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Locally free twisted sheaves of infinite rank

Aise Johan de Jong, Max Lieblich, and Minseon Shin

Abstract. We study twisted vector bundles of infinite rank on gerbes, giving a new point of view
on Grothendieck’s famous problem on the equality of the Brauer group and cohomological Brauer
group. We show that the relaxed version of the question has an affirmative answer in many, but not
all, cases, including for any algebraic space with the resolution property and any algebraic space
obtained by pinching two closed subschemes of a projective scheme. We also discuss some possible
theories of infinite rank Azumaya algebras, consider a new class of “very positive” infinite rank
vector bundles on projective varieties, and show that an infinite rank vector bundle on a curve in a
surface can be lifted to the surface away from finitely many points.

1. Introduction

1.1. Background and main results

One of the fundamental invariants of a scheme is its Brauer group. By analogy with the
Brauer group of a field, which classifies central simple algebras up to Morita equiva-
lence, the Brauer group Br(X) of a scheme X classifies equivalence classes of Azumaya
algebras, which are étale twists of matrix algebras Mat, «, (Ox). Just as with fields, any
Azumaya algebra + has an associated étale cohomology class [#] in the cohomological
Brauer group Br'(X) := HZ2 (X, Gy)iors- This defines a functorial embedding

Br(X) € Br(X)

called the Brauer map.

This paper originated with the problem of determining whether the Brauer map is an
isomorphism, which is one of the central problems at the interface of modern algebra and
algebraic geometry. Whereas the Brauer map is an isomorphism when X is the spectrum
of a field (i.e., every torsion étale cohomology class over a field is represented by some
central division algebra), for arbitrary schemes this is not necessarily true. By a theorem
of Gabber [6], the Brauer map is known to be an isomorphism when X admits an ample
line bundle, but the question of surjectivity of the Brauer map remains open more gener-
ally, e.g. for schemes admitting an ample family of line bundles (which include smooth
separated schemes over a field).
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Using the language of twisted sheaves [25], the Br = Br’ question may be rephrased as
follows. By Giraud’s theory of non-abelian cohomology [13], the cohomological Brauer
group Br' (X)) classifies Gy,-gerbes X — X of finite order. For a G,-gerbe X over a scheme
X, the condition that the class [X] comes from an Azumaya algebra of rank r2 is equivalent
to saying that X admits a twisted vector bundle of rank r. The existence of such vector
bundles has strong consequences: for example, if there is a twisted vector bundle of rank
r on X, then [X] is r-torsion in He?t(X ,Gn).

If [X] is arbitrary (not necessarily torsion), we can ask whether X admits twisted
locally free @-modules of infinite rank. Let

LPBr(X) € HZ(X, Gn)

be the submonoid consisting of classes [X] such that X admits a twisted locally free Q-
module (not necessarily of finite rank); this is roughly equivalent to saying that [X] comes
from an Azumaya algebra of possibly infinite rank. Our main theorem asserts the existence
of twisted vector bundles of infinite rank on all Gy,-gerbes over a large class of algebraic
spaces (in greater generality than the known answers to the Br = Br’ question).

Theorem 1.1.1. For an algebraic space X, the inclusion LPBr(X) € H2(X, Gy,) is an
equality if at least one of the following hold.

(i) X has the resolution property.
(i) X admits an ample family of line bundles.

(iii) X is an algebraic surface (i.e., finite type and separated over a field, and dim X
=2).

(iv) X isa quotient Y / G over some base scheme S, where Y is an S -algebraic space
satisfying at least one of the conditions (1)—(iii), and G is an S-group scheme
acting freely on Y and such that G — S is an affine, flat, finitely presented
morphism with geometrically irreducible fibers.

At first glance, it seems vector bundles of infinite rank would be more difficult to
understand than those of finite rank. In fact, infinite rank vector bundles have a simple
local structure (often by arguments involving the Eilenberg swindle), enough to suggest
the following as the key guiding principle of our main results:

Principle 1.1.2. Vector bundles of infinite rank have simpler structure than vector bundles
of finite rank.

The prime example of this is Bass’s theorem on the triviality of projective modules of
countably infinite rank over Noetherian rings.

Theorem 1.1.3 (Bass [2]). Let A be a ring such that A/ J(A) is Noetherian, where J(A)
is the Jacobson radical. If M is a projective A-module of countably infinite rank, then M
is free.
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As we will see, local uniqueness theorems such as these yield global existence results
that are quite strong in comparison to their finite-rank analogues (which are often false).

Remark 1.1.4. One can also read Bass’s theorem as telling us that the various naive
notions of “infinite rank vector bundle” — that is, locally free sheaves or simply locally
projective sheaves — coincide.

To prove Theorem 1.1.1, we first consider the affine case, for which we prove a
twisted version of Bass’s theorem. Then we show that in each case X admits a cover
7 : X' — X where X' is affine and m is a surjective affine-pure morphism, which is
roughly characterized by the property that the pushforward of a locally free module by
such a morphism remains locally free (in case (ii), Jouanolou’s trick provides an example
of such a map). The cases (i), (ii), (iii) are special cases of (iv), which reduces to the claim
that G — S is affine-pure under the stated assumptions. This is enough to conclude since
the LPBr(X) = HZ(X, Gy,) property descends under affine-pure morphisms.

For non-affine schemes, it is not true that all infinite rank vector bundles are trivial (in
fact, we give examples of infinite rank vector bundles on P! that are not decomposable
as direct sums of line bundles). In response to this difficulty, we introduce a class of
infinite rank vector bundles which we call very positive vector bundles. We show that, for
projective schemes over an infinite field, very positive vector bundles exist and are unique
up to isomorphism; we view this as another example of Principle 1.1.2. This uniqueness
forces them to descend through simple pushouts, allowing us to prove that LPBr(X) =
HZ (X, Gy,) for a class of schemes not included in Theorem 1.1.1.

Theorem 1.1.5. Let X be the colimit of a diagram Z = Y where Z and Y are smooth
and projective over an infinite field and the two arrows are closed immersions with disjoint
images. Then LPBr(X) = HZ,(X, Gn).

In our investigations, one essential subtlety lies in what precisely one means by “vector
bundle of infinite rank”. The bundles we consider here are essentially the discrete parts
of the types of infinite vector bundles described by Drinfeld in [7]. A consequence of this
restriction is that we lose dualizability; this is why the subset LPBr(X) of HZ (X, G,) that
we study is only a submonoid. It is an interesting question to consider what we would
happen if one allows the compact duals as in Drinfeld’s theory, in which case one seems
to lose tensor products, so that one would no longer have a submonoid but merely a subset
closed under inversion.

The Br = Br’ and LPBr(X) = H2 (X, G,,) problems are two instances of a broader
desire in algebraic geometry to find appropriate geometric or ring-theoretic objects corre-
sponding to cohomology classes. For HZ (X, Gy), there is an earlier, different approach
due to Taylor [32] who defined the bigger Brauer group l§}(X ). These are the classes rep-
resentable by certain quasi-coherent @y -algebras that are neither unital nor locally free in
general. By work of Heinloth—Schréer [21], it is known that

Br(X) = H(X,Gy)
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for Noetherian algebraic stacks X whose diagonal is quasi-affine. They show that all Gy,-
gerbes over such X admit a twisted coherent sheaf that locally contains an invertible
summand.

1.2. Outline

We provide an outline of the paper. In Section 2 we discuss twisted sheaves and define
the submonoid LPBr(X) over an arbitrary locally ringed site. We define infinite rank
Azumaya algebras (Section 2.3) and Brauer—Severi varieties (Section 2.4) and discuss
their relationship to twisted vector bundles. After giving some sufficient conditions for
a morphism to be affine-pure (Section 3.1), we prove the main theorem in Section 3.2.
We modify the example of a scheme for which Br # Br’ (due to Edidin—Hassett—Kresch—
Vistoli [8]) to produce a scheme for which LPBr(X) = 0 but He?t(X ,Gn) =Z.In Section 4,
we introduce very positive vector bundles and prove that the proper schemes admitting a
very positive vector bundle are exactly the projective ones (Section 4.2) and that very
positive vector bundles are unique up to isomorphism (Section 4.3). We also prove that
every finite rank vector bundle over a projective scheme admits a finite-length “forward
resolution” by the very positive vector bundle (Section 4.4). In Section 5, we prove that
infinite invertible matrices lift under any surjective ring map, which implies in particular
that all infinite rank vector bundles lift from a curve to an ambient surface away from
finitely many points (again supporting Principle 1.1.2). In Section A, we prove infinite
rank analogues of some results used in the definition of the Brauer map, including the
Skolem—Noether theorem (generalizing a result of Courtemanche—Dugas [5]) and the fact
that endomorphism algebras of projective modules are central algebras.

2. Twisted sheaves and Azumaya algebras of possibly infinite rank

2.1. Terminology about modules

In this paper we will use the following terminology regarding modules (which may be
different from existing definitions).

Definition 2.1.1. Let € be a locally ringed site, let ¥ be an Q¢ -module.

We say that ¥ is locally free if for every object U of € there is a covering {U; —
U }ier such that for every i the restriction ¥ |y, is a free Oy, -module.

We say that & is locally projective if for every object U of € there is a covering
{U; — U}ier such that for every i the restriction ¥ |y, is a direct summand of a free
Oy,-module.

We say a locally projective Qe-module ¥ has positive rank if for every object U
of € there is a covering {U; — U };ey such that for every i € I there is a surjection
F |Ui — (9Ui'

We say a locally projective Oe-module ¥ is countably generated for every object U
of € there is a covering {U; — U };ey such that for every i € I there is a countable set /;
and a surjection (93,1" — F|y, of Oy, -modules.
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Remark 2.1.2. We note that every locally projective Qe-module ¥ is quasi-coherent.
Indeed, after localizing on € if necessary, we may assume that (9.29 I'~ ¥ & ¢ for some
O¢-module §. Then ¥ is the cokernel of the composition (9%9 I'6 - (9%9 I

Remark 2.1.3. For an algebraic space X, we are primarily interested in classes in the
étale cohomology group Hgt(X , Gm). Thus whenever we discuss modules, cohomology,
and gerbes on an algebraic space X, we will assume without further mention that the
underlying site € is the small étale site X¢ of X. (Recall that we have HZ(X, G) ~
H%ppf(X, Gp,) by [18, Théoreme 11.7 (1)].)

For a scheme X and a quasi-coherent Ox-module ¥, the following Theorem 2.1.4
shows that F is locally projective for the fpqc topology if and only if it is locally projective
for the Zariski topology.

Theorem 2.1.4 (Raynaud—Gruson [30], The Stacks project [33, Tag 05A9]). Let A be a
ring, let M be an A-module, let A — B be a faithfully flat ring map. If M ®4 B is a
projective B-module, then M is a projective A-module.

Question 2.1.5 (Infinite-rank Hilbert Theorem 90). Let X be a scheme, let & be a quasi-
coherent Ox-module. If there exists an fppf (resp. étale) cover X’ — X such that &y is
a free Oy -module, then does there exist an étale (resp. Zariski) cover X — X such that
&|xn is a free Ox»-module? In other words, are the maps

H}, (X.GLy) — Hj(X.GL;) — Hy, (X, GLy)

isomorphisms for any index set /? By Theorem 1.1.3, we know that if X is Noetherian
and [ is countable, then the answer is “yes”. See also [33, Tag 05VF].

2.2. Twisted sheaves

We briefly recall some background about gerbes and twisted sheaves (see [26, Section
3.1.1] for a reference).

Definition 2.2.1. Let € be a locally ringed site, let o € H2(€, Gp) be a class, and let
X — € be a Gy-gerbe with [X] = @. An Ox-module ¥ is said to be 1-twisted if the
natural inertial action G, x ¥ — ¥ equals the action obtained by restricting the module
action Oy x ¥ — ¥ [26, Definition 3.1.1.1].

Remark 2.2.2. Let f : Y — X be a morphism of algebraic spaces and let X — X be a Gy, -
gerbe. If § is a 1-twisted Oy x, x-module, then the pushforward f.¥§ is a 1-twisted O x-
module. If ¥ is a 1-twisted @ x-module, then the pullback f*¥ is a I-twisted Oy x, x-
module.

