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Figure 6. Energy levels for different box sizes L considering the coupled channel with N7 and
No self-energy contributions. Red lines display the numerical results for the interacting energy
levels. Blue dashed and grey dashed lines show the non-interacting N7 and N7 energy levels,
respectively. The thick solid black line marks the mass of the Roper resonance. The small pictures
on the right-hand side show the three critical points where the interacting energy levels come very
close to each other.

8.5 Comparison to lattice QCD results

Lastly, we can test how our results compare to previously obtained lattice QCD results
from ref. [38]. Therein, the energy eigenvalues in the G irreducible representation have
been obtained in a box of length ML = 2.3 with a pion mass close to the physical point,
i.e. M; = 156 MeV, and a nucleon mass of my =~ 980 MeV, also slightly larger than the
physical value. To ensure a better comparison with the lattice results, we use these values
for M; and mpy. The other masses and LECs in our calculation are not changed, i.e. we
use the same estimates as described before in section 7. The comparison of our Nw/No
coupled channel and the lattice results is shown in figure 7. We observe that the lattice
QCD study found an energy level located at the nucleon mass, since the nucleon has the
same quantum numbers as the Roper resonance. In our calculation, this nucleon energy
level does not exist, because there is no self-energy contribution that produces a nucleon
pole. Instead, our ground-state level is located at the Nm threshold which, however, does
not have the correct quantum numbers. The Nx threshold has negative parity meaning
that it cannot show up in the Roper channel. Still, since no projection to definite parity
is done here, this state appears as the lowest level in the N7 self-energy contribution from
eq. (6.10). Note that in the baryon chiral perturbation theory framework of ref. [81] the
N7 threshold does not appear since the chiral effective Lagrangian with all the proper
symmetries forbids this state. Hence, the appearance of this threshold can be seen as an
artifact of our non-relativistic EFT approximation. Once our formalism here is extended
to include more symmetries and structures from chiral effective Lagrangians, we expect
that the N7 threshold does not enter the spectrum anymore. The next higher energy level
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Figure 7. Comparison of the Roper resonance energy levels with lattice results using the N7 and
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lines show the non-interacting N7 and Nnw energy levels, respectively.
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Figure 8. Comparison of the Roper resonance energy levels with lattice results using the N7 and
AT self-energy contributions. Red circles display the numerical results for the interacting energy
levels and black circles the lattice results with errors from ref. [38]. Blue dashed and grey dashed
lines show the non-interacting N7 and Nnw energy levels, respectively.

is the Nz threshold. Our prediction for the corresponding interacting energy level lies
slightly below the threshold, whereas the lattice prediction lies just above it. The error of
the lattice result, however, is large enough to also allow a level below the threshold. The
next observed level corresponds to the first momentum including free level, i.e. N(1)7(1).
Here, our prediction lies barely above the free level, but agrees with the lattice results
within the 1o uncertainty quoted there [38].

For completeness, we also consider the N7/Am coupled-channel for the comparison
with the lattice results. Setting f4 = 0 and turning on the A-dimer contribution, the finite-
volume spectrum is obtained and depicted in figure 8. The spectra look almost identical to
figure 7. We again include the N7 threshold in the figure according to our explanation from
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before. The only difference is that the prediction related to the Nz threshold lies now
slightly above the free level, which actually creates a better overlap with the lattice result
but also makes our prediction more consistent with a non-interacting theory. However,
more work is needed here to find a suitable way to include both A-dimer and o-dimer
fields in one coupled channel. Also, for both plots, figures 7 and 8, we emphasize that
the box length is relatively small with M, L = 2.3 meaning that exponentially suppressed
contributions can still give sizeable corrections at this point. Some of these contributions
have been neglected in our finite-volume approach, which can lead to further systematic
uncertainties.

Nevertheless, we see that even without fitting to the lattice energy eigenvalues and
assuming that the other parameters (masses and LECs) do not change by increasing the
pion and nucleon mass, our predictions agree well with the lowest-lying states of the lattice
spectrum. More specifically, we observe that our highest energy-eigenvalue (~ 1.6 GeV) is
barely shifted from the corresponding free-energy irrespectively to the inclusion of No or
A fields. The next lower energy-eigenvalue is shifted down/up from the Nz7 free-energy,
respectively to the {N7, No} or {Nw, An} cases. Neither of these cases can be preferred
statistically from the currently available lattice QCD results. Still, the fact that the energy
shift from the free energy has different signs when including No or Ar cases tells one that
when higher precision lattice results are available we indeed have the chance to resolve
interaction patterns of the Roper.

9 Summary and conclusions

In this paper, we have analyzed the finite-volume spectrum of the Roper resonance using
a particle-dimer approach. We introduced a non-relativistic covariant Lagrangian with
nucleons, pions and three dimer fields as degrees of freedom. These dimer fields are the
Roper resonance itself, the o-meson and the A-resonance. We then calculated the Roper
self-energy within our framework to one-loop order. Furthermore, we analyzed the o- and
A-dimer fields and dressed their corresponding propagators to explicitly include three-
particle dynamics. From then on, we restricted ourselves to a finite volume. We showed
how the self-energy of the Roper resonance can be calculated in a finite volume and how
to extract the interacting energy levels of the Roper system. Afterwards, we discussed
methods to determine the appearing LECs that contribute to the self-energy corrections.
Then, we calculated the finite-volume spectra of the Roper resonance for various cases.
Our main findings are the following:

e In the N7 channel, avoided level crossing can clearly be observed around the Roper
resonance mass. For large box sizes, the energy levels approach the free N7 energies.
The spectrum agrees very well with our previous result in ref. [81], using baryon
chiral perturbation theory.

e Including the No channel, with the o dressed by the pertinent nw loops, we were
able to implement three-body (N77) dynamics. While we checked that the two-body
sub-system can reproduce the finite-volume spectrum for not too large pion masses,
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no clear signs of avoided level crossing could be observed in the three-body (N7)
spectrum. We observed similar behaviour for the Aw channel.

e Uniting the N7 and No contributions in a coupled-channel system, we observed that
the interacting energy levels lie very close to their respective free Nm or N7m levels.
Strikingly, the obtained spectrum in our formalism showed an overall good agreement
to the lattice QCD results [38] even without a fit to their energy eigenvalues.

In conclusion, we think that albeit very simple, the proposed alternative finite-volume for-
malism defines a new, systematically improvable pathway of extracting resonance proper-
ties from finite-volume spectra. Moreover, already now the formalism shows that effects due
to No and Ax channels can be decomposed once more precise lattice results are available.
With that, the formalism provides already at this stage a valuable guidance on the required
precision of the lattice QCD input. Systematical updates to the formalism include spin
and isospin projections as well as inter-couplings between different particle-dimer channels
via pion exchange diagrams, so that a full Nn/No/An coupled-channel system can be
achieved. Work in this direction is planed.
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