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Mitigating errors in quantum information processing devices is especially important in the absence
of fault tolerance. An effective method in suppressing state-preparation errors is using multiple copies
to distill the ideal component from a noisy quantum state. Here, we use classical shadows and random-
ized measurements to circumvent the need for coherent access to multiple copies at an exponential cost.
We study the scaling of resources using numerical simulations and find that the overhead is still favor-
able compared to full state tomography. We optimize measurement resources under realistic experimental
constraints and apply our method to an experiment preparing a Greenberger-Horne-Zeilinger state with
trapped ions. In addition to improving stabilizer measurements, the analysis of the improved results reveals
the nature of errors affecting the experiment. Hence, our results provide a directly applicable method for

mitigating errors in near-term quantum computers.
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I. INTRODUCTION

One of the main obstacles in operating quantum infor-
mation processing devices is extreme sensitivity to errors.
In principle, these errors can be corrected using error-
correcting codes [1]. However, utilizing these codes in a
fault-tolerant manner requires a hardware overhead that is
pushing the limits of what experiments can achieve today
[2]. Therefore, it is interesting to find ways to mitigate the
effect of errors and extend the utility of current devices in
the absence of fault tolerance. Recently, there have been
several proposals for mitigating the effect of errors on esti-
mating expectation values of observables in a quantum
circuit [3-9]. These schemes work by acquiring the expec-
tation value of an observable for different noise strengths
(e.g., by changing the gate time) and extrapolating them
to find the expectation value at the zero-noise limit, or as
shown in Refs. [5,6] by learning a correction scheme using
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circuits that are easy (e.g., Clifford circuits) to simulate and
applying the learned correction procedure to general cir-
cuits. Additionally, there has been a new endeavor along
the ideas of Ref. [10] to extract the state of interest from
a noisy mixed state by using multiple copies of the noisy
state [7,11-17].

At the same time, quantum devices are growing in size,
and that increases the complexity of extracting information
from the system. In particular, methods such as quantum
state tomography have a complexity that grows expo-
nentially with the system size. Recently, there have been
proposals for efficient extraction of certain properties of a
quantum system based on randomized measurements and
classical shadows [18-20]. Roughly speaking, these meth-
ods provide a way for estimating many linear functions of a
quantum state with (quantum and classical) resources that
scale efficiently with the system size. For nonlinear func-
tions of the state, such as Rényi entropies or topological
invariants, protocols based on randomized measurements
have an exponential complexity, but are still advantageous
compared to full state tomography [18,21-26], making
them a useful tool for probing near-term intermediate-scale
devices [27].

In this work, we take advantage of the framework of
randomized measurements and classical shadows and
apply it to the problem of error mitigation. Specifically,
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FIG. 1. Schematic representation of error mitigation with mul-
tiple copies. (a) Performing an interferometry experiment, where
H is the Hadamard gate, with a controlled-SWAP operation on two
copies of state p together with a controlled-O operation on one of
the copies enables measuring tr(Op?). (b) The procedure in panel
(a) can be replaced by randomized single-qubit measurements
implemented by u; and postprocessing the results b;.

we study error mitigation using multiple copies [7,13—16]
and study the trade-off between quantum resources (such
as two-qubit gates and coherent access to multiple copies
of a state) and single-qubit randomized measurements (see
Fig. 1). We first explain the error-mitigation framework
and show how our protocol incorporates randomized mea-
surements in this framework. We then provide a numer-
ical analysis of the errors and resources and explore the
trade-off between the number of measurement settings
and the repetitions of each measurement. Finally, using
the existing trapped-ion experimental data from Ref. [28],
we illustrate the application of our method in optimizing
experimental resources for improving the measurements
of stabilizers of a five-qubit Greenberger-Horne-Zeilinger
(GHZ) state [29]. The success and shortcomings of our
protocol, in this case, reveal valuable information about
the nature of errors in the experiment.

II. ERROR MITIGATION USING MULTIPLE
COPIES

We first review the scheme using multiple copies for
suppressing errors in preparing a quantum state. Let |¢r)
denote the ideal state that we are interested in preparing in
an experiment. Because of experimental imperfections, we
instead end up with p = (1 — &)|¥ )} (V| + €perror» Where
0 < £ <1 quantifies the strength of errors. We assume
that peror 1S a density matrix in a subspace orthogonal to
[¥), e, {(¥|Peror|¥) = 0. Realistic noise in an experi-
ment might differ from this model. In Appendix F, we
discuss the effectiveness of this scheme for various noise
models. Now let us consider the task of estimating the
expectation value of an observable O. Ideally, we would
like to extract (Y|O|y). However, because of the errors
we obtain tr(Op). To reduce the errors in our estimate,
one can instead calculate (O)ny = tr(Op™) /tr(p™), where
m is an integer, which is referred to as virtual distilla-
tion in the literature (see, e.g., Refs. [13,15]). This scheme
is effective if |} is the dominant eigenvector of p, i.e.,
|l — & > epmax With pmay being the largest eigenvalue of
Perror, and suppresses the errors exponentially in m [13,15]

since

tr(Op™)  tr{O[(1 — &)"|Y N Y| + ™ gt ]}

tr(pm) (1 — )"y} (Y] +empl]
_ (1 =)™ (y|OlY) + "tr(Oplior)
o (1 — &)™ + emtr(p™ )
> (Y|OIY) +f (O, pemor)e™ + O™, (1)
where S (O, perror) = tr(Opg) — (V101Y)r (o5 -