Remark 2.2.3. We can equivalently describe twisted sheaves using hypercoverings (this
is discussed in [25, Section 2.1.3]). Given a class o € H?(€, Gy, ), there exists a hypercover
U, of the final object U € € and a class o’ € H2(U., Gp) mapping to o under the natural



A. J. de Jong, M. Lieblich, and M. Shin 138

map
H2(Us, G) — H2(€, Gp).

Suppose that a € T'(Us, Gp,) is a 2-cocycle representing ’ and that X is a G,-gerbe such
that « = [X]. Then the condition that &’ > « is equivalent to saying that there exists
an object s € X (Up) and an isomorphism o € Morx w,)(p7s, p5s) such that p3,o o
D120 =g © pi;0 in Morxw,) ((p1p12)*s, (p2p13)*s), where 1, is the image of a under
the isomorphism I'(Uz, Gi) >~ Autx@,)((p2p13)*s).

An a-twisted sheaf is a pair (Fop, ¢1) where Fp is an Oy,-module and ¢; : py Fo —
P35 Fo is an Oy, -module isomorphism satisfying the condition p3;¢1 © pi,¢1 =a - pi;01
on U,. Given a 1-twisted @ x-module ¥, the canonical isomorphism

oF : pis*F > pis*F

satisfies p3;0% o pi,05 = a - pi;05 on Uy, hence (s*F, 05 ) is an a-twisted sheaf. As
verified in [24, Section 2.1.3], the assignment & +— (s*%, 0#) induces an equivalence
of categories between the category of 1-twisted quasi-coherent @ x;-modules and the cat-
egory of quasi-coherent «-twisted sheaves. Furthermore, for each of the properties P in
Definition 2.1.1, the Qx-module F satisfies P if and only if the Oy,-module ¥ satis-
fies P.

Definition 2.2.4. For a locally ringed site €, we define LPBr(€) (resp. LFBr(€)) to be
the subset of classes & € H2(€, G,,) such that any G,,-gerbe X — € with [X] = « admits a
countably generated locally projective (resp. locally free) 1-twisted @ -module of positive
rank.

Lemma 2.2.5. For alocally ringed site €, the subsets LPBr(€) and LFBr(€) are additive
submonoids of H2 (€, G,).

Proof. The identity character G, — Gy, gives a 1-twisted invertible sheaf on the trivial
gerbe BGy,, s0 0 € LFBr(€). To prove that LPBr(€) and LFBr(€) are closed under addi-
tion, we use the language of a-twisted sheaves as in Remark 2.2.3. Let a1, @ € H?(€,Gp)
be classes and let U, be a hypercovering of € such that both o, o, are representable on
U.. If (¥i,0,9i,1) is an o;-twisted sheaf for i = 1,2, then (¥ R0y, F2,0, 01,1 @ ¢¥2.1)
is an (o7 + ap)-twisted sheaf. If a1, oy € LPBr(€) (resp. a1, ap € LFBr(€)) and the
F1,0, F2,0 are countably generated locally projective (resp. locally free) of positive rank,
then %10 R0y, F2,0 is also countably generated locally projective (resp. locally free) of
positive rank. |

Remark 2.2.6. Suppose (Fp, ¢1) is a locally projective a-twisted Qe-module. If Fy
has finite rank, then (Home, (Fo, O¢), ¢y) is a locally projective (—a)-twisted Q-
module. However, if %y does not have finite rank, then Hom g, (Fo, O¢) need not be
quasi-coherent (in particular, not locally projective).

Question 2.2.7. Does there exist an algebraic space X such that LPBr(X) is not a sub-
group of H;(X ,Gn) (i.e., does not contain additive inverses)?
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Question 2.2.8. For which algebraic spaces X is the inclusion LPBr(X) — HZ (X, Gy,)
an equality?

Remark 2.2.9. For any algebraic space X, let Br(X) (resp. Br'(X)) be the Brauer group
(resp. cohomological Brauer group) of X. We have inclusions

Br(X) Br'(X)

! !

LFBr(X) — LPBr(X) —> HZ(X, G,)

of additive submonoids of HZ (X, Gy,). The classes in Br(X) correspond to Gy,-gerbes X
admitting a 1-twisted locally free @-module of finite rank. By a theorem of Gabber [6],
the inclusion Br(X) € Br/(X) is known to be an equality if X is a quasi-compact scheme
admitting an ample line bundle.

Lemma 2.2.10. For a locally Noetherian algebraic space X, we have
LFBr(X) = LPBr(X).

Proof. Let X — X be a Gy,-gerbe admitting a countably generated locally projective 1-
twisted O-module & of positive rank. Let X’ be a locally Noetherian scheme with an
étale surjection X’ — X such that Xy~ is trivial. For any section s : X’ — Xy, the restric-
tion s*(&|x,,) is a locally projective Ox/-module of positive rank. For an affine open
subscheme U = Spec A4 of X’, the A-module I'(U, €|y ) is projective by Theorem 2.1.4.
If T'(U, & |y ) has finite rank, then &|y is Zariski-locally free; otherwise, since A is Noethe-
rian, I'(U, |y ) is free by Bass’ theorem [2]. |

2.3. Azumaya algebras

Definition 2.3.1 (Azumaya algebras). Let € be a locally ringed site. Given an Q¢-algebra
A, a trivialization of 4 is a pair

(€.9)

where & is a locally free Oe-module of positive rank, and ¢ : A — End .. (€) is an Oy -
algebra isomorphism. We say that «4 is an Azumaya Oe-algebra if for every object U € €
there exist

(1) acovering {U; — U};er and
(2) atrivialization (&;, ¢;) of the restriction 4|y, foralli € [
such that

(%) foralliy,i, € I, there exists a covering {V; — U;, xy U, }lélil,iz such that &;, |y,
and &;, |y, are free and the Oy, -algebra isomorphism

@ir|v, o (@i, lv,) ™" Endy, (&i,lv,) — Endy, (Ei,lv,)

is induced by an Oy, -module isomorphism &;, |y, — &;,|v;.
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Remark 2.3.2. According to Definition 2.3.1, an Azumaya Ox-algebra -4 is not quasi-
coherent unless it has finite rank. If the structure sheaf Qe is locally Noetherian, then
condition Definition 2.3.1(i) is automatically satisfied by Theorem A.1.3.

Definition 2.3.3 (The Brauer map). Let 4 be an Azumaya O¢-algebra. We define the
gerbe of trivializations of A to be the category 94 whose objects are tuples (U, &, ¢)
where U € € is an object and (&, ¢) is a trivialization of 4|y, and a morphism

(U1, &1,91) = (U2, €2, 92)

is a pair (f, p) where f : Uy — U, is a morphism in € and p : f*8&, — &; is an Op, -
module isomorphism such that the diagram

Aly, =———= [TAlu,

wll lf*%

Endoy, (61) —— Endoy, (f*€2)

commutes, where ¢, is the conjugation-by-p map. Then G4 is a stack fibered in groupoids
over €, and it is a Gy,-gerbe by Definition 2.3.1(2), (i) and Lemma A.2.1. The association
A > G4 defines an extension of the usual Brauer map.

Proposition 2.3.4. Let X be an algebraic space, let € H2(X, Gy,) be a class. The fol-
lowing conditions are equivalent.

(1)  We have a = [G4] for some Azumaya Ox-algebra A.
(ii) The class « is in LFBr(X).

Proof. Let § be the G,-gerbe corresponding to «.

(i)=(ii): Let + be an Azumaya algebra on X and suppose that § is the gerbe of
trivializations of +. The assignment (U, &, ¢) +— (U, &) and (f, p) — (f, p) defines a
1-twisted locally free O¢-module.

(ii)=>(i): Suppose there exists a 1-twisted locally free Qg-module &. The endomor-
phism sheaf End o, (€) is a O-twisted Og-algebra, hence is isomorphic to the pullback of
some (Ox-algebra +. There exists an étale cover X’ — X such that §’ := X’ xx ¢ admits
a 1-twisted line bundle £’. If we denote by &’ the Ox/-module whose pullback to §’ is
€lg o, &£'~1, then we have an Qx/-algebra isomorphism ¢ : A|x: — Endo,, (€'). Let
X" := X' xx X’ and consider the OQx~-algebra isomorphism

pavo(pie) " éndo,, (pi€) — Endo,, (p3E") (2.3.4.1)

where p1, p» : X” — X denote the two projections. If we take a cover {V) — X" })en
which trivializes pf £’ ®o,, (p5£')", then the restriction of (2.3.4.1) to V} is induced
by an Ogx, v, -module isomorphism (py &) |gxy v, = (P5L’)|gxyv, . Thus A is an Azu-
maya algebra. ]
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2.4. Brauer-Severi varieties

Let I be an index set, let Z®! be a free abelian group with basis indexed by 7, and define
projective I -space to be

PSpecZ = PrOJSpecZ Symy, ASh
As in Bass’ theorem, from which we know that infinite-rank vector bundles on finite-type
schemes are simple, finite-rank vector bundles on infinite-dimensional varieties are also
simple: by work of Barth—van de Ven [1], Tyurin [34], Sato [31], it is known that finite
rank vector bundles on Plé are direct sums of line bundles.

We define a Brauer—Severi variety to be an étale twist of P! for some /:

Definition 2.4.1. Let X — S be a morphism of schemes. We say that X is a Brauer—
Severi scheme over S if there exists an étale surjection S’ — S, an index set /, and an
isomorphism X xg S’ =~ PL, of S’-schemes.

Definition 2.4.2. Let GL; : Sch® — Grp be the sheaf of groups S +— Autg S_mod((ggal )
and let PGL; be the quotient GL; /Gp,. A module automorphism of (9?1 induces a graded
algebra automorphism of Symg s (9?1 , hence a scheme automorphism of P{g. Thus we
obtain a natural homomorphism

PGL; — Auty,(PT) (2.4.2.1)

of sheaves of groups on Sch. (Note that neither GL; nor PGL; are representable if [ is
infinite.)

Lemma 2.4.3. The map (2.4.2.1) is an isomorphism.

Proof. Let S be a scheme and let ¢ : P{g — Pg be an S-scheme automorphism. By [17,
Proposition 4.2.3], a morphism 7" — PépecZ is given by an invertible @7-module &£ and
an /-indexed collection of global sections 0; € I'(T, £) which are globally generating,

ie.,
T = U T,,.
iel

By Lemma 2.4.4, after taking a Zariski cover of S, we may assume that S = Spec A4
is affine and that ¢ is the morphism corresponding to the line bundle (9P1 (n) and globally
generating sections {0;};es. Since ¢ induces an automorphism of PIC(P ) we haven = 1
(note that F(P P1( 1)) = 0). Let {o;}ies and {7;};es; be the I-indexed collections
of sections correspondlng to ¢ and ¢!, respectively. For any /-indexed collection of
sections v; € F(P{g, @Pg(l)), let [{vi}iel] denote the / x 1 column vector whose ith
entry is v;. Then there exist matrices M, N € Matyx (A) such that

[{oitier] = M[{xi}ier] and  [{zi}ier] = N[{xi}ier].

Since NM [{x,- bie 1] corresponds to the identity morphism, by [17, Proposition 4.2.3] there
exists a unit u € A such that NM = u - idy, thus M € GL;(A). L]
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In Lemma 2.4.4, we compute the Picard group of infinite-dimensional projective
spaces over an arbitrary scheme (the case S = Spec k for a field k was proved by Tyurin
[34, Proposition 1.1 (1)]).

Lemma 2.4.4. For any scheme S, the map
Pic(S) @ I'(S,Z) — Pic(PL) (2.4.4.1)
sending (£,n) > £ ® (9P§ (n) is surjective.

