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Quantum transduction is enhanced by single mode squeezing operators
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Quantum transduction is an essential ingredient in scaling up distributed quantum architecture and is actively
pursued based on various physical platforms. However, demonstrating a transducer with positive quantum
capacity is still practically challenging. In this Letter, we discuss a new approach to relax the impedance
matching condition to half impedance matching condition, achieved by introducing two-photon drive in the
electro-optic transducer. We show the quantum transduction capacity can be enhanced and can be understood in
a simple interference picture with the help of the Bloch-Messiah decomposition. The parameter regimes with
positive quantum capacity is identified and compared with and without the drive, indicating that the parametric
drive-induced enhancement is promising in demonstrating quantum state conversion and is expected to boost the
performance of transduction with various physical platforms.

DOI: 10.1103/PhysRevResearch.4.0.042013

Introduction. Superconducting qubit based quantum
networks—processing quantum information with supercon-
ducting circuits [1] and transmitting quantum signals by
optical photons [2]—are appealing architectures for future
communication systems [3,4]. To scale up such networks,
coherent conversion between microwave and optical (MO)
states—quantum transduction—is indispensable as supercon-
ducting qubits lack intrinsic optical transitions. However,
realizing MO quantum states conversion turns out to itself be
extremely challenging with current technology [5-8]. Con-
sidering the transduction as a quantum channel to obtain a
positive quantum channel capacity, the channel must have
both high channel transmissivity and low added noise, e.g., at
least, 50% transmissivity is needed [9]. Although significant
advances have been made recently [10-26], the traditional
direct quantum transducer (DQT), which linearly converts
MO quantum signals by beam splitter coupling, is still below
the threshold where quantum capacity is zero.

A perfect transducer has infinite quantum capacity, which
requires even more stringent impedance matching condi-
tion [27]. In recent years, respecting the fact that quantum ca-
pacity can be enhanced with two-way communication [28,29],
there are approaches to use the classical channel [30-34],
adaptive control [35,36], multipass interference [37], etc.,
to overcome the challenge of full impedance matching. Al-
though encouraging, all these schemes require additional
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classical control, access to other output ports, or even in-
finitely squeezed input fields.

For future high-bandwidth quantum transduction, it is still
desirable to construct a DQT. In this Letter, we discuss a
new DQT scheme based on a cavity electro-optic (EO) trans-
ducer [38]. By applying a parametric drive to the microwave
mode, we find a new approach that can relax the match-
ing condition—two transduction quadratures are impedance
matched—to the half-matching condition—only one quadra-
ture needs to be matched [27,37]. We show that a generic
transducer satisfying the half-matching condition yields an
infinite quantum capacity. This capacity can be achieved using
solely operations on the transducer’s active input and output
modes, respecting the channel coding theorem [39]. Note that
the utility of half-impedance matched quantum transducers
was discussed in Ref. [37] in a different context and without
any direct connection to quantum capacity.

In the ideal case with no intrinsic loss and zero detun-
ing, we show the parametric drive enables the half-matching
condition that enhances the transduction channel capacity
enormously. This observation is appealing especially given
the current challenges in transducer design and fabrication to
simultaneously achieve near-unity transmissivity and ground-
state conversion.

The parametric drive-enabled half-matching condition can
also function in a more practical situation with intrinsic noise
and finite detuning. In general, the half-matching condition
cannot be fully achieved by the drive, and the parametric-
amplified noise could severely degrade the channel. Whereas
a general approach to maintain the enhancement is yet to find,
in some parameter regime we show there is a drive-induced
exponential increase in the mode coupling strength within
the Bogoliubov framework, and a proper noise canceling
scheme can be adopted. Note this similar technique has been
used in an optomechanical system for solving a practically
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FIG. 1. (a) Schematic for a cavity electro-optic transducer. A
laser pump is applied on one of the optical modes (red) and it
generates a beam splitter interaction between the optical a (blue)
and the microwave b (green), shown in the spectrum diagram. The
microwave mode parametric drive is introduced through the tunable
superconducting inductance, indicated by the black arrow. (b) The
discrete model of the local squeezer sandwiched by two imperfect
transducers, which can be realized by the simple continuous design
depicted in (a).

challenging problem, e.g., canceling the counter-rotating term
for the side band unresolved system [40], cooling [41],
enhancing light-matter interaction [42—46], and nonreciproc-
ity [47].

The parametric drive induces amplified noise to the Bo-
goliubov mode, degrading the transduction performance.
Nevertheless, we observe the capacity still gains from the
coupling enhancement in some parameter regime. More inter-
estingly, the amplified noise can be eliminated completely if
we implement the noise cancellation technique, e.g., generat-
ing squeezed vacuum as the mode reservoir [47,48], thus, the
capacity enhancement can be maintained in larger parameter
space.

