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ABSTRACT. In this paper we show how to lift Lagrangian immersions in CP"~! to produce La-
grangian cones in C", and use this process to produce several families of examples of Lagrangian
cones and special Lagrangian cones. As an application of this theorem, for n = 3 we show how
to produce Lagrangian cones that are isotopic to the Harvey-Lawson special Lagrangian cone and
the trivial cone. The projections of the Legendrian links of both of these cones to CP? are immer-
sions with four and seven transverse double points. We expect that these double points represent
the chord generators of the O-filtration level of a suitably defined version of Legendrian contact
homology of the links.

1. INTRODUCTION

This paper focuses on creating models for Lagrangian cones. The motivation for this paper
arises from the string theory model in physics. According to the theory, our universe consists of the
standard Minkowski space-time, R*, together with a complex Calabi-Yau 3-fold, X. Based upon
physical grounds, the SYZ-Conjecture of Strominger, Yau, and Zaslow (cf. [45]) expects that this
Calabi-Yau can be viewed as a fibration by 3-tori with some singular fibers. These singular fibers
are not well-understood. The standard approach is to model them locally as special Lagrangian
cones C' C C? (by cone, we mean a subset C' C C? such that r - C = C for any real number 7 > 0).
Such a cone can be characterized by its link, C'(].9%, which is a Legendrian surface.

Special Lagrangian cones in C? are solutions to nonlinear, degree 2 and 3 partial differential
equations. Many of the papers on the subject til now have approached their study from this
perspective, often by using examples from algebraic geometry. However, given that the cone can
be characterized by the Legendrian link, this topic is very closely related to the study of knotted
Legendrian submanifolds. This relationship connects it to a great deal of work in the area of contact
topology. In this area much progress has been made, at least in part, due to the fact that that there
are topological and combinatorial representations of such submanifolds. In dimension 3, where the
problem of understanding Legendrian submanifolds amounts to classifying Legendrian knots up to
isotopy, such diagrammatic representations are easy to generate. For instance, grid diagrams can be
used to obtain combinatorial representations of both front and Lagrangian projections of Legendrian
knots (cf. [4], [13], [32], [41], and [6]). In higher dimensions, there are fewer such constructions.
In [14], Ekholm, Etnyre, and Sullivan present front spinning as a way of constructing one class of
knotted Legendrian tori, showing that the theory of Legendrian submanifolds of R?"*! is at least
as rich in higher dimensions as it is in dimension 3. To accomplish this, they extend the definition
of Legendrian contact homology to R?"*!. In [6], it was shown that knotted Legendrian tori could
be constructed from Lagrangian hypercube diagrams, and it was shown how to compute several
invariants from such a diagram. In [30], Lambert-Cole showed how to generalize that construction
to produce a product operation on Legendrian submanifolds.
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1.1. Lifts of Lagrangian immersions in CP"~! to $?"~!. With the appropriate setup, it is
possible to construct models of Legendrian surfaces in S° so that the resulting cone in C? is
Lagrangian, and in some cases, special Lagrangian. The Lifting Theorem describes precisely the
conditions under which an immersion into CP"~! lifts to an embedded Legendrian submanifold of
527=1 that gives rise to a Lagrangian cone.

Lifting Theorem. Let ¥ be a closed, connected, smooth (n — 1)-manifold, and f : ¥ — CP" !

a Lagrangian immersion with respect to the integral Fubini-Study symplectic form %WFS- Let

7w 821 5 CP" ! be the principle Hopf S'-bundle with connection 1-form %a where o =

15 (% Yoy widy; — yidmi) for the identity map ip : S**~1 — C". For each chart ¥; : B; x S* —

S2n=1 (see § /), there exists a 1-form 7; such that Vi) = 3(dt — 7;) where 7; = — Z%él (zidy; —
i#£j

If
(1) T [, 7 =0 mod 27 for all [y] € H1(%;Z), and
(2) for all distinct points x1, ...,z € 3 such that f(x1) = f(x;) for all j < k, and a choice of
path v; from x1 to x; in X for 2 < j < k, the set {(F ff(,yj)T) mod 27 | 2<j < k:} has
k — 1 distinct values, none of which are equal to 0,
then f : ¥ — CP™ ' lifts to an embedding f : ¥ — S*~1 such that the image (the lift) ¥ is a

Legendrian submanifold of (S*"~% «). In turn, the cone Y is Lagrangian in C™ with respect to the
standard symplectic structure wo = Y ., dz; A dy;.

Remark 1.1. The 1-form, 7; may be thought of as a multiple of a contact form on S?"~1 as observed
in § 4.

Remark 1.2. The integral ' f,y refers to a lifiting integral defined in Definition 4.8.

Remark 1.3. The second condition of the Lifting Theorem is stated for multiple points in general,
but in most examples, we will only be working with double points or S'-families of double points.

1.2. Legendrian Contact Homology and Lagrangian Cones. While the Lifting Theorem is
quite general, it is often possible (and simpler) to work within a single chart of CP"~!. To construct
a local model for special Lagrangian cones, we work in the symplectic manifold (C",w, ) where
C™ has complex coordinates (21, ..., 2 ), wo = %(dzl ANdzi + ... + dz, N\ dZ,) is the standard Kéhler
form, and © = dz; A ... A dz, is the holomorphic volume form (cf. [23]).

Definition 1.4. A cone C' C C" is special Lagrangian if it is Lagrangian and ImSQ|c = 0 or,
equivalently, if C' is calibrated (in the sense of [22]) with respect to Ref2.

As a first step, we will focus first on the construction of Lagrangian cones. Observe that the
kernel of the 1-form

1
o= 5 (m1dy1 —ydxy + ... + Tpdy, — ynd$n)

where z; = x; + 1y;, restricted to the unit sphere, generates the standard contact structure for
S?7=1 and that o = 1gw, where R = 2 (Z?Zl xia%i + yi%)' This means that, given a Legendrian

submanifold ¥ C §2"~ !, the associated cone ¢¥, obtained by scaling ¥ by positive real numbers is
automatically Lagrangian. Moreover, any Lagrangian cone with vertex at the origin, must intersect
527=1 in a Legendrian surface. Hence, with respect to the standard contact structure on S27~!
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and the standard symplectic form on C", a given submanifold of $?"~! ¢ C" is Legendrian if and
only the associated cone in C" is Lagrangian.

In knot theory, the trivial knot and the trefoil are the two simplest types of knots. Analogously,
we use the Lifting Theorem in this paper to study the two simplest Lagrangian cones: the trivial
cone and the Harvey-Lawson special Lagrangian cones. We begin by recalling the construction of
the Harvey-Lawson special Lagrangian cone.

Example 1.5. Example I11.3.A in [22] introduced one of the first nontrivial families of examples
of special Lagrangian cones, collectively known as the Harvey-Lawson cone. In particular, they
proved that the cone on the (n — 1)—tori defined by the following two sets is a special Lagrangian
cone:

T+ = {(éiel, ...,ew") eCc? ‘ 01 + ...+ 9n = 0} 5

T = {(eial, ...,ew”) & Cn | 91 + ... +9TL = 7T} .
Observe that we may re-write T as:
(1.1) T+ = {(ewl, ...,eien‘l,e_i(91+"‘+9”—1)> A = sl},
and we will call the cone on T the Harvey-Lawson cone.

In [43], Sabloff used combinatorial methods to define a version of Legendrian contact homology
for Legendrian knots in circle bundles over Riemann surfaces. We expect that similar methods
give rise to a version of Legendrian contact homology in the present context as well. Sabloff’s
Legendrian contact homology is filtered by the “winding number” of the Reeb chord around the
fiber. As such, the short Reeb chords in the O-filtration level (i.e. those that do not wrap around
the fiber) are crucial to any calculation of the homology. In this context, as an application of the
Lifting Theorem we calculate the expected generators of the O-filtration level of the Legendrian
contact homology of the torus given by the intersection of the Harvey-Lawson special Lagrangian
cone with S using the standard contact structure .

Theorem 3.16. Let T? C S° be the torus constructed in Example 3.1, which is Legendrian isotopic
to Tt C S°. Then the O-filtration level of the Legendrian contact homology of T? is generated by
four pairs of short Reeb chords, 2 each in gradings 4, 6, 7, and 9. These Reeb chords correspond to
the double points of T? wvia the projection of T? under 7 : S° — CP? (as described in Example 3.1).

Many of the technical calculations in this paper are devoted to proving this theorem (and The-
orem 5.3 below). The Harvey-Lawson special Lagrangian cone has an associated Legendrian torus
in S° that is a 3-fold cover of a (standard) Lagrangian torus in CP2. The isotopies that are used
to place this Legendrian torus in general position are delicate and have to be done in steps: first
we find projections with double point circles, and then we perturb the resulting surface to obtain
one whose projection to CP"~! has isolated transverse double points. It is only in this carefully
orchestrated setup that we can count the double points, and hence the filtration level 0 genera-
tors of contact homology. We use a similar approach in § 3.3 and § 3.4 to construct examples of
Lagrangian cones arising from products of Legendrian knots.

Example 1.6. The trivial cone is simply a Lagrangian copy of R" C C”. In particular, the
following is well-known and easy to check:

Theorem 1.7. If f : R™ — C" is given by (x1, ..., xn) — (X101, .., TN ), where n = (N1, ...,Mn) is @
complex vector with n; # 0 for all j, then the image of f is Lagrangian with respect to the standard
symplectic form w.
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For some choices of 1 the trivial cone is special Lagrangian. For example, when n = 3 a direct
calculation shows that for n = (a1 + iby, as + ibe, as + ibs), if

azazby + araszbs + ajazbz — bibabz = 0

then the map f : R? — C3 given by (21,...,2,) = (z1(a1 + ib1), z2(as + iba), x3(as + ib3)) is a
special Lagrangian cone.