Proof. Let £ be aline bundle on PI Let A denote the set of finite subsets of 1, so that [ is
the filtered union / = h_n)l A. For each A € A, we have a projection map Z®/ — Z®*
which induces a closed immersion P)L — PI We know that (2.4.4.1) is an isomorphism
when [ is finite, thus there exist 1nvert1ble OS modules M) and integers n, such that

Llpi = Malp: ®0P§ Op1 (12)

on Pé. Since we have linear transition maps Pg — Pg, we have in fact n), = ny and
M), =~ My for any two A, A’ € A. Thus, after taking a Zariski cover of S and replacing
£ by £ ®¢ ol (M~ |P1 ®o ol Pz( n)) for this common invertible @g-module M and
integer n, we may assume that in fact $|PA is trivial for all A, and that S = Spec 4 is
affine. Let U; := D4 (x;) denote the d1st1ngu1shed affine open subscheme of P associated
toi € I and set Uy := ();¢; U; for all A. By Lemma 2.4.5, the restriction $|Ul is trivial
for all i € /. Then &£ is described by a collection of units u;, ;, € I'(Uy, ip3, Gm) for
i1,1p € I, corresponding to the transition map between trivializations of & on Uy;, ;,3. Fix
two distinct indices i}, i, € I and let A be a finite subset of I containing the indices of
all variables x; that appear in ;o ;2. Then xlU(if,i;} is isomorphic to the pullback of a line

bundle on P§ via the projection map Pg \ Vi({xi}tiena) = P’;. Since §E|P§ is trivial by
the above, the restriction éﬁ|U{.o 0y is trivial. Hence, we may assume that Ujo is = 1. For
i1y s

alli” € I\ {i7.i5}, the sequence
0— F(U,'/, (9P§) — F(U{i’,if}’ (9P§) S F(U{i’,ié’}» (9P§) — F(U{i’,if,ié’}v (9P§)

is exact, so we may assume that u;s ;o = u;s ;2 = 1 for all i’ € I, and (by the same argu-
ment) that u; ;» = 1 foralli,i’ € I. [ ]

Lemma 2.4.5. Let A be a filtered colimit of subrings A = h—n;/\eA Ay such that, for all A,
the inclusion Ay — A admits a (ring-theoretic) retraction A — Aj. Suppose M is an
invertible A-module such that M ®4 Ay is a trivial Ay-module for all A. Then M is
trivial.

Proof. Since M is a finitely presented A-module, there exists some A € A and a finitely
presented A -module M}, such that M) ® 4, A >~ M. Tensoring by — ®4 A, then implies
that M) is trivial, hence M is trivial. [
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Using Lemma 2.4.3, we may extend the dictionary between Azumaya algebras and
twisted vector bundles (2.3.4) to include Brauer—Severi varieties.

Proposition 2.4.6. For any scheme S and index set 1, there is a bijective correspondence
between isomorphism classes of Azumaya Og-algebras of rank I and Brauer—Severi
schemes of relative dimension I.

Proof. Both are étale PGL;-torsors on S, by Definition 2.3.1 and Lemma 2.4.3 respec-
tively. |

3. Pushing forward twisted sheaves via affine-pure morphisms

3.1. Affine-pure morphisms

Definition 3.1.1. A morphism f : X — Y of algebraic spaces is said to be affine-pure if
f is affine and £, Oy is a locally projective Oy -module.

Lemma 3.1.2. [3, Lemma 3.5(y)] Let B — A be a ring map such that A is a projective
B-module, and let M be a projective A-module. Then M is projective as a B-module.

Proof. There exist a split B-linear surjection B®!/ — A and a split A-linear surjection
A®J — M hence a split B-linear surjection (B®1)®/ — M. n

Lemma 3.1.3. Let A be a ring, let M be a projective A-module, set S := Spec A and let
& be the quasi-coherent Os-module corresponding to M. Then & has positive rank if and
only if M ®4 k(p) # O for all primes p of A.

Proof. The “only if” implication is clear. For the “if”” implication, choose an index set
and a A-linear surjection 77 : A%/ — M. Then 7 admits an A-linear section £ : M — A®!.
Denoting by {e;};cs the basis of A%, set o; := £(m(e;)) = (@i,j)ier, so that {&;}ier
constitutes a set of generators for M viewed as a A-submodule of A®7. Let p be a prime
ideal of A. Since M ®4 k (p) is the image of £ ® id,(p), by hypothesis there exists some
(i,j) € I? such thate; ; & p. After inverting o;, ;, we may assume that ¢; ; is a unit. Then
the composition p;&m : A®! — A is surjective, where p; is the projection onto the ith
coordinate of A®7. Hence p;& : M — A is surjective. ]

Lemma 3.14. Let f : X — Y be an affine-pure morphism of algebraic spaces, let & be a
locally projective Ox -module. Then f.& is a locally projective Oy -module. If in addition
f is surjective and & has positive rank, then f.& has positive rank.

Proof. We may work étale-locally on Y so that we may assume that X = Spec A and
Y = Spec B are affine. Then the first claim follows from Theorem 2.1.4 and Lemma 3.1.2.
For the second claim, we use Lemma 3.1.3. Let p be a prime of A lying over the prime g
of B. The surjection A ® g k(q) — k(p) induces a surjection M ®p k(q) > M @4 «(p)
of A-modules, so if M ®4 k(p) # 0then M ®p k(q) # 0 as well. L]
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Lemma 3.1.5. Let f : X — Y be a morphism of algebraic spaces.
(1)  For any morphism Y’ — Y, let ' : X' — Y’ be the base change of f.If [ is
affine-pure, then f' is affine-pure.
(i1)  Suppose there is an fpqc cover {Y; — Y }jey such that the base change f; :
X; — Y; is affine-pure for each i € 1. Then f is affine-pure.
(iii) Let g : Y — Z be a morphism of algebraic spaces. If [ and g are affine-pure,
then g o f is affine-pure.

Proof. (i) The property “affine” is stable under arbitrary base change. Since f is affine,
the map (fxOx)|y: — (f')«Oy- is an isomorphism.

(i) The property “affine” is fpqc local on the base. For each i, the pushforward
(f)+Ox, is a locally projective Oy,-module. As above, the map ( f+Ox)|y;, — (fi)+Ox;
is an isomorphism, thus f, Oy is a locally projective @y -module by Theorem 2.1.4.

(iii) The property “affine” is stable under composition. The pushforward f.Ox is
a locally projective Qy-module by assumption, so g« f«Ox is a locally projective O z-
module by Lemma 3.1.4. u

We will use the following lemma, which is an analogue of [11, Chapter II, Lemma 4]
in the infinite rank case:

Lemma 3.1.6. Let f : X — Y be a surjective, affine-pure, finitely presented morphism.
Ifa € H2(Y, Gy,) is an element such that f*« is in LPBr(X), then  is in LPBr(Y).

Proof. Let Y — Y be a Gy-gerbe corresponding to «, set X := Y xy X with projec-
tion map 7 : X — Y. The morphism 7 is surjective, affine-pure (by Lemma 3.1.5 (i)), and
finitely presented. Let & be a countably generated locally projective 1-twisted Ox-module
of positive rank. Then 7, & is a locally projective 1-twisted @y-module which is of posi-
tive rank by Lemma 3.1.4 and is countably generated since f is finitely presented. ]

Lemma 3.1.7. Let S be an algebraic space and let f : X — Y be a morphism of algebraic
spaces over S. If f satisfies at least one of the following conditions, then f is affine-pure.

(@) f is affine, flat, of finite presentation and all geometric fibers are integral,

(b) f is affine, flat, of finite presentation and all geometric fibers are
Cohen—Macaulay and irreducible,

(¢) f isanfppf G-torsorfor an S-group scheme G such that G — S is an affine-pure
morphism,

(d) f is an fppf G-torsor for an S-group scheme G such that G — S is an affine,
flat, finitely presented morphism, all of whose geometric fibers are irreducible.

Proof. (a) This is a restatement of [33, Tag O5FT] which generalizes [30, I, Proposi-
tion 3.3.1] (the case when f is smooth).

(b) By [30, I, Théoréme 3.3.5], it is enough to prove that Oy is “pure over Y as
defined in [30, I, Définition 3.3.3]. For this, we choose a point y € Y and replace Y by
the Henselization Spec (9;‘,’ , which reduces the task to showing that, for any point x'eX
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with image y’ := f(x) such that x’ is an associated point of its fiber X, the closure {x}
of x" in X intersects the special fiber X,,. Let x be the generic point of X,. By going-down
for flatness, there exists some x” € X, such that x € {x”}. Since X, is Cohen-Macaulay,
we deduce by [33, Tag 031Q] that x is the generic point of X,. Thus we have x” € {x'),
which implies x € {x'}.

(¢) By definition, there exists an fppf cover Y’ — Y and an isomorphism of Y’-
schemes X |y’ >~ Gy-. Thus f is affine-pure by Lemma 3.1.5 (i) and (ii).

(d) By (c), it suffices to show that G — S is affine-pure. By [19, Exp. VIA, Proposition
1.1.1], the geometric fibers of G — S are Cohen—Macaulay, so this follows from (b). =

Lemma 3.1.8. Let X be an algebraic space having at least one of the following proper-
ties:
(@) X has an ample family of invertible modules [4, 11, Définition 2.2.4], [33, Tag
OFXR],

(b) X has an ample invertible module,

(c) X is quasi-projective over an affine scheme,

(d) X is quasi-affine,

(e) X is quasi-compact and quasi-separated and has the resolution property [35],

namely every quasi-coherent Ox -module of finite type ¥ admits a surjective Ox -
linear map from a finite locally free Ox-module,

() X is an algebraic surface (i.e., finite type and separated over a field,
and dim X = 2),

(g) there exists a base scheme S, an S-algebraic space Y satisfying at least one of
the conditions (a)—(f), an S-group scheme G acting freely on Y and such that
G — S is affine-pure and finitely presented, and X is the quotient Y/ G.

Then there exists an affine scheme T and a surjective, affine-pure, finitely presented mor-
phism T — X.

Proof. (a) This follows from Thomason’s extension of the Jouanolou trick [36, Propo-
sition 4.4] which implies the existence of an affine scheme 7 and a smooth surjection
T — X such that there exists a Zariski cover U — X and an isomorphism T xy U =~
A7, of U-schemes. The map Aj; — Spec Z is affine-pure so 7 — X is affine-pure by
Lemma 3.1.5 (1), (ii).

(b) This is a special case of (a).

(c) This is a special case of (b).

(d) This is a special case of (c).

(e) By [15, Theorem 1.1] we can write X = X’/ GLy for a quasi-affine scheme X’.
Then X’ — X is surjective and affine-pure by Lemma 3.1.7 (d). By case (d), we can find an
affine scheme T with a surjective, affine-pure morphism 7' — X’. Then Lemma 3.1.5 (iii)
implies that T — X’ — X is affine-pure.
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(f) This follows from (e) by [27, Theorem 41] (see [14, Corollary 5.3] for the scheme
case).
(g) This follows from Lemmas 3.1.7 (d) and 3.1.5 (iii). [

Lemma 3.1.9. For any algebraic space X as in Lemma 3.1.8 and o in H2,(X, Gy,), there
exists an affine scheme T and a surjective, affine-pure, finitely presented morphism T — X
such that « is Zariski-locally trivial on T.

Proof. By Lemma 3.1.8, there exists an affine scheme T’ and a surjective affine-pure
morphism 7’/ — X . By [33, Tag 01FW] there is an étale surjection 7" — T' such that | 7~
is trivial. We refine the cover T” — T’ so that T" is affine. Then [33, Tag 02LH] implies
that there exists a surjective, finite locally free T — T’ that factors through 7" — T’
Zariski-locally on T, i.e., |7 is Zariski-locally trivial. The composite T — T’ — X is
surjective affine-pure by Lemma 3.1.5 (iii). ]

Question 3.1.10. Given an affine scheme X and a class @ € HZ (X, Gy), does there exist
a surjective, affine-pure morphism 7" — X such that |7 is trivial?

3.2. Proof of the main theorem

In this section we prove Theorem 3.2.5 and give some applications and questions.

Proposition 3.2.1. Let A be a Noetherian ring, set X := Spec A, and let X — X be a Gp,-
gerbe. Let ¥ be a countably generated locally projective 1-twisted O-module of positive
rank. Then ¥ is a projective object of the category of quasi-coherent I-twisted O~-
modules. Moreover, every quasi-coherent 1-twisted Ox-module is a quotient of a direct
sum of copies of ¥ .

