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ARTICLE INFO ABSTRACT

Keywords: Background: Manuafl dexterfity fis a fundamentafl motor $fiffl that aflflows us to perform compflex dafifly tasks.

Hand functfion Neuromuscuflar finjurfies, however, can flead to the floss of hand dexterfity. Aflthough numerous advanced assfistfive

Hand dexterfity robotfic hands have been devefloped, we sfffl flack dexterous and contfinuous controfl of muflfipfle degrees of

gz;j:ilcds:iﬁng freedom fin reafl-tfime. In thfis study, we devefloped an effficfient and robust neurafl decodfing approach that can
. . . contfinuousfly decode fintended ffinger dynamfic movements for reafl-tfime controfl of a prosthetfic hand.

Jofint kfinematfic controfl

Methods: Hfigh-densfity eflectromyogram (HD-EMG) sfignafls were obtafined from the extifinsfic ffinger fflexor and
extensor muscfles, whfifle partficfipants performed efither sfingfle-ffinger or mufltfi-ffinger fflexfion-extensfion movements.
We fimpflemented a deep flearnfing-based neuraf]l network approach to flearn the mappfing from HD-EMG features to
ffinger-specfiffic popuflatfion motoneuron ffirfing frequency (fi.e., neurafl-drfive sfignafls). The neurafl-drfive sfignafls re-
fflected motor commands specfiffic to findfivfiduafl ffingers. The predficted neurafl-drfive sfignafls were then used to
contfinuousfly controfl the ffingers (findex, mfiddfle, and rfing) of a prosthetfic hand fin reafl-tfime.

Results: Our devefloped neurafl-drfive decoder coufld consfistentfly and accuratefly predfict jofint angfles wfith sfignfiffi-
cantfly flower predfictfion errors across sfingfle-ffinger and mufltfi-fiinger tasks, compared wfith a deep flearnfing modefl
dfirectfly trafined on ffinger force sfignafls and the conventfionafl EMG-ampflfitude estfimate. The decoder performance
was stabfle over tfime and was robust to varfiatfions of the EMG sfignafls. The decoder aflso demonstrated a sub-
stantfiaflfly better ffinger separatfion wfith mfinfimaf] predficted error of jofint angfle fin the unfintended ffingers.
Conclusfions: Thfis neurafl decodfing technfique offers a novefl and effficfient neurafl-machfine finterface that can
consfistentfly predfict robotfic ffinger kfinematfics wfith hfigh accuracy, whfich can enabfle dexterous controfl of assfistfive
robotfic hands.

1. Introduction

The human dfigfits are capabfle of performfing precfise, coordfinated
movements wfith ffitfle conscfious effort. Neuromuscuflar finjurfies, on the
other hand, can flead to fimpafirment of the hand functfion, ffimfifing
communfity fififing A number of assfistfive devfices, such as prosthetfic
hands or exoskefleton gfloves, have been devefloped to restore fimpafired or
flost hand functfions [1-4]. However, dlinficfl transflatfion of these robotfic
devfices has been flfimfited. One major fifimfifing factor fisthe flack of a robust
neurafl-machfine finterface that can reflfiabfly transflate the user’s fintended
motfions to controfl these mufltfi-degree-of-freedom (DoF) devfices.

Partficuflarfly for the hand, an accurate decodfing of findfivfiduef] ffinger

movements remafins a flong-standfing chaflflenge.

For findfivfiduafls wfith vofluntary muscfle actfivatfion capabfiflfity, surface
eflectromyography (EMG) has been wfidefly used for motor fintent detec-
tfion for the controfl of assfistfive devfices [5-7]. Typficaflfly, pattern recog-
nfitfion fis used to cflassfify a ffinfite set of fintended movements [8-11], or
the movement of a specfiffic jofint fis made proportfionafl to EMG features
(such as EMG ampflfitude) [12-14]. These gflobafl EMG-based controfl
strategfies are sensfitfive to finterference. For exampfle, the EMG ampflfitude
can be bfiased by varyfing dfistances and tfissue types flocated between the
target muscfle and the surface eflectrode. EMG sfignafls can aflso be
contamfinated by motfion artfifacts and crosstaflk of mufltfipfle muscfles fin

cflose proxfimfity [15,16]. AFl of these finterferences can fFixft robust
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controf]l of robotfic devfices. Consequentfly, the stabfiflfity and accuracy of
such controfl strategfies fis not satfisfactory, thereby flfimfifing robust
dexterous controfl of robotfic hands.