While the cone is just a copy of R?® C C3, its intersection with S° C C? is a copy of S? that
double covers a copy of RP? under the projection 7 : > — CP2. For computations of Legendrian
contact homology it is desirable to perturb the cone so that in the projection, we see only isolated
transverse double points. Unlike with the Harvey-Lawson cone, whose link embeds in a single chart
(cf. Section 2), the lift of RP? used to study the trivial cone requires the full strength of the Lifting
Theorem.

As with the Harvey-Lawson cone, we use the Lifting Theorem to obtain a similar theorem about
the expected generators of the trivial cone’s Legendrian contact homology.

Theorem 5.3. Let S C S° be the Legendrian 2-sphere obtained from intersecting the trivial cone
with S° and then perturbing it via Legendrian isotopy to one with transverse double points (cf.
Section 5). Then the 0-filtration level of the Legendrian contact homology of S is generated by 7
pairs of short Reeb chords. These Reeb chords correspond to the double points of the projection of
S under 7 : 8% — CP?.

1.3. Lagrangian Cones Given by Knot Diagrams. In [6], pairs of grid diagrams for knots were
used to construct immersed Lagrangian tori in R*, whose lifts to R® equipped with the standard
contact structure are embedded Legendrian tori. In Sections 3.3 and 3.4, we show how to adapt
this construction to produce Legendrian tori in S® whose associated cones in C? are Lagrangian.
This allows us to construct infinite families of Lagrangian cones, some of which may be isotopic to
special Lagrangian cones. Future research will explore the question of under what conditions this
happens.

1.4. Outline. The remainder of the paper is organized as follows. In Section 2, we discuss the
background information leading to the statement of a useful simplification of the Lifting Theorem
(cf. Theorem 2.2), and various examples we can construct using it. In Section 4, we prove the
Lifting Theorem, and in Section 5 we give an example of a lift using it. Section 6 explores the
implications of the Lifting Theorem for the study of Legendrian submanifolds of $?"~!. Finally,
Section 7 introduces some questions regarding the study of Hamiltonian minimal submanifolds

using the theorems and examples in this paper.

2. LIFTING THEOREM IN A SINGLE CHART

In this section we develop a special case of the Lifting Theorem that we use for constructing
examples of embedded Legendrian submanifolds of $2"~! as lifts of Lagrangian immersions in
cprL.

The local theory for lifting Lagrangian immersions into a symplectic manifold to some S!-bundle
over that manifold comes out of the theory of fiber bundles. Given a 2n-dimensional symplectic
manifold (X?" w) with an integral symplectic form, let 7 : L — X™ be the complex line bundle
such that ¢;(L) = [w]. By the theory of line bundles (cf. [21]), we know that there is a 1-form 7
on the unit circle bundle P = U(L) such that dn = 7*(w). In this case, in € Q'(P;iR) is called
the connection 1-form. If f : X" — X?" is a Lagrangian immersion of a connected n-dimensional
manifold ¥, then [f(X")] N [w] = 0 and the pull-back of the S'-bundle P over ¥ is trivial. Given
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then f*(P) = ¥ x S'. In turn, there exists a section ¢ : ¥ — f*(P) which gives an immersed
submanifold F(o(X)) of P (cf. [47]).

In this setup, 7 is a contact form for P. In general, F'(c(X)) will not be Legendrian with respect
to 1. However, we can always use 7 to lift a neighborhood U of z¢ € ¥ to a Legendrian submanifold
of P as follows: using the diffeomorphism f*(P) = ¥ x S! along with the section o(z) = (z,1), we
can define a trivialization of P|y by (z,e) for z € U and t € R. For x € U, let 7y be a path in U
from v(0) = xo to v(1) = x1. This path gives rise to a path I" in P|y using the holonomy of the
connection 1-form F*(n). That is, I is the unique path such that I'(0) = (zo, 1), 7(T'(s)) = v(s),
and F*(n)(I"(s)) = 0 Vs € (0,1). Define the lift f: U — P by f(z) = F(I'(1)).

This map is independent of the path chosen in the contractible neighborhood U because f is a
Lagrangian immersion (the restricted holonomy group at xq is trivial).

We can write this holonomy map down explicitly in terms of ¥ x S' and the section o given by
coordinates (z,e) where x € ¥ and t € R. Suppose

F*(n) = k(dt  7)

where k € R is a constant, and 7 € Q'(X). The solution I is equivalent to a path (y(z), ) e
¥ x S where

is obtained by integrating d¢ — 7 along v, setting the result equal to 0, and choosing t(0) = 0.
This solution defines a local Legendrian lift, f of U into P. We get a global lift if,

/T € 2rZ, V] € Hi(X).
.

In this case f: X — X lifts to a Legendrian immersion f: ¥ — P (i.e. the local lift extends to all
of ).

If integrating 7 along any path joining a pair of double points results in a non-zero answer (mod
27), then the lift f is an embedding. We summarize the discussion above as follows:

Theorem 2.1. Let X" be a connected n-manifold, X" be a 2n-dimensional symplectic manifold
with integral symplectic form w, and f : ¥ — X be a Lagrangian immersion. Let m : P — X
be the principle S'-bundle with connection 1-form in determined by dn = 7*(w). Suppose the
section o : ¥ — f*(P) defines coordinates (x,e™) of the trivial bundle F : f*(P) — P such that
F*(n) = k(dt — 7) where k € R is a constant and 7 € QY(X). If

(1) [, 7 €2rZ V[y] € Hi(5Z), and
(2) for all points xo,x1 € ¥ such that f(xo) = f(x1) and any path v from xzy to x1 in X,
f7 T # 0 mod 2T,
then f:X — X lifts to f : & — P and the image (the lift) S is a Legendrian submanifold of P.

Theorem 2.1 is general in that it describes exactly when immersions can be lifted, but it is far
from helpful in describing how to construct such lifts by hand (or with the help of a computer).



6 S. BALDRIDGE, B. MCCARTY, AND D. VELA-VICK

For example, given a symplectic manifold X, like CP™ (or T", E(n), Sym™(X,), etc), what chart
system should we use to make the calculation easiest? (Note that the standard chart system
U ={[z1:..:1:...: 2,]|z; € C} € CP"! is not convenient for constructing lifts.)

Can a chart system of X be chosen in such a way that the symplectic form w is standard in
each chart? Can a chart system be chosen so that the principal S'-bundle trivializes over each
chart in such a way that n has a nice (simple) form in each trivialization, and there is an obvious
choice of sections so that 7 also has a nice representation? None of these questions are answered
by Theorem 2.1 (because they are specific to X), but all of them are important to being able to
generate explicit examples of lifts that satisfy the restrictive requirements needed to be able to
compute invariants like the Legendrian contact homology of the lifts.

For these reasons, the following theorem is useful to us in computing the invariants of Lagrangian
cones in C” in this paper.

Theorem 2.2. Let B"' C C"7! be a ball, ¥ be a closed, connected, smooth (n— 1)-manifold, and
f: ¥ = B" ! be a Lagrangian immersion with respect to the standard symplectic form wy of C*~1.
Let = — Z?;ll (z;dy; — yidx;) be a 1-form on B"~ 1. If
(1) ff(,y) T €21,y € H1(X;Z), and
(2) for all distinct points x1,...,x € ¥ such that f(x1) = f(z;) for all j < k, and a choice
of path v;j from x1 to xj in X for 2 < j <k, the set {(ff(%_)7> mod 27 | 2<j < k} has
k — 1 distinct values, none of which are equal to 0,
then X lifts to an embedded Legendrian submanifold Y C 21 whose associated cone ¢ is La-

grangian in C™.

The lift, f : ¥ — S?"=1 c C", is given by f(z) = €@ (f1(x), ..., fa_1(x), /1 — | f(z)[?) where

1) = /f(v) '

for some path v from an initial point xg € X to x.

A careful comparison of the calculations in Theorem 2.2 with those of Theorem 2.1 shows that
Theorem 2.2 is the realization of Theorem 2.1 in the case where ¥~ ! is an immersion into an open
unit ball, thought of as a single chart of CP"~! (and where we do the calculations in the chart,
instead of in ¥). For a proof of Theorem 2.2, see Section 4, where we prove the Lifting Theorem,
which is a more general version of this theorem.

3. EXAMPLES OF LIFTS USING THEOREM 2.2

3.1. Legendrian contact homology generators for the Harvey-Lawson cone.

Example 3.1. Theorem 2.2 allows us to construct a family of isotopies of the famous special
Lagrangian cone given by Harvey and Lawson (cf. Example 1.5). Choose € so that 0 < € <

\/% and define § = % — % Parametrize the torus, 777!, in the usual way with coordinates

(01,...,0,1) € R"L Let re(01,...,0n_1) = 6 +esin(fy + ... + 0,,_1), and define f. : Tt — B~}
by:

fe(ela ceey anl) = (7"6(91, seey anl)ei(291+02+m+9n71)5 ceey TE(Hlv sy enfl)ei(61+...+6n72+26n71)) .
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Observe that the first condition of Theorem 2.2 is satisfied. Thus, defining ¢(x) as in Theorem 2.2,
we obtain a family of Legendrian tori in $?"~! C C", each of whose associated cones are Lagrangian,
given by the following maps:

fe(01, .., 0n_1) =

ite(01,...,0n— 1(201+024+...4-0,, — 1 (01+...+0,,_2+20,,_
eite(O1,.0n-1) (7’6(01,...,971_1)62( 102t +0n 1),...,7’6(91,...,971_1)61( 1A On 2420, 1), 1—(n— 1)7"52>’

where
te(el,...,ﬁn_l) :/ T,
«(7)
as in Theorem 2.2.

Remark 3.2. The cone on the image of the lift f. is Lagrangian for all ¢ > 0, but is also special
Lagrangian when ¢ = 0. In fact, when e = 0, the associated cone is the Harvey-Lawson cone (cf.
Example 1.5).

