1	
2	Boring but Demanding: Using Secondary Tasks to Counter the Driver Vigilance
3	Decrement for Partially Automated Driving
4	
5	Scott Mishler ¹ & Jing Chen ²
6	¹ Old Dominion University, Norfolk, VA, USA
7	² Rice University, Houston, TX, USA
8	
9	
10	in the second of
11	Précis: Driving-related and non-driving related secondary tasks were added to a simulated,
12	prolonged partially driving task. Non-driving related secondary task mitigated the vigilance
13	decrement. Resource depletion and disengagement were both shown to be causes of the vigilance
14	decrement.
15	itholis
16	Topic choice: Surface Transportation
17	

18	Acknowledgement
19	Jing Chen https://orcid.org/0000-0003-0394-0375
20	The authors have no known conflicts of interest to disclose.
21	This work was supported by the National Science Foundation award #2007386 and
22	#2245055. The authors thank Alexa Quesnel, Kyle Canady, Manuela Urbanske Donnelly, and
23	Kayla Wall-Green for their assistance in data collection for this study. Part of the data was
24	presented at the 2022 Annual Meeting of Human Factors and Ergonomics Society and included
25	as an extended abstract in the conference program.
26	*Correspondence concerning this article should be addressed to Jing Chen,
27	jingchen@rice.edu, Department of Psychological Sciences-MS25, Rice University, 6100 Main
28	Street, Houston, TX 77005.
29	*ed
30	jingchen@rice.edu, Department of Psychological Sciences-MS25, Rice University, 6100 Main Street, Houston, TX 77005.
31	. S P
	illo

32 Abstract 33 **Objective.** We investigated secondary-task-based countermeasures to the vigilance decrement 34 during a simulated partially automated driving (PAD) task, with the goal of understanding the 35 underlying mechanism of the vigilance decrement and maintaining driver vigilance in PAD. 36 **Background.** Partial driving automation requires a human driver to monitor the roadway, but 37 humans are notoriously bad at monitoring tasks over long periods of time, demonstrating the 38 vigilance decrement in such tasks. The overload explanations of the vigilance decrement 39 predicted the decrement to be worse with added secondary tasks due to increased task demands 40 and depleted attentional resources, whereas the underload explanations predicted the vigilance 41 decrement to be alleviated with secondary tasks due to increased task engagement. 42 **Method.** Participants watched a driving video simulating PAD and were required to identify 43 hazardous vehicles throughout the 45-min drive. A total of 117 participants were assigned to 44 three different vigilance-intervention conditions including a driving-related secondary task (DR) 45 condition, a non-driving-related secondary task (NDR) condition, and a control condition with no 46 secondary tasks. **Results.** Overall, the vigilance decrement was shown overtime, reflected in increased response 47 48 times, reduced hazard detection rates, reduced response sensitivity, shifted response criterion, 49 and subjective reports on task-induced stress. Compared to the DR and the control conditions, the NDR displayed mitigated vigilance decrement. 50 51 Conclusion. This study provided convergent evidence for both resource depletion and 52 disengagement as sources of the vigilance decrement. 53 **Application.** The practical implication is that infrequent and intermittent breaks using a non-54 driving related task may help alleviate the vigilance decrement in PAD systems.

- 55 Keywords: sustained attention, driver vigilance, resource depletion, task engagement, driving
- automation systems

Authors Accepted Manuscript

Authors

Boring and Demanding: Using Secondary Tasks to Counter the Driver Vigilance Decrement for Partially Automated Driving

The current partially automated driving (PAD) systems still require the human driver to monitor the driving scene to look out for unexpected problems in the roadway. Drivers must maintain sustained attention, or vigilance, to watch for any potential issues, which is a challenging task for humans (Greenlee et al., 2018; Körber et al., 2015). The act of monitoring the roadway while the automation does much of the primary driving task can quickly become monotonous and boring over time. Drivers tend to respond more slowly and make fewer safe responses to dangerous events as time goes on, resulting in what is commonly referred to as the vigilance decrement (Parasuraman, 1986). PAD still requires the human driver to remain vigilant, yet the driving task becomes more monotonous than manual driving, which imposes greater challenges for driving safety. Our study examined this vigilance decrement issue in the context of PAD to develop strategies to mitigate the decrement through various secondary tasks and to further understand the theoretical underpinnings of the vigilance decrement.

Vigilance

Vigilance refers to the ability to pay attention and maintain focus on a task while responding to infrequent, unpredictable target stimuli over prolonged periods of time (Parasuraman, 1986; Warm et al., 2008). Vigilance is required for many common tasks including manual driving, and the vigilance decrement has been shown to be robust in this task (Larue et al., 2010; Thiffault & Bergeron, 2003). The vigilance decrement has also been shown in PAD, for which the human driver is required to monitor the environment for occasional although critical hazardous signals.

To understand the vigilance tasks, a few terms need to be defined. There have been two distinct task paradigms used to study vigilance: discrimination and identification. In discrimination tasks, there are events that occur at relatively regular intervals and a small portion of those events are defined as the critical signals. Participants are required to discriminate the signal from the other, noise events. In identification tasks, there are no defined noise events, and participants are to respond to the signal events that occur at random times, thus requiring operators to hold extra information in working memory during the task. Event rate is how often the events, including both the signal and noise events, if any, occur over a period of time, so it applies to both the identification and discrimination paradigms. Signal probability is defined as the percentage of the signal events among all events, and thus only applies to the discrimination paradigm. The type of task and vigilance events can influence how the operator performs in a vigilance task. In contrast to some vigilance tasks that require operators to hold specific information in working further and consequently increase workload, driving tasks mostly have responses that come naturally to licensed drivers, so they already know what to look out for.

For the discrimination paradigm, signal detection theory (SDT) can be used to depict participant's performance, showing shifts in operators' responses which can explain potential underlying attentional shifts (Green & Swets, 1966). Response sensitivity refers to the ability to correctly distinguish the signal from the noise, and response bias is the tendency of the individual to report the presence of the signal (See et al., 1995). When an individual says "yes" (i.e., target present) to a signal it is considered a *hit* and saying "no" (i.e., target absent) to a signal is a *miss*. Alternatively, saying "yes" to noise is a *false alarm* and saying "no" to noise is a *correct rejection*.