Hence, the access to p™ enables suppressing errors expo-
nentially in m. Previous works [7,11-16,30] have mostly
considered using multiple copies and controlled permu-
tations to prepare p™, given access to m copies of p.
This is enabled by using the fact that tr(V™ p®m) =
tr(p™), where V™ is a permutation operator acting as
Ve [yn1) [¥2) - - [¥m) = |¥m) [¥1) - - - [¥m—1). Such sche-
mes require the use of two-qubit gates between copies
of state p stored in quantum registers. Note that while
m copies of p are required for such a procedure, we
only need coherent access to two copies at the same
time [30]. However, even in this case, preparing two
copies of the state in the same quantum register and
performing coherent operations on them poses serious
difficulties in near-term experiments [31]. In particu-
lar, the long-range coupling required for performing the
swap operation between copies is challenging in devices
with limited connectivity and requires additional gates
that introduce further errors in the computation task of
interest [32].

Recently, there have been proposals to trade access
to copies of the state (circuit width) with circuit depth
using a dual-state scheme [11,14]. These methods elim-
inate the need for quantum operations between different
copies of the state, which can be challenging in near-
term devices [31]. However, they require knowledge of
the unitary operator that prepares the state of interest
and its inverse and assume that the noise affecting the
state and its dual are similar. In general, implementing
the inverse of a known unitary operation is not straight-
forward, e.g., in an analog simulator without a circuit
description or for applications in metrology [17]. The
increased depth of the circuit can also be problematic for
the latter assumption in the presence of non-Markovian
errors [33]. Moreover, these method require midcircuit
measurements with feedback, or ancilla-assisted mea-
surements that can again introduce errors in the experi-
ment and require additional error mitigation in the near
term.

II1. SHADOW DISTILLATION

In this work, we propose using the framework of ran-
domized measurements and classical shadows to calculate
tr(Op™) and tr(p™). We refer to our method as shadow
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distillation (SD). Our approach trades circuit size with
sample complexity. This trade-off can be especially use-
ful in near-term devices where control and circuit depth
and width are limited and errors are large. In such cases,
the increased depth and width required for error mitiga-
tion with multiple copies inevitably introduces additional
errors in the computations. These errors limit the appli-
cability of error mitigation as they further bias the results
away from their ideal values. In contrast, the errors in our
method are mostly statistical and be reduced by collect-
ing, possibly exponentially many, more samples. We come
back to this issue when we increase sample complexity in
Sec. IV.

Specifically, let p denote the state of interest on ny
qubits. To measure the quantum state in Ny random bases,
we sample Ny distinct combinations of random single-
qubit rotations U=u; @ u @ - - - ® uy and append them
to the circuit that is used to prepare p. Finally, we perform
projective measurements on the computational basis. For
each rotation setting U, the measurements are repeated Ng
shots.

To infer the physical quantities from the randomized
measurements, one can convert each measurement out-
come to a classical snapshot of the state. For a mea-
surement with a random unitary U=u; Q@ u; ® - -+ @ uy
satisfying the three-design property and a measurement

outcome |b) = |by, by, ..., by), the classical snapshot is of
the form
g
pus = R Gullbi) (bilue — 1), )
k=1

where [ is the identity matrix on a single qubit. The collec-
tion of these snapshots is referred to as a classical shadow
of the state [18]. The density matrix p can be inferred
from the classical shadow by averaging over U and b,
i.e., p = Eyp(oup). Therefore, one can directly infer the
expectation value of an observable O from its expectation
value over each snapshot using tr(Op) = Ey[tr(Opus)]
[18]. Physical quantities that are nonlinear in the den-
sity matrix p, e.g., tr(Op?), can be calculated through
tr(0p?) = Eupv p[tr(V®(Opup) ® pur )], where VP is
the swap operator [18]. For certain choices of measure-
ment bases, such as those corresponding to random global
Clifford operations and random Pauli measurements, the
shadows can be stored and manipulated efficiently in a time
and memory polynomial in n,, Ny, and N [18].

Here, we focus on second-order error mitigation (m = 2)
with randomized single-qubit Pauli measurements. Specif-
ically, let {D}}?{fl denote the Ny sampled unitary opera-
tors from random local Clifford gates, and let {|p¥ J)J:.;ri]}
denote the measurement outcomes of Ny measurements
fixing U = U;. We then define p; = (1/Ns) Z:TS:] ,6%_ B0

which corresponds to the average snapshot (2) for a fixed

U. We denote our estimate of tr(Op?) by 05, given by [34]
1

0) = ————— tr(V® p; Opj 3

62 =y l)g 5 ® (0, ()

which is an unbiased estimator (see Appendix A). Note
that setting O = [ results in an estimate of tr(p?), which
we denote by $3.