The model. Without losing generality, we take a cav-
ity EO system for demonstration. Cavity EO is a hybrid
superconducting-photonic device where a superconducting
resonator is integrated with an optical cavity, consisting of
material which features Pockels nonlinearity, e.g., AIN. As
shown in Fig. 1(a), the electrical field from the resonator
can change the material refraction index, which modifies the
frequency of optical photons. In reverse, microwave field can
be modulated by the cavity optical fields due to the optical
rectification of Pockels material. With the material nonlin-
earity and a triple resonant design [22], a three-wave mixing
between two chosen optical modes and an electrical resonator
can be realized, and by appropriately driving one of the two
optical modes with laser frequency wr,, a beam splitter inter-
action can be generated fig(a'h + ab'), where @ and b denote
the optical and microwave mode operators, respectively. g
is the laser-enhanced coupling strength. With the system on
resonance, one can get a transduction channel—a single-mode
bosonic loss channel with transmissivity (i.e., determinant of

the quadrature-basis transmission matrix) [46,49],
4C,

Tr eyt (1)

n=
where C, = 4¢° /kok. is the MO cooperativity. We have de-
noted (x,, k) as the (optical, microwave) total dissipation
rates and (&, &) as the (optical, microwave) extraction ra-
tio [50]. Currently, EO transducer’s transmissivity is reported
to be around several percent, which is still below the 50%
threshold for a general Bosonic loss channel to have positive
quantum capacity [38,49].

In this Letter, we consider enhancing the transduction by
introducing parametric drive to the superconducting resonator,
which can be realized in a superconducting resonator with
intrinsic tunable inductance and is commonly used in cavity-
based Josephson amplifiers [S1]. The total Hamiltonian is
given as

A/h = —(50 n %)a*a n (a) - —)B b

+g@ b+ ab"y + v(e " + 9B, ()

where §, = wr, — w, < 0 is the optical drive detuning. v, wp,
and 6 are the parametric pump strength, frequency and phase,
respectively. Note the Hamiltonian is written in the rotating
frame of half of the parametric pump. Quite interestingly,
when the system is on resonance, the channel transmissivity
becomes [49]

4c,

W%Cm 3

N =

where we call C, = 4v?/k? as the squeezing cooperativity. In
this paper, without stating it otherwise, we are interested in
the stable regimes when C, < (1 + C,)?/4.

In Fig. 2, we numerically plot the consequences of intro-
ducing this drive whereas keeping other parameters ideal, e.g.,
unit extraction ratios and system on resonance. Figure 2(a)
shows the channel transmissivity with different squeezing as
a function of the MO cooperativity. The parametric drive,
in general, increases the transmissivity, indicating a positive
capacity is potentially achievable with smaller C,, thus, re-
laxing the demanding matching condition for the experiment.
Figure 2(b) gives the quantum capacity lower bound of the
transduction channel (see a brief review of quantum channel
in the Appendix [49,52]). Indeed, we see that the parametric
drive changes the channel behaviors and increases the quan-
tum capacity for all C¢. The shining white curve is determined
by

C, =311 -C), 4)

and we will show later this curve exactly traces the parameters
that make the transducer fulfill the half-matching condition,
giving the transducer an optimal quantum capacity. Across the
line the channel switches between a bosonic loss channel and
an amplification channel. Note the system is stable as long as
the squeezing is not extremely high, indicated by the yellow
dashed line in Fig. 2(b). This squeezing enhanced quantum
transduction channel is our first key observation in this Letter.

Euler decomposition of the scattering matrix. A clear phys-
ical picture of the enhancement can be obtained by looking
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FIG. 2. (a) The channel transmissivity as a function of the MO cooperativity C, with squeezing cooperativities C, = 0, 0.1, 0.2, respec-
tively. The horizontal dashed lines mark the boundary where the system reaches the positive quantum capacity threshold. The vertical lines
help in viewing the corresponding C, threshold. (b) The quantum capacity lower bound is in terms of C, and C,. The eye-catching white line
marks the boundary where the channel transmissivity crosses unity—the system goes from a bosonic loss channel to an amplification channel.
In (a) and (b), the extraction ratios are taken to be perfect in order to highlight the key consequences of introducing intracavity squeezing.
(c) The channel noise as a function of extraction ratios with C, = 0.14, C, = 0.16. (d) The capacity lower bound as in (b) with extraction ratios
$o = 0.95, &, = 0.99. (¢) The channel transmissivity with respect to the detuning, with C, = 0.4, C, = 0.15, ¢, = 0.99, ¢, = 0.95.