Proof. For the first claim, it is enough to show that

Exty, (.5) =0 (3.2.1.1)
for any quasi-coherent 1-twisted @x-module #. We will show

Exty., (F.H) =0 (3.2.1.2)

and
H' (X, Home. (F.H)) =0 (32.1.3)

which implies (3.2.1.1) by the local-to-global spectral sequence for Ext.

For (3.2.1.2), let X’ be a finitely presented affine X-scheme with an X -morphism
X’ — X. If ¥ has finite rank, then we may replace X’ by a Zariski cover so that ¥ |x
is a free Oxs-module of finite rank. Then we have Ext(IQX/ (Flx, H|x) =0.If F has
countably infinite rank, then ¥ |y is in fact a free QOx/-module by Bass’ theorem, so

Extgy , (F [x, #|xr) ~ [[H' X" 21x) =0.
N
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For (3.2.1.3), write
F = colimjey F;
as a filtered colimit of coherent 1-twisted Oy-modules [25, Proposition 2.2.1.5]. Since ¥

is countably generated, we can assume the index set / is countable. After further refine-
ment, we may assume / = N with the usual ordering, i.e., we have

?1—)?2—)?3—)---—)?

with colimit ¥. Set K; := Home, (Fi, #) and K := lim;en K; =~ Home, (F, K).

Take an étale surjection W — X where W = Spec B is affine and such that |y is
trivial. Let L be a 1-twisted invertible O, -module. Then ¥’ := ¥ |, ®0x,, L7 lisa
0-twisted locally projective O, -module of countably infinite rank, hence ¥ is free by
Bass’ theorem. By [33, Tag 059Z], ¥’ is a Mittag-Leffler module, hence

{Homoy, (Filw. H|w)};en

is a Mittag-Leffler system by [33, Tag 059E] (1)=(4). Since W — X is faithfully flat
and Home,, (Fi|w. H|w) = Ki|w, the system {K };en is Mittag-Leffler. Thus, we may
construct another inverse system {JCI’ }ien such that K ~ limjen JC{ and the transition
maps K/, — K] are surjective. Then we have H!(X, X) = H'(X, lim X/) = 0 by
[33, Tag 0AOJ (3)].

For the second claim, since every quasi-coherent 1-twisted O-module § is the filtered
colimit of coherent 1-twisted @-submodules, it suffices to show that every coherent 1-
twisted O-module § admits a surjection from a direct sum of copies of . We show
that, for a closed point i : ¥ — X, there exists an index set / and a morphism 5 ol ¢
which is surjective in a neighborhood of u. By Nakayama’s lemma, this is equivalent to
requiring that the fiber ¥ @: — §|x, is surjective. Let I,, C Ox be the ideal sheaf of i
and consider the exact sequence

0—>1,§—>9—->8/1,§—0
of Ox-modules. By the first claim, we have Ext! (¥, I,,§) = 0, hence
Homg, (¥,9) - Homp, (¥,9/1,5)

is surjective. Hence it suffices to find an @ -linear surjection ¥ ®/ — ¢/I,8 for some
index set [, i.e., an O, -linear surjection FOl)1, 791  ¢/I,8. Since X, is a G-
gerbe over the spectrum of a field, by Wedderburn’s theorem [12, Theorem 2.1.3] there
is a 1-twisted vector bundle & on X,, of minimal positive rank (equal to the index of the
Brauer class [X,] € Br(x(u))) and every 1-twisted vector bundle on X,, is isomorphic to
a direct sum of this &. This gives the desired result. ]

Lemma 3.2.2 (Eilenberg swindle). Let X be a Noetherian affine scheme, let X — X be a
G -gerbe, let ¥ ,8 be two countably generated locally projective 1-twisted Oy -modules
of positive rank. Then ¥ N ~ g®N,
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Proof. Set ¥':= F®N and g’ := §®N, By Proposition 3.2.1, there exists an index set
I and a surjective @ -linear map (¥/)®/ — §. Since § is countably generated, we may
assume / = N. Thus we obtain a surjection ¥/ ~ ((F/)®N)®N . g®N — ¢’ Since §’
is a projective object in the category of quasi-coherent 1-twisted ()x.-modules by Proposi-
tion 3.2.1, we obtain a decomposition

9eQ~F
which gives an isomorphism
SoF ~dpF 0 =E08)0Q~8vQ=F
where we use that §’ & §’ ~ §’. By symmetry, we have
g ~9eF
which implies ¥/ ~ §’. (]

Question 3.2.3. In Lemma 3.2.2 (which is a twisted analogue of Bass’ theorem), can we
do without the infinite direct sum, i.e., is it necessarily true that in fact ¥ ~ §?

Remark 3.2.4. In Lemma 3.2.2, if one of ¥ or § is assumed to be of finite rank, then we
may argue as follows, without the need for Proposition 3.2.1. If § has finite rank, then we
have isomorphisms

FONL T QONLFRE 9N~ (FR)NRE~ 0N gy~ goN
X X
of O-modules where those labeled * follow from Bass [2].

Theorem 3.2.5. For X as in Lemma 3.1.8, we have LPBr(X) = H2(X, Gy).

Proof. Leta € H2(X, Gy,) and let X — X be a Gy,-gerbe corresponding to o. By Lemma
3.1.9 there exists an affine scheme 7" and a surjective affine-pure morphism 7" — X such
that |7 is Zariski-locally trivial. Moreover, by Lemma 3.1.6, if «|7 € LPBr(T') then o €
LPBr(X). Thus we may reduce to the case when X is affine and « is Zariski-locally trivial.
By absolute Noetherian approximation [33, Tags 01ZA, 09YQ] we may also assume that
X is of finite type over Z.

Suppose X = Spec A and f1,..., f, € A are elements which generate the unit ideal
of A and such that every Xy, has a countably generated 1-twisted locally projective Ox 5e
module &; of positive rank. We follow an idea of Gabber to produce a countably generated
1-twisted locally projective (@-module of positive rank. Let a;,...,a, € A be ele-
ments such that a; f; + --- + a, f, = 1. After replacing f; by a; f;, we may assume
that f; +---+ f, = 1. By Lemma 3.2.2 we have 8?N|xflmxf2 ~ 8?N|xf]nxf2 SO we
may glue to obtain a countably generated 1-twisted locally projective O 7, U, -module.
Since X745, © X, U Xp,, restriction gives a 1-twisted Ox/, , , -module. We conclude
by induction on n. ]
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Remark 3.2.6. In Theorem 3.2.5, we may also argue using Remark 3.2.4, since we

may assume that the &; are in fact invertible O 7, -modules: Set fi=n+-+fi,
and suppose & is a countably generated 1-twisted locally projective Ox 5 -module. By
Remark 3.2 4, the restrictions of &; 'ON and SfiNl to DCfr N Xy, are isomorphic.

Corollary 3.2.7. Let X be a Noetherian scheme admitting a cover X = U; U U, such
that both Uy, U, are as in Lemma 3.1.8 and Uy N U, is affine. Then

LPBr(X) = H2(X, Gp).

Proof. Let X — X be a Gp-gerbe. By Theorem 3.2.5, for i = 1, 2 there exists a count-
ably generated 1-twisted locally prOJectlve (99611 -module &;. By Lemma 3.2.2, there is an
isomorphism 8 |UmU2 ~ 8 |UmU2 on U; N U,, so we may glue 8®N and 8®N [ ]

Proposition 3.2.8. Let k be a field, let Xy be a separated finite type k-scheme with the
resolution property, let X be a finite-order thickening of X, i.e., there exists a closed
immersion Xo — X whose ideal sheaf I C Oy is nilpotent. Then LPBr(X) = HZ(X, Gp).

Proof. By Lemma 3.1.6, it suffices to show that there exists an affine scheme U and an
affine-pure morphism U — X. As in Lemma 3.1.8(e), we may write Xo = W/ GL,, for
some free action of GL,, on a quasi-affine scheme W},. The Jouanolou trick gives an affine
scheme Uy and a smooth surjective morphism Uy — W, whose fibers are affine spaces.
The composition Uy — Wy — Xy is smooth, surjective, affine-pure, and has geometri-
cally irreducible fibers. Since Uy is affine and Uy — X is smooth, by [22, Chapitre III,
Théoréme 2.1.7] there exists a scheme U admitting a flat morphism U — X such that
U xx Xo >~ Up. Since U is a nilpotent thickening of an affine scheme, it itself is an
affine scheme [16, Proposition 5.1.9]. The map U — X is surjective, smooth (by [33,
Tag 06AG (17)]), and has geometrically irreducible fibers. Thus U — X is affine-pure by
Lemma 3.1.7(a). [

Example 3.2.9. Let k be a separably closed field, set Xy := Pi, let I be a coherent
Ox,-module and let X be a finite-order thickening of X, by .I. Mathur [28, Corollary 4]
has shown that every Gy,-gerbe over X corresponding to a torsion class in H2 (X, Gm)rors
admits a 1-twisted finite locally free module. Then Proposition 3.2.8 (or Lemmas 3.1.8(f)
and 3.1.6) shows that every Gy,-gerbe over X admits a 1-twisted locally projective module.
In case k has characteristic 0, we may choose e.g. I = Ox,(—3) as in [20, Exercise I11.5.9]
so that H2 (X, Gp) does contain non-torsion elements: the exact sequence

1->14+71—->Gux > Gnx, — 1
gives the description HZ (X, Gn) = H?(Xo, I)/Z = k/Z.

Remark 3.2.10. Let X be a separated Noetherian scheme. Given any « € HZ (X, Gy), we
can always find an open subset U C X such that X \ U has codimension at least 2 in X
and such that «|y is contained in LPBr(U). Indeed, by [33, Tag 09NN], we may find two
affine open subschemes U;, U, of X whose union contains all the codimension 1 points
of X'; then we apply Corollary 3.2.7.
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Example 3.2.11. The scheme X in [8, Corollary 3.11] also satisfies
LPBr(X) # HZ (X, Gm).
We recall the construction. Let k be an algebraically closed field, set

R:=k[lx, y.2]l/ (xy - 2%),

let S = S2 = Spec R, let U := Spec R \ {(x, y, z) R} be the punctured spectrum of
Spec R, and let X be the gluing of S; and S, along the identity morphism on U. The
Mayer-Vietoris exact sequence gives a coboundary map 9 : H}, (U, Gy,) — HZ (X, Gp)
which is an isomorphism since Hét(Spec R, Gy) = 0 for i > 0. Here HY (U, G,) =
Pic(U) = Z/(2), and under the isomorphism 9 the unique nonzero class & € HZ (X, G)
corresponds to the invertible @Oy -module £ which (uniquely) extends to the coherent
Ox -module corresponding to the R-module M = (x, z) R. Let X be the G,-gerbe corre-
sponding to «. Since R is strictly Henselian, the restriction of X to S; is trivial. Let %; be
a 1-twisted line bundle on Xg,. Thus if o were contained in LPBr(X), this would imply
there exist 1-twisted locally free O« s; -modules &; and an isomorphism

Eilu oy, Llxy = &2
on U. Tensoring by (F;)~! for either i = 1,2 gives an Oy -module isomorphism
£ ~ 0’
where [, J are index sets. By Hartog’s theorem, this would give an R-module isomor-
phism
M@I ~ R@J
but no nonempty direct sum of copies of M is a free R-module (since this would imply that

M is projective, being a direct summand of a free module). Thus He?t(X ,Gn) =Br'(X) =
Z/(2) and LPBr(X) = 0.

Example 3.2.12. In Example 3.2.11, we may instead take R:=k[[x, ¥, z, w]]/(xy —zw),
in which case Pic(U) = Z and so we obtain an example with

Br(X) = Br'(X) = LPBr(X) =0
while HZ (X, G,)) = Z.

Remark 3.2.13. A long-standing open question of Totaro [35] is to determine whether
every quasi-compact separated algebraic space X has the resolution property. To find a
counterexample, it would be enough (by Theorem 3.2.5 and Lemma 3.1.8(e)) to find a
separated Noetherian scheme X which satisfies LPBr(X) # Hgl(X ,Gm).

4. Very positive vector bundles and pushouts

In this section we introduce very positive vector bundles (Definition 4.3.1), which are
vector bundles of infinite rank that are “infinitely ample” (to be made precise in Defi-
nition 4.2.1). These bundles have strong uniqueness properties, and we use this to study
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Question 2.2.8 for certain non-projective varieties that arise as pushouts of projective vari-
eties.