Theorem 3.3. The parameter t. is given by the following:
n
t6(91, . Gn,l) = —(91 + ...+ anl) — 27156(1 — COS(91 + ...+ anl)) ZG Sln( ((91 4+ .+ 0, 1))
Proof. For simplicity, we work in polar coordinates and integrate the pull-back f* (7) = —n )/, 7“2d9
over a path in the torus, 77!, for the computation below. Taking 7; to be a path from (61, ..., 0; 1,0, ...

to (01,...,0;-1,0;,0,...,0), and v to be the concatenation of these paths from i = 1,...,n, then we
may solve for ¢, as follows:

n—1 .g,
t6(01,...,9n_1) = —nZ/ r6(01,...,Hi_l,ai,o,...,())zdai
= _n Z [( 252 + )y — 20¢ cos(fy + ... + i1 + ;)

0;
N

1
—162 sin(2(0y + ... +0;—1 + ozi))>

Observe that the sum above telescopes, and hence, we may write
1
te(01, ... 0p_1) = —n(§(252 + ) (0 + ... +0,1) — 25e (1 — cos(0y + ... +0,_1))

1,
€ sin(2(01 + .. + an_l)))

= (01 + .+ Op1) — 2n0€ (1 — co8(0y + ... + On_1)) + %2 $in(2(01 + .. + 0n_1))

In light of Theorem 3.3, we get:

Corollary 3.4. Ase— 0 6 — ,Gn,l) — t0(91, '--797171) = *(91 — .= anlz and

\f} (ela"'

f€(917 "'7977,—1) — f~0(017 "'7971—1) = \/1* (ei617 _._,eien—lje—i(91+-..+9n_1)> .
n

,0)
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In order to verify that the second condition of Theorem 2.2 is satisfied, and consequently that
the lift is embedded, we will be interested in locating the double points of f..

Because we are mainly interested in cones of C? via the SYZ conjecture, we assume n = 3
in the following calculation. The following lemma specifies precisely when the arguments of the
exponential maps in the definition of f. all agree, a necessary condition for a double point.

Lemma 3.5. Forn =3, if fc(01,02) = fc(71,72) then 01 = ~y1 and 03 = 2, or 61 —v1 =02 — 2 =
o

T (mod 2m) or 61 — y1 = 02 — 72 = - (mod 2).
Proof. If fc(61,02) = fe(71,72) then since the arguments of the exponential maps differ by a multiple
of 27, (61,02) and (71, y2) must satisfy the following equations:

(3.1) 201 + 05 = 2v1 + 9 + n2m7,
(3.2) 01 + 205 = 1 + 2v9 + m2m,

for some m,n € Z.
Solving equations 3.1 and 3.2, we obtain the following:
2n —m
(33) 91 — Y1 = 3

2m —n
(3.4) 92 — Y2 = 5

Since the torus T2 is parametrized by (61,602) € [0,27) x [0, 27), it must be that 6; — v; < 27 for
i =1,2, and hence |2742| < 1 and |22 | < 1.
Since n,m € Z, we find that the possibilities for (n,m) are £(1,0), +(0,1), +(1,1) and (0,0).

Evaulating Equations 3.3 and 3.4, we find that either §; = v, and 0 = 9, or 0] —y1 =03 — 9 =

2% (mod 27) or 61 — 1 = 02 — 72 = 4T (mod 2). O

2,

.

In the proof above we also showed, after taking limits, that:

Scholium 3.6. The image of fo is a 3-fold cover of the image of fo via the projection given by the
Hopf map.

Lemma 3.5 specifies when the arguments of the exponential maps will agree, but for a double
point, the radii, determined by r. must also agree. In the following lemma, we calculate where this
occurs.

Lemma 3.7. If f(01,02) = fe(v1,72) and either 01 — v = Oy — 9 = 277r(mod 2r) or 01 — vy =
Oy —vo = 4%(mOd 27), then one of the following must be true:

o 01+ 0=+,
o 01+ 02 ="T and v + v, =
o 0140 =5 and v +72 = §-

117
6 ’

Proof. Since fe(01,02) = fc(71,72), not only must the arguments of the exponential maps differ by
a multiple of 27, but the radii in each complex factor must match, that is r.(61,602) = re(71,72)-
Hence one of the following equations must hold:

(3.5) 01 + 62 =71 + 72
(3.6) 91+92+’71+’72:7T+27Tk
There are several cases. If 61 + 62 = 1 + 72, then using 3.3 and 3.4, one can show that n = —m

which can only happen if n = m = 0. Furthermore, if 61 4+ 02 + 1 + 72 = 7® + k27, combining this
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with Equatlons 3.3 and 3.4, we may solve the system to obtain that 61 + 62 = g and 71 +72 = 11”

or §1 + 0y = 2% and 1 + 2 = D

Remark 3.8. Lemma 3.5 rules out the possibility of multiple points of f. of multiplicity greater
than 3, and Lemma 3.7 shows that for € > 0 there are no triple points. Hence, immersion f. has
only double points when € > 0.

The families of double points identified in Lemma 3.7 form copies of S*, and will show up not
only in this example, but in others as well. Hence the following definition will be useful in some of
the discussion that follows.

Definition 3.9. Let f : ¥ — M be an immersion of a surface. Suppose C and C5 are disjoint
copies of S' in ¥ such that f(C1) = f(C2) and f|c,jc, is a 2-to-1 map. Suppose further that
A; and Ay are disjoint annular neighborhoods of C and Cy and that f(A;) () f(A2) = f(Cy) =
f(Cy). If for any pair consisting of 1 € Cy and zo € Co such that f(z1) = f(x2) we have that
dfe, (T A1) # dfy, (T A2), then we call the image of C; and Cy a double point circle.

Theorem 3.10. The double points of fe, of the form fe(01,02) = fe(71,72), consist of two double
point circles such that 01 —y1 = 0y —yo = 2%’(mod 21) or 01 —y1 =03 —y2 = ir 5 (mod 2m) and one
of the following hold:

(1) 01+ 02 = %fmd’h+72 4,
(2) 01+ 02 =2 and v + 72 =

Proof. Lemmas 3.5 and 3.7 demonstrate that systems of this type yield double points All that

remains is the observation that if (61, 62) and (71, 7y2) satisfy ) —v1 = 0 — 72 = (mod 27) or
01 —71 = 02 —y2 = % (mod 27) but do not satisfy either (1) or (2), then sin(6; +62) 7é sin(y1 +72).
For such cases, re(91, 02) # 7e(71,72) and hence fe(61,62) # fe(71,72)- O

Theorem 3.11. The lift, f., is an embedding.

Proof. We already know the lift is well-defined. All that remains to check that the second condition
of Theorem 2.2 is satisfied, which means that the double points of the projection are separated in
the lift. This amounts to computing f )T for some path v joining a pair of double points of a

double point circle. Using Theorem 3.10, suppose we have a double point such that f, (01, X —01) =
fe(6h + 21 BJ — (61 + 27r)) Then the integral in question is given by:

27 137 27
(ot 5 - (0 F)) e (- )

Using the expression for ¢, given in Theorem 3.3, and simplifying, we obtain:

2 13w 2T 5m 8 5% ne2 T
_— — _— = - — 4 - qj — .
(01 + — TR (01 3 )) te <91, 6 91> 5 nde cos ( 5 ) + 5 sin (3>

Noting that n = 3,0 < e < \[, and 0 = /% — &, we have that
Am _ 2 137 27 5m i V3
— 0 0 —te | 01,— —0 —_—F —.
3 (1+3 6 (1 3)) (16 1>< 373
The other double points are handled in a similar manner. ]

Let L, be the image of f. and let L, be the Legendrian torus given by the lift, f.. We wish to
identify the generators of the O-filtration level of the Legendrian contact homology of L., which
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are determined by the double points of the Lagrangian projection. Recall that in this case, the
double points are actually double point circles, hence we need to perturb the map so that it is
chord-generic. We will demonstrate the perturbation for n = 3, but the general solution is similar.

Lemma 3.12. Let fe : T? — S° be the Legendrian torus given by the map

];6(91, 92) = 6“5091762) (7“6(91, 92)€i(291+02), 7“6(91, 92)€i(91+202), \ 1-— 27"5(91, 92)2) .

Choose a perturbation in the direction of the Reeb fiber, s, : T?> — S, two perturbations in the
radial directions, s; . : T? 5 R, fori=1,2, and define

ge(alv 92) = ei(t€(91,02)+86(01’92)) (Tl 5(917 02)€i(2€1+02)7 T2 6(017 92)6i(01+292)7 1- T% € T% 6)

where r;.¢(01,02) = rc(01,62) + 5i(01,02) fori=1,2. If
(1) Zo= + 2rc(61, 02) (251.c(61, 02) + 52,c(61,02)) + 251.c(61,02)% + 52.c(61,602)* = 0 and
(2) 32; + 2rc(01,02)(51,e1(01,02) + 252,(61,02)) + 51.6(01, 02)% + 252.¢(01,02)> =0
then the perturbation g is a Legendrian torus having only transverse double points that is Legendrian

isotopic to fe.
Moreover, for a given choice of se the system is solved by

1 /0s ds
_ 2 + € €
31,6(91792) Te(01702)+0\/T5(01,92) + 3 (892 2891>

and

1 /0s 0s
- _ 2 - € - €
82,6(91,92) T6(91,92) +0'\/T6(91,02) + 3 <691 2692)

where o 1s +1.