In this way, §; using NyNs snapshots can be calculated
in time O(poly(n)NéNSz). Moreover, 6, for operators O
that are products of single-qubit Pauli operators can be
obtained with the same complexity [35]. Therefore, using
classical shadows enables us to perform error mitigation
for such operators using classical computational resources
that scale polynomially with the number of samples and
the number of qubits n;. However, it should be noted that
the number of samples required to achieve a given accu-
racy can depend on ng. In fact, the sample complexity of
estimating quantities nonlinear in state p can grow expo-
nentially with system size [18,36]. In the following, we
numerically investigate this scaling and show that, for the
case of m = 2, {O) ) for Pauli observables performs favor-
ably compared to schemes based on full quantum state
tomography.

IV.NUMERICAL INVESTIGATION OF ERROR
SCALING

We analyze the scaling of statistical errors in the esti-
mation of (O)) for Pauli observables with measurement
resources, Ny and Ng, and n, qubits using numerical simu-
lations. To study the generic performance of the protocol,
we first prepare random pure states under depolarization
noise with strength &:

&
2" — 1

pr = (1 —&)|Yr)(Vrl + U — ¥z} (YRl (4)

Here 0 < & < 1, |Wg) = Ug|0), and Uy is a Haar random
unitary operator. We then estimate tr(p‘%) and tr(Opﬁ),
denoted by S'ER) and égR), respectively, using Eq. (3), by

sampling Ny random bases and Ny shots. Let

a2 (5@ep) 357N 5
R — 2 - ~(R) ( }
tr(pR) Sz

denote the squared error of estimating (O) ) for the par-
ticular state pg. In our simulations, we examine the mean
squared error (MSE) A% = (1/Ng) 3" A%, over Np = 100
random choices of Ug. The overbar denotes the average
taken over different realizations of measurements for each
Ur obtained by bootstrap sampling over 250 instances;
see Appendix B for more information on the bootstrap
resampling techniques. We emphasize that A only cap-
tures errors of our SD scheme for estimating (O)() and
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does not include the errors that are not corrected using
this error-mitigation procedure. The effectiveness of the
error-mitigation scheme has been studied in other works;
see, e.g., Refs. [11,13—16]. We discuss that aspect in the
discussion of our results for the trapped-ion experiment.

Figures 2(a) and 2(b) show the scaling of the statistical
error as a function of Ny and Ny for various observables
O for n; =4 and & = 0.1. We observe that A? scales as
1/Ny. Moreover, for a fixed value of Ny, it converges as
1/Ns to a constant determined by Ny. We also observe
a fast convergence of A? to a constant value determined
by Ny and Ng as a function of purity, tr(p?), as shown
in Fig. 2(c). Note that our estimator 67/5; is, in gen-
eral, a biased estimator for (O)2). Moreover, there is no
closed-form formula for the variance of 9, /3. In Appendix
C, we derive analytical bounds for Var(6;) and Var(s,).
While these bounds do not directly translate to a bound on
Var(6,/5,), they can still provide an intuition on the behav-
ior of the errors and help us find empirical expressions for
the scaling of errors. In fact, the scaling that we observe
in Figs. 2(a)-2(b) agrees with our bound for the variance
of the numerator. Additionally, errors in §; can lead to
large errors in estimating the ratio 6, /5;, especially in the
small-Ny regime. In these cases it might be beneficial to
incorporate prior knowledge about the value of the purity
tr(p?) to reduce the errors. We further explore this idea in
Appendix E. We show that, given a measurement of purity
s, a prior guess for the value of purity pp, and a hyper-
parameter « that quantifies the confidence in our guess,
a modified estimator of the form (s; + Ap)/(1 + A) with
A = a /Ny can be obtained using Bayes’ rule.

Finally, in Fig. 2(d) we investigate the number of basis
measurements Ny required to reach a certain value of A?
as a function of the number of qubits n, with £ =0.1.
We find that, although Ny scales exponentially with ng,
i.e., Ny ~ 2¥™  the exponent y =~ 0.82, which is favorable
compared to full quantum state tomography with Ny ~
3" [37]. Therefore, the scheme is favorable for the near-
term regime, where we are pushing the boundaries of the
classical simulability of quantum systems.

V. TRAPPED-ION EXPERIMENT

We illustrate the utility of our proposed SD method, by
applying it to the existing data from an experiment with
trapped-ion qubits [28]; see also Appendix F for more
information on the experimental device.

In the experiment, a five-qubit GHZ state, i.e., |¥guz) =
(10)® + |1)®%)/4/2 is prepared. This is a stabilizer
state with generators G = {Z,2,, Zy 73, Z324, Z4 Zs, HI.X,-},
where we use ]_[‘.X,‘ to denote X1 XoX3X4 X5 [35]. 1deally,
for this state, (O) = 1 for all O € G. Because of experi-
mental errors, the actual state pgyy differs from the ideal
state and (O) < 1. Here, we investigate how our pro-
posed error-mitigation technique can improve estimates of

(b) (c)
10° s 1 { x4 xxxi
10734 4= XX114- XXXX
107 1§ 1 107 1
4 102 i A
0 10 102
Py
1073 ; . 1
1'}1-?{1 f;;%;;j--:—f
10744, . A4 . L . .
10! 10? 10° 10 10* 10°025 050 0.75
Ny Ns tr(p?)
(d)
6x10° P
5 4% 103 "
= 3x10° e
2% 10° s
3 4 5 6

ng

FIG. 2. Scaling of the mean squared error A” for ng = 4 qubits
and error strength £ = 0.1: (a) the number of unitaries Ny with a
fixed number of shots Ny = 1024; (b) the number of shots with
a fixed Ny = 1024. The inset shows the convergence to the final
value with Ns. (c) The scaling of A2 with purity, tr(p?), for Ng =
Ny = 1024. The legend indicates the choices for O [see Eq. (5)]
in panels (a)-(c). Error bars are standard deviations of A% over
100 random states. (d) The number of bases Ny, in order to reach
mean squared error A2 versus the number of qubits ny for Ng =
1. The solid lines are fitting curves Ny = ¢2¥™. For A = 0.01,
y = 0.82.