4.1. Pinching and LPBr

In this section we study LPBr(X) for a class of examples of a proper, non-projective
k-scheme X. We begin with the following example, which is later generalized in Exam-
ple 4.3.10.

Example 4.1.1. Let k be an algebraically closed field. A standard way to make a nonpro-
jective proper variety over k is to choose

(1) a smooth projective variety Y,

(2) aninteger n > 0,

(3) automorphisms g; : Y — Y fori =1,...,n, and

(4) pairwise distinct points 51, ..., Sy, 1, ...,t, in P1(k)
and let X be the “pinching” of P! x Y along the two closed immersions

[ ¥ysP'xy
i=1,..,n

sending y + (s;, ), (¢;, gi(y)) on the ith component Y. More precisely, we define X to
be the pushout of the diagram

.....

which always exists in the category of ringed spaces and is a scheme in our situation by
result of Ferrand [10, Théoreme 7.1]. If there does not exist an ample line bundle £ on Y
such that g**&£ ~ & for all i, then X is not projective (for example when Y is an abelian
variety and g is translation by a nontorsion point).

Proposition 4.1.2. For X as in Example 4.1.1, we have LPBr(X) = H2(X, Gy).

Proof. Letv : P! x Y — X be the projection, which we may identify with the normaliza-
tion morphism of X . Then by [10, Scolie 4.3 (a)(iii)] we have an exact sequence

1 — Gm,X - V*(Gm,Ple) g 1_[ Gm,Y —1
i=1,...,n
in the étale topology on X. The long exact sequence in cohomology gives a map

[] Pic(Y) —> HZ(X.Gn) (4.1.2.1)

i=1,...,n

which is surjective since the next terms are HZ(P! x Y, Gn) — [1;—; , HZ(Y, Gp)

which is the diagonal embedding, in particular injective.

.....



A. J. de Jong, M. Lieblich, and M. Shin 152

Given line bundles £1, ..., £, on Y, the image of (£1,...,£,) under (4.1.2.1) is in
LPBr(X) if and only if there exists a locally projective Op1y-module & such that

€y ~ g5 (&) ®oy L (4.12.2)

for all i.
Let G C Autg(Y) be the subgroup generated by g1, ..., g, and define the quasi-
coherent Oy -module

vi=P D GB B K28 ®o, - ®o, hiL)

r>0 hy,...,h,€G 1<iy,...,ir<ney,...,e;€Z
and
& 1= Vlpixy
which satisfies (4.1.2.2) since g; V>~VandV ®g, £; ~ 'V foralli. [

4.2. Conditions on global generation and vanishing higher cohomology

We generalize the above example by defining certain infinite rank vector bundles on pro-
jective k-schemes.

Definition 4.2.1. Let X be a scheme. Let
Ee ={6p > & —> Ey— -} 4.2.1.1)
be a sequence of locally split injections of finite locally free Ox-modules of positive rank.

We define the following conditions.

(G) For any quasi-coherent Qy-module ¥ of finite type, there exists some n’ € N
such that ¥ ®@, &, is globally generated for all n > n’.

(V¢) For any quasi-coherent Oy -module & of finite type, there exists some n’ € N
such that HY(X, ¥ ®g, &,) = 0forallg > { + l and alln > n’.

(V) For any quasi-coherent Ox-module F of finite type, we have

1i_r)nH‘1(X,J‘7 ®oy €n) =0 forallg > {4 1.

neN
Remark 4.2.2. The primary way of getting a system &, satisfying (G) and (Vj) is as
follows. Let X be a scheme admitting an ample line bundle £. After replacing £ by a
tensor power, we may assume there exist sections s1, ..., s, € ['(X, £) such that each
Xy, is affineand X = J;—; _,, Xy;-Letg : Ox — £®™M be the map 1 > (51.....5m).
Set

.....

L, = (:ﬁeam)ean ~ ($®n)@m"

and let the transition map &, — &,41 be ¢ ® idg,, which is split when restricted to any
X, . We thus obtain a system

6 = {Ox — £Om (cf@z)@mz N ($®3)€Bm3 )
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of locally split injections of finite locally free Ox-modules. The system &, satisfies (G)
by [33, Tag 01Q3] and (V) by [33, Tag 01XR].

Lemma 4.2.3. Let X be a quasi-compact semi-separated scheme. The following are
equivalent.

(1) There exists an ample line bundle £ on X.
(2') There exists a system &, as in Definition 4.2.1 satisfying (G) and (Vy).
If X is proper over a Noetherian affine scheme, then (1) and (2') are equivalent to

(2) There exists a system 8o as in Definition 4.2.1 satisfying (G) and (Vy).

Proof. (1)=(2'): See Remark 4.2.2. If in addition X is proper over a Noetherian affine
scheme, then we have (Vj) by [20, Chapter III, Theorem 5.2].

(2')=(1): We show that for any x € X there exists a globally generated line bundle
&£ and a section s € I'(X, £) such that X; is an affine open neighborhood of x; then the
result follows from [33, Tag O9NC]. Since X is quasi-compact, we may assume that x is
a closed point. Let i : Spec k(x) — X be the closed immersion. Let U C X be an affine
open neighborhood of x. Set Z := X \ U and Z’ := Z U {x}, and let I, I’ be the ideal
sheaves corresponding to the reduced closed subscheme structures on Z, Z' respectively.
By [33, Tag 01PG], we may write

I':=lim I}
Jeh

where each I is a quasi-coherent ideal sheaf of finite type. We have an exact sequence
0-I'->I1->I1I/T"->0
where I /I is isomorphic to ix Ospec k(x)- For any n and A € A, we have an exact sequence
0— I ®oy €n > I Qoy €1 —> I/15 Qoy En — 0

onX.

Choose some n and choose a nonzero element s, € I'(X, I /I’ ®9, &n). Find some
A € A such that s, lifts to some 51 € I'(X, I/I} ®0y En). By (V{), there exists some
n’ > n so that the image of s; in H!(X, Ii ®@y En) is 0. Lift to an element 5| €
I'(X, I ®@y Ew). Find n” > n’ such that &,~ is globally generated, set r := rank &,,
lets{ € I'(X, I ®@y Enr) be the image of 57 and choose sections 55, ..., s € T'(X, &)
such that the images of s, %, ...,s, ini*&,~ constitute a basis for i *&,~ as a k (x)-vector
space, then consider s{ ® --- ® s € I'(X, T"&,) and its image

s:=s{ Ao As) € T(X,det&yr)

under the quotient 77 &,» — det &,». Then X is the same as the nonvanishing locus of
sly € T'(U,det &,»|y) in U, hence it is affine. By construction, s maps to a generator of
i *(det &,7) as a k(x)-vector space, hence x is contained in Xs. The determinant det &,
is globally generated since it is a quotient of the tensor power 77 &,. ]
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Remark 4.2.4. Assume the notation of Definition 4.2.1.

(1) Condition (G) implies that the colimit h_r)nneN(fF ®oy €r) is globally generated
for any quasi-coherent Ox-module ¥ of finite type, but the converse is not true.
Set X = P! and let &, be the system

Ox — Ox(N®? — 9x(2)®* — Ox(3)®® — ...

as in Remark 4.2.2, and consider €o := P, N Fo(—1)[—n] where “[n]” denotes
shift. Then lim _ &, is globally generated but &, = Bo<i<n O — 1)®% is not
globally generated for any n.

(2) Condition (V) implies (V}), but the converse is not true. For this, set X = A%\
{(0,0)} and apply the construction of Remark 4.2.2.

Lemma 4.2.5. Let f : Y — X be a closed immersion of Noetherian schemes and let &,
be a system of vector bundles as in Definition 4.2.1. If €4 satisfies any of (G), (V¢), (V}),
then f*8&, satisfies the same property.

Proof. Let § be a quasi-coherent Oy -module of finite type. We have isomorphisms

Y Qoy [ 6n = [T(f+F Roy En). (4.2.5.1)
im(§ ®oy f*En) = im f*(fef ®oy ) = f*(im(fi§ Boy E,)).  (4252)
neN neN neN

* * T
H? (Y. ®o, f*6x) ~ HP(X, fo(§ R0, f*En)) ~ HP(X, i Roy En). (4.2.5.3)

where { follows from the projection formula. The claim about (G) follows from (4.2.5.1)
and (4.2.5.2) because the pullback of a globally generated sheaf is again globally gener-
ated, and the claims about (V) and (V}) follow from (4.2.5.3). |

4.3. Very positive vector bundles and uniqueness

Definition 4.3.1. Let k be a field, let X be a projective scheme over k. Let & be a quasi-
coherent Oy -module. We say & is a very positive vector bundle if there exists a sequence

8.2{80%81%82—)---}

of locally split injections of finite locally free Ox-modules of positive rank such that
() € =lim,
(2) rank &, < rank §,,4; forall n € N, and
(3) the system &, satisfies (G) and (V) as in Definition 4.2.1.

Lemma 4.3.2. Every projective k-scheme X has a very positive vector bundle.

Proof. This is a consequence of Lemma 4.2.3. ]
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Remark 4.3.3. In Definition 4.3.1, for every point x € X, the stalk & is a free Ox x-
module by Kaplansky’s theorem [2, Corollary 3.3]. However, it is not clear whether & is
even fppf-locally free. By construction, the very positive vector bundles in Lemma 4.2.3
are Zariski-locally free (of countably infinite rank).

Remark 4.3.4. In general, the pullback of a very positive vector bundle need not be a
very positive vector bundle. Indeed, set X := P! and Y := P! x P!, let f : ¥ — X be
the second projection and let & be a very positive vector bundle on X . Then

H' (Y, 0(-2,0) ®0, f*E€s) #0 forn >0

because it contains H' (P!, Op1(—2)) @ H°(X, &,).

Remark 4.3.5. The quotient of a very positive vector bundle need not be a very positive
vector bundle. Set X = P2, Let

Ox — Ox (1)@ > ... > Ox()®¥" — ... (4.3.5.1)

be the system obtained by taking £ = Ox (1) in Remark 4.2.2, let {&,, },,en be the system
obtained by twisting (4.3.5.1) by Ox(-3), let {F, }nen be the constant system defined
by ¥, := Ox(—3) for all n, and let @, := &, /F, be the quotient. Then we have exact
sequences

...—>HY(X, &, - H'(X,Q,) > H*(X, %,) > H*(X, &,) — ---

for all n. Here HI(X, &) = H2(X, &,) = 0 for n > 0 but H*(X, %,,) Z# 0 for all n, so
H'(X, @,) # 0 for all n > 0; hence @ does not satisfy condition (3) in Definition 4.3.1.

Example 4.3.6. As is well known, there are no nontrivial finite rank vector bundles on
the punctured spectrum of a regular local ring of dimension 2. This fact may be used to
produce 1-twisted finite rank vector bundles on Gy,-gerbes over smooth surfaces. Here we
explain an example which illustrates a subtlety in the analogous approach for infinite rank
twisted sheaves.

On P!, we have the very positive vector bundle

V := colim(Op1 — Op1 (1)®? - Op1 (2)®* - Op1(3)®* — --+)

as in Remark 4.2.2. Set U := A2\ {(0,0)} and let 7 : U — P! be the projection map.
Then
W= 7*V ~ colim(Oy — OF* — 05* - 0F* — ..

is not a free Oy -module. Indeed, we have
(x,y)-T(U,W)=T(UW)

since any section in the image of I'(U, (9321) — I'(U, W) can be written as a linear

combination xs + yt for sections s, ¢ in the image of I"(U, (916132i+1) — I'(U, W). Here we
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use that taking global sections commutes with filtered colimits since U is quasi-compact
[33, Tag 0738].

The above also shows that V is a locally free Op1-module which is not a direct sum of
line bundles (otherwise ‘W would be as well, but line bundles on U are trivial).

Lemma 4.3.7. Let k be an infinite field, let X be a proper k-scheme, let &1, 8,, &3, F be
finite locally free Ox-modules of ranks ry, 12,3, s, respectively. Suppose given an exact
sequence

056 L6 Be o 437.1)

of Ox -modules and let
a6 > F

be a locally split morphism of Ox-modules. If Home, (€3, F) is globally generated and
Exth (&3, F) =0and s > max{r,,dim X + r3 — 1}, there exists a locally split Ox -linear
map ay : & — F such that a, f1 = ay.