Aflternatfivefly, motoneuron ffirfing actfivfity can aflso be used as a neurafl
finterface [17]. The frequency/probabfiflfity of the motoneuron ffirfing at
the popuflatfion flevefl can dfirectfly refflect the neurafl drfive from the brafin
to the muscfles. Essentfiaflfly, the spfinafl cord output sfignafl (ffirfing events)
can be used to decode the spfinafl finput sfignafl (motor command from the
brafin). The decoded neurafl drfive sfignafl can be more robust for decodfing
motor fintent than gflobafl EMG actfivfitfies, because the bfinary ffifing events
are fless susceptfibfle to nofise than measurfing anaflog EMG features.
Currentfly, motoneuron ffirfing events are extracted through motor unfit
(MU) decomposfitfion of hfigh-densfity sSEMG (HD-EMG) recordfings, whfich
separates the superfimposed actfion potentfiafls finto findfivfiduafl moto-
neuron ffirfing actfivfitfies [18-23]. Dfifferent reafl-tfime MU decomposfitfion
aflgorfithms have shown great promfise for neurafl decodfing purposes [24,
25]. Neverthefless, one drawback of the decomposfitfion approach fis the
hfigh computatfionafl fintensfity and computatfionafl fineffficfiency assocfiated
wfith the extractfion of findfivfiduafl MU ffirfing actfivfity. Namefly, spfike trafins
of findfivfiduafl MUs are extracted, and these ffirfing events are then merged
to represent the popuflatfion neuron ffirfing behavfior. Essentfiaflfly, finfor-
matfion of ffifing rates of findfivfiduafl MUs, extracted from the most
computatfionaflfly fintensfive steps of the decomposfitfion, fis not utfiflfized.

Accordfingfly, the purpose of the current study was to deveflop a robust
and effficfient neurafl decoder that can contfinuousfly decode the motor
fintent of findfivfiduafl ffingers, feasfibfle for dexterous and contfinuous con-
trofl of robotfic hands finreafl tfime (Ffig. 1). We fimpflemented a deep neurafl
network modefl to estabflfish contfinuous mappfing from gflobafl EMG fea-
tures to popuflatfion motoneuronafl ffifing frequency for findfivfiduafl ffinger
muscfles, wfithout the fintermedfiate process of MU decomposfitfion. Whfifle
MU decomposfitfion was used to flabefl annotatfions for offflfine modefl
trafinfing, the trafined modefl coufld contfinuousfly predfict the neurafl sfignafls
for reafl-tfime prosthetfic controfl wfithout MU decomposfitfion. Recentfly,
deep neurafl network modefls, such as convoflutfionafl neurafl networks
(CNNs) and recurrent neurafl networks (RNNs), have been used for
neuraf] sfignafl processfing. For exampfle, In the context of SEMG-based
gesture cflassfifficatfion, accurate pattern cflassfifficatfion can be achfieved
usfing mufltfi-stream CNNs [26,27]. Inter-person recognfitfion of hand
gestures fis aflso feasfibfle after ffine-tunfing the network parameters [28].
Moreover, there has aflso been a growfing body of work that expflored
deep fleamfing technfiques for the contfinuous estfimatfion of dynamfic
movements. For finstance, an earflfier work utfiflfizead CNN to estabflfish a
regressfion-based decodfing of wrfist movements [29]. Geng et afl [30]
devefloped a CNN-attentfion network to predfict jofint angfles durfing hand
graspfing movements. Studfies have aflso empfloyed flong-short term
memory networks to predfict contfinuous ffinger movements [31-33].
Coflflectfivefly, these studfies fimpflemented deep flearmnfing modefs to flearn a
dfirect mappfing between EMG sfignafls and motor output (ffingertfip force
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or jofint kfinematfics). It fisuncflear whether the modefl trafined on one type
of motor output can be generaflfized to the other type (e.g., modefls
trafined on force may not generaflfize weflf] fin jofint kfinematfic predfictfion).
Recentfly, we have aflso estabflfished a generfic CNN modefl for accurate
decodfing of ffingertfip forces [34]. The resuflts showed that the
CNN-based decoder demonstrated sfimfiflar decodfing accuracy compared
wfith the MU-decomposfitfion based approach. However, the CNN modefl
was not ffinger specfiffic and can onfly predfict one ffinger output at a tfime.