these expectation values. Note that these expectation val-
ues can then be used to estimate the fidelity of the GHZ
state [38—40]. A practical consideration in this experiment
is that performing measurements in different bases takes
roughly 1000 times longer than repeating measurements in
a fixed basis. Therefore, it is interesting to explore the pos-
sibility of a trade-off between the Ny and Ny for a fixed
measurement time.

To optimize resources, we first repeat our simulations
by fixing state |{g) in Eq. (4) to be a five-qubit GHZ state
and setting £ = 0.1. This allows us to extract the scaling of
errors with resources for this particular state. By examining
the simulation data we empirically find that the MSE scales
as ALy, = (3384/N2)(1 + 22/N2), which is better than
the average scaling that we observed in Fig. 2 for random
states (see Appendix D). In Fig. 3 we compare our empiri-
cal fit with the numerically obtained contour and find good
agreement between the two. Next, we model the experi-
ment time by T = Ny(1000 + Ng) to capture the trade-off
between changing the measurement basis and repeating the
measurements in the same basis. Finally, for a fixed 7, we
find the optimal choices of Ng and Ny that give us the low-
est error (see Fig. 3). We note that the optimal choices of
Ns and Ny obtained in our simulation may not be the opti-
mal choices for the experiment, as their values may depend
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FIG. 3. Contour plot of the simulated error mitigation for the

GHZ state for varying Ny and Ny. The color bar indicates the
logarithm of the mean squared error A%}]-[Z' The dashed lines
indicate the contours obtained from the empirical fit Aéuz =
(3384[}\’5)(1 + 22[N§). The red lines show the contours of fixed
T = Ny(1000 + Ng) for T=1.5 x 107 and T = 2.8 x 107, with
the circles indicating the optimal choices of Ny and Ns. In the
white region of the plot A%y, > 0.1.

on the specific error channel and the purity of the experi-
mental state. Moreover, for a large-scale experiment, such
simulations may not be feasible. However, as shown in
Appendix D, optimizing the ratio of Ny and Ny, for smaller
experiments can guide us to better allocate resources in
larger experiments.

After finding the optimal choices of Ny and Ny we
resample the experimental measurement data of Ref. [28]
and use our error-mitigation scheme to recover the expec-
tation values of the stabilizers. Specifically, in Fig. 4 we
observe that [[,X;, which is the operator that is most
severely affected by the errors and benefits the most from
the SD scheme. In Appendix F, we simulate and analyze
possible sources of errors in the experiment and, based
on the performance of SD, identify detection errors and
dephasing as major sources of noise in the system. More-
over, by increasing Ny from 1428 to 2666, corresponding
to the optimal choices for T= 1.5 x 107 and 2.8 x 107,
respectively (shown in Fig. 3), we observe that the error
bars (standard deviations obtained by bootstrap resam-
pling) in the mitigated values decrease (see Fig. 4). Note
that while in this comparison the total number of mea-
surements (NyNs) in the SD scheme is larger compared
to the direct unmitigated method, increasing the number of
measurements in the latter only reduces the variance and
cannot help with reducing the bias errors from physical
noise processes in the experiment.

VI. DISCUSSION

In this work, we considered an alternative to error miti-
gation with multiple copies [13,41] and dual state schemes
[11,14] that trades circuit volume with sample complex-
ity. While these methods have great potential, the hardware
requirement for implementing them can be demanding. In

I Direct

B SD, Ny=2666, Ns=50

g
0.6 0.8 1

0

FIG. 4. We compare the experimental results of directly mea-
sured expectation values tr(pQ) using Ny = 2000 with mitigated
values (O); using Ny = 1428, 2666 and N5 = 50 measurements.
The labels on the y axis indicate the choices for O and the x axis
shows the expectation value. Increasing Ny reduces the error on
the estimate. Error bars are standard deviations obtained from

bootstrap sampling in SD and from normal approximation in the
direct method.

cases where the control and quantum resources required for
implementing them is unavailable or limited, it can be use-
ful to trade quantum resources for classical ones and use
our proposed method.

We have shown that it is possible to mitigate state-
preparation errors using classical shadows and provided
numerical evidence of a better sample complexity of this
approach compared to full state tomography. We also dis-
cussed the possibility of incorporating prior knowledge in
our estimates and presented a scheme for optimizing mea-
surement resources given experimental constraints. It is
interesting to further develop these heuristics to enhance
the capabilities of quantum devices in the near term.