at the scattering matrix structure. For system on-resonance
and with unit extraction ratios, the scattering matrix Sy
which connects the input and output mode quadratures Xin =
(xm’ ﬁ?n’ Aﬁw pm) > Xout = (xout’ ﬁout’ out’ poul) is given by
a 4 x 4 symplectic matrix [49]. For any symplectic ma-
trix, we can always find a Bloch-Messiah decomposition
S, = ODO’ [53], where O, O’ are symplectic orthogonal
matrices—characterizing beam splitters and phase shifters—
and D is a diagonal matrix—characterizing squeezing of
individual mode (see Ref. [49] for expressions). Remarkably,
the parameter C, only appears in the D matrix, which means
the scattering process can be characterized as a local squeezer
sandwiched by two C,-independent transformations as de-
picted in Fig. 1(b). Such a kind of transduction channel can,
in general, be made to satisfy the half-matching condition
by tuning the squeezer in the middle. To get a flavor of the
physics, we write down the quadrature transformation from

SX,

)f(\:b \ (1+r)ﬁa r_Cg Ab

out 1+Cg (1+C) m’

o = YU g | Vr =Gy ©)

out 1 + Cg m 1 + Cg n’

_ 14C,+2C, . . _ .
where r = Treave Obviously, if r =C, [leading to
Eq. (@), we have 2, = ./C,p%, po, = —1//Cei +
(1/C; — 1)pb where the reﬂectlon in %% quadrature is

completely canceled by interference. We, thus, achieved the
half-matching condition that one quadrature is reflectionless,
and the other quadrature is not. As we show, a transduction
channel with the half-matching condition has infinite quantum
capacity, which should be -called perfect transduction.
Releasing the perfect matching condition to the half-matching
condition as the perfect transduction channel is our another
key contribution and will be significantly helpful in future
transducer designs [27,37].

Bogoliubov mode and near-amplification threshold trans-
duction. The above discussion captures the major physics with
unit extraction ratios. If the extraction ratios are not unity,
the system couples to extra source of noise which will be
amplified and contaminates the output signal. This would po-
tentially kill the gain from the parametric drive. In general, the

channel noise expression has a very complicated dependence
on (C,, C,, &, {,) and we numerically show it in Fig. 2(c). The
channel noise quickly increases as the extraction ratios devi-
ates from one, which severely degrade the quantum capacity
as shown in Fig. 2(d). Handling the amplified noise is, thus,
essential in maintaining the enhancement. In the following,
we show it is indeed possible in some parameter regime.

In practice, besides adding squeezing, we can play with
another knob—the system detuning—to change the channel
transmissivity [49]. In general, we have

M = 4Cg§0§e
T2+ G2+ 8xexo) + (1 —4C, +4x2) (1 +4x2)
(©6)
where xo = Ao/ko, Xe = Ae/ke, and Ay = 8 + wp/2, Ae =

we — wp/2. As shown in Fig. 2(e), the channel transmissivity
decreases as we increase the system detuning, which is within
expectation for a less-resonant system. Note reducing 7, can
also simply achieved by lowering the squeezing. However,
with detuning tunable, we can use the tool of Bogoliubov
transformation to better understand the enhancement, and
noise elimination can be performed such that capacity degra-
dation is mitigated.

Define a Bogoliubov mode by through the transforma-
tion [54,55] by = cosh(r)b + ¢~ sinh(r)b" where the mode
dissipation rate ks = k. and the parameter r is the effective
squeezing which satisfies tanh(2r) = 2v/A. = B. Obviously,
the transformation is valid only with 2v < A.. We can rewrite
the Hamiltonian Eq. (2) in terms of the Bogoliubov mode as

H/h=— Aja'

where s = /A2 — (2v)? and A, < 0. Equation (7) takes ex-
actly the same form as a beam splitter interaction, except that
the coupling strength g is replaced by g5 = g cosh(r) which
can be exponentially enhanced by the effective squeezing.
Obviously, the channel transmissivity is obtained as

4C;
(1 4+ Cy)?
where Cs = 4g§ /Kkoks 1s the Bogoliubov-optical (BO) mode

cooperativity, and ¢s is the Bogoliubov mode extraction ratio.
Note this transmissivity ns is defined in terms of the Bo-

a+ obibs+ ga'h, +abl), (1)

775 é‘O{S ’ (8)
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FIG. 3. (a) The coupling strength and cooperativity enhancement, and the squeezing-induced noise in terms of the parameter § = 2v/A..
(b) and (c) depict the transmissivity ns and the quantum capacity lower bound as a function of the MO cooperativity with giving 8 =
{0, 0.8, 0.95}, corresponding to the solid blue, green, and orange curves. The solid curves in (c) show the lower bound including squeezing
induced noise, and the dashed orange and green lines in (c) show the same bound by assuming the induced noise is eliminated. Extraction ratios
are assumed to be one in (b) and (c). (d) The capacity lower bound with respect to C, for 8 = {0, 0.95} and extraction ratios {. = 0.97, {, = 0.9.
The orange solid (dashed) includes (excludes) the squeezing induced noises. Note the noise elimination needs an input squeezing that is equal

to the squeezing from the parametric drive, which is 10 log,, ¢* dB.