Proof. Applying Homg, (—, ¥) to (4.3.7.1), the obstruction to the existence of an a)
satisfying a, fi = a; is an element of Extbx (&3, F), which is 0 by assumption; however,
such an a/, may not be locally split. Any other @} satisfying aj fi = a; is of the form
ay = ay + as f> for a unique az : &3 — F. If a3 is locally split, then a/ is also locally
split since the composition a f; is locally split (we may locally choose a section of f5).
Hence we are reduced to the task of producing a morphism a3 : &3 — ¥ which is locally
split.

Set H3 1= Home, (€3, F) and H3 := Specy Symz,)X Jy. Then Hj represents the
functor (Sch /X)° — Set sending T — Homg, (€3|r, ¥ |r) = I'(T, #3|1). Let &y :
&3|H, — ¥ |H, be the universal morphism and let K C H3 be the closed subscheme
defined by the condition that &,y |7 : &3] — F|r is not locally split. The sequence
K — Hz — X is locally on X isomorphic to the pullback of V,, — A7** — Spec Z,
where V., is the determinantal variety defined by the maximal minors of a r3 X s matrix
with indeterminate coefficients. By a theorem of Eagon—Northcott [9, Exercise 10.10], the
codimension of V,, in A** (and of K in H3)iss —r3 + 1.

Set N := dimg ['(X, #3) and let (9;‘,91\’ — Jf3 be a surjection. We have a morphism
AY x; X — Hj which is locally on H3 isomorphic to AIZV_”S — SpecZ. Set I :=
(AIICv X X) g, K. Then the codimension of / in AIICV Xi X is also s — r3 + 1, hence
dim/ =N +dimX — (s —r3 + 1). Since s > dim X + r3 — 1, the projection I — A,ICv
is not surjective. Since k is infinite, there exists a rational point p € AIJCV (k) which is not
in the image of I — AIJCV , for which the corresponding fiber &yiv|p : &2 — F is locally
split. ]

Theorem 4.3.8. Let k be an infinite field, let X be a projective k-scheme. Any two very
positive vector bundles on X are isomorphic.

Proof. Suppose
& = colim(@l — 82 — 83 — ), F = colim(?l — \772 — ?3 — ) (4381)
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are very positive vector bundles on X. We inductively find a sequence of integers n; <
np < nsz < --- and maps
azi—1 . 81’12,‘71 d 37"21"

azi * Fn,, — &

naj n2i+1

fori > 1 such that
(i)  each ay is injective and coker(ay) is locally free of positive rank, and

(i)  the compositions

Aaz; ©0d3j—1 : 8n2i_1 - 8n2i+17

Azi+104az; @ Fny — ‘{Fnziﬂ
are equal to the transition maps in (4.3.8.1).

Given a collection of such morphisms {a; }¢en, condition (ii) implies the existence of
morphisms f: & - F and g : F — & suchthat f o g =idg and g o f = idg.
For the induction hypothesis, suppose given integers ny—; < ny and a morphism

ag—q . 8,,271 — 37,1[

satisfying (i). (Here, by symmetry we have assumed £ is even, and we view the base case
asamap ap : 0 — &,,.) We find an integer ny1; and a morphism
ag: Fn, — &

ng+a

satisfying (i) and making the diagram

Enyy —— Fn,
l a (4.3.8.2)
8nt+1 8nz+1

commute.
Set @ :=coker(ay—_1). By Definition 4.3.1(3) for &, we may choose ny41 3> ny so that
rank & >max{rank 5, dim X +rank @ —1} and Home, (@, &y, ,) >~ QY ®py Enpy

ng+1
is globally generated and Ext(lgx (@, &) = H!'(Ox, QY ® €n,.,) = 0. Then we con-
clude using Lemma 4.3.7. ]

Corollary 4.3.9. Let k be an infinite field, let & be a very positive vector bundle on a
projective k-scheme X .

(a) For every finite locally free Ox-module 'V of positive rank, we have & @ 'V ~ &.
(b) For every invertible Ox -module £, we have & £ ~ &.
(¢) For every automorphism g of X, we have g*& ~ &.



A. J. de Jong, M. Lieblich, and M. Shin 158

Proof. For (a), it suffices by Theorem 4.3.8 to check that & ® V is a very positive vector
bundle. We have

ERXV=colim(E @V >6E0V —>8630V —>---)

since tensor products commute with colimits. To show that {&, ® V},en satisfies condi-
tion (3) of Definition 4.3.1 for a given coherent Ox-module ¥, we use that the system
{&n }nen satisfies condition (3) for the coherent Ox-module ¥ ® V.

Claim (b) is a special case of (a), and (c) is clear. [

Example 4.3.10. Let k be an infinite field, let Z, Y be smooth projective k-schemes, let
ai,az : Z — Y be two closed immersions such that a1 (Z) N a,(Z) = @. The coequalizer
of a1, a, exists as a scheme X, and the canonical map v : ¥ — X may be identified with
the normalization morphism.

Proposition 4.3.11. For X as in Example 4.3.10, we have LPBr(X) = H%(X, Gp).

Proof. Let X — X be a Gy,-gerbe with corresponding class o € HZ (X, Gy,), and let § :=
v*a and y :=aj B = a} B be the pullbacks to Y and Z. Since Y is projective and smooth,
we have Br(Y) = Br'(Y) = HZ(Y, Gy, so there exists a 1-twisted finite locally free Oy, -
module €. We have similarly Br(Z) = Br'(Z) =HZ(Z,Gn). Let f : P — Z be a Brauer—
Severi scheme corresponding to y. We note that Xp — P is the trivial G,-gerbe. Consider
the following diagram:

P
/|
a v
Z—XY —X
az
Let 'V be a very positive vector bundle on P. Then by Corollary 4.3.9 (a) we have an
isomorphism
f*afé’ ®(9xp V]xp =~ f*a)zkg ®03CP V0xp
of 1-twisted Oy ,-modules. Pushing forward gives an isomorphism
a1€ ®oy, fxVlx, = a36 ®0., fi'V|x, (4.3.11.1)

of 1-twisted Ox,-modules. The pushforward f,V is very positive by Lemma 4.3.12.
Let ‘W be a very positive vector bundle on Y. Then a} W, a5 W are very positive by
Lemma 4.2.5, hence we have

fV~aiW~asWw
by Theorem 4.3.8. Substituting this into (4.3.11.1) gives an isomorphism
aT(g ®0xy Wle) i a;(@ ®(9xY W|3Cy)

which means € ®¢@,, W|x, descends to X. m
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Lemma 4.3.12. Let k be an infinite field, let f : X — Y be a flat proper morphism
between projective k-schemes. If & is a very positive vector bundle on X, then f& is a
very positive vector bundle on Y .

Proof. We separate the proof into several steps.

Part 1 (writing f«& as a colimit). Let Ox (1) and Oy (1) be very ample line bundles on X
and Y, respectively. Since Ox (1) is f-relatively ample (by [17, Proposition 4.6.13 (v)]),
we may replace Ox (1) by Ox (n) for n > 0 to assume that the map

Jf«(0x (1) oy fx(Ox(m)) — fu(Ox(m + 1)) (4.3.12.1)

is surjective for all m > 1. We have

Jx(Ox (m1) ®ay [T (Oy (m2))) = f(Ox (m1)) ®ey Oy (m2)

by the projection formula, so after replacing Ox (1) by Ox (1) ® 9, f*(Oy (m2)) for some
my >> 0 we may assume that f,(Ox (1)) is globally generated (this does not change that
(4.3.12.1) is surjective since we tensor both sides by Oy (m3), and the new line bundle
is still ample by [17, Proposition 4.6.13 (ii)]). By surjectivity of (4.3.12.1), the pushfor-
ward fx(Ox(n)) is globally generated for all n. After replacing Ox (1) by Ox (1) ®e,
f*(Oy (1)) once more, we may assume that f4(Ox (n)) ~ V, ®@, Oy (n) for some glob-
ally generated coherent Oy -module V.

By Remark 4.2.2 and Theorem 4.3.8, we may assume that & = l_ir_)nnGN &, with &, =
Ox (n)®™ for some r,. Then f,& ~ lf_)n . f+&y and it remains to show that the system
{ f+En ) nen satisfies the conditions of Definition 4.3.1.

Part 2 ( f«&, are locally free). Since Ox (1) is f-relatively ample, there exists some N
such that R? £, &, = 0forn > Ny andi > 1. By cohomology and base change, the push-
forward f. &, is finite locally free for n > Nj.

Part 3 ( f«&y — fxEny1 are locally split). Let @,, be the cokernel of &, — &4 so that
we have an exact sequence

0686, —-6&4+1—>@,—0
of Ox-modules. The pushforward
0— fubn — fi€ns1 — fx@y — 0

is exact since R! £, &, = 0. Since &, — &, is locally split, the Ox-module @, is finite
locally free, hence flat over S. Moreover R! f+«@, =0forn > Ny andi > 1 as well, hence
[« @, is finite locally free, so fx&, — f«&y+1 is locally split for n > Nj.

Part 4 ( f & satisfies (Vg)). Let § be a coherent Oy -module. We show that

H' (Y, fx€n ®0y §) =0 fori > landn > 0.
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We have the Leray spectral sequence
ED? = H?(Y,RY fi (6, ®0y f8)) = H (X, 6, ®0, [*F)

with differentials Eg SIS Eé’ t2.a-1 By Serre vanishing [20, Chapter III, Theorem 5.2]
there exists some N, > N; such that R? £, (€, @, f*§)=0forall g>1 and n> N,. Thus

HP (Y, f+(6n ®0y f*9)) —> HP(X,E, Qoy [*9) (4.3.12.2)

is an isomorphism for all p > 0 if n > N,. Since &, satisfies (Vy), there exists some
N3 > N, such that H? (X, &, ®o, f*§) =0forall p > 1landn > Ns.

For n > N,, we have R? £, &, = 0 and R? £, (8, ®@, f*§) = 0 for g > 1, so the
projection formula [33, Tag 08EU] simplifies to an isomorphism

Jxén ®0y § = f+(En ®oy [7F)

since f+&,, &y, and f are flat. Combining this with (4.3.12.2), we have H? (Y, f &, Qo
g)=0for p>1andn > N;.

Part 5 ( f &, satisfies (G)). We prove that f,&, ®¢, ¥ is globally generated for n >> 0.
Choose a surjection Oy (—N4)®" — & for some N,4. Tensoring with £ &, gives a surjec-
tion &, ®oy Oy (—Ny)® — £.6, ®@y §. The first term is isomorphic to (V, ®g,
Oy (n — N4))®" where 'V, is as in Part 1; the latter is globally generated for n > Nj.

By the above, the system { f« &, } satisfies the conditions of Definition 4.3.1, hence
J+€ is a very positive vector bundle. |

4.4. Derived category

In this section, we prove Proposition 4.4.6 which says that a very positive vector bun-
dle on a projective variety X is a generator for the derived category of X. For this, we
prove Proposition 4.4.3, which says that every finite rank vector bundle admits a “forward
resolution” by copies of the very positive vector bundle.

Lemma 4.4.1. Let k be an infinite field, let X be a proper k-scheme, let
F =colim(f; - F» —> F3 —> --+)

be a very positive vector bundle on X. Suppose given finite rank vector bundles &1, &, and
locally split injections & — & and &1 — ¥y, for some ny. Then there exists ny >> ni
and a locally split injection &y — ¥, making the diagram

81%82

I

Fn, — Fu,

commute.
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Proof. Set &3 := coker(&; — &3). By condition (4) for &, we may choose 1, > ny so
that rank %;,, > max{rank ,,dim S + rank &3 — 1} and Homeg (€3, Fn,) >~ 3 @05 Fn,
is globally generated and Ext(lys (&3, Fn,) = H' (U5, &) ® Fp,) = 0. Then we conclude
using Lemma 4.3.7. ]

Lemma 4.4.2 (“dimension shifting”). Let k be an infinite field, let X be a proper k-
scheme, let £ > 1 and let 371[15] — 3726] — -+ be a sequence of locally split injections of
finite rank vector bundles on X satisfying (V). Let & be a very positive vector bundle on
X. By Lemma 4.4.1, there exists an increasing sequence my; < my < --- and locally split
injections F; @_, &m; which commute with the transition maps in {ffim}ieN and {&; };en.
Set ¥, e .= =&y /f [9: then {5‘4‘” 1 }ien satisfies (Vg—1).