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

Theories of the vigilance decrement are comprised of two general categories that describe the cause of the decrement: underload and overload. Among the underload explanations, the arousal-based theory has been the key explanation of the vigilance decrement (Welford, 1968). The arousal theory postulates that performance is low when arousal is at low levels. During a vigilance task, because the individual is attending to rare signals in a monotonous task, they become under stimulated over time and their arousal level decreases. An important feature of the vigilance task is that signal rates are low, leading to long gaps between events that require attention. The mindlessness theory (Manly et al., 1999) proposes that sustained attention is determined by an internal supervisory ability to control attention, and the attentional control wanes when signal rates are low due to a lack of external stimulation. This leads to an absentminded approach where the signal is lost in the monotony of the task due to attentional drift. Research looking at heart rate and respiration during vigilance tasks demonstrated decrements in each along with decreased performance over time, providing evidence for under-arousal and disengagement (Pattyn et al., 2008). Expanding on the mindlessness theory, the mind-wandering hypothesis (Robertson et al., 1997; Smallwood et al., 2004; Smallwood & Schooler, 2006) postulates that attention is shifted away from the central task toward internal, task-unrelated thoughts during the vigilance task, thus resulting in a decrement of vigilance. Both the arousal and mindlessness theories of the vigilance decrement can be considered as underload theories that attribute the vigilance decrement to the operator being underloaded.

In contrast to the underload theories, there are theories that attribute the vigilance decrement to the operator being overloaded. The earlier sustained demand theory focuses on the information processing demands of the vigilance task, and posits that arousal and stress increase due to the high demands of maintaining attention (Parasuraman, 1979). The continual effortful

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

demand of information processing leads to high mental workload, particularly in vigilance tasks that require more difficult discriminations, resulting in higher stress and decreased vigilance over time (Deaton & Parasuraman, 1993; Warm et al., 1996, 2008). The resource theory of vigilance, based on attentional resource models such as the unitary resource model (Kahneman, 1973) and the multiple resource model (Wickens, 2002), expands this idea of stress and mental demand based on evidence of the depletion of attentional resources in vigilance tasks (Grier et al., 2003; Warm et al., 2008). The resource theory has been supported by findings showing that vigilance tasks are demanding, involve high workload, and induce stress (Johnson & Proctor, 2004; Szalma et al., 2004; Warm et al., 1996). When vigilance tasks require discriminations based on cognitive information (e.g., memory), the decrement is likely to be larger because of the higher mental demand than when discriminations are based on sensory information (e.g., color; See et al., 1995; Warm et al., 2008). Further evidence for the resource theory showed that resources were depleted as time progressed in a vigilance task, and that more demanding tasks show larger vigilance decrements (Greenlee et al., 2019; Helton & Russell, 2011; Helton & Warm, 2008). The underload and overload vigilance theories have important implications for the design of intervention strategies to mitigate the driver vigilance decrement in automated driving.

The underload and overload vigilance theories have important implications for the design of intervention strategies to mitigate the driver vigilance decrement in automated driving.

According to the underload theories, more engaging tasks should result in fewer attentional lapses over time. More interesting tasks should sustain arousal leading to less mind-wandering caused by underload. Furthermore, added stimulation via alternative tasks would improve overall arousal, preventing unwanted attentional withdrawal and disengagement (Pattyn et al., 2008; Smallwood et al., 2004). However, the overload theories suppose that manipulations of task engagement should have no effect or should increase the vigilance decrement due to increased task demands (Thomson et al., 2016). If the individual is already depleting their pool of

resources, engagement should not matter and adding additional tasks would further overload them, leading to more stress and workload (Epling et al., 2019; Wickens, 2002). Both of these implications are informative for the design of intervention strategies. If the vigilance decrement is due to an individual being overloaded, actions can be taken to reduce their cognitive load so that vigilance will be maintained for detecting safety-critical signals. In contrast, if vigilance has waned due to low arousal and mind wandering, stimulating and engaging the individual will benefit sustained attention on the task (Hancock & Verwey, 1997; Warm et al., 2008).

Vigilance in Driving Automation Systems

The level of automation for most current semi-autonomous vehicles is SAE Level 2 (partial) automation (SAE, 2021). Level 2 automation requires the human driver to supervise the driving automation system while the system maintains sustained lateral and longitudinal vehicle motion control. The human driver is responsible for object and event detection and recognition during the driving task and must respond appropriately if the driving automation system is unable to avoid a hazard or object in the roadway. The human must always maintain their attention on the primary driving task to supervise the travel, leaving them with the difficulty of staying vigilant for any unforeseen hazards.

As previously discussed, human drivers using a driving automation system are required to monitor the system's actions, which becomes a vigilance task over time. Greenlee and colleagues (2018) conducted a study to determine if the vigilance decrement could be observed for drivers monitoring the roadway for hazards during PAD. They found that the hazard detection rate declined over time and reaction time (RT) to hazards slowed as the drive went on. Participants' workload and subjective stress ratings indicated that the sustained monitoring task was demanding and distressing. As a follow-up, Greenlee et al. (2019) added manipulations of

spatial uncertainty of the signals and event rate to investigate effects of task demands in vigilance performance. Their high spatial uncertainty as well as fast event rate served to increase monitoring demands in comparison to low spatial uncertainty and slow event rate. Their results showed that detection performance was worse with higher monitoring demands, indicating that driver overload is likely the reason for the vigilance decrement in partially automated driving.

While the PAD task makes it more of a vigilance task than manual driving, it also potentially leads the human driver to perform secondary tasks more often. Depending on the underlying root of vigilance (i.e., overload or underload), performing secondary tasks may seemingly cost drivers' performance in their main vigilance task of monitoring the driving environment. However, secondary tasks may be beneficial in terms of vigilance maintenance ited Main when strategically designed.

Benefits of Secondary Tasks

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

There has been some evidence that utilizing secondary tasks can help alleviate the vigilance decrement. In air traffic control, vigilance decrements were negated when a secondary task of clicking on each aircraft as it entered the airspace was added to an air traffic control monitoring task (Pop et al., 2012). In manual driving, the effect of added tasks was examined on truck driving performance in a prolonged simulated driving task (Drory, 1985). When a brief voice-communication task was added every 15 min, driving performance significantly improved. More recently, benefits of an interactive cognitive task were found when participants answered multiple choice questions regarding general knowledge during prolonged, monotonous drives (Gershon et al., 2009). Similarly, drivers' manual driving performance (e.g., lane keeping, steering control) was improved when drivers were engaged in a verbal secondary task of free word association during a prolonged simulated drive (Atchley & Chan, 2011). These results are

consistent with predictions of the underload theories when adding secondary tasks to the vigilance task. It is worth noting that these secondary tasks are mostly infrequent and intermittent, and do not overlap with the primary vigilance tasks.