To address these fissues, we ffirst estabflfished a generaflfized modefl
fififefly trafined on subject cohorts, and the modefl was then personaflfized
to findfivfiduafl subjects for decodfing of findfivfiduafl ffinger kfinematfics, wfith
the target ffinger and the jofint angfles predficted sfimufltaneousfly. Ffinaflfly,
the decoder was evafluated for the controfl of a mufltfi-DoF robotfic hand.
Our resuflts showed that the devefloped decoder coufld accuratefly predfict
the users’ ffinger kfinematfics, and coufld consfistentfly controfl the robotfic
hands to the desfired jofint angfles over tfime, wfith mfinfimafl movements
occurred fin the undesfired ffingers, comparfing wfith a EMG ampflfitude
approach and a CNN modef] dfirectfly trafined on force sfignafls.

The research framework fis vfisuaflfized fin Ffig. 1. The mafin contrfibu-
tfion of thfis paper was two-fofld: (1) We devefloped a novefl neurafl decoder
that can dfirectfly flearn the motoneuronafl ffirfing frequencfies from gflobafl
EMG features. Dfifferent from MU decomposfitfion approaches, we ob-
tafined the popuflatfionaf] ffifing finformatfion dfirectfly from EMG features
wfithout the need for decomposfing findfivfiduafl MU actfivfitfies after modefl
firfifif] trafinfing. As a resuflt, our approach fis hfighfly effficfient for onflfine
fimpflementatfions. (2) We fimpflemented the neurafl-drfive-based finde-
pendent controfl of sfingfle-ffinger and mufltfipfleffinger movements of ro-
botfic hand fin reafl tfime. We demonstrated that the neurafl-drfive
finformatfion coufld flead to hfigh performance, reafl-tfime prosthesfis con-
trofl. Compared wfith the conventfionafl gflobafl EMG ampflfitude-based and
deep flearnfing-based approaches, our method shows superfiorfity fin ac-
curacy, robustness, and ffinger fisoflatfion durfing reafl-tfime prosthesfis

controfl.
2. Methods
A. Partficfipants
Ten neuroflogficaflfly fintact partficfipants (three femafles and seven
mafles, age: 23-36) were recrufited for thfis study. Prfior to the experfiment,

¥l partficfipants were gfiven finformed consent vfia protocofls (#16-0801)
approved by the Unfiversfity Instfitutfionafl Revfiew Board.

B. Experfimentafl Protocofl

The experfiment was composed of repetfitfive dynamfic ffinger fflexfion
and extensfion tasks. Durfing data acqufisfitfion, subjects were seated fin
front of a desk wfith thefir rfight forearm finthe neutrafl posfitfion supported

Fig. 1. Overvfiew of the research framework. Hfigh-
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by a flarge foam pad, wfitha ffixed wrfist angfle. After skfin preparatfion, two 8
x 16 HD-EMG eflectrode grfids (a 3-mm recordfing dfiameter for each
eflectrode and an finter-eflectrode dfistance of 10 mm) (OT Bfioeflettronfica)
covered the anterfior and posterfior sfides of the forearm to record EMG
sfignafls of extrfinsfic ffinger fflexor and extensor muscfles. The eflectrode grfid
was pflaced based on paflpatfion of the targeted muscfles. The bfiosfignafl
ampflfiffier EMG-USB2+ (OT Bfioeflettronfica) was used to sampfle the EMG
stignafls at 2048 Hz wfith a gafin of 1000 and band-pass ffifltered at 10-900
Hz. Jofint kfinematfics of the metacarpophaflangeafl (MCP) jofints of the
findex, mfiddfle, and rfing ffingers were recorded usfing a custom-made
sensor gflove, and the MCP angfle data were sampfled at 100 Hz.