Proof. Let J be a coherent Ox-module. Let n’ be such thati > n’ implies
HY(X, ¥, ®(9XJ€)—0 forg > {+1,

and let n” be such that i > n” implies HY(X, &, ® 9, #) = 0 for all g > 1. We have a
(locally split) exact sequence

0— 7 @0y H — &m, @0y # — F @0y H 0 4.4.2.1)
for all i, hence an exact sequence
HY (X, €, @0y #) > HT' (X, 717 @0, 7) — HI(X, 71 @0y 9)

foralli. Since HY(X, ¥ "'[l Q@y H) =0foralli > n"andg > £ + 1,if i > max{n’,n"}
then HI~1(X, ¥ IZ 1] ®(9X H#) = 0 for ¢ > £. This implies ¥, [IZ U satisfies (Ve=1). =

Proposition 4.4.3. In the setup of Lemma 4.4.2, assume that d := dim X > 1. For any
finite rank vector bundle ¥ on X, there exists an exact sequence

0>F —egld ... gl 9
where each 8% is a very positive vector bundle.

Proof. We view ¥ as a constant system {F; gl ]},GN, which satisfies (V4) by [20, Chap-
ter III, Theorem 2.7]. By Lemma 4.4.2, we may obtain a sequence of exact sequences

0585yl 5o

where & is a very positive vector bundle and each {J'Ti[e]},-eN satisfies (V). Let K be a
coherent Ox -module. In view of (4.4.2.1), whenever &,,; ® g, # is globally generated, so
is ?71-[(71] ®oy H. In particular the system {3’7i[0]}ieN is a very positive vector bundle. =

Definition 4.4.4. Let D be a triangulated category with arbitrary direct sums. Let E be
an object of D.
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(1) Let (E) be the strictly full triangulated subcategory of £ containing £ and closed
under taking direct summands.

(2) Let (E)"2 be the strictly full triangulated subcategory of O containing E and
closed under taking arbitrary direct sums and under taking direct summands.

Lemma 4.4.5. Let X be a smooth projective variety over an infinite field k, and let & be
a very positive vector bundle on X. Then the essential image of i)goh (X)) — @Zcm (X)
is contained in (§).

Proof. Since X is smooth, we can represent any object of !Dgoh (X) by a bounded com-
plex of finite locally free modules. Hence it suffices to show that any finite locally free
Ox-module F is in (&). By Proposition 4.4.3 and Theorem 4.3.8 we may find an exact
sequence

0>F—->&—>---—>8—->0

of length dim X. ]

Proposition 4.4.6. Let X be a smooth projective variety over an infinite field k, and let
€ be a very positive vector bundle on X. Then Docon(X) = (€)"¢. In particular;, & is a
generator of Docon(X).

Proof. It is enough to show that a perfect generator G is contained in (&) because
we know that (G)™¢ = Dpcon(X). This follows from the proof of Lemma 4.4.5 and
[33, Tag OBQT]. ]

5. Surjective ring map induces surjection on GL,

In this section we prove that infinite invertible matrices lift under any surjective ring map.
We discovered this fact while thinking about how to lift twisted vector bundles from a
curve to an ambient surface (see Remark 5.2.4).

5.1. Definition and theorem statement

Definition 5.1.1. Let / be an index set. For any ring 4, we denote GL;(A) the group of
invertible elements of Homy (4®7, A®7). We may identify elements of Homy (A®7, A®T)
with Mat§' ; (A4), matrices whose rows and columns are indexed by / and such that every
column has only finitely many nonzero entries. Then elements of GLj(A) correspond to
matrices which admit a two-sided inverse. Given a ring homomorphism ¢ : A — B, we
obtain a group homomorphism GL;(A4) — GL;(B) by applying ¢ to each element in the
matrix, and this gives a functor Ring — Grp.

Theorem 5.1.2. Let A — B be a surjective ring map. The group homomorphism
GLN(A) — GLN(B)

is surjective, i.e., any automorphism of the free B-module B®N lifts to an automorphism
of the free A-module A®N,



Locally free twisted sheaves of infinite rank 163

5.2. Applications
Before the proof, we discuss some applications.

Remark 5.2.1. Recall that Theorem 5.1.2 is false when N is replaced by a finite index
set I. For example, if |/| = 1, the induced map Z* — F is not surjective for any prime
p=5S.

Example 5.2.2. Let A :=Z[x, y]and B := Z[u*] and let A — B be the ring map sending
(x,y) + (u,u~"). Then Theorem 5.1.2 implies there exists an invertible matrix M €
GLN(A) whose image in GLy(B) is the diagonal matrix uldy.

Remark 5.2.3. One might ask whether there exists a reasonable notion of “determinant”
for infinite invertible matrices. By Theorem 5.1.2, we know at least that there does not
exist a natural transformation GLx(—) — (—)* between functors Ring — Grp such that,
for all n € N, the composition GL,,(—) = GLn(—) — (—)* is the usual determinant for
invertible n x n matrices. Indeed, every ring A admits a surjection from a polynomial ring
Z[{x;}icr], but the only units of the latter are 1.

Remark 5.2.4. Let X be a separated Noetherian scheme, let Y — X be a closed sub-
scheme which admits a covering ¥ C U; U U, by two affine open subsets of X. Then
any infinite rank vector bundle on Y extends to U; U U,. In particular, suppose X is a
surface (any quasi-projective k-scheme of dimension 2) and Y is a curve in X, and let &
be a countably generated vector bundle on Y. Then Bass’ theorem implies that &|y x, v;
is trivial for all i. On Y xy (U; N Us), the two trivializations differ by a transition map
¢ € GLN(T(Y xx (U N Us,), Oy)) which lifts to some ¢’ € GLN(T'(U; N Uy, Ox)) by
Theorem 5.1.2. This invertible matrix ¢’ defines a countably generated vector bundle &’
on U; U U, whose restriction to Y is &. Here we may choose U, U, suitably so that the
complement X \ (U; U U,) consists of a finite collection of closed points. Furthermore
the vector bundle &’ may not extend to the entire surface X (see Example 4.3.6).

Question 5.2.5. Is the twisted analogue of Theorem 5.1.2 true? Namely, let Y — X be a
closed immersion of affine schemes, let § — X be a Gy,-gerbe, and let & be an infinite
rank 1-twisted vector bundle on §. Is the map

Aut@g (&) > Aut(ggy (& |gY)
surjective?
5.3. Proof

We begin the proof of Theorem 5.1.2.

Definition 5.3.1. Let / be an index set. An elementary matrix indexed by I over a ring
A is a matrix in Matyx 7 (A) of the form id; +M where M is a matrix in Mat(\ jyx s (4) =~
Homy (A%, A®T\) for some subset J C 1.
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Remark 5.3.2. Any elementary matrix id; +M is invertible, namely its inverse is id; —M
which is itself an elementary matrix.

Remark 5.3.3. Let / be an index set. For any i € N, let e; € ZON denote the ith basis
vector. Let o : I — I be a bijection and let ¢, € GL;(Z) be the permutation matrix
corresponding to o, which sends e; > e ;). Since permutation matrices are defined over
Z, they lift via any ring map.

Lemma 5.3.4. Let A be a ring, let [a1 an] € A®" be a unimodular vector. There
exist elementary matrices A1, . .., Ay € GL,4+1(A) such that

AL---Anm [al ceay, ()]T = [1 0 --- ()]T
in GLn_H (A)

Proof. If cia; + -+ + cpa, = 1, perform the column operations C,,+1 += ¢;C; fori =
1,...,n (after whichC,,+y = 1) and C; -= a;C,4q fori =1,...,n. [

5.4. Proof of Theorem 5.1.2

We say that a matrix M € GLj (B) is liftable if it is in the image of GL;(A) — GL;(B).
Any elementary matrix id; +M € GL;(B) lifts to an elementary matrix in GL;(A) (here
we must be careful to lift any Os as 0, to ensure that every column contains only finitely
many nonzero entries). We note that if M € GL;(A) is a lift of M € GL;(B), then the
inverse M'~! is a lift of M~!. Furthermore, if M{, M, € GL7(B) are invertible matrices
such that M is liftable, then M, is liftable if and only if their product M; M, is liftable.

Part 1. Let P € GLy(B) be an automorphism of B®N. Write
P(e;) = Z a;eifora; € B.
i=1,...,n

Then we see that (a1, ..., a,) is a unimodular vector. By Lemma 5.3.4 we can find a
liftable invertible matrix T € GL,, 1 (B) such that the operator diag(T, 1, 1,...) € GLx(B)
sends e to the same vector as P.

Part 2. By the argument of Part 1, there exist positive integers ry, 2, '3, . .. and liftable
invertible r; x r; matrices T; € GL;, (B) such that diag(Ty, T2, T3, ...) € GLn(B) sends
€1, €r 41, €r +r,+1, - - - to the same vectors as P does. Moreover diag(Ty, T2, T3, ...) is

liftable: if T; € GL,, (A) is a lift of T;, then diag(T}, T5, T, ...) € GLn(A) is a lift of
diag(Tl, T2, T3, .. )

Part 3. By Part 2, after replacing P by diag(T;, T2, T3,...)”! - P, we may assume P(e;) =
e; for infinitely many i € N. After possibly rearranging the e;, we may assume there exists
some countable set / such that P may be written in block matrix form as

Cfidn T
=7 )
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for some T € Matnxy(B) and U € GL;(B). If we can show that

diag(ld, U) = ['%N 8}

is liftable, then we are done since

ldv T|[tdx 07 [idy TUT!
0 ujlo Ul L0 i

is liftable (because it is an elementary matrix).

Part 4 (Whitehead’s lemma). For any A, B € GL;(A), the matrix [ 5 3 ] is liftable if and

only if [} ,d ] is liftable. Namely, perform the following (block) row/column opera-

tions by multiplying by appropriate elementary matrices and permutation matrices on the
left/right, respectively [23, Chapter I, Lemma 5.1]:

C16Cy

A O] Ci+=CB' | A 0| Co=CiB| A —AB|Ci*=—1|AB A [Ri-=AR; [AB O
— —> — —
0 B Idf B Id; 0 0 Ids 0 Ids

Part 5 (Eilenberg swindle). Let I and U be as in Part 3. If  is empty, there is nothing to
show. If I is nonempty, by Part 4 we see that

D := diag(...,U, U1, u,u™h

is liftable. Thus we see that
diag(ldn, U)

is liftable if and only if
diag(D, U) = diag(...,U,u~!,u,u™t, )

is liftable, which it is by the same argument with U replaced by U™!.

A. Infinite matrix rings

A.1. Skolem—Noether

In this section, we prove Theorem A.1.3, which is closely related to a theorem of Courte-
manche—Dugas [5, Lemma 2.2] on the group of automorphisms of endomorphism algebras
of projective modules. We remove their hypotheses on idempotents and indecomposable
projective modules, but require that the ring is Noetherian and that the automorphism is
of the entire sheaf of algebras (as opposed to just the global sections) on the Zariski site.
For the finite rank case, see for example [29, Chapter IV, Proposition 1.4].

Lemma A.1.1. Let R be a Noetherian ring, let I be an index set, let V := @ie] Re; bea
free R-module with basis {e; }icy, set A := Endg (V') and let ¢ : A — 4 be an R-algebra
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automorphism. Let E; € A be the projection onto the ith summand, set N; := ¢(E;) € A
and let W; :=1imN; C V be the image of N;. Then

(i)  the W; are pairwise isomorphic,
(i1) each W; is an invertible R-module, and

(iii) the natural map
ew-v (A.1.1.1)
iel
is an isomorphism.

Proof. We separate the proof into several steps.