However, studies using more traditional vigilance tasks have shown the cost of secondary tasks. For example, Helton and Russell (2011, 2013) added concurrent verbal and spatial secondary tasks to a vigilance task of monitoring an infrequent letter O among displayed letters of D and minor reversed D. Larger vigilance decrements were found with the secondary tasks that increased working memory load. In the driving domain, a meta-analysis focusing on manual driving performance found performance costs in terms of hazard detection and number of collisions due to cell phone use, which can be considered a secondary task (Caird et al., 2018). These results are consistent with predictions of the overload theories, where the larger vigilance decrements imposed by secondary tasks are likely because they deplete mental resources faster. In contrast to the secondary tasks that are shown to be beneficial, these secondary tasks that worsen the vigilance decrement tend to be continuous, tax working memory, and overlap with the primary vigilance tasks.

209 CURRENT STUDY

Considering the two theoretical explanations underpinning the vigilance decrement – overload and underload – the current study aimed to examine possible countermeasures leveraging secondary tasks to assuage the decline in vigilance. The theoretical motivation for the current study was to disentangle the overload and underload explanations of the vigilance decrement. The overload explanation predicts that an added secondary task will increase the task demands and worsen the vigilance decrement overtime. The underload explanation predicts that an added secondary task will increase engagement of the driver and thus mitigate the vigilance

decrement. Our results comparing the secondary-task conditions with the control condition would provide evidence to distinguish these two theoretical explanations. The practical motivation of the current study was to develop secondary-task-based countermeasures to mitigate the vigilance decrement in PAD. Given this practical motivation, we chose secondary tasks that are infrequent and intermittent. The result was expected to provide insight for designers of partially automated vehicles in consideration of the vigilance decrement.

The performance measures used in these studies for manual driving (e.g., lane keeping) are not suitable for measuring driver performance in driving automation systems, where drivers are more likely to perform secondary tasks. In the context of automated driving, Miller et al. (2015) show that, in comparison to an activity of merely supervising the advanced driver assistance system, seemingly distracting activities (e.g., reading, watching videos) indeed reduce the likelihood of driver drowsiness. However, their measure of driver drowsiness was based on visual coding of driver behavior such as yawns and eye closures, and their focus was on predicted and structured transition to driver control where drivers were given 20 s ahead of the transition. The current study used performance-based vigilance measures as well as unpredicted hazardous events.

Furthermore, previous studies on driver vigilance in the driving domain only used driving-irrelevant secondary tasks (Atchley & Chan, 2011; Drory, 1985; Gershon et al., 2009), and no study has examined the effects of secondary tasks on the vigilance decrement in the context of PAD. We tested two types of verbal prompts, non-driving related (NDR) and driving-related (DR), interjected throughout the drive to redirect drivers' attention to the driving task at various stages. Participants were in a simulated SAE (2021) Level 2 partially automated vehicle down the roadway while cars passed by at a consistent rate in the opposite lane. Participants

needed to monitor the roadway environment and the passing vehicles and were required to respond when a vehicle in the opposing lane crossed over the centerline (i.e., a hazardous event). In the NDR task, participants were asked non-driving related general knowledge questions; in the DR task, participants were asked driving and roadway relevant questions, which required the participants to scan the driving environment in order to answer the questions. According to the underload theories, both types of secondary tasks would mitigate the vigilance decrement in comparison to the control condition, and the DR would mitigate the decrement further than the NDR due to the former being more engaging. According to the overload theories, both types of secondary tasks would worsen the vigilance decrement due to added task demands in comparison to the control condition, and the DR task would lead to a larger decrement than the NDR task due to the former being more demanding visually and taxing the same resources the vigilance task used (Wickens, 2002). Our goal was to determine if these tasks would help maintain vigilance to improve accuracy and RT to the hazardous events without increasing workload compared to a control condition with no intervention.

Method

Participants. A total of 117 participants (age: M = 20.50, SD = 3.98; 86 female, 31 male) were recruited through SONA, an online research participation system. Participants were required to have a valid driver's license. This research complied with the American Psychological Association Code of Ethics and was approved by the Institutional Review Board at Old Dominion University. Informed consent was obtained from each participant. All participants received credit toward course requirements.

Materials. The study was presented through E-prime 3.0 (pstnet.com/products/e-prime) and contained videos of a simulated driving environment created in STISIM driving simulation

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

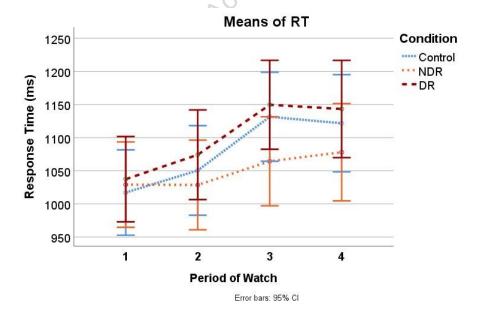
software (stisimdrive.com). The study was presented on a Dell 27-inch monitor with a 1920×1080 resolution. The Short Stress State Questionnaire (SSSQ; Helton, 2004) was used to measure subjectively reported distress, worry, and engagement before and after the experiment. The NASA-TLX (Hart & Staveland, 1988) was used to measure participants' workload at the end of the experiment.

Procedure. Participants started by filling out a consent form and demographics information, then took the pre-task SSSQ. Once they completed these questions, they were given instructions that they would be assisting with the training of an automated vehicle and would need to press the spacebar when they saw a vehicle coming from the opposite lane cross the centerline. They were encouraged to respond as quickly as possible once they saw the signal and had a five-second window to respond or else their response was counted as a miss. During a twominute practice session, participants were shown the situation where they were supposed to respond to the vehicle crossing the centerline (i.e., the hazardous event), and there was a total of six hazardous vehicles among a total of 63 vehicles during this practice drive. The first hazardous vehicle was accompanied by an arrow (see Figure 1) and the researcher walked them through the scenario. The participant responded to the subsequent five hazardous vehicles on their own to ensure their understanding of the task, with the researcher watching to verify that they responded appropriately. There was no training on the secondary task other than instructions given to them at the start of the experimental drive. Participants were able to redo the practice session if they did not fully understand the experiment. Participants proceeded to the experimental drive after they successfully completed the training, identifying at least four out of the remaining five hazards.