Another aspect of the resource analysis, in addition
to the sample complexity, is classical postprocessing. As
mentioned earlier, the complexity of evaluating the mit-
igated expectation values using M = Ny x Ng snapshots
scales as O(M?). If our numerical error scaling persists
[see Fig. 2(d)], we expect M ~ 20827 Note that the
second-order mitigation (m = 2) has its limitations and
even with infinitely many measurements one cannot com-
pletely eliminate the errors. One can obtain the full density
matrix by taking the average of the measurement snap-
shots, which allows mitigation with an arbitrary m. There-
fore, the ultimate mitigation (m — ©0) can be achieved by
obtaining the dominant eigenvector of p [41], which takes
time ((2%"4). However, taking the latter approach has a
higher complexity than simulating the full quantum sys-
tem and is unlikely to be useful beyond a proof-of-concept
illustration. Therefore, we believe that the application of
our proposed SD method is at the limit where storing and
manipulating the full density matrix is out of reach, but
storing the shadows and processing them is possible.
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Finally, we note that the data collected for SD do not
have to come from a single experimental platform. Com-
bining data from different experiments might help with
turning coherent errors into incoherent ones that can be
mitigated using this scheme. Such a parallel approach
helps mitigate errors when multiple experimental systems
are available, but performing coherent operations between
those systems is not possible.
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Note added. Recently, we became aware of a related
work [42] that uses similar techniques for error mitigation.

APPENDIX A: AN UNBIASED ESTIMATOR FOR
tr(0p?)

In this section, we show that our estimator in Eq. (3) is

unbiased. We first remind the reader that { D}}Nf] denotes

the Ny sampled unitary operators from random local Clif-
ford gates, and that { |b(‘}-))$i1} denotes the measurement
outcomes of Ng measurements fixing U = U;. We can then
expand p; = (1/Ns) Zfil ,6%‘ 50 in Eq. (3) and calculate

its expectation value

- .
E ) it )(O,o%_‘b@,.))tap , @]

Uik

1
Mo — e oG — DNs(Ns — 1)tr(0p?) 4+ Ny(Nu — 1)Nstr(Op?)]
- M

- Ny(Ny

i A

_ Ny(Ny— 1)NZ
~ Ny(Ny — 1)N2
= tr(0p?),

tr(Op?)

where we have used the identity tr(Op?) = Eup,vp
[tr(V®(Opyp) ® prr )] in the second line.

APPENDIX B: DETAILS OF THE NUMERICAL
SIMULATIONS

In this section, we provide the details of the numeri-
cal simulations performed for the scaling of the errors A2
with Ny, Ng, and the purity tr(p?). We first generate a ran-
dom mixed state defined in Eq. (4) by sampling a random
unitary operator from the Haar distribution.

In order to generate the mixed state with certain purity
tr(p?), we note that the purity is solely determined by the

i =

(A1)

parameter & and

2
tr(pg) = (1 — &) + (ﬁ) . (B1)

One can therefore vary the parameter & to tune the purity
of the mixed state.

To estimate the squared error A% defined in Eq. (5) as a
function of Ny, N, and tr(p?), we use the bootstrap resam-
pling technique. We perform randomized measurements
for 10 000 different random bases, each with 10 000 shots.
These data form the empirical distribution of the classical
shadow for a given pg.
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For a given pair of (Ny, Ns), we sample the classical
shadow for Ny random bases and Ny shots from the emp-
irical distribution and estimate (O} using Eq. (3). The
squared error of the estimation A is defined as the squared
difference between the estimation and the exact value

Finally, we average over the random mixed states
pr by generating Np = 100 different random mixed

states pg and calculate A2 = (1/Ng) > A_i. The standard
deviation used for plotting the error bars is given by

; W 2 _ A2)2
(0) () as defined in Eq. (5). We perform the resampling S(ATy = \/ZR(I/NR)(A —Bgr
250 times to obtain the average of A2, denoted A2.

APPENDIX C: ANALYTICAL UPPER BOUNDS ON THE ESTIMATION VARIANCE AS A FUNCTION
OF Ns AND Ny

1. Definition

Given an n-qubit (n = n, in the main text) quantum state p, we perform a random local Clifford unitary U operation

on p and then perform the computational basis measurement Ns times. Suppose that {|b(”)}‘£] are the measurement
outcomes (note that here the b are n-bit strings); then in this section, we define the following unbiased estimator of
p:

i 28 i 5
A _ 5 _ —1, @y p)
p=— pusn==—» MU D) BI V)
N_g; vb NS;

with

Ng
1 : .
M(p) = FS > E[U 167) 69 U]
i=1

Ng
= NLS Z]EUNM Z[(ﬁ |b(f)) (b(i)lUprlb(i}) (b(f)| Ul

i=1 (b}
= D3 (p),
M (p) = (Dy3)*" ().

Here Dij3(p) = %p + %tr(p)!, Dag(p) = 3p — tr(p)l, and U denotes the uniform distribution of local Clifford
operations on n qubits.

2. Variance of estimating tr(Op)

Clearly, tr(Op) is an unbiased estimator of tr(Op). Now we compute its variance:

Ng Ng 2
~ i i 1 i - i
Var[tr(0p)] = Evnu {% (]} O |UpU'[6?) ) (FS ; (BOIUM (0 U | ))) — tr(p0)>
| Ny Ns
S - 8 (@) (i) () =1 (i) (") —1 W 2
_NSZEUNM{H\L;(E@ |UpUt|b ))“Z::lw [UM~Y0)U16?) (6D | UM~ (0)UTBD)) — tr(p0)

b

+Ns—l

(]ELM; D (blUpU'b) (B |UpU' b} (BlUM™ (O)U'[b) (H'| UM~ Q) U') — rr<p0)2).

bb
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It is known from Proposition S3 of Ref. [18] that, when
O is a weight-k operator and has a Pauli decomposition
0= ZpapPp, pei{lX, Y,Z}k (note that we use O as
shorthand for O @ I®"~* acting on n qubits), the first term
is equal to

1
FeEvu 2 (6lUpU'15) GIUM OV 1B’
b
1 2
— 351 (e0)
A

where Oy = ) 3lalg, Py, and q > s means that g; is equal
to either s; or [ for all i.