Part 1 (proof of (i)). Foriy,i, € I,letE; ;, be the (i1,i2)th matrix unit (the only nonzero
entry is a 1 in the (i1, i)th entry) so that E; = E; ;. For any unit U € A* >~ GL;(R) we
have

P(U™!Ei - U) = (V) Ni (V)
in 4. Since the E; are pairwise conjugate (if U;, ;, € A is the R-automorphism switch-
ing e;, and e;,, then E;, = Ui_l,liz - Ei; - Uj,.i,), the N; are also pairwise conjugate, namely
(¢(Ui,.1,)) ! defines an R-module isomorphism W;, ~ W;,.
Part 2 (proof of (ii) when R is a field). Suppose that R is a field. Since ¢ is injective, we
have N; 0 and thus W; #0 also. Suppose for the sake of contradiction that dimg (W;) > 2.
Let W; = W/ @ W/ be a decomposition of W; into a direct sum of nonzero subspaces
W/, W/" C W;. This allows us to write N; as a sum N; = N; 4+ N} of nonzero orthogonal
idempotents N;, N/ € +A, corresponding to projections onto W/, W/ respectively. Applying
¢~ ! gives adecomposition E; = ¢ 1 (N}) + ¢! (N/) where ¢ ' (N}), ™! (N/) are nonzero
orthogonal idempotents. Multiplying by ¢~ (N}) gives

-1 -1 -1
Eip™ (N}) = ¢ (N)E = ¢~ (N),
so there exists some u’ € R such that ¢ ™' (N}) = u/E;. Similarly there exists some u” € R

such that ™' (N/') = u”E;. Substituting gives 1 = u’ 4+ u” where u’,u” € R are nonzero
orthogonal idempotents, which gives a contradiction since R is a field.

Part 3 (proof of (ii), general case). Since W; is the image of an idempotent endomorphism
of the free R-module V, we deduce that W; is projective as an R-module and that the
formation of W; commutes with arbitrary base change, i.e., the map

im(N;) ®g S — im(N; ®g S) (A.1.1.2)

is an isomorphism for any ring map R — S.
Let m be a maximal ideal of R. Since 1 is finitely generated, the natural map

A Qg R/m = Endg(V) ®r R/m — Endg/m(V ®r R/m)
is an isomorphism by [33, Tag 059K], hence ¢ induces an R /ut-algebra automorphism
@ 1 Endg/m(V ®r R/m) — Endg/m(V ®r R/m)
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which is compatible with ¢. Since W; ® g Ry is a projective Ry-module, it is free by
Kaplansky’s theorem [2, Corollary 3.3] and its rank is

rankg,, (W; ® g Rw) = dimg/m(W; ® g R/m) = dimpg /m (im(N; ®g R/m)) =

where equality 1 is by taking S := R/m in (A.1.1.2) and equality 2 is by applying Part 2
to ¢.

By the above, we conclude that for all maximal ideals mt of R, the localization W; ® g
Ry, is a free Ry,-module of rank 1, in particular W; @ g Ry, is a finitely generated Ryy,-
module. Since R is Noetherian, [2, Proposition 4.2 (2)] implies that W; itself is finitely
generated (and projective). This proves that W; is an invertible R-module.

Part 4 (proof of (iii)). We recall the argument of [5, Lemma 2.2]. We first show that,
for a fixed ip € I, we have N;(e;,) = O for all but finitely many j € I. If N;(e;)) # O,
then N; - E;, # 0 and thus E; - @ (E;y) # 0. We deduce that the only possibilities are for
j in the support of ¢! (E;,). By (ii) applied to ¢!, the image im(p~!(E;,)) is finitely
generated, hence has finite support.

The injectivity of (A.1.1.1) follows from the fact that the N; are idempotent and
Ni, - N;, = 0if iy # i5. For surjectivity, it suffices to show that for every iy € I the basis
element e;, is in the image of (A.1.1.1). By the above, the set S;, :={i € I : N;(e;,) 7 0}
is finite. Set v;, := e;, — Ziesio N;i(ej,). Ifi € I\ Sj,, then N; (v;) = 0. If i € Sj,, then
N; (vi,) = N;(ejy) — N;(ej,) = Osince N;, - N;, = 0if iy # ip. Thus vj, € ();¢; (kerN;).

It remains to show that ();¢; (ker N;) = 0. Suppose v € V' is an element such that
N;(v) =0foralli € I anddefinew : V — V sending e; > v foralli € . ThenN; -7 =0
foralli € I,andE; - ¢~ '(n) =0foralli € I,ie., ¢ '(n) =0,ie., 7 =0.

This concludes the proof of Lemma A.1.1. ]

Lemma A.1.2. In the notation of Lemma A.1.1, if each W; is a free R-module, then there
exists some U € A™ such that ¢ is equal to the conjugation-by-U map.

Proof (from [5]). Choose generators w; € W; and define U' : V — V sending e; > w; for
alli € I. Since (A.1.1.1) is an isomorphism, we see that U’ is an isomorphism. Given u =
> ier Hiei, we have (i, U") (u) = qig (3 7 uiwi) = uigWi, and (U'Ejy) (u) = U’ (uj,e4,) =
ujoWi,. Thus ¢; = U'E; U1 for all i € I. After replacing ¢ by ¢ - (U"1(—)U’), we may
assume that

o(E) =E; (A.1.2.1)

foralli € I.
1 | 1 .. . — i1,i2 ) i1,i2 . _
Fix i1, i> and set ¢(Ei,,i,)(e),) = X, cr 5;, /,€j» for some ;"2 € R. Given u =
> iey Mi€i, we have

(Ei1 @(Eiyip) - Eiz)(”) = (Eil : ‘p(Eihiz))(uizeiz) =E; (uiz ZSZ,’?QO = uiZS;;:;lzeil
iel
and
Eivis (u) = Ui, &,
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hence
Eiy - 0(Eirin) - Eiy = 510717 Ei i

for all iy, i,. Since E;, - E;, ;, - E;, = Ej,i,, applying ¢ and (A.1.2.1) gives ¢(E;, ;,) =
slel’f Ei,.i, forall iy,i, (and s]’:’fz = 0if (j1, j2) # (i2,i1)). We set sj, 4, = sl’;ff Applying
the above argument to ¢! implies that every s;, ;, is a unit. Applying ¢ t0 E;, j, * Eiy.iy =
Ei\is 8IVES S, i,Siy,is = Siy,i; (and in particular s; ; = 1). We choose an arbitrary ¢ € I,
define U” : V — V by U” = 3", s5;,;E;. After replacing ¢ by ¢ - (U"~1(—)U"), we may
assume

@(Eiriy) = Eipi, (A.12.2)
foralliq,ip € 1.

Let N € +4 be a matrix and let a;, ;, be the (i1, i2)th entry of N. Then

Biy -N-Ei, = iy inki 0,

and applying ¢ gives

E\ - @(N) - Ei, = aiyirEi i,
which implies that the (i, i)th entries of ¢(N) and N are equal for all i;,i, € I, i.e.,
¢@(N) = N. Since N was arbitrary, we have ¢ = id4 as desired. ]

Theorem A.1.3. Let € be a locally ringed site with a final object S, let I be an index
set, let V := @;c; Oeei be a free Oe-module with basis {e; }icy, set A := Endoy (V)
and let ¢ : A — A be an Oe-algebra automorphism. Assume that S has a covering
{Uy, — S}aea such that T'(Uy, Oy, ) is a Noetherian ring for all A € A. Then there exists
a covering {Sg — S}ger and units Uy, € T'(Sg, A*) such that ¢|s, : Als, — Als, is the
conjugation-by-Uy,, morphism.

Proof. LetE; € I'(S, 4) be the projection onto the ith summand, and let W; C V be the
image of E;. The formation of W; is compatible with localization since the projections E;
are. By Lemma A.1.1, the W; are pairwise-isomorphic invertible Qe-modules. Since €
is locally ringed, there exists a covering {S¢ — S}zez such that each W;|s, is a trivial

Os,-module. We conclude by Lemma A.1.2. ]

A.2. The center of endomorphism rings of projective modules

Given a ring A, it is well known that the center of the matrix ring Mat,, «, (4) consists of
matrices of the form f id, for some f € A. In this section we prove an extension of this
fact to endomorphism rings of projective modules of possibly infinite rank.

Lemma A.2.1. Let € be a locally ringed site, let & be a locally projective O¢-module
of positive rank, let ¢ : & — & be an Oe-linear endomorphism. Suppose that, for all
U € €, the restriction ¢|y is contained in the center of Endg, (&|v). There exists a
unique f € I'(€, O¢) such that ¢ = f idg.

Proof. Foranyve'(€,§&),lets,: Qe — & denote the O¢-linear map sending 1 — v. We
say that v is a unimodular element of & if s, admits an OQ¢-linear retraction 7, : & — Oe¢.
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In this case, evaluating ¢ o (s, o 7,) = (sy o 7y) o ¢ atvimplies ¢(v) = 7,(¢(v)) - v, namely
¢(v) is a scalar multiple of v.

Given two unimodular elements vy, v, of & and retractions my, , 7y, of sy, Sy, respec-
tively, evaluating ¢ o (s, o 7y,) = (8y, © 7y,) © @ at v, implies ¢(v1) = 7y, (@(v2)) - vi.
Applying 7, gives my, (¢(v1)) = my, (¢(v2)). Hence this constant m, (¢(v)) is independent
of choice of v and retraction 7.

After a localization of €, we may assume that & is a globally a direct summand of a
free module, so that we have Qe-linear maps ¢ : & — (9?1 and 7 : (9?1 — & such that
mor=idg.LetMe Matﬁf>< 1 (I (€, O¢)) be the matrix corresponding to the Q¢-linear map
Lo : (9%,9 I' 8- (9? 1 , and let v; denote the ith column of M. If v; contains an entry
which is a unit, then v; is unimodular. The assumption that & has positive rank means that
the entries of M generate the unit ideal of I'(€, O¢): given an object U € € for which there
exists a surjection p : &|y — Oy, the composition p o 7 is a surjection which remains
surjective after precomposition by ¢ o . Let U € € be an object; by [33, Tag 04ES], there
exists a covering {U; — U}, such that for each A € A, there exists an entry of M which
is a unit of I'(Uy, O¢); say that v;, contains such an entry. By the above, there exists
a constant f; € I'(Uy, O¢) such that ¢(v;;) = fiv;, in I'(Uy, &). Moreover, we have
S |U/11XUU/12 = f/lz|UAIXUUAZ forall A1, A, € A, so there exists a unique f € I'(U, O¢)
such that f|y, = fj forall A € A.

Now it remains to show that, for any object U € € and any element w € I'(U, &), there
exists a covering {U; — U} e such that for each A € A, the restriction w|y, € I'(Uy, 8)
is an I'(U,,, O¢)-linear combination of unimodular elements of &|y, . Set A := I'(U, O¢)
and let P be the image of the A-linear map M|y : A% — A®! . Since M is idempotent,
we deduce that P is a projective A-module. Let p be a prime of A. By Kaplansky [2,
Corollary 3.3], the localization P, is a free Ap-module. We may choose finitely many
elements u}, ..., u, € Py such that {u}, ..., u)} is part of an A,-basis for P, and such
that w is an Ajp-linear combination of the uj, say w = cju} + --- + c,u;, with ¢, € Ay.
We may find some a € A\ psuchthatc),..., ¢, lifttocy,...,c; € Agand u},... U},
lift to uf, ..., u)) € P,. We may multiply a by an element of 4 \ p if necessary so that
w = c{uf +--- + c,u; in Py. Since each uj, is unimodular in Py, each uj contains an
entry which is not contained in pA,. Thus, we may again multiply a by an element of
A\ p so that these entries become units of 4,. Then each uj is unimodular in &|y- for
any morphism U’ — U such that a|y- is invertible in T'(U’, Q).

Since € is locally ringed, there exists a covering {U,,, — U}, ,ea, such that for each
Ap € Ay eitheraly,  or (1 —a) |UA,, is invertible in I'(Uy,, , Oe). In this way, since Spec A
is quasi-compact, we obtain elements ay, ..., a, € A which generate the unit ideal of A
and coverings {U;, — U};,en, such that either ae|U/1[ or (1 — a4)|UM is invertible in
I'(Uy, . O¢). Taking the fiber product of these coverings gives the result. ]
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