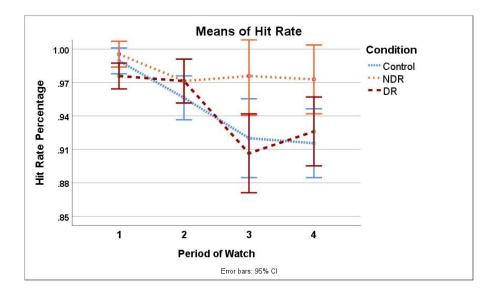
Figure 1. Roadway with the hazardous vehicle over the centerline (the arrow was not present during the experimental drive)

The experimental section consisted of a 45-minute drive. A total of 1350 vehicles in the opposite lane passed by the participants' vehicle, resulting in a car passing about every two seconds. Among the passing vehicles, there were 68 hazardous ones, resulting in a signal rate of about 5%. The 68 hazardous events were randomly distributed throughout the drive, with none occurring in the first or last two and a half minutes. Participants' responses were indicated by hitting the spacebar and the system would honk in response to the input.

The independent variable manipulated in the experimental drive was the vigilance-intervention strategy (between-subjects). Each participant was randomly assigned to one of the three conditions, the control, NDR, or DR condition. The control condition only required participants to respond to the hazardous vehicles by pressing the spacebar on the keyboard. The NDR and DR conditions added secondary voice tasks by asking either driving relevant or non-driving relevant questions at eight unique locations randomly spaced throughout the drive. All visual stimuli for the secondary tasks in the DR condition were located on the right side of the road to ensure they were clearly seen by participants, but were randomly distributed in time to


ensure that their appearance could not be predicted. All questions were pre-recorded voices and required participants to answer "yes" or "no" verbally. For the NDR condition, the questions were about simple knowledge (e.g., "Is January the first month of the year"). The DR condition contained questions about driving-related objects in the driving environment (e.g., "Is the current speed limit 55 miles per hour?"). The questions in both conditions were matched to be similar for word count and presentation time. There was a total of eight questions in each of the two experimental conditions, and they were randomly distributed throughout the drive to avoid participants predicting the timing of the questions. The questions were not asked at the same time as any hazardous vehicles. Participants answered the questions verbally, and their response was logged on a response sheet by the researcher. At the end of the experiment, participants completed the post-SSSQ and NASA-TLX.

The dependent variables included the RT to the hazardous events, hit rate, and false alarm rate of responses. RT was recorded from the time the vehicle started divulging from its lane to cross the centerline until the spacebar was pressed. A response was a hit if the participant correctly identified the hazardous vehicle and pressed the spacebar. A false alarm was defined by the participant indicating a response when there was no hazardous vehicle. We also measured response criterion and sensitivity using SDT calculated with the hit rate and false alarm rate (Stanislaw & Todorov, 1999). Additionally, the ratings for the pre-SSSQ and post-SSSQ were divided into three sections – distress, worry, and engagement – and the mean score changes from pre- to post-SSSQ were calculated. Finally, the NASA-TLX was computed for each aspect (mental workload, effort, physical workload, frustration, temporal workload, performance) and for the overall mean.


Results

The RT, hit, and false alarm data from the individual 68 hazardous events were evenly divided into four periods of watch (POW) with 17 responses in each. Separate 3 (control, NDR, DR) × 4 (period of watch, POW 1-4) repeated-measures Analyses of Variance (ANOVAs) were conducted on each of the DVs and reported below. Arcsine transformation was conducted on the hit and false alarm rates for the ANOVAs. In addition, trend analyses were conducted across the POWs to determine if RTs, hits, and false alarms increased or decreased linearly over time.

Response Time. The main effect of POW was significant (see Figure 2; Ms = 1027.87 ms, 1051.08 ms, 1115.10 ms, 1114.25 ms, for each period 1-4, and SDs = 201.27 ms, 212.01 ms, 212.82 ms, 230.72 ms, respectively), F(3,342) = 20.27, p < .001, $\eta_p^2 = .15$. There was a significant linear trend, F(1,114) = 33.12, p < .001, $\eta_p^2 = .23$, indicating that RT increased (responses were slower) over time (as indicated by POW). Neither the main effect of vigilance-intervention strategy, F < 1, nor the interaction between the two factors was significant, F(6,342) = 1.26, p = .275 $\eta_p^2 = .02$.

341 Hit Rate. The ANOVA on the hit rate (see Figure 3) indicated a significant main effect of POW (Ms = 98.69%, 96.63%, 93.41%, .93.82%, and SDs = 3.71%, 6.19%, 11.46%, 9.98%, for 342 each period 1-4, respectively), F(3,342) = 17.73, p < .001 $\eta_p^2 = .13$. There was a significant 343 344 linear trend of hit rate, F(1,114) = 40.61, p < .001, $\eta_p^2 = .26$, showing that the hit rate decreased 345 (more hazardous events were missed) over time. The main effect of vigilance-intervention 346 strategy was significant (Ms = 94.53%, 97.97%, 94.54%, for control, NDR, and DR, 347 respectively), F(2,114) = 5.42, p = .006, $\eta_p^2 = .09$. Post hoc comparisons showed the hit rate for 348 the NDR was significantly different from both the control and DR conditions, $p_s = .003$ and 349 .010, respectively. The interaction between the two factors was also significant, F(6,342) = 2.34, p = .031, $\eta_p^2 = .04$. Simple main effects analyses showed that POW had a significant effect on 350 hit rate for the control condition, F(3,112) = 10.83, p < .001, $\eta_p^2 = .23$, the NDR condition, 351 F(3,112) = 2.97, p = .035, $\eta_p^2 = .07$, and the DR condition, F(3,112) = 6.50, p < .001, $\eta_p^2 = .15$. 352 353 Pairwise comparisons showed that for the control condition, hit rate between the POWs significantly decreased for periods 1 to 2, p = .003, and 2 to 3, p = .043, but not from 3 to 4, p = .043354 355 .462. Similarly for the DR condition, hit rate between the POWs significantly decreased for periods 1 to 2, p < .001, and 2 to 3, p < .001, but not from 3 to 4, p = .243. However, for the 356 357 NDR condition hit rate only decreased from period one to two, p = .013 but not for the 358 subsequent POWs.

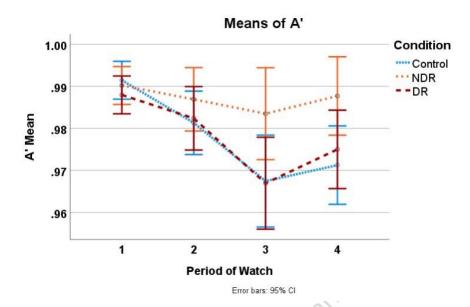


Figure 3. Mean hit rate as a function of period of watch and vigilance-intervention strategy $(NDR = non\ driving\ related;\ DR = driving\ related)$. Error bars are 95% CIs.