Proof. The calculation is easiest if we work in polar coordinates and identify a neighborhood of the
fe with By x S' (cf. the Lifting Theorem). Note that we may write:

Fe(01,02) = (re(61,02),201 + 02, 7¢(61, 02), 01 + 202, (61, 62))
and we work with the perturbation in polar coordinates as well:
Ge(01,02) = (r1,c(01,02),201 + 02,72 (01,02),01 + 202,t(61,02) + 5c(01,02)) ,

In these coordinates, we may identify the contact form « on S° with %(dt —7) (for details of this
calculation see the Lifting Theorem). Pulling back o to T2 via f. we obtain the form:

z Ot Ot
fé() = ( 20, +3r6(91,92>2> d + ( 70, +3n<91,92)2) b

Since f. is Legendrian, this is 0, and hence (ggi + 3r. (61, 92)2> — (gg; + 3r (61, 92)2> = 0. Pulling
back a using the perturbation g. we obtain:

05
061

ge(a) = [(me ~|—3r6(91,02)2> i

50 + 2r (61, 92)(251,5 + 8275) + 28%76 + 5%76:| do,
1

Ot. 05
+ +3re(01,02)% ) o8 4 27 (61, 09) (S1.c + 250.0) + 52, + 252 | do
802 892 ) )
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Noting that (at‘ + 3re(01,62) ) = (8t‘ + 3r¢(61,62) ) = 0, we have justified (1) and (2). The last

part is routine, and obtained by solving this system of equations, (1) and (2), for s; . and sp. O

Theorem 3.13. The map g. : T?> — B2,

9e(01,02) = (r1,6(81,02)¢ 50 1y (81, 03)¢ 02020

where 11,¢(01,02) = \/7“5(91,92) — ge cos(01) and ra¢(61,02) = \/re(61,92)2 + %e cos(01) is a per-
turbation of f. having exactly two transverse double points. Moreover, the lift g.

Ge(01,02) = e/lle(O102)%se(01,02) (7”1 e(01,02)eF02) py (01, 05)e" @ 202) [\ J1— 2 Tge) ’

,€
1s Legendrian isotopic to fg.

Proof. Choose s¢(#1,02) = esin(fy). Direct calculation shows that the conditions of Lemma 3.12
are satisfied. Moreover, the two maps s1 . and sz from Lemma 3.12 satisfy the following:

(1) 7'1,5(91, 92) = 7‘6((91, 92) + 8176(91, 92) = \/7"5(91, 92)2 — %6 COS(91)
(2) ro,e(b1,62) = re(01,02) + 52,(01,62) = \/Te(917‘92)2 + %6 cos(1)

The remainder follows from Lemma 3.12. O

The following corollary is is obvious:

Corollary 3.14. Taking the limit as € — 0, we have the following:
(1) te(b1,02) — to(01,02) = —01 — 62 - '
(2) ge(01,02) = go(61,02) = fo(01,02) = % (el 2, emi(01462)) |
Corollary 3.14 shows that g is the Harvey-Lawson cone (just as fo is). What makes g. useful
is that although it is isotopic to the Harvey-Lawson cone, it has isolated double points. In fact, it
has only 4 transverse double points as observed in the following corollary.

Corollary 3.15. The double points of g can be found directly, and we obtain 2 for each double
point circle, for a total of 4 transverse double points:

(1) g (%’T “)—ge(?vf’@

(2) g, ) = au(5, 1),
3) 0.7, %) = (5. 17). oma
(4) 0.5 ) = (5. 5).

Proof. Writing g. in polar coordinates, as in Lemma 3.5, we see that any double points must be of
the form g.(61,02) = ge(61 + j%’r, 0o —i—j%’r) where j is either 1 or 2, in order that the arguments of
the exponential maps both differ by a multiple of 2. Thus we get double points when we have the
following two equations satisfied.

2 2

11,e(61,02) = r1,(61 +] , 0o +J§)
2

12,e(61,02) = r2.(61 +] 92 +]?)

Solving this system of equations, we obtain the result. O



12 S. BALDRIDGE, B. MCCARTY, AND D. VELA-VICK

In summary, we have constructed a family of cones, each of which is isotopic to the Harvey-
Lawson cone, but with the additional property that the projection to CP? has only 4 transverse
double points, unlike the actual Harvey-Lawson cone which is a 3-fold cover of its projection to CP?,
as observed in Scholium 3.6. Although the isotopy taking the Harvey-Lawson cone to one of our
perturbations does not preserve the special Lagrangian conditions, it does preserve the Legendrian
link, and hence, can be used to calculate a suitably-defined Legendrian contact homology (cf. [43]).
Moreover, our perturbations have only transverse double points. Thus we obtain:

Theorem 3.16. Let T?> C S be the torus constructed above, which is Legendrian isotopic to
T+ C S5. Then the 0-filtration level of the Legendrian contact homology of T? is generated by four
pairs of short Reeb chords, 2 each in gradings 4, 6, 7, and 9. These Reeb chords correspond to the
double points of T? wia the projection of T? under 7 : S° — CP2.

Remark 3.17. The Lifting Theorem made it possible to compute the gradings of Theorem 3.16
explicitly in Mathematica. By working in a single chart, we integrate to define the lift, and com-
pute a unitary Lagrangian frame to obtain the Maslov index. The calculations, though long, are
straightforward and therefore omitted.

Remark 3.18. While the Legendrian contact homology of the Harvey-Lawson cone is beginning to
emerge in the previous theorem, it does not take into account the Reeb chords that wrap around the
fiber. However, considering the gradings of the short chords, it does appear that there is nontrivial
homology in gradings 4 and 9.

3.2. Lagrangian hypercube diagrams. Next, we show how to generalize the calculations above
to get knotted Legendrian tori in S° (knotted in the sense that they are the product of two
Legendrian knots in R3-see [6]). The cones on these knotted tori are Lagrangian cones in C3.
Therefore we begin the study of diagrammatic Lagrangian cones in C3.

In [6], Lagrangian hypercube diagrams were used to produce examples of Legendrian tori in the
standard contact space, (R, £,;4), using wzyzt-coordinates on R® and letting &g = dt —ydw — xdz.
But they can also be adapted to produce Legendrian tori in S® whose cones in C? are Lagrangian.
Before doing so, we briefly recall some of the relevant material from [6] and refer the reader to that
paper for more details.

Lagrangian hypercube diagrams are closely related to grid, cube, and hypercube diagrams. To
construct a grid, cube, or hypercube diagram, one places markings in a 2, 3, or 4 dimensional
Cartesian grid, while ensuring that certain marking conditions and crossing conditions hold (cf.
Section 2 and 3 in [3], and Section 2 in [5]). In each case, the markings determine a link (cf.
Figure 1). For a hypercube diagram, there is an algorithm for constructing a Lagrangian torus
associated to the hypercube diagram, such as the one shown in the last picture in Figure 1 (cf.
Theorem 5.1 in [3]).

Y VI 2 , e
Wl P4

I z y z

Figure 1: Grid and cube diagrams for the trefoil, and a hypercube diagram for a torus.
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In order to define a Lagrangian hypercube diagram, we first need to define a Lagrangian grid
diagram:

Definition 3.19. A Lagrangian grid diagram given by ~ : S — R? where v(0) = (x(0),y(0)) is
an immersed grid diagram G satisfying Conditions 3.7 and 3.8.

2T
(3.7) /O y(0)2/(0)d0 = 0,

01
(3.8) / y(0)2' (0)dO # 0 whenever () = v(01) and 0 < 6; — 0y < 27.
0o

While any Lagrangian projection of a Legendrian knot satisfies Equation 3.7 and 3.8, it is usually
difficult to determine from a given diagram in the plane whether or not the diagram will lift to a
Legendrian knot. The advantage with a Lagrangian grid diagram is that one merely needs to add
up the signed areas of a finite number of rectangles to determine whether the diagram lifts to a
Legendrian knot (cf. Corollary 3.10, Scholium 3.12 and Corollary 3.13 in [6]).

A Lagrangian hypercube diagram takes two Lagrangian grid diagrams and uses them to con-
struct a product of two Legendrian knots (cf [30], and [6]). To construct a grid diagram, one
places markings in a 2-dimensional grid, subject to a set of marking conditions, and creates a
knot diagram by drawing segments, joining the markings to create immersed loops. The process
of creating Lagrangian hypercube diagram is similar: there is a set of marking conditions that
determine how to place markings in a 4-dimensional Cartesian grid, and the markings are joined
by segments, following an algorithm to create a simple loop. Before stating the conditions, we give
a few preliminaries.

A flat is any right rectangular 4-dimensional polytope with integer valued vertices in C such that
there are two orthogonal edges at a vertex of length n and the remaining two orthogonal edges are
of length 1. (Each flat is congruent to the product of a unit square and an n x n square.) Moreover,
the flat will be named by the two edges of length n. Although a flat is a 4-dimensional object,
the name references the fact that a flat is a 2-dimensional array of unit hypercubes. For example,
an xy-flat is a flat that has a face that is an n X n square that is parallel to the zy-plane. In a
hypercube of size n = 3, one example of a zy-flat would be the subset [0, 1] x [0, 3] x [0, 3] x [2, 3]
(shown in Figure 2).

A stack is a set of n flats that form a right rectangular 4-dimensional polytope with integer
vertices in C' in which there are three orthogonal edges of length n at a vertex, and the remaining
edge has length 1. (Each stack is the product of a cube with edges of length n and a unit interval.)
A stack is named by the three edges of length n. An example of a wxz-stack in a hypercube of size
3 is the subset [0, 3] x [0, 3] x [2, 3] x [0, 3] (shown at the top of Figure 2). Further examples of flats
and stacks may be found in Figure 2.

A marking is a labeled point in R* with half-integer coordinates in C. Unit hypercubes of the
4-dimensional Cartesian grid will either be blank, or marked with a W, X, Y, or Z such that the
following marking conditions hold:

(1) each stack has exactly one W, one X, one Y, and one Z marking;

(2) each stack has exactly two flats containing exactly 3 markings in each;
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(3) for each flat containing exactly 3 markings, the markings in that flat form a right angle
such that each ray is parallel to a coordinate axis;

(4) for each flat containing exactly 3 markings, the marking that is the vertex of the right angle
is W if and only if the flat is a zw-flat, X if and only if the flat is a wz-flat, Y if and only
if the flat is a xy-flat, and Z if and only if the flat is a yz-flat.

wxz-stack \ /-xyz-stack
Y
z w x
X wlz
y
xy-flat —>
A y X J

x
I I w|z X
zZ\_J / z
w W W
together these flats
form a wxy-stack

Figure 2: A schematic for displaying a Lagrangian hypercube diagram. The outer w and y coordinates
indicate the “level” of each zx-flat. The inner z and x coordinates start at (0,0) for each of the nine zx-
flats. With these conventions understood, one can display xy-flats, xyz-stacks, wxz-stacks, wxy-stacks, etc.
The second picture is a schematic of a Lagrangian hypercube diagram.