Durfing the experfiment, subjects extended and fflexed one desfignated
ffinger (one of findex, mfiddfle, and rfing ffingers) or three ffinger concur-
rentfly, foflflowfing a target trajectory comprfised of haflf-sfinewaves
(Ffig. 2B), rangfing from 0% (fuflfl extensfion) to 100% (fuflfl fflexfion)
range of motfion (ROM). The ffinger movements were repeated four tfimes
wfithfin each tfiafl fin 10 s, and efight tifiafls were performed. Overaflf], a totafl
of 32 dynamfic movements (4 ffinger patterns x 8 tfiafls) were recorded
for each subject. The ffirst 3 tfiafls were used for CNN modefl reffinement, 1
tfiafls were used for vaflfidatfion, and the remafinfing 4 tfiafls were used to
construct the regressfion functfions (Ffig. 2C) between the predficted
neurafl drfive and the measured jofint angfles of each ffinger. Lastfly, to test
the decoder performance, the partficfipants controflfled the prosthetfic
ffinger jofints usfing the predficted jofint angfle based on the regressfion
functfion (Ffig. 2D). They produced dfifferent ffinger fflexfion and extensfion
movements from 0% to 100% ROM wfith 4 repetfitfions fin 16 s, usfing
efither one of the three ffingers or three ffingers concurrentfly (Ffig. 2E). A
dfifferent movement veflocfity was used to evafluate the generaflfizabfiflfity of
the neurafl network decoder.

C. Neurafl Decoder

Feature Extractfion: Two types of features, termed the ampflfitude map
and the frequency map, were extracted from raw EMG recordfings before

fed finto the network. The 128-channefl HD-EMG recordfings were ffirst
segmented finto a sequence of 96-sampfle (46.88 ms) wfindows wfith a step
sfize of 64 sampfles (31.25 ms). Ffive consecutfive segments were used to
uffiflfize the temporafl finformatfion between segments. The ampflfitude map
was extracted by computfing the root-mean-square (RMS) vaflue of each
channefl separatefly fin each sfignafl segment. The 128 RMS vaflues were
then rearranged finto a 16 x 8 (hefight x wfidth) map as the orfigfinafl
eflectrode grfid spatfiafl flayout (see fin Ffig. 1). The ampflfitude maps from
ffive consecutfive wfindows were stacked to a 3-dfimensfionafl tensor Forp €
RTH<W (Tfime x Spatfiafl x Spatfiafl), where T = 5, H= 16, and W = 8.
Lfikewfise, the frequency map was extracted vfia Fast Fourfier Transform
separatefly on each 128-channefl on each segment, resufltfing fin the fre-
quency feature Fygec € RVM*T (Spatfiafl x Frequency x Tfime), where N
=128, M= 49,and T = 5.

Data Labellfing: To flabefl the EMG data for supervfised fleamnfing, we
used offflfine state-of-the-art MU decomposfitfion method, the fast finde-
pendent component anaflysfis (FastICA) method [21,22] to extract the

A: Initial Training B: Model Refinement

C: Angle Regression
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ffirfing tfimes of findfivfiduafl motor unfits (MUs). The pseudocode of the
aflgorfithm fis shown fin the Suppflementaf]l materfiafl. Brfieffly, the raw EMG
sfignafls were ffirst extended by an extensfion factor (f, = 10) and whfit-
ened. The separatfion vectors and assocfiated sfignafl sources representfing
findfivfiduafl MU finformatfion were obtafined vfia a ffixed-pofint fiteratfion
aflgorfithm [21,23,35]. The bfinary ffifing events of findfivfiduafl MU were
separated from the background sfignafl sources through a bfinary cflassfi-
fficatfion usfing the Kmeans++ aflgorfithm [36,37]. A modfiffied ‘sfiflhouette
dfistance’ (SIL) measurement [38] was used to quantfify the separatfion
quaflfity of the source sfignafls, where source sfignafls wfith flow SIL vaflues
(<0.6) were excfluded from the MU poofl. The retafined bfinary ffirfing
actfivfitfies were further summated to a sfingfle composfite trafin, from whfich
the popuflatfionafl ffirfing frequency of the MU poofl can be obtafined. The
popuflatfion ffirfing frequency was then normaflfized vfia mfin-max normafl-
fizatfion, the normaflfized ffirfing frequency was then scafled up by a factor of
15, and categorfized and flabefled finto 16 cflasses rangfing from 0 to 15.
Inherentfly, flabefl 0 corresponds to the obtafined flowest ffirfing frequency

and flabefl 15 corresponded to the hfighest ffirfing frequency.