False Alarms. The analysis on false alarm rate showed no significant main effect of POW (Ms = 2.67%, 2.67%, 3.49%, 2.05%) and SDs = 4.56%, 4.13%, 4.87%, 3.71%, for each period 1-4, respectively), F(3,342) = 2.22, p = .085, $\eta_p^2 = .02$, nor was the vigilance-intervention strategy or interaction significant, Fs < 1.

Signal Detection Theory Measures. SDT analyses were conducted using the non-parametric analysis with A' (response sensitivity) and B''D (response criterion; See et al., 1997). Response sensitivity (A'; see Figure 4) showed a significant main effect of POW (Ms = .991, .981, .973, .978, and SD = .01, .02, .04, .03, for each period 1-4, respectively), F(3,342) = 13.24, p < .001, $\eta_P^2 = .10$. There was a significant linear trend, F(1,114) = 22.11, p < .001, $\eta_P^2 = .16$, indicating that sensitivity generally decreased over time. The main effect of vigilance-intervention strategy was significant, F(1,114) = 3.15, p = .047, $\eta_P^2 = .05$. Post-hoc comparisons showed that sensitivity for the NDR (M = .987) was significantly higher than both the control (M = .978) and DR (M = .978) conditions, ps = .030 and .034, respectively. The interaction between

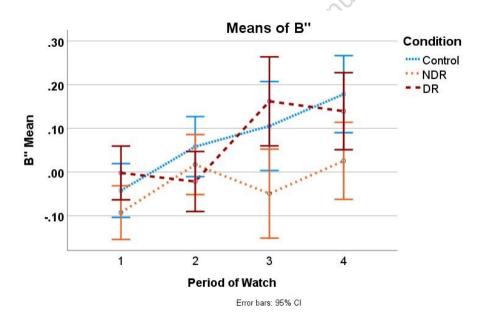
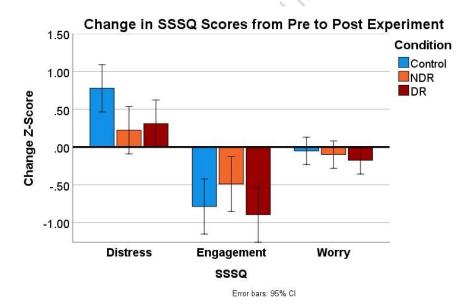

POW and vigilance-intervention strategy was not significant, F(6,342) = 1.73, p = .114, $\eta_p^2 = .03$.

Figure 4. Mean response sensitivity as a function of period of watch and vigilance-intervention S strategy (NDR = non driving related; DR = driving related). Error bars are 95% CIs.


Analysis on response criterion (B''p; see Figure 5) showed a significant main effect of POW, (Ms = -.046, .018, .073, .114, and SDs = .20, .22, .33, .28 for each period 1-4, respectively), F(3,342) = 10.06, p < .001, $\eta_p^2 = .08$. There was a significant linear trend, F(1,114) = 24.93, p < .001, $\eta_p^2 = .18$, indicating that criterion shifted to become more conservative over time. The main effect of vigilance-intervention strategy was also significant (Ms = .075, -.025, .069, for control, NDR, and DR, respectively), F(1,114) = 5.06, p = .008, $\eta_p^2 = .08$. Post-hoc comparisons showed that NDR was significantly less conservative than both control (p = .006) and DR (p = .009). The interaction between POW and vigilance-intervention strategy was also significant, F(6,342) = 2.17, p = .045, $\eta_p^2 = .04$. The simple main effects analyses showed similar result patterns to the hit rate. POW had a significant effect on response

criterion for the control condition, F(3,112) = 5.91, p = .001, $\eta_p^2 = .14$, the NDR condition, F(3,112) = 3.20, p = .026, $\eta_p^2 = .08$, and the DR condition, F(3,112) = 4.36, p = .006, $\eta_p^2 = .11$. Pairwise comparisons showed that for the control condition, response criterion between the POWs significantly shifted more conservative for periods 1 to 2, p = .031, 1 to 3, p = .014, 1 to 4, p < .001, and 2 to 4, p = .034. Similarly for the DR condition, response criterion between the POWs significantly shifted more conservative for periods 1 to 3, p = .007, 1 to 4, p = .009, 2 to 3, p = .002, and 2 to 4, p = .005. However, for the NDR condition, the response criterion between the POWs only significantly shifted more conservative for periods 1 to 2, p = .018 and 1 to 4, p = .027. No other comparisons were significant, ps > .05. The response criterion in the control and DR conditions shifted to be more conservative over time but shifted less for the NDR condition.

SSSQ. The standardized SSSQ change scores were calculated for each of the three scales using the formula, (Post-score – Pre-score) / σ of the Pre-scores (Helton, 2004). A 3 (vigilance-intervention strategy; control, NDR, and DR) \times 3 (scales; distress, engagement, and worry)

repeated measures ANOVA was performed on these change scores (see Figure 6). A significant main effect of scales was found (Ms = .437, -.725, -.109, for distress, engagement, and worry, respectively), F(2,228) = 40.10, p < .001, $\eta_p^2 = .26$. No significant effects were found for vigilance-intervention strategy, F(1,114) = 2.49, p = .089, $\eta_p^2 = .04$, or for the interaction, F(4,228) = 1.90, p = .112, $\eta_p^2 = .03$. For distress, the changes in score were significantly above zero, t(44) = 4.36, p < .001, t(44) = 2.09, p = .021, t(44) = 2.78, p = .004, for the control, NDR, and DR conditions, respectively. For engagement, the changes in score were below zero, t(44) = 5.43, t(44) = 2.92, t(44) = 4.55, t(44

Figure 6. Mean SSSQ change z-scores for each of the three vigilance-intervention-strategy conditions ($NDR = non\ driving\ related$; $DR = driving\ related$). Error bars are 95% CIs.

NASA-TLX. For the NASA-TLX data, we conducted a one-way ANOVA on the global workload with vigilance-intervention strategy as a between-subjects factor. The analysis showed no significant effect of vigilance-intervention strategy, F(2,114) = 1.65, p = .196, $\eta_p^2 = .03$, although the mean values (8.40, 7.41, and 8.35 for the control, NDR, and DR conditions, respectively) showed a lower mean for the NDR condition. For the NASA-TLX subscales (Mental, Physical, Temporal, Performance, Effort, and Frustration), there were no significant differences: Physical, F(2,114) = 1.14, p = .241 $\eta_p^2 = .03$; Effort, F(2,114) = 1.12, p = .330 $\eta_p^2 = .02$; Frustration, F(2,114) = 2.02, p = .137 $\eta_p^2 = .03$, and all the others, Fs < 1.