Condition 4 rules out the possibility of either wy-flats or a za-flats with three markings (see
Figure 2). As with oriented grid diagrams and cube diagrams, we obtain an oriented link from the
markings by connecting each W marking to an X marking by a segment parallel to the w-axis,
each X marking to a Y marking by a segment parallel to the z-axis, and so on.

Let gz, Twy : R* — R? be the natural projections, projecting out the z,z and w,y directions
respectively. The projection m,,(C) produces an n x n square in the wy-plane. If we project the
W and Y markings of the hypercube to this square as well, the markings satisfy the conditions for
an immersed grid diagram, which we denote Gy 1= (74.(C), 7142 (W), 122(Y)), where W and Y are
the sets of W and Y markings respectively. Similarly, we define G, := (Tyy(C), Twy(Z), Tuwy(X)),
where Z and X are the sets of Z and X markings respectively.

In a grid diagram, one typically requires a crossing condition, namely that the vertical segment
crosses over the horizontal segment. For a Lagrangian hypercube diagram, the crossing conditions
are determined as follows. We require that the two immersed grid diagrams, G., and Gy, are
Lagrangian grid diagrams (that is, they satisfy Conditions 3.7 and 3.8). By Proposition 3.4 of
[6], a Lagrangian grid diagram lifts to a smoothly embedded Legendrian knot. Hence the crossing
conditions of the grid are determined by this lift. We require one additional product lift condition
that the pair G., and Gy, must satisfy (At(c) in the definition below is the length of the Reeb
chord associated to the crossing c).
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Definition 3.20. For two Lagrangian grid diagrams, G, and G, let € = {¢;} be the crossings in
G and €' = {c,} be the crossings in G,,. The pair of grid diagrams is said to satisfy the product
lift condition if |At(c;)| # |At(c})| for all ¢, j.

We are now ready to define a Lagrangian hypercube diagram (cf. [6]):

Definition 3.21. A Lagrangian hypercube diagram, denoted HI' = (C,{W, X, Y,2}, G.¢, Guy), is
a set of markings {W,X,Y,Z} in C that (1) satisfy the marking conditions, (2) G, and G, are
Lagrangian grid diagrams, and (3) G,y and G, satisfy the product lift condition.

The immersed torus specified by the Lagrangian hypercube diagram is the product of G, and
Gy, determined as follows: place a copy of the immersed grid G, at each zz-flat on the schematic
that contains a pair of markings (shown in red on Figure 3). Doing so produces a schematic with
two copies of G,, with the same y-coordinates and two with the same w-coordinates. For each
pair of copies sharing the same w-coordinates, we may translate one parallel to the w-axis toward
the other. Doing so traces out an immersed tube connecting these two copies of G,;. Similarly,
we may translate parallel to the y-axis to produce an immersed tube connecting two copies of G,
with the same y-coordinates. Since we are connecting copies of GG, in flats corresponding to the
markings of Gy, the tube will close to produce an immersed torus.

= =
=S e
| | | |
1y |mEmg
R =
| mE— | E—
e = HEw
—H HEEREH e e
=] ] e
= e
F=sil Tt |
— L
= =
sl w1 |
y = =
X A | M-

L.z

w

Figure 3: Lagrangian hypercube diagram with unknotted G, and G, and rotation class (1,0).

3.3. Lagrangian cones in C? constructed from Lagrangian hypercube diagrams. First,
we show how to convert a grid diagram to a radial grid diagram. A set of concentric circles {Cy}}_;

of radius \/3% will serve to represent the rows of our grid, and a set of radial lines, determined

by the list of angles, {k%’r}z;é, to serve as columns. The counterclockwise direction is chosen to
correspond to the positive z-direction in the original grid, and the outward pointing radial direction
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is chosen to correspond to the positive y-direciton. Moreover, the radii of the concentric circles are
chosen so that each annular band has area 5. and consequently, each cell, as shown in Figure 4,
has equal area (in particular, each cell has area % 3 )

For a given marking in row ¢ and column j, we place it in the radial grid at the intersection of the
circle, C;, with the radial line segment determined by the angle j%ﬂ to obtain a radial grid diagram.

Join the markings in the radial grid diagram to match the original grid diagram (cf. Figure 4).

(A

2

= &7

I7T

JE R

Figure 4: Converting a 5 x 5 Lagrangian grid diagram to a radial Lagrangian grid diagram.

Remark 3.22. Notice that while the markings of the oriented grid diagram are placed in the cells
of the grid, the markings of the radial grid diagram are placed at the intersections of the grid lines.
This is just a shift of the markings by (—%, —%)

Suppose that Gmyl and GmyQ are radial grid diagrams constructed (as above) from Lagrangian
grid diagrams Gy, and Gg,y,. We can define an immersion f : T2 — B? by letting v1 : 61 —
(1(01),91(01)) and 72 : 02 — (22(62),y2(02)) be the two loops corresponding to the radial grid
diagrams él’lyl and G’xzyQ.

We wish to lift f to a Legendrian torus in S® using Theorem 2.2, but to do so, it must first be
smoothed. This may be remedied by following a smoothing procedure as described in Theorem 3.9,
Corollary 3.10, Scholium 3.12, and Corollary 3.13 of [6], and noting that the integral used to define
the lift in Theorem 2.2 results in a net area calculation here, just as it was in [6]. To see this observe
that for a path that follows a radial segment in one of the grids, the change in ¢ is 0. For a path that
follows a circular arc in one of the grids the contribution to the change in ¢ is given by ar? where
a is the subtended angle of the arc (positive if segment is oriented counterclockwise and negative
otherwise), and r is the radius of the arc. That is to say, the magnitude of the change in ¢ along
such an arc is twice the area of the sector it bounds (and positive if the arc run counterclockwise,
and negative otherwise). Since the radial grid is constructed so that every cell has equal area,
the proofs of Theorem 3.9, Corollary 3.10, Scholium 3.12, and Corollary 3.13 in [6] may be easily
adapted to this setting. Combining this with Theorem 2.2 we obtain the following:

Theorem 3.23. Let Gmyl and G’myQ be radial grid diagrams constructed from Lagrangian grid
diagrams Gy, and Gayy,, and let v @ 01 — (21(601),y1(01)) and v2 : O — (22(02),y2(02)) the
immersed loops defined by these radial grid diagrams. Then the immersed torus f : T?> — B2:

f(01,02) = (21(01),y1(01), 22(02), y2(02), \/1 —x? -y} — a2} —43,0)
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wl(@)
) \a

=7

Figure 5: A pair of loops that give rise to a Lagrangian cone.

lifts to an immersed Legendrian torus f : T2 — §% c C3:

F(01,02) = eO192) (21 (81), y1(61), 22(62), y2(02), \/1 —z? -y} — a3 —43,0),

whose cone in C3 is Lagrangian.

Consider the example shown in Figure 5. The dark shaded region of the first diagram has area
3 - 7=, as does the light shaded region. However, if we orient the two regions, using the orientation
of the knot along the boundary of each, we see that the two regions have opposite orientation. The
result of this is that when computing the change in ¢, the contributions of each region will have
opposite sign. Since each contribution is equal in magnitude, the total change in t when traversing
the entire knot is 0. Moreover, observe that the difference in the t coordinates at the crossing is
3- %r Similarly, one can see that the total change in ¢ for the second grid diagram is 0, and that

the difference in the t coordinates at each crossing is 2 - %r

Remark 3.24. In general, beginning with two Lagrangian grid diagrams, converting to radial grid
diagrams, and lifting, one produces an immersed torus, and hence an immersed Lagrangian cone.
To get an embedded torus, and hence an embedded Lagrangian cone, one must check to see that
the product lift condition is satisfied by the pair of Lagrangian grid diagrams (cf. Section 4 of [6]).
This amounts to checking that Condition 2 of Theorem 2.2 is satisfied. The pair of radial grid
diagrams shown in Figure 5 satisfies the product lift condition, as one may check.

Remark 3.25. In Proposition 3.4 of [6] it was shown that the the immersion determined be a
Lagrangian grid diagram could be smoothed in such a way as to ensure that the lift of the smoothed
immersion is C°-close to the lift of the original immersion, and that any two smoothings, sufficiently
close to the original immersion, would have Legendrian isotopic lifts. The proof of that proposition
depended only on the fact that the lift was determined by a net-area calculation. Since the same is
true in this setting, the proof may be adapted to to this situation, to produce a smoothly embedded
Lagrangian cone.

The family of examples produced here is specific to the case n = 3, but only because the
Lagrangian hypercube diagrams are constructed, at this time, only in dimension 4. Yet, it is
clear that Lagrangian hypercube diagrams may be generalized to produce Lagrangian immersions
f:17 ' — Bt

3.4. Examples constructed from radial hypercube diagrams. In the previous example, be-
ginning with a pair of Lagrangian grid diagrams meant that for any loop on the immersed torus
in B2, in the lift, the net change in ¢ is 0. However, this is more restrictive than necessary, since
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Figure 6: A 7 x 7 radial Lagrangian grid, with the associated grid diagram from which it is
constructed.

we still obtain a well-defined lift provided that the net change in ¢ along any loop downstairs is an
integer multiple of 27. In fact, we may relax the conditions of the previous example a bit more, as
follows.