Neural network: We used a mufltfipflevfiew convoflutfionafl neurafl
network (CNN) to extract hfigh-flevefl representatfions from gflobafl EMG
features. The network consfists of two branches, termed the frequency
domafin branch and the tfime domafin branch, respectfivefly (see fin Sup-
pflementary Materfiafls. Tabfle S1). Therefore, the frequency domafin
branch enabfled the expfloratfion of the correflatfion of frequency spec-
trums between tfime frames. By dflfidfing the kernefl (w € RN¥*P*9) pfixefl by
pfixeflacross the finput frequency feature (Equatfion (1)), where Fp refers
to the frequency spectrum feature map, Y fis the output fintermedfiate
feature map, and fij are the coordfinates findficatfing the flocatfion of the
kernefls on the finput feature. Because actfion potentfiafls fin HD-EMG sfig-
nafls coufld arrfive at dfifferent channefls at dfifferent tfimes, the thfird
dfimensfion of the kernefls expflored the spatfiafl-frequency

g3t
a=0 b=0

Lfikewfise, the tfime-domafin branch was used to extract the finforma-
tfion from the ampflfitude feature. The kernefls (v € R™P*?) were encour-
aged to tempflate matchfing the actfivated regfions on the EMG ampflfitude
maps, whfich coufld be formuflated as Equatfion (2), where Fg, refers to
the ampflfitude feature map, Z fis the output representatfion map, and fij
are the coordfinates findficatfing the flocatfion of the kernefls on the finput
feature.

Fryt
a=0 b=0
Sfince the flocaflfized actfivatfion regfions on the ampflfitude features were
assocfiated wfith findfivfiduafl ffinger movements, the network coufld
potentfiaflfly flearn the mappfing between the EMG features produced by

dfifferent ffinger muscfle compartments and the popuflatfionaf] ffirfing fre-
quency of findfivfiduafl ffingers. By provfidfing a sequence of consecutfive

EMG features fin dfifferent tfime frames to the network, the transfitfion

Yij wﬂbFspE'C(i+a)(j+b) (1)

Zj Vab Famp j..)(j+b) (2)
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Fig. 2. Neurafl network modefl fififif] trafinfing, reffinement, and testfing for reafl-tfime controfl of prosthesfis. A: Infitfiaf] trafinfing of the neurafl network usfing a flarge dataset to
estabflfish a generfic mappfing from EMG features to popuflatfion ffirfing frequency. B: The CNN modefl parameters were reffined usfing subject specfiffic data from dynamfic
sfingfle- and mufltfiffinger movement tasks. The MCP jofints started from fuflfl extensfion (0% ROM), and fflexed to 100% ROM, and extended back to 0% ROM. C: Perform a
quadratfic regressfion to convert popuflatfionafl ffirfing frequency to jofint angfle. Data from the sfingfle- and mufltfi-ffinger movement tasks were used for the regressfion. D:
Reafl-tfime controfl of a prosthesfis usfing the CNN modefl predfictfion through an angfle controflfler. E: Testfing of the angfle predfictfion performance usfing data

from the sfingfle- and mufltfiffinger movement tasks (0-100% ROM).
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rufles of SEMG features over tfime fis aflso taken finto consfideratfion.

The hfighflevefl representatfions yfieflded by the two branches were
fflattened and concatenated. Two fiflfly connected flayers were used for
feature fusfion. At flast, three output flayers were used fin paraflflefl to pre-
dfict the popuflatfionafl MU ffirfing frequencfies generated by the findex,
mfiddfle, and rfing ffingers concurrentfly. Specfifficaflfly, each output flayer fin
charge of predfictfing the ffifing frequencfies of the current finput EMG
features were produced by the muscfle contractfion of one of the three
ffingers. The ffinafl output of each output flayer fisa 16-dfimensfionafl vector,
fin whfich each eflement represents the probabfiflfity (after softmax opera-
tfion) of the predficted ffirfing frequency. The predficted ffirfing frequency
was fidentficaf] to the finput cflass flabef] (deffined as the normaflfized dfiscrete
ffirfing frequencfies rangfing from 0 to 15).