Discussion

This study showed results of the vigilance decrements in PAD systems and potential countermeasures. We found slower RTs and lower hit rates responding to hazardous vehicles on the road over time during the drive, in line with previous literature that indicates Level 2 automation is a monotonous vigilance task (Greenlee et al., 2018; Körber et al., 2015). The SSSQ results also showed the expected result pattern for subjective reports before and after a vigilance task, decreases in engagement, and increases in distress (Greenlee et al., 2018; Helton, 2004). These results are consistent with those found in other domains such as air traffic control, military, and industrial supervisory control monitoring (Parasuraman et al., 1987).

The effect of POW on response time was not moderated by the vigilance-intervention strategy, indicating that the NDR was still subject to some vigilance decrement in RT, similarly to the other conditions. For hit rate, even though the POW had a significant effect in all conditions, it only affected the NDR condition in the first POW, and its hit rate was significantly higher than those for the DR and control conditions in the third and fourth POWs. This result demonstrates a clear benefit of introducing the NDR task over time as the vigilance task

continued. The difference between the NDR condition and the other two indicates that the NDR task helped participants maintain sustained attention on hazardous vehicles to perform better than the control and DR conditions. This benefit of the NDR is especially interesting given that it has an added secondary task on top of the control condition. The finding that adding this secondary task did not increase the vigilance decrement but reduced it provides evidence against the overload theories of vigilance, which would predict the secondary task to increase the vigilance decrement.

Both the interventions, NDR and DR, would be expected to perform better than the control condition if the problem of vigilance was one of simply mindlessness or underload (Manly et al., 1999). The difference between the two tasks was that the NDR task simply reengages their attention in general without the need to be redirected visually, whereas the DR task requires them to scan the driving environment visually. Interpreting these results with regard to multiple resource theory, the DR task is more demanding than the NDR task because the primary vigilance task was visual and the DR task competed for the visual resources with the primary vigilance task (Wickens, 2002). Whereas the NDR task only required auditory resources and could be task shared with the primary vigilance task. An underloaded driver could benefit from a secondary task to increase their arousal if that task did not compete for mental resources. However, an overloaded driver would be further taxed by a secondary task, gaining no benefit from increased arousal.

It is worth noting that neither secondary-task intervention made the vigilance decrement worse than the control. A possible reason why the DR condition showed a similar vigilance decrement to the control condition is that the benefit of being more engaged and the cost of being more demanding, specifically in the similar visual resource channel, cancel out for the DR

condition. In other words, the benefits of increased arousal due to the added DR task can be negated by the visual resource demand imposed by it, which explains why the NDR task helped alleviate the vigilance decrement while the DR task did not. This explanation requires both disengagement and resource depletion to be sources of the vigilance decrement, which is supported by our SDT analyses.

The results of SDT showed a decrease of response sensitivity along with the response criterion shifting more conservative overtime. These results indicate that the vigilance decrement was partly due to the drivers being less able to discriminate the hazardous vehicles and shifting their response criterion. In addition, both measures showed the advantageous effects of the NDR task in comparison to the DR task and the control condition. Previous research has shown similar results on response sensitivity and has been used to support an explanation of attentional resource depletion (Greenlee et al., 2018, 2019; See et al., 1995). Reduced response sensitivity has been used as evidence for resource depletion that causes the vigilance decrement; and overloaded operator is not able to effectively distinguish the critical signals from the noise, leading to decreased response sensitivity (Caggiano & Parasuraman, 2004; DeLucia & Greenlee, 2022). The subscale of distress in SSSQ also demonstrated increased stress, often caused by high task demands, which is consistent with the resource depletion account.

The shift in criterion could be due to the frequency of the hazardous vehicles being greater during the practice session (3 per min) than during the experimental session (1.7 per min). However, the significantly more conservative criteria for periods 3 and 4 in the control and DR conditions than in the NDR condition indicates that the shift of criteria was not merely due to the change in signal rate. In contrast to response sensitivity, response criterion has been used as evidence for the underload explanation of the vigilance decrement. The response criterion

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

shifting towards more conservative is an indication of the operator becoming more disengaged and less likely to respond to both the critical signals and noise (Thomson et al., 2015). The subscale of engagement in SSSQ also provides convergent evidence that participants become less engaged during the task. As a result, our findings provide evidence for both sources of resource depletion and disengagement in the vigilance decrement.

Based on precedent from prior literature, along with our current results, we propose that both resource depletion and disengagement are sources of the vigilance decrement. For example, Thomson et al. (2015, 2016) draw upon and address the explanatory limitations of both the mind-wander and resource-depletion theories and propose a resource-control theory of mind wandering to explain vigilance performance. One central tenet of this theory is that mind wandering takes attentional resources, which results in poor vigilance performance. When the limited attentional resources are absorbed by mind wandering, performance for the primary task may be sacrificed if it requires the full complement of attentional resources. For Level 2 automation where human drivers seek to monitor the automation, if the task becomes too monotonous, boring, or excessively demanding over time, drivers begin to withdraw and reallocate their resources to a more interesting task. Withdrawing from the primary task leads to task unrelated thoughts, which further disrupt performance on the main task (Forster & Lavie, 2009). By introducing a secondary task as an intervention in the current study, it may cut down on user-generated task unrelated thoughts and allow them a brief, semi-structured break to then reorient their thoughts on the task, consistent with the benefits in performance caused by intermittent breaks shown in prior studies (Atchley & Chan, 2011; Drory, 1985; Pop et al., 2012). However, our measure of disengagement with the SSSQ involved more than simply task unrelated thoughts and might have clouded our ability to fully explain this. The participants

might not have been able to self-monitor their engagement or disengagement as it relates to performance and sufficiently report the potential changes via subjective measures. The performance measures showed clear differences between the groups, but the distress measure might not have been sensitive enough to detect the difference if all the participants were not cognizant of their mental processes.