Let G4y, and Gy,y, be two grid diagrams, and construct radial grid diagrams Gz1y1 and G’mm
by placing markings as in the previous example. However, to obtain an immersed loop from the
diagram, we follow a slightly different procedure. Along each radial column, join the markings as
in the original grid diagram. In each circular row, there are two arcs oriented from X to Y. Choose
one of the two oriented arcs in each row. Figure 6 shows one example of a grid diagram, with a
particular choice of connections made in each row. Thus to a given grid diagram of size n, there
are 2" distinct, immersed loops that correspond to it by following this procedure.

Theorem 3.26. Let Gyyyy and Gy, be radial grid diagrams and let vy : 6y — (x1(61),y1(61)) and
Yo 1 Oy — (x2(02),y2(02)) the immersed loops defined by these radial grid diagrams, together with a
choice of oriented circular arcs.

Suppose that Y1, airf = 2wky, where a; is the angle subtended by the chosen arc in row i of
CAr’xhyl, r; is the radius of the corresponding circle, and ki € Z. Similarly assume that Y, bir? =
27ko, where b; is the angle subtended by the chosen arc in row i of sz,yz: r; 18 the radius of the
corresponding circle, and ko € Z. Then the immersed torus f : T? — B?:

J(01,02) = (21(01), y1(61), 22(02), y2(02), \/1 —a} -y} — 23 —43,0)

lifts to an immersed Legendrian torus f : T? — S° C C3:

£(01,09) = e192) (321(6)), 51 (61), 22(62), 2 (62), \/1 — 2 —y? — 2% —43,0),

where t is defined as in Theorem 2.2, whose cone in C3 is Lagrangian.

Proof. The proof follows from Theorem 2.2 together with the observations of Theorem 3.23 that
the change in ¢ may be interpreted as a net-area calculation. The condition that > ; airf = 27k,
and Y. | b;r? = 2mky guarantees that the net-area of the loops determined by émyl and G’mw, is
a multiple of 27 and hence, each loop lifts to a loop that wraps around the fiber k1 or ko times. [

The two radial grid diagrams shown in Figure 7 determine an immersion that lifts to a torus
whose cone is Lagrangian. A net-area calculation shows that the cone is embedded, since the two
diagrams satisfy the product lift condition (cf. Section 4 of [6]). Moreover, the lift has the property
that each diagram lifts to a loop that wraps once around the fiber.
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Figure 7: A pair of 7 x 7 radial grid diagrams that give rise to a Lagrangian cone.

Remark 3.27. The pair of grid diagrams chosen at the beginning determine a structure, similar to
a hypercube diagram, which we will refer to as a radial Lagrangian hypercube diagram.

Remark 3.28. Remark 3.25 applies in this situation as well, allowing us to produce smooth La-
grangian cones using radial Lagrangian hypercube diagrams.

In light of Example 3.1, it is natural to ask which Lagrangian hypercube diagram gives rise to
the Harvey-Lawson cone. Note that the immersion given in Example 3.1 does not readily admit the
structure of a Lagrangian hypercube diagram. It has only two double point circles, neither of which
intersect, while any Lagrangian hypercube diagram must contain double point circles that intersect
(since each Lagrangian grid diagram used to define a Lagrangian hypercube diagram must contain
crossings, each of which produces a double point circle in the product). Nevertheless, it seems likely
that there is a Lagrangian hypercube representation of the Harvey-Lawson cone, hence:

Conjecture 3.29. There exists a radial Lagrangian hypercube diagram, whose associated La-
grangian cone in C3 is isotopic to the Harvey-Lawson cone.

While we do not address the construction of the perturbation of a Lagrangian hypercube diagram
needed to ensure that the corresponding torus in CP? has only isolated transverse double points,
techniques similar to those of § 3 paired with the techniques described by Peter Lambert-Cole in
[30, 31] can be used to do exactly that.

Lastly, while a radial Lagrangian hypercube diagram will not lift to a special Lagrangian cone,
it may lift to a Lagrangian cone which is isotopic to a special Lagrangian cone. This leads us to
pose the following question:

Question 1. What conditions on a radial Lagrangian hypercube diagram ensure that the Lagrangian
cone to which it lifts is isotopic to a special Lagrangian cone? Are there any obstructions?

4. THE LIFTING THEOREM

While Theorem 2.2 applies only to immersions into a unit ball, B"~! ¢ C"!, thought of as a
single chart of CP™~!, it can be generalized to any immersion f : ¥"~! — CP"~! so that the lifting
process works in much the same way as it does in Theorem 2.2. This is the content of the Lifting
Theorem below. We build up to the Lifting Theorem through a series of computationally useful
lemmas and definitions.
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Recall that the symplectic form associated with the Fubini-Study metric is, in coordinates z =
(21 .oy 2n) of mex : C*\ {0} — CP™1, given by

1 &
— Z Z (szdzk Ndzy — szde A dﬁ) .

7
(4.1) i (Wrs) = & -
2 |z :
k=1 j#k

The form wrg is the form induced upon CP"~! after quotienting by the invariant C* action. One

can check that
/ Wgps — T.
cpt

and therefore %WFS is an integral symplectic form on CP"~!. Furthermore, for i : "~ — C", it
is well-known that wpg is the unique form such that i*(wo) = 7*(wpg) where 7 : $2"~1 — CpPn~!
is the Hopf fibration and wy is the standard symplectic form on C”, i.e. for z; = x; + 1y;,

. on n
(3
wo = 22dzi/\dzi:;dxi/\dyi.
i= i=

As mentioned above, the usual homogeneous, holomorphic coordinate system on CP™ ! is not
suitable for our purposes. Instead, we use the hemispherical coordinate system:

Definition 4.1. Let B; C C" ! be the open unit ball and define coordinate charts v; : B; —
CpP™ ! j=1,...,n, given by
77[)1'(217 ceey Zi—15 Ri41, ...,Zn) = [21 el Z1 vV 1-— |Z|2 PR41 et Zn].

The charts, (B;, ;) are called hemispherical charts.

Note that we are numbering the z;’s in terms of C" instead of C"~!. For example, for n = 3,
z € By C C? is defined by z = (21, 2z3) and is mapped to CP3 = C3\ {0}/C* as v(z1,23) = [21 :
V1 —|z|% : 23] where |z|? = |21]? + |23]2. We will often use the hat symbol to denote removing a
term. Hence z = (21, z3) could also be written as z = (21, 2, 23) to simplify notation.

Also, we use U; to refer to the image of B; in CP™ !, i.e. U; = ;(B;). The name of the
system obviously follows from the fact that the image of each chart is the image of a hemisphere
in $?7~1 C C" via the Hopf fibration 7 : §*»~1 — CcpP» L.

The hemispherical charts, ¥;, are not holomorphic with respect to the natural complex structure
on CP"~!. However, they do have one very nice property: the 1;’s are Darboux charts on CP" 1.

Lemma 4.2. If wy is the standard symplectic form on B C C"~! then
wo = Y7 (wrs)-
Proof. For n = 2, observe that in homogeneous coordinates, Equation 4.1 translates into:

1
wWrps = W(?QZQle ANdZ] — Zaz1dzo NdZ7 + Z1z1dzo N\ dZg — Zizedzy N dZQ).
z

Observe that in By, 21 = /1 — |22]2. Using this observation, and changing to real coordinates,
observe that in hemispherical coordinates, Wpg = dxo A dyo, which is wy in the chart B;. The
general calculation is similar. U

Before moving on, we can characterize the sets U; and point out that the ;’s are a chart

system (all points of CP"~! are in at least one chart). Let [z1 : ... : z,] € CP"L. At least one
coordinate is non-zero, say z; # 0. In the pre-image of the quotient map for CP*~! = (C" \ 0) /C*,
the point (z1,...,25) is equivalent to ‘zfﬁ(zl,...,zn) where |z| = /212 + ... +|2n[%. Therefore
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[21:...:25) € U; and U; = {[21 ¢ ... : 2] | zi # 0}. Thus, the hemispherical chart system allows us
to work with f(X)|y, C B; using the standard symplectic form wy.
Hemispherical charts also trivialize the Hopf fibration over CP™ !, In the diagram,

B;x S' —Yi, g1, cn

P b

B, — Y, cprt.

B; x S' is a trivialization of the S'-bundle, 7 : §?*~1 — CP"~!, given by
Ti(z,e) = e (zl, e Zic1, V1 — |2)2, zig1, ...,zn) e st ccn.

The diagram commutes and ¥; gives a trivialization of the Hopf fibration over U; ¢ CP™ .
As mentioned before, there is a natural contact form « on the unit sphere S2n=1in C". Given
z=(21,..., 2n) € C" where z; = x; +iy; and wo = § > 1| dz; Ndz; = Y ;" dx; A dy;, the form on

Cn
1 n
a0 =3 <Z1 widy; — yida?i)
1=
is a contact form when restricted to S?"~!. Set o = ap|g2n-1. Equipped with this contact form,
(5?1 @) is a contact manifold.
We collect a few facts about a—partly to set notation for the reader, and partly to justify choices
and conventions used throughout this paper.

Lemma 4.3. For z = (21, ..., 2p) € C"\ 0 where z; = x; +1iy;, let N, = ml%*'ylaim"'-""'xn%"'
yn% be the outward pointing normal vector field for any sphere of radius v > 0, centered at the
origin in R*™, and T, = :Ula%l - 3/1(_91‘,):1 + ...+ :rn% — yn% be the vector field that generates the
Hopf fibration 7 : S?"~t — CP"™~'. Then the following are facts about oy and the contact form a:
(1) The form o is equal to L1, WO when |z| = 1.
(2) The form «gp also satisfies ag(kT,) = %|z[2 for k a constant, and iy, dogy = tp,wp =
=30 (widz; + yidy;). For any vector v € T,S?"~1 for a sphere of radius r = |2|
tr,dag(v) = —(Ny,v) =0
where { | ) is the usual inner product on R?". Therefore the vector field R, defined by
R = 2T, when restricted to |z| = 1, is the reeb vector field of a, i.e. a(R) = 1 and
da(R,-) =0. '
(3) Since i*(wo) = 7 (wrs) and dag = wo, ro is the connection one-form of the integral
cohomology class [2wpg].