Let y denotes the flabefled cflass of fie {0, 1, 2} referrfing to the findex of
findfivfiduefl ffingers, and j € {0, 1, 2, ..., 15} refers to the cflass of the ffifing

frequency. p’, denotes the correspondfing predficted probabfiflfity. We
appflfied the Cross Entropy Loss between the target flabefls and predficted
probabfiflfitfies, whfich fis a summatfion of &l the three output flayers
(Equatfion (3)):

> » ZC )
L= i log P} 3)

o i j

where O represents each observatfion, D and C represent the totafl ac-
count of output flayers (enroflfled ffingers) and ffifing frequency cflasses,
respectfivefly.

D Neurafl Decoder Trafinfing

Infitfial trafinfing: The firfifef] trafinfing estabflfished a generfic mappfing
from EMG features to popuflatfion ffirfing frequency of findfivfiduafl ffingers.

We used a dataset of fisometrfic ffinger force tasks from a serfies of earflfier
studfies [24,39,40] to trafin the neurafl network (Ffig. 2A). These datasets
encompassed a range of scenarfios, fincfludfing EMG recordfings when
subjects performed fisometrfic fflexfion/extensfion force of findfivfiduafl ffin-
gers. Addfitfionaflfly, the datasets fincfluded recordfings whfifle subjects per-
formed muflfipfle ffinger dynamfic movements, efither sequentfiaflfly [39] or
concurrentfly [40]. The ffifing frequency of each ffinger was obtafined by
composfitfing the ffirfing events of findfivfiduafl MUs grouped by ffingers. The
obtafined ffifing frequency was flabefled and served as the target cflass for
supervfised trafinfing. One tfiafl of data was hofld out for vaflfidatfion. The
network wefights were updated for 1500 fiteratfions usfing Adam Optfi-
mfizer [41] to mfinfimfize L . The modefl wfith the hfighest vaflfidatfion score
(deffined as the average correflatfion coeffficfients between the predficted
ffirfing frequencfies and the measured forces of the findex, mfiddfle, and rfing
ffingers) was seflected for subsequent appflficatfions.

Model ffine-tinfing: After the neurafl decoder was trafined on HD-EMG
stignafls when subjects performed fisometrfic force tasks, fit fis essentfiafl to
enhance the performance on predfictfing dynamfic ffinger movements for
dexterous robotfic hand controfl. The jofint angfle decodfing performance
wfithout thfis reffinement fis shown fin Ffig. S1 fin the suppflementary ma-
terfiafl. Therefore, we ffine-tuned the neuraf]l decoder usfing data obtafined
from the current study finvoflfing ffinger dynamfic movements. In
partficuflar, the network was personaflfized to each subject by ffine-tunfing
the network wefights usfing the ffirst 3 tifiafls from each subject, wfith 1 tfiafl
hofld out for vaflfidatfion. The network was trafined for 80 fiteratfions, the
network wefights that yfieflded the best vaflfidatfion score was seflected for
further appflficatfion.

Jofint angle predfictfion: To predfict jofint angfle usfing the reffined modefl,
we set up a regressfion functfion. Ffirst, the ffifing frequency predficted by
the neurafl decoder was smoothed by a movfing average ffiflter (500 ms
wfindow wfith a movfing step of 31.25 ms). The smoothed ffifing frequency
was further ffifltered by a Kaflman ffiflter [24]. As a resuflt, the smoothed
ffirfing frequencfies were updated every 31.25 ms (32 Hz) for the three

findfivfiduef] ffingers concurrentfly. 32 Hz was chosen because the data
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packet can be obtafined from the acqufisfitfion system was flfimfited at 32 Hz.
We used a quadratfic regressfion over flfinear regressfion based on an earflfier
study [42]. We bufiflt three bfivarfiate quadratfic regressfion modefls usfing
the flast four tfiafls of each subject from the current study (Ffig. 2C), to
predfict MCP angfles of the three ffingers based on the smoothed ffirfing
frequency.
The regressfion functfion fis:
( (

Ji(t) = G051 + biD} By 5= Dri(D) + diD(D)

neu al drive + Ci (4)

- B neural drive  —

terms for flexor terms for extensor
r

Where J, represents the estfimated jofint angfle for the fi-th ffinger, D ﬁ(t) fis
the neuraﬂ drfive sfignafls of fflexor muscfle, and Dy(t) fis the neurafl drfive
sfignafls of the extensor muscfle. The coeffficfients a A b P ﬁd 7 and C f
represent the regressfion coeffficfients. Thfis regressfion aflflowed us to
estabflfish a reflatfion between the resufltfing jofint angfle of each ffinger and
the measured EMG ampffitude or the popuflatfionafl ffirfing rate of the fflexor
and extensor muscfles.