goliubov mode which will not be confused with n,. Since
the BO cooperativity depends on the square of the coupling
strength, the channel transmissivity, which depends on the
cooperativity, is expected to increase as the coupling strength
is enhanced. As shown in Fig. 3(a), the solid and dashed
curves depict the exponential enhancement of the coupling
strength and cooperativity as the parameter 8 approaches one,
which corresponds to the amplification threshold of the sys-
tem [56]. The change of channel transmissivity ns is shown
in Fig. 3(b) with respect to the MO cooperativity. We see it
is possible by adding squeezing to get higher transmissivity
even if Cy is small. The orange curve (8 = 0.95) can get to the
ns = 0.5 threshold with much smaller C, than the blue curve
(no squeezing).

This coupling enhancement comes with a side effect—the
squeezing-amplified noise which couples to the Bogoliubov
mode. This noise is given by n, = cosh(2r)ny + sinh?(r),
where ny, is the thermal photon of the microwave bath [49].
In the ideal case, the microwave resonator sits in a very cold
environment, and without stating it otherwise we assume it to
be vacuum in the numerical evaluations. Still, the noise n, is
proportional to sinh?(r), which could ruin the channel from
realizing any quantum conversion as the system gets close
to amplification threshold. As shown by the dotted line in
Fig. 3(a), the squeezing-amplified noise also increases along
with .

Admittedly, the coupling enhancement and the amplified
noise are a pair of competing factors. Fortunately for quantum
transduction, we still gain from the transmissivity enhance-
ment in some regime, and we can benefit even more if we
adopt the technique of noise elimination [49]. The evidence
is given by the quantum channel capacity lower bound as
shown in Fig. 3(c) for unit extraction ratios and Fig. 3(d)
for ¢ =0.97 and ¢, = 0.9. In Fig. 3(c), the blue curve
shows the lower bound for 8 = 0. As we increase S, the
optimal capacity can be achieved for C, being smaller as
shown by the green and orange solid curves. Moreover, if
the technique of noise elimination is adopted [47—-49], the
capacity gets even bigger, and the positive value spread to
larger parameter regime as depicted by the dashed green and

orange curves. Figure 3(d) gives the capacity lower bound de-
graded by the nonunity extraction ratios. Still, larger capacity
can be achieved by the parametric drive, and noise cancel-
lation further enhances the transduction channel in broader
parameter regimes as shown by the orange solid and dashed
curves.

Discussion. A general transducer with the half-matching
condition is given by

ab  _ sna ~b sa sb
Xout = ‘S;:xm + Y Xins Xout = %.xin’
1
~b Ad Ad _ Ab Ad
Pout gpin Pout = ‘i:pin — Y Pin- )

Take a — b, for example, one can show perfect transduc-
tion can be realized by first squeezing (antisqueezing) the
input p (X)) then squeezing (antisqueezing) the output fc(’iut
(pgy) without resorting to any control on other inputs or
outputs. Note this differs from the main approach suggested
in Ref. [37]. In addition, we point out that the half-matched
transducer defines a two-way perfect transduction channel.
To achieve that one can do encoding by squeezing the in-
put quadratures (£, p¢ ) whereas antisqueezing (p?,, £ ), and
perform decoding at the output by squeezing ()%f)’ut, o) and
antisqueezing (22, p2 ).

The rotating-wave approximation in Eq. (7) requires the
weak coupling ws > gs and |A,| + w5 > |Ao| — ws, indicat-
ing ws # 0, thus, forbids 8 becoming one. The Bogoliubov
transformation also requires 8 < 1 which means the system
cannot really approach the amplification threshold. Fortu-
nately, as shown by the orange curve in Fig. 3 with 8 =
0.95, 0.8, the channel enhancement is already enormous when
the system is close to the threshold, thus, we give it the
name “near-amplification threshold enhancement.” Note the
constraint 8 < 1 is purely from the Bogoliubov framework.
Practically, 8 can be any physical value and how to remove
the corresponding squeezing-amplified noise is an interesting
topic for the future.

A possible extension of the scheme is to further introduce
two-photon drive on the optical mode and explore how the
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half-matching condition develops. In the Bogoliubov picture,
this could also strengthen the coupling strength. It is worth
mentioning that as the coupling strength increases (larger
than the mode loss), one might enter the strong-coupling
regime where mode splitting will happen in the conversion
spectrum [57]. In this case, the optimal transmissivity is
not at @ = 0 anymore (currently we assume the system is
weakly coupled) and should be taken into account in future
implementations.
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