We use « for 1) in Theorem 2.1 to find ¥} () in the trivialization B; x S* with coordinates (z, e

0.
Lemma 4.4. Let B; C C™ ! be the unit ball with coordinates z = (21, s Zjm1, Zj41s ooy Zn) -
For a chart ¢; : B; — CP" 1 and trivialization W; : B; x ST — 271 given by ¥;(z,€) =

€21,y zjm1, /1 — |22, 2j21, -y 20), then

1
Vi(a) = B (dt + 2a)

where ag is the form defined above on B; C cr1.
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In polar coordinates,

1 —
Wi(a) =3 (dt +12d0) + o+ 7205 + r,’idej) .

Note that the ag defined on B; has no z; term of the form (z;dy; — y;dz;) since z € B; has
coordinates z = (21, ..., Zj, ..., zn). The proof of the lemma is a calculation, and left to the reader.

Thus we can take 7 in Theorem 2.1 to be the 1-form —2ag € Q!(B;). In each chart B; x ST,
label 7; = —2ap, note that the transition map ¥y; : B; X St — By x St takes

(4.2) : (;(dt - Tk)) = St =)

This result follows from the next lemma.

Lemma 4.5. Let B; be the unit ball in C"~1 with coordinates z = (21, ..., Zj—1, Zj+1s - 2n). Let
¥ : Bj x St —>/Si"*1 C C" given by U;(z,e") = €(21, ..., zj—1,/1 — |2], 2j41, .., 2) where
|z| = [21% + oo + |24]2 + o + |20]?. For k # j, the map

i B\ {2z =0} x S' — By \ {2, =0} x S!
defined by Vy; = \Illzl oW, is given by the map

; Zk Zk Zk Zr  Zk Zk Zk i Ak
Upi(z, e = <21 ooy Bl | 28], 2l s e, 2o, 1 — |2]2, 2, o, 2y e”)
i) = \Aapp A b s g ez L p IV = 2 2 e e

In polar coordinates,

\Ilkj(rl7017 ...,7:]‘, 9]‘, ey Ty Hn,t) =

n

1= ZT‘ZZ, =0k, 41,0541 — Ok, ooy Ty O — Ok, T+ O

i=1
i#]

7"1791 - 0k,7’2,92 - eku "‘7Tj—150j—1 - 9/65

Proof. We show the calculation for By, B3 C C3. The general case is similar. The maps

Uy : By x St — ST ¢ C4,

\P2(21,23’Z4’6it) — eit (Zla 1- |Z|2,23,Z4> 3

and

‘1’31B3XSI—>S7CC4,

W3 (wy, wo, wy, ) = e’ (whwz, V11— IwP,w4)
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give rise to W3y : By \ {z3 = 0} x S* — B3\ {ws = 0} x S' via U;' o ¥y. By multiplying by 1
appropriately,

‘PQ(Z1,2’37Z476it) = ¢ (21, \/1 - ’2‘1|2 - |Z3\2 - \2’4’2723724>
. 23 z3
= (22 (VTP TP )
|23 |23]

; 23 z3 z3 z3
_ ()( EEINY ey o oy P RO B )
) G sl 4 Tes]

iy
= U3 (w1,w2,w4,€lt>

where w; :'21%, wy = ‘23|\/1— 2|2, = 24%, and eit’ — eit% One can check that
(w1, we,wq,e?) € Bg \ {ws = 0}, and that \/1— |wi]? — |wa]? — |wa|? = |23] and e’t‘zzl e st
as desired.

Remark 4.6. The formula for Wy; also gives the formula for ¢y; : B; \ {2z, = 0} — By \ {z; = 0}
for ¢y; = w;l o 1; by looking at the 2 coordinates of (2, e®).

In summary, given a Lagrangian immersion f : ¥ — CP""! and V; = f(X) () B;, we can work
with V; C B, using
e the standard symplectic form wy on B; C crt,
e the standard 1-form 7; = —2a9 on B; C cn1,

and patch the V}’s together using the transition maps vy; : B; — By, given by vy; = @b,;l o 1)j.

In practice, this allows us to do integration and other calculations in the Bj’s using standard
forms in each instead of working with homogeneous coordinates and wgg in CP™ 1.

This chart system also gives us new ways to build examples of Lagrangian immersions by first
working with piecewise linear submanifolds in each ball Bj, pasting the pieces together, and then
smoothing the result (as is done with Lagrangian hypercubes in [3] and Section 3 of [6]).

4.1. The Lifting Theorem. The Lifting Theorem puts the separate pieces in the previous sections
together into one result. First, we need an explicit way to calculate integrals along paths in f(X).

Let f: X — CP" ! be a Lagrangian immersion and let v : I — X be a path. In order to define
the lift, we need to define a map ¢ : I — R/277Z, which we do in pieces. Split the interval I into

subintervals
m—1

I= U Sk Sky1]
k=0

where 0 = 59 < 51 < ... < ;-1 < Sy, = 1 such that f(y([sg,sk+1])) C Bj for some j € {1,...,n}
(after identifying B; with U; using ;). Index the B;’s by ji, so that f(v([sk,sk+1])) C Bj, where
Jr is the index of the chart in which ([sg, Sk+1]) is contained. Let xx = v(sx) so that xg = y(s¢)
and z,, = y(s;,). Also, for convenience, use the notation (z); to stand for the z coordinate of
z € Bj. (If 2 € By C C? such that z = (21, 22, 24) then (2)4 = 24.)

Since f(v([s0,s1])) C Bj,, we can integrate 7;, = —2aqg (cf. Equation 4.2) along the path
f(v([s0,51])). Define tq : [sg, s1] — R/27Z by

to(s) = </OS Tio ((fo*y)’(u))du) mod 27
where £5(0) = 0.
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For s € [so, s1] and ¢(0) = a, we can write
t(s) = to(s) + a.

The point (f('y(sl)),eit(sl)) € Bj, x St also lives as a point ¥; ;, (f(’y(sl)),e“(sl)) € B;, x SL.
Define ¥}, ;, (t(s1)) € R/27R to be the argument of the S' component of this map in Bj, x St. We
can also define the point v;, ;,(f(7(s1)) € Bj, as the Bj, component of Bj, x S! (see Remark 4.6).
Lemma 4.7. When t(si) is defined for (f(v(sk)),e*®)) € By, |, then ;5 . (t(s)) = t(sk) +
arg (wjkjk—l (f('Y(Sk)»Jk)

Proof. See Lemma 4.5. ([

We can now continue the integration in Bj : Define ¢; : [sq, s2] = R/277Z by t1(s1) = 0 and

t1(s) = </ 7, ((fo 7)’(u))du> mod 2.
S1
Hence we can write t(s) for s € [sy, s9] as

t(s) = t1(s) + ;.5 (fo(s1) + a).

Induct on £ to integrate the 7, ’s over the entire path:

Definition 4.8. Let [0, 1] NS L> CP™ ! and suppose there exists an increasing sequence 0 =
50 < 81 < ... < 8m—1 < 8y = 1 such that f(y([sk, Sk+1])) C Bj, for ji € {1,...,n} and f(y(sk)) #0
and f(y(sgt+1)) # 0 for all 0 < k£ < m. Assume ¢(0) = a and define the lifting integral to be

F/T::
¥

[tm—1(sm) + Wj,, 1jmn (- (t3(52) + Wigjy (ta(s3) + Wy (t1(52) + Ujyj, (to(s1) 4+ a)))))] mod 27

Remark 4.9. See Example 5.1 for an example of a calculation of the lifting integral for the trivial
cone.

In practice we usually need only m = 1 or m = 2 for most integrals. Also, since

n

Ty = — Z (zidy; — yidx;)
=1
i

and
n
wrslp, = Y dr; Ady;,
=
the calculations may be done in each chart. In summary, we obtain the Lifting Theorem, which
says that if
(1) T [, 7 =0 mod 2r for all [y] € H(X;Z), and
(2) for all distinct points 1, ...,z € ¥ such that f(z1) = f(x;) for all j < k, and a choice of
path 7; from z1 to z; in ¥ for 2 < j < k, the set {(F ff(w)T) mod 27 |2 <5 < k} has
k — 1 distinct values, none of which are equal to 0,
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then f : ¥ — CP" ! lifts to an embedding f : & — 5271 such that the image (the lift) Yis a
Legendrian submanifold of (5?"~!, ). Furthermore, the cone ¢ is Lagrangian in C* with respect
to the standard symplectic structure wy.

5. LEGENDRIAN CONTACT HOMOLOGY GENERATORS OF THE TRIVIAL LAGRANGIAN CONE

Example 5.1. We already saw in Example 1.6 how to obtain a trivial (special) Lagrangian cone,
but, we can also construct this example using the Lifting Theorem, as a lift of a map f: S"~! —
cpr1.

Recall that the trivial cone is given by the map f : R” — C™ where (T1, ey ) — (T101, ey T,
and 1 = (11, ...,Np) is a complex vector with 7; # 0 for all j. Clearly the trivial cone is a lift of the
Lagrangian immersion f : S"~! — CP"~! given by f(z1,...,2n) = [Z171 ¢ .. : Tp0h).

Observe that the set {(z1,...,2,) C R™ | Sp_; |zknk;1* = 1} is an (n — 1)-dimensional sphere,
S~ for any choice of complex vector (11, ...,7,,;) (the reason for the j-subscript will be ap-
parent shortly). Moreover, we may cover S" ! by charts of the form gzﬁ]i : Vji — 8771 where

V;.i = {(T1, s Tj—1, D, Tj41, ey Tn) € RV Z}g;l |zjmi,;|> < 1}, and the sign indicates which
J

hemisphere is being covered. Within each chart, after identifying Vji with qb;t(VjiL we may write
write f(z) as fji(;v) where f;ﬁ : Vji — CP" ! is given by the following:

n

fji(xl, e 1, By Tty ) = TN e i1y T |1 — Z |T6mk |2 Tjinj1, et Tl |

k=1

k#j
T
lzjn;l°

Since H1(S?,7Z) is trivial, the first condition of the Lifting Theorem is automatically satisfied.