Y. w(p0) — tr(,oO)z),

se(X VZ}k

Now we compute the second term. We first compute

Evu )_(U® U) |bb') (bb| (U'@U") (b|UT M~ (P,) Ulb)
bb

(BT M PYUIY) = Q) F(pir 9
i=1

where Py, Py are Pauli operators.

1
F(pi,q:) = Ev,ey, Z (U1 ® Uh) |x1x2) (x122] (UT®UI)

Il‘X2=0

@ |UIP, Uy x1) (52| UL P, Unxy)

where U is the uniform distribution of Clifford gates on
one qubit. After a few calculations, we obtain

I®l, pi=q; =0,
F(piq) ={ 3Py, ® Py, pi=q:i #0, p;=0,4; #0, orp; # 0,4; = 0,
0, otherwise.

Let

Ji such that p; # ¢; and p;, q; # 1,
, s={i:pi=qip:i #I}:

0,
f(p.q = {33

then the second term is equal to

Ng—1
Ns

Ev-u ) (blUpU'[b) (¢ |UpU"|E')

by
(BIUM(O)U'|b) (b'|UM~ (O)U'|P') — tr(p0)*
= tr((,o ® ) Y apaq Q) F(pr, qf)) — tr(p0)?
Pq i=1

=) apayf (p, Qtr(pPy)tr(pPy) — tr(p0)>

Pq
1
=3 D (p0) —t(pOy,
selX V. Z)k

where the last equality can be verified by comparing the
coeflicients of apag.

Therefore, we have

Y. w(p0) — tr(pO)z)

se(X VZ}k

L Ns—1g
Ny \3*

1 /1
Var[tr(0p)] = Ns (g

> t(p0)’ - tr(pO)E)

selX, VZ}k
1 .
= uO(Osp) +_ul(0"p)s (Cl)

Ns
where
1
u(©0,p) =5z Y w(p0s)’ —tr(pO)’

selX,Y.Z)k _
(C2)

1
and 1 (0,p) =7 ) t(pO)) —tr(p0,)’
selX Y, Z}k

are all non-negative functions of O and p. It is known from
Ref. [18] that

uy(0, p) + u1 (0, p) < 2ktr(0?).

Clearly, when up(O, p) is significantly smaller than
u1(0, p), a large N5 is desirable.
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3. Variance of estimating tr(Opz)

Let &7 = [1/No@u — DI Y, e (VP ® (Ofy)).
This is an unbiased estimator of 0, = tr(Op?). Now we
compute its variance. Let O? := %(V@J(I RO)+UIQ®
0)V?). We have

. (N .
02:( U) Ztr(O(zJpj ® pj1)s

2 —
i<

where 4y = (1/Ns) XS M~'(U] 169)) (69| Up),

{U; }?31 is sampled from random local Clifford gates, and

{|b(9))‘;{il} are measurement outcomes of Ny measure-
ments fixing U= U;. A total NsNy number of measure-
ments are performed.

In order to derive an upper bound of Var[d;], we first
note from our discussion above that

1
Var[tr(4)] < up(4, p) + o 4, p)
S

for an arbitrary Hermitian operator 4, and, forj # j’,
Var[tr(0? f; @ p51)] < uo(0?, p @ p)

1
+ 3 02, p ® p).

Consider

A Ny\ 7 A A A a
(02 = ( 5 ) Y (0P f @ f)tr (0P i @ f).

J<i'k<k

2 . e g
There are (}\;U) terms in total. For terms where all indices
are distinct [(A;U) (N";z) terms in all],

E[tr(0? by ® pi)tr(0P pi ® prr)] = tr(p*0)*;

for terms where two of the indices coincide [Z(A;U)(NU —
2) terms in all],

]E[tr(O(z)ﬁj ® p’},)tr(o(E)ﬁk ® pr)] = E[tr((6 ® p)o(z))z]
= E[tr(p4)%],

where 4 := %(pO + Op); for terms where (j,j’) coincides
with (k, &) [(*¥) terms in all],

E[tr(0?; ® p;)te(0? i @ pp)] = E[tr(0? 5; @ ;1) .

Then we have

N\ ! 1
Var[6,] = ( 2”) (2(NU ~2) (uo(A, P+ o (A,p))
* (”0(0‘2’,,0 ® p) + lul(om, p® p)))
Ns
< 4 A ! A
< ATU(HO( ,P) + A_Tsu]( ,P))

4 1
—_ o2 —u (0@ )
+N§,(u0( ,p®p)+?rsu1( P ® p)
(C3)

In particular, when O = I, we have

N\ ! 1
Var[§,] = ( 2”) (2(NU -2) (uo(p,p) + A—rsul(p,p))
* (”o(V‘z),p ®p) + Lul(V”’, p® .0)))
Ns

4 1
< —
=N (uo(p,p) + Nsul(p,p))

4 1
+ %(uo(w’,p ®p) + FSHI(IAZJ,P ® p))-
(C4)

APPENDIX D: NUMERICAL SIMULATIONS OF
THE GHZ STATE

In this section, we provide more information about the
simulations of the GHZ state used for producing Fig. 3.
Additionally, we investigate how the optimal choices of
Ny and Ny vary as we change the number of qubits.