One limitation of this study is that it was not conducted on a driving simulator where participants could fully interact with the vehicle. However, this was done intentionally to closely replicate a classic vigilance task while controlling as many variables as possible. Future research can validate the results in a driving simulator, which allows human drivers to take over control at critical instances and more directly interact with the automation system. Another limitation is that this study only used one type of vigilance signal (the hazardous vehicles). Although it was presented at random times, it does not fit real-world situations where there can be various types of events that occur at different locations. Future research can incorporate different types of hazards to validate the current findings on the different vigilance-decrement interventions. Finally, the number of false alarms was quite low with large variances in the study which may influence the use of signal detection theory. However, some recent research with vigilance has failed to find a large number of false alarms in a similar way to the current results (Epling et al., 2019; Körber et al., 2015). This result calls for caution when using the SDT measures in vigilance studies.

Conclusions

This study shows that human drivers in charge of monitoring driving automation systems during PAD are subject to the vigilance decrement. However, the study demonstrated potential for decreasing the negative performance associated with the vigilance decrement through the

implementation of a non-driving related intervention task. Additionally, this work contributed to the theoretical underpinnings of vigilance, providing evidence for both resource depletion and disengagement being causes of the vigilance decrement. The interventions implemented in this study provide insight for how designers of automation systems could alleviate the problems of vigilance and keep the human driver in the loop.

Key Points

- The added driving-related secondary task showed similar vigilance decrement to the control condition.
- The non-driving related secondary task mitigated the vigilance decrement in partially automated driving.
- Signal detection theory measures and subjective reports on task-induced stress provided convergent evidence for resource depletion and disengagement causing the vigilance decrement.
- Infrequent and intermittent breaks using secondary tasks may be utilized in partially automated driving system design to help maintain driving vigilance.

554	References
555	Atchley, P., & Chan, M. (2011). Potential benefits and costs of concurrent task engagement to
556	maintain vigilance: A driving simulator investigation. <i>Human Factors</i> , 53(1), 3–12.
557	Caggiano, D. M., & Parasuraman, R. (2004). The role of memory representation in the vigilance
558	decrement. Psychonomic Bulletin & Review, 11(5), 932-937.
559	Caird, J. K., Simmons, S. M., Wiley, K., Johnston, K. A., & Horrey, W. J. (2018). Does talking
560	on a cell phone, with a passenger, or dialing affect driving performance? An updated
561	systematic review and meta-analysis of experimental studies. Human Factors, 60(1), 101-
562	133.
563	Deaton, J. E., & Parasuraman, R. (1993). Sensory and cognitive vigilance: Effects of age on
564	performance and subjective workload. Human Performance, 6(1), 71-97.
565	DeLucia, P. R., & Greenlee, E. T. (2022). Tactile Vigilance Is Stressful and Demanding. Human
566	Factors, 64(4), 732–745.
567	Drory, A. (1985). Effects of rest and secondary task on simulated truck-driving task
568	performance. Human Factors, 27(2), 201–207.
569	Epling, S. L., Edgar, G. K., Russell, P. N., & Helton, W. S. (2019). Is Semantic Vigilance
570	Impaired by Narrative Memory Demands? Theory and Applications. Human Factors, 61(3)
571	451–461. https://doi.org/10.1177/0018720818805602
572	Forster, S., & Lavie, N. (2009). Harnessing the wandering mind: The role of perceptual load.
573	Cognition, 111(3), 345-355. https://doi.org/10.1016/j.cognition.2009.02.006
574	Gershon, P., Ronen, A., Oron-Gilad, T., & Shinar, D. (2009). The effects of an interactive
575	cognitive task (ICT) in suppressing fatigue symptoms in driving. Transportation Research
576	Part F: Traffic Psychology and Behaviour, 12(1), 21–28.

577 Green, D. G., & Swets, J. A. (1966). Signal detection theory and psychophysics. New York, NY: 578 John Wiley and Sons Inc. In Wiley & Sons, Inc. 579 Greenlee, E. T., DeLucia, P. R., & Newton, D. C. (2018). Driver Vigilance in Automated 580 Vehicles: Hazard Detection Failures Are a Matter of Time. *Human Factors*. 581 https://doi.org/10.1177/0018720818761711 582 Greenlee, E. T., DeLucia, P. R., & Newton, D. C. (2019). Driver Vigilance in Automated 583 Vehicles: Effects of Demands on Hazard Detection Performance. *Human Factors*, 61(3), 584 474–487. https://doi.org/10.1177/0018720818802095 585 Grier, R. A., Warm, J. S., Dember, W. N., Matthews, G., Galinsky, T. L., Szalma, J. L., & 586 Parasuraman, R. (2003). The Vigilance Decrement Reflects Limitations in Effortful Attention, Not Mindlessness. Human Factors, 45(3), 349–359. 587 https://doi.org/10.1518/hfes.45.3.349.27253 588 589 Hancock, P. A., & Verwey, W. B. (1997). Fatigue, workload and adaptive driver systems. Accident Analysis and Prevention, 29(4 SPEC. ISS.), 495–506. 590 591 https://doi.org/10.1016/s0001-4575(97)00029-8 Hart, S. G., & Staveland, L. E. (1988). Development of NASA-TLX (Task Load Index): Results 592 593 of Empirical and Theoretical Research. Advances in Psychology, 52(C), 139–183. 594 https://doi.org/10.1016/S0166-4115(08)62386-9 595 Helton, W. S. (2004). Validation of a Short Stress State Questionnaire. Proceedings of the 596 Human Factors and Ergonomics Society Annual Meeting, 48(11), 1238–1242. 597 https://doi.org/10.1177/154193120404801107 598 Helton, W. S., & Russell, P. N. (2011). Working memory load and the vigilance decrement.

Experimental Brain Research, 212(3), 429–437. https://doi.org/10.1007/s00221-011-2749-1

599

600 Helton, W. S., & Russell, P. N. (2013). Visuospatial and verbal working memory load: effects on 601 visuospatial vigilance. Experimental Brain Research, 224(3), 429–436. 602 Helton, W. S., & Warm, J. S. (2008). Signal salience and the mindlessness theory of vigilance. 603 Acta Psychologica, 129(1), 18–25. https://doi.org/10.1016/j.actpsy.2008.04.002 604 Johnson, A., & Proctor, R. W. (2004). Attention: Theory and practice. Sage. 605 Kahneman, D. (1973). Attention and effort (Vol. 1063). Citeseer. 606 Körber, M., Cingel, A., Zimmermann, M., & Bengler, K. (2015). Vigilance Decrement and 607 Passive Fatigue Caused by Monotony in Automated Driving. *Procedia Manufacturing*, 608 3(Ahfe), 2403–2409. https://doi.org/10.1016/j.promfg.2015.07.499 609 Larue, G. S., Rakotonirainy, A., & Pettitt, A. N. (2010). Predicting driver's hypovigilance on 610 monotonous roads: literature review. Ist International Conference on Driver Distraction 611 and Inattention. 612 Manly, T., Robertson, I. H., Galloway, M., & Hawkins, K. (1999). The absent mind: Further 613 investigations of sustained attention to response. Neuropsychologia, 37(6), 661–670. 614 https://doi.org/10.1016/S0028-3932(98)00127-4 615 Miller, D., Sun, A., Johns, M., Ive, H., Sirkin, D., Aich, S., & Ju, W. (2015). Distraction 616 becomes engagement in automated driving. Proceedings of the Human Factors and 617 Ergonomics Society, 2015-January, 1676–1680. 618 https://doi.org/10.1177/1541931215591362 619 Parasuraman, R. (1979). Memory load and event rate control sensitivity decrements in sustained 620 attention. Science, 205(4409), 924–927.