Moreover, fl-jE is clearly an embedding on Vii, so within each chart the second condition is satisfied.
However, observe that after patching these maps together, the antipodal points of S”~! are the only
ones identified by f (in fact, the image of f is a copy of RP"~1). To see that the antipodal points
are separated in the lift, consider what happens when n = 3 and n = (1,1,1). In that case, we can
lift along a path + from the origin of V5" (the “north pole”) to the origin of V5~ (the “south pole”),
and running diametrically through the origin of V1+. Notice that integrating 7 along v contributes

0 to the lift within each chart. If we transition from V3Jr to Vi at the point (%, 0, %) and from
Vit to V5~ at the point (%, 0, —\%) then we pick up a factor of —1, or €™, on the S'-factor from
the transition map W3; (the second transition map). Hence,

F/T:Tr.
v

The general calculation is similar. Hence, the Lifting Theorem guarantees the existence of an
embedded lift, f : $"~! — §27=1 c C" such that the cone is Lagrangian in C". Moreover, our
discussion above clearly identifies this as a Lagrangian R™ C C", which is the trivial cone.

The trivial cone intersects S?"~! in a Legendrian (n — 1)-sphere that projects down to a copy
of RP"! via a 2-to-1 map (the quotient by the antipodal map). This is inconvenient when one
wishes to compute Legendrian contact homology, because one needs isolated transverse double
points. However, we can perturb f through a family of functions f. so that for some € the image of
the lift, f., is a copy of S"~! having only transverse double points when projected down to CP" 1.

where 7 ; = 1
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For simplicity, we write down the perturbation in the case where n = 3 and n = (1,1, 1). Choose
€ > 0, and perturb each hemisphere of S? as follows:

e , 4
fl:l;(mg,l‘?,) = |LetieVi-za—3, /1 x3 — 2% ey Mg

f2:|,:e($17x3) 7,61‘1 j:e:l:%mm:ezex;gxg ,
xq: €2y ilﬁmm ‘

Observe that the perturbations in each chart are consistent with the transition maps. To determine
the (transverse) intersections, and hence the Reeb chords, we begin with the observation that all
double points are antipodal points. We leave the proof as an exercise for the reader.

fi(@r,m0) = |

Theorem 5.2. Let f. : S> — CP? be the map determined by patching together fjE VjE — CP?
for i = 1,2,3. Let (w1,72,23), (y1,y2,y3) € S? C R be two points such that fe(.%'l,.ilfg,l‘g) =
fe(y1,y2,y3). Then (z1,22,23) = —(y1,y2,3))-

To determine the double points when e > 0, assume =+(x1,x2,23) map to a double point,
fe(w1, o, 23). If x; # 0 for all i, then without loss of generality we may assume 1 > 0. Us-
ing the charts V;™ and V|, we see that fffe(xg, z3) = f1 (—x2, —x3), and hence

(5.1)

[eisy/l—mg—zg /1 _ ZE‘% _ :L‘% . eiex2x2 . ei6x3x3] [ iey/1— cc2—:1:3 /1 _ 1,2 _ -1'3 —zezz . e—iexg,xg]'

Cross-multiplying in the first two homogeneous coordinates, we see that

ez’e(zg—\/l 12—13)m_6 e(—z2++/1— m2—z3) / - *CE%

If 1 — a3 — a:§ # 0, then for small ¢ we may equate the arguments of the exponentials, to obtain
xo > 0 and 2$%—|—CL'§ = 1. Similarly, cross-multiplying in the first and third homogeneous coordinate,
and applying the same reasoning, we obtain x3 > 0 and x3 + 223 = 1. Solving this system, and
recalling that z1 = /1 — 23 — 2%, we obtain that 1 = z9 = 3 = +1/4/3.

If1—a3 —x% = 0 and x5 = 0 then we get a double point at [0 : 0 : 1]. Similarly, if 1 — 3 —x% =0
and x3 = 0 then we get a double point at [0 : 1 : 0]. Finally, assume 27 = 0 and neither z9 nor x3
is zero. In this case, working in the charts V3+ and V5~ we obtain,

[0: "2y : PV a3 /1 — 23] = [0: —e 2y evi 1—23].

2

For small €, we may use techniques similar to the previous case, we obtain that xo = x3 = :l:%. A

similar discussion applies if 1 — x% — x% =0orl— x% — iL'?;’ =0.
From the discussion above, we obtain the following theorem.

Theorem 5.3. Let S C S° be the Legendrian 2-sphere obtained from intersecting the trivial cone
with S° and then perturbing it via Legendrian isotopy to the image of fi for i € {1,2,3}, for
some € > 0. The projection 7 : S° — CP? has 7 transverse double points: +(1,0,0), £(0,1,0),
11 1 1 1 ,
+(0,0,1), i(ﬁ’ ﬁ,O), :I:(ﬁ,o,ﬁ), +(0, 2 75 f) and i(T %,%). Then the 0-filtration level
of the Legendrian contact homology of S is generated by 7 pairs of short Reeb chords.
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In summary, we have constructed a family of Lagrangian cones, all isotopic to the trivial cone.
However, for small € > 0 our cones have the additional property that the projection to CP? has 7
transverse double points, while the trivial cone (obtained by taking € = 0) is a 2-to-1 cover of its
projection to CP2.

6. LEGENDRIAN SUBMANIFOLDS OF S27~! As LIFTS OF LAGRANGIAN SUBMANIFOLDS IN CP"~1

The motivation of this paper is the study of Lagrangian cones given by lifting an immersion into
CP"™ ! to an embedded Legendrian submanifold of S?*~!. However, Theorem 2.2 and the Lifting
Theorem provide a way to study Legendrian submanifolds of $?*~! on their own.

A great deal of work has been done to study Legendrian knots in dimension 3, especially in the
standard contact R? (cf. [19], [36], [41], [33], [34], [35]), and Joshua Sabloff studied the Legendrian
contact homology of knots in 3-dimensional circle bundles in [43].

Less is known about Legendrian submanifolds in higher dimensions, and much of it only in the
standard contact R?"*1 (cf. [14], [6], [15], [17]). In [42], Legendrian submanifolds of circle bundles
over orbifolds are considered, and in [2], the circle bundle R* x S' is considered in depth, and
related to the case where R* x S! is identified with the Hopf bundle over a single chart of CP? (the
special case of Theorem 2.2 in this paper).

Theorem 2.2 allows one to study Legendrian submanifolds of $?"~! just as one might study
Legendrian submanifolds of R?” x S1 or even the standard contact R?"*1. As seen in Example 3.1,
and Section 3.3, the lifts function in much the same way as one might lift an exact Lagrangian to
a Legendrian knot in the standard contact R?"*1, or the 1-jet space of a manifold.

Although Theorem 2.2 makes calculations simple, it fails to capture one of the most basic ex-
amples: the Legendrian sphere corresponding to the intersection of the trivial cone with S?"~1 (as
observed in Example 5.1). The Lifting Theorem moves the story forward, allowing one to consider
immersions into CP"~! that do not lie in a single chart. It shows that the calculations are not
much more difficult than they are in the case of Theorem 2.2, because in each chart the calculations
use standard forms, and one need only to track how the lifting parameter, ¢, transitions from one
chart to the next. This leads us to ask the following question:

Question 2. Sabloff showed in [43] how to compute the DGA of Legendrian knots in certain
contact circle bundles over surfaces. In the context of Theorem 2.2 or the Lifting Theorem, is
there a similar combinatorial algorithm for computing the Legendrian contact homology in higher
dimensional circle bundles?

If such an algorithm can be found, one would expect the structure of a radial Lagrangian hy-
percube diagram to provide a setting in which such calculations would be simple, and could be
automated on a computer.

7. MINIMAL AND HAMILTONIAN SUBMANIFOLDS

Special Lagrangian submanifolds, introduduced by Harvey and Lawson in [22] have been studied
extensively due to their connection with mirror symmetry. Special Lagrangian cones in C" can be
studied via the equations that define in them in C", as minimial Legendrians in $?"~! (the link), or
from the perspective of the corresponding minimal Lagrangian submanifold of CP"~1 (cf. [25], and
[23]). While many examples have been studied, the difficulty in working with the special Lagrangian
conditions has led to some weaker conditions being studied in the hope of better understanding
special Lagrangians. In [39], the notion of Hamiltonian minimal (H-minimal) Lagrangian subman-
ifolds was introduced. A Lagrangian submanifold in a K&hler manifold is said to be H-minimal if
the volume is stationary under compactly supported smooth Hamiltonian deformations (cf. [25]).
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H-minimal Lagrangian cones in C? were studied and classified by Schoen and Wolfson in [44]. In
particular they showed that only cones of Maslov index 41 are area minimizing. Moreover, they
showed that if an immersed Lagrangian submanifold of a K&ahler-Einstein manifold is stationary
for volume, it is automatically minimal, and special Lagrangian in the Calabi-Yau case (cf. Lemma
8.2 of [44]).

It’s already known that the trivial cone is H-minimal (cf. [29], [37], and [38]). The Harvey-
Lawson cone is also known to be strictly Hamiltonian stable, that is, the second variation of the
volume is nonnegative under every Hamiltonian deformation, (cf. [11] and [29]), and it’s known
that any Hamiltonian stable, minimal Lagrangian torus in CP? is congruent to the Clifford torus
(cf. [39], [40], and [46]).

Question 3. What are the conditions on a Lagrangian immersion into CP™ 1 that guarantee it
lifts to an H-minimal Lagrangian cone?

Question 4. What are the conditions on Legendrian hypercube diagrams that generate H-minimal
Lagrangian cones?
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