We generate a five-qubit GHZ state with £ = 0.1 and,
for each value of Ny and Ny, simulate the randomized mea-
surement protocol 1000 times. We then calculate the mean
squared error A(E}Hz using these samples; see Fig. 5. Based
on the observed scaling for large Ns and Ny, we use the
expression AéHZ = (CI/N{Z;)(I + CQ/N_%) to fit the data and
find that ¢; = 3384 and ¢, = 22. Since the values AéHZ
span orders of magnitudes, we use log;o(AZ;;,) to fit the
data and capture the correct behavior across a large range
of values.

We now repeat these simulations for n; = 3,4, 6 using
the same parameters and number of samples. We then
obtain the empirical fit, and similar to the procedure used in
Fig. 3 we obtain the optimal choices of Ns and Ny for given
measurement budgets. The results shown in Fig. 6 illus-
trate that the optimal distribution of resources for smaller
systems can guide us in choosing the appropriate Ny and
Ny for larger systems that may eventually be out of reach
for a classical computer. The results also reinforce the
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(a) (b)
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FIG. 5. Scaling of the mean squared error Ay, for a five-
qubit GHZ state for varying (a) Ns and (b) Ny. The dashed lines
indicate the empirical fits A%}Hz = (3384{1’\%}{] + 22/N_%).

observation that increasing Ny is only helpful to a cer-
tain degree and increasing Ns beyond this point has a
diminishing return in reducing the errors.

APPENDIX E: A BIASED ESTIMATOR FOR
PURITY

As noted in the main text, it might be beneficial to incor-
porate prior knowledge about the value of purity tr(p?) to
reduce the errors. We now show one approach to incorpo-
rating prior knowledge using a Gaussian prior and Bayes’
rule.

Let o denote the true value of tr(p?) and assume that
we have a prior belief that p ~ N(ﬂo,o‘&), i.e., a normal
distribution with mean po and variance 0'02. Next, assume
that after performing an experiment we estimate the purity
to be s2. We also assume that this observation is normally
distributed with the variance, o2, that is known. Therefore,

ny=3

10*

T'=28x10"

T=15x10

Ny

103 f

n,=4

T=28%x10’

T=15%107

based on our measurements and assumptions we have

o S
exp[——(” 2 ] (El)

202

1
Pr(sz|un) = W
no

Moreover, our prior is

N2
Pr(p) = exp [ — M] (E2)

7
2no} 20y

Then, using Bayes’ rule Pr(|s2) = Pr(p)Pr(s2|p)/Pr(s2),
we find the posterior
Pr(plsz) oc Pr(p)Pr(sz|p)
el — (s2— ) (- 10)?
P 202 20¢
_(e— u’)2]

20.12

o exp [ (E3)

where our updated mean and variance are

2 2
fo PP TR (E4)
o2 +o;

2.2
o]
ot (ES)
o?+oy
We now use p’ as our estimator for purity. We assume that
o2 o 1/Ny, and define a parameter « such that 0'2/0'& =

o /Ny. We then have
, _ s2+apo/Ny
1+ a/Ny
We can then treat ¢ as a hyperparameter that quantifies our

confidence in our initial guess. Large values of & indicate
our high confidence in .

(E6)

10° 10! 10° 100 10° 10!

10 100 10° 10! 10° 10°

FIG. 6. Optimal choices of Ny and Ns for a given measurement budget for different numbers of qubits n, = 3,4, 6. The color
bar indicates the logarithm of the mean squared error A%_HZ. The dashed lines indicate the contours obtained from the empirical fit
Aém = (cl;‘Ng,)(l —|—c'2,’N_§}. The red lines show the contours of fixed T = Ny (1000 + Ns) for T= 1.5 x 107 and T = 2.8 x 107,
with the circles indicating the optimal choices of Ny and Ns. In the white region of the plot Aém > 0.1. We observe that, in this
problem and measurement budget regime, the optimal choices of Ny and Ns remain similar as we change the number of qubits.
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FIG. 7. Using the biased estimator for purity in Eq. (E6) on
the data from Fig. 5 reduces the errors for smaller values of
Ny. The dashed lines show the errors calculated using the biased
estimator; the solid lines are the original data from Fig. 5.

This method is particularly useful if we have a good
guess about the purity of the state in our experiment. To
illustrate, we apply this modified estimator to our data in
Fig. 5, with iy = 0.9 and @ = 100. The true value of purity
in this case is 0.81. The results in Fig. 7 show that, even
with more than 10% error in the prior, using this biased
estimator improves the errors for smaller values of Ny.