621	Parasuraman, R. (1986). Vigilance, monitoring, and search. In Handbook of perception and
622	human performance, Vol. 2: Cognitive processes and performance. (pp. 1-39). John Wiley
623	& Sons.
624	Parasuraman, R., & Davies, D. R. (1977). A Taxonomic Analysis of Vigilance Performance BT -
625	Vigilance: Theory, Operational Performance, and Physiological Correlates (R. R. Mackie,
626	Ed.; pp. 559–574). Springer US. https://doi.org/10.1007/978-1-4684-2529-1_26
627	Parasuraman, R., Warm, J. S., & Dember, W. N. (1987). Vigilance: Taxonomy And Utility BT -
628	Ergonomics and Human Factors: Recent Research (L. S. Mark, J. S. Warm, & R. L.
629	Huston, Eds.; pp. 11-32). Springer New York. https://doi.org/10.1007/978-1-4612-4756-
630	2_2
631	Pattyn, N., Neyt, X., Henderickx, D., & Soetens, E. (2008). Psychophysiological investigation of
632	vigilance decrement: Boredom or cognitive fatigue? Physiology and Behavior, 93(1-2),
633	369–378. https://doi.org/10.1016/j.physbeh.2007.09.016
634	Pop, V. L., Stearman, E. J., Kazi, S., & Durso, F. T. (2012). Using engagement to negate
635	vigilance decrements in the NextGen environment. International Journal of Human-
636	Computer Interaction, 28(2), 99–106.
637	Robertson, I. H., Manly, T., Andrade, J., Baddeley, B. T., & Yiend, J. (1997). Oops!':
638	performance correlates of everyday attentional failures in traumatic brain injured and
639	normal subjects. Neuropsychologia, 35(6), 747–758.
640	SAE. (2021). Taxonomy and Definitions for Terms Related to Driving Automation Systems for
641	On-Road Motor Vehicles. In SAE International (Vol. J3016, pp. 1–41).
642	https://doi.org/https://doi.org/10.4271/J3016_202104

643 See, J. E., Howe, S. R., Warm, J. S., & Dember, W. N. (1995). Meta-analysis of the sensitivity 644 decrement in vigilance. Psychological Bulletin, 117(2), 230–249. 645 https://doi.org/10.1201/9780203872512.ch23 646 See, J. E., Warm, J. S., Dember, W. N., & Howe, S. R. (1997). Vigilance and signal detection 647 theory: An empirical evaluation of five measures of response bias. *Human Factors*, 39(1), 648 14–29. https://doi.org/10.1518/001872097778940704 649 Smallwood, J., Davies, J. B., Heim, D., Finnigan, F., Sudberry, M., O'Connor, R., & Obonsawin, 650 M. (2004). Subjective experience and the attentional lapse: Task engagement and 651 disengagement during sustained attention. Consciousness and Cognition, 13(4), 657–690. 652 Smallwood, J., & Schooler, J. W. (2006). The restless mind. *Psychological Bulletin*, 132(6), 946–958. https://doi.org/10.1037/0033-2909.132.6.946 653 Stanislaw, H., & Todorov, N. (1999). Calculation of signal detection theory measures. Behavior 654 655 Research Methods, Instruments, & Computers, 31(1), 137–149. https://doi.org/10.3758/BF03207704 656 657 Szalma, J. L., Warm, J. S., Matthews, G., Dember, W. N., Weiler, E. M., Meier, A., & 658 Eggemeier, F. T. (2004). Effects of sensory modality and task duration on performance, 659 workload, and stress in sustained attention. *Human Factors*, 46(2), 219–233. 660 https://doi.org/10.1518/hfes.46.2.219.37334 661 Thiffault, P., & Bergeron, J. (2003). Monotony of road environment and driver fatigue: a 662 simulator study. Accident Analysis & Prevention, 35(3), 381–391. 663 Thomson, D. R., Besner, D., & Smilek, D. (2015). A resource-control account of sustained 664 attention: Evidence from mind-wandering and vigilance paradigms. Perspectives on 665 Psychological Science, 10(1), 82–96.

666	Thomson, D. R., Besner, D., & Smilek, D. (2016). A critical examination of the evidence for
667	sensitivity loss in modern vigilance tasks. Psychological Review, 123(1), 70-83.
668	https://doi.org/10.1037/rev0000021
669	Warm, J. S., Dember, W. N., & Hancock, P. A. (1996). Vigilance and workload in automated
670	systems.
671	Warm, J. S., Parasuraman, R., & Matthews, G. (2008). Vigilance requires hard mental work and
672	is stressful. <i>Human Factors</i> , 50(3), 433–441. https://doi.org/10.1518/001872008X312152
673	Welford, A. T. (1968). Fundamentals of skill.
674	Wickens, C. D. (2002). Multiple resources and performance prediction. Theoretical Issues in
675	Ergonomics Science, 3(2), 159-177. https://doi.org/10.1080/14639220210123806
676	a Naint
677	*ed
	.02

678	Biographies
679	Scott Mishler is a PhD candidate in Human Factors Psychology at Old Dominion
680	University. He received his master's degree in Psychology at Old Dominion University in 2019.
681	His areas of research include trust in automation, autonomous driving, and anti-phishing
682	automation.
683	Jing Chen is an Assistant Professor of Human Factors/Human-Computer Interaction in
684	the Department of Psychological Sciences at Rice University. She received her Ph.D. in
685	Cognitive Psychology and M.S. in Industrial Engineering at Purdue University in 2015. Her
686	areas of research include fundamental principles of human performance and decision-making,
687	and applications of these principles to cybersecurity problems and human-system design. ORCID
688	ID: https://orcid.org/0000-0003-0394-0375