APPENDIX F: DETAILS OF THE EXPERIMENT
AND ERRORS

1. Experimental setup

The trapped-ion experiment is performed on a quantum
computer consisting of a chain of nine 171Yb™ ions con-
fined in a Paul trap with blade electrodes. Typical single-
and two-qubit gate fidelities are 99.5(2)% and 98%—99%.
Detailed performance of the system is described in Ref.
[43]. The GHZ state in the experiment is prepared by

— 0 0

running the circuit show in Fig. 8 on five qubits. The cir-
cuit utilizes the two-qubit gate Ryy (8) = exp(—ifXX /2),
and the single-qubit rotations R, (8) = exp(—io,0/2) with
a=xYy,z.

2. Error channels and simulation

In this section, we describe the detailed implementations
for the simulation of the error channels. We simulate the
circuit in Fig. 8 on a classical computer.

To simulate coherent errors, we replace the Ryy (0) gate
by Rxx (6(1 + écon)), Where 8con is the over-rotation rate.
The dephasing error is simulated by applying the following
noise channel at the end of the simulation:

C(p) == (I _Pdeph)p + .

g
BRS Zoz, (1)

9 =1
with pgepn the dephasing rate.

To simulate detection errors in the measurements, we
first rotate the density matrix to the basis that the mea-
surement will be performed. For example, to measure the
H?i} X; operator, we perform Hadamard rotation for all the
qubits. After the rotation, we take the diagonal part of the
density matrix, P. It corresponds to the probability distri-
bution of the measurement outcomes. We then apply the
detection error matrix, M, to the probability distribution
P. In this work, we focus on uncorrelated detection errors.
Matrix M in this case is given by

M:@?A,—
i=1

(F2)

with

1—po m
A= . F3
( Po I_Pl) (F3)

Ryx (_g ]

— 1

FIG. 8. The circuit used for preparing the GHZ state in the trapped-ion quantum computer, where Ryy () = exp(—ifXX /2),

R,(0) = exp(—io,6/2) and @ = x,y, 2.
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(a) Coherent (b) Dephasing (c) Detection

I Direct

Il sD

< T

-~ T

~H .

A | .
06 038 0 06 0 06 038

8 1.0
FIG. 9. Simulated effect of errors on second-order mitiga-
tion. We compare the direct approach tr(pQ) (Direct) against
the second-order mitigation (O)) (SD) for (a) coherent error
with 8cop = 0.15 relative over-rotation, (b) single-qubit dephas-
ing error with pgeph = 0.1, and (c) detection errors with pge =
0.01.

YAV

1. 1.0

Here po (p1) denotes the probability that the detector gives
outcome 1 (0) where the true outcome should be 0 (1).
We assume that pg = p1 = pget for simplicity. After the
application of M, we calculate the expectation value of the
observables based on the modified probability distribution.

To simulate the measurement of second-order mit-
igation (O)) with detection errors, we first simulate
the measurement of all 4" Pauli strings with detection
errors using the method described in the previous section.
We then define the reconstructed density matrix as p =
(1/27) Y"1 cxPy, where Py is the kth Pauli string oper-
ator and ¢y, is the simulated measurement result of P, with
detection errors. Finally, the second-order mitigation is
computed as (O)2) = tr(0p?) /tr(p?).

2
2

I Direct

s e

I sSD

e
T e
0

.0 0.2 04 0.6 0.8 1.0

FIG. 10. Comparison of the experimental data (Direct), cor-
rected data using detection calibration (Calibrated detection), and
shadows distillation (SD) with Ny = 2666 and Ny = 50 mea-
surements. The gap between the corrected detection and SD data
in ([[;X:) and its absence in the (ZZ) can be explained by the
existence of dephasing error in the experiment.

3. Analysis of errors

In addition to correcting the expectation values, our
method also reveals some facts about the nature of errors
in the system. We first note that static coherent errors do
not benefit from SD [see Fig. 9(a)]. This is because these
errors change the eigenstates of p while leaving the eigen-
values unaffected. From the experimental results in Fig. 4,
we can see that [ [, X; is the operator that is most affected
by the errors. However, the fact that it benefits consider-
ably from the error-mitigation protocol suggests that the
errors are mostly incoherent. These observations are fur-
ther validated by the numerical simulation of coherent
errors [Fig. 9(a)], dephasing errors [Fig. 9(b)], and detec-
tion errors [Fig. 9(c)]. We see that, unlike coherent errors,
the latter two benefit from SD. The contrast between the
ZZ and [],X; can be due to either dephasing or detec-
tion errors. However, in the next section, we provide a
detailed analysis using a different error-mitigation tech-
nique [44] that only mitigates detection errors, and show
that it is unlikely that detection errors are the only source
of errors in this experiment. The residual errors in Fig. 4
either correspond to higher-order incoherent errors, inco-
herent errors that modify the eigenvectors of p (also known
as the coherent mismatch [13,15,41]), or coherent errors
originating from under(over)-rotation in two-qubit gates,
which is a known source of error in trapped-ion systems
[45].

4. Correcting detection errors

It is also possible to correct detection errors by first cal-
ibrating matrix M in Eq. (F2) in the experiment and apply-
ing M~! to the vector of outcome probabilities obtained
from the measurements [44]. We apply this procedure to
the experimentally obtained expectation values and show
the results in Fig. 10. We observe that the corrected expec-
tation values are still lower than those obtained from SD,
which indicates that SD is mitigating errors beyond just
those in the detection process.
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