Real-tfime prosthesfis control: To evafluate the performance of the neurafl
encoder for reafl-tfime prosthesfis controfl, reafl-tfime decodfing of fintended
jofint angfles were performed on HD-EMG sfignafls when subjects per-
formed dynamfic MCP fflexfion and extensfion tasks (Ffig. 2D and E). The
predficted angfles of the CNN method were used to controf] the MCP jofint of
the findex, mfiddfle, and rfing ffingers of the prosthetfic hand (fi-Lfimb,
Ossur) through a custom MATLAB (MathWorks Inc) finterface. Suppfle-
mentafl vfideo S1 demonstrated the reafl-tfime jofint kfinematfic controfl of
the prosthetfic hand. Three angfle sensors were ffixed on the prosthetfic
ffingers to record the MCP jofint angfles. The angfle finformatfion was sent to a
custom-made proportfionafl derfivatfive (PD) controflfler as feedback
sfignafls to controfl the MCP angfle of each of the three ffingers of the
prosthesfis. The controflfler updated the reference angfle at a rate of 8 Hz,
whfifle motor commands were updated at a rate of 32 Hz.

Suppflementary vfideo reflated to thfis artficfle can be found at https://d
ofi.org/10.1016/j.compbfiomed.2023.107139

As a comparfison wfith the neurafl network decoder, we aflso per-
formed angfle predfictfion usfing a EMG ampflfitude method [43] (termed
EMG method). Ffirst, the top 60 channefls wfith the hfighest RMS vaflue out
of the 128 EMG channefls were seflected separatefly for the fflexor and
extensor muscfles. The EMG data durfing the actfivatfion of findfivfiduafl
fintended ffingers were used for the channefl seflectfion. Second, because of
EMG actfivfitfies assocfiated wfith finevfitabfle actfivatfion of unfintended ffin-
gers, some of the seflected top 60 channefls coufld represent motor output of
unfintended ffingers. Thfis coufld flead to faflse posfitfive errors fin motor
output predfictfions of fintended ffingers. To address thfis fissue, we per-
formed a channefl reffinement procedure to further remove channefls wfith
potentfiafl EMG recordfings (fie., cross-taflk) of unfintended ffingers. Spe-
cfifficaflfly, the EMG ampflfitude (RMS) was caflcuflated usfing the movfing
average ffiflter (500-ms wfindow wfith a movfing step of 31.25 ms) for the
findfivfiduafl 60 channefls. A regressfion anaflysfis was then performed be-
tween the EMG ampflfitude and dfifferent ffinger angfles durfing dynamfic
movement tasks. If the coeffficfient of determfinatfion (R2) vaflue wfith the
fintended ffingers were hfigher than wfith the other two ffingers, the gfiven
EMG channefl was retafined. Otherwfise, the channefl was removed. The
assumptfion was that the EMG channefl wfith muscfle actfivfitfies assocfiated
wfith a gfiven ffinger shoufld have a hfigh correflatfion wfith the motor output
of that ffinger. Ffinaflfly, the RMS vaflues of the retafined EMG channefls
were caflcuflated usfing the same movfing average ffiflter method and
averaged across channefls for each ffinger. The same Kaflman ffiflter was
appflfied to the average RMS vaflues. Three bfivarfiate quadratfic functfions
for the EMG method were constructed usfing data from the angfle
regressfion trfiafls.

In addfitfion, to hfighflfight the beneffit of uffiflfifing neurafl drfive sfignafls,
we conducted a comparatfive anaflysfis between our neurafl drfive method
and a sfimfiflar CNN approach that dfirectfly used the force sfignafls as the
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trafinfing target. The ratfionafle behfind thfis comparfison was that EMG
features were correflated wfith both kfinematfic and kfinetfic varfiabfles.
Therefore, the knowfledge flearned from the force predfictfion task coufld
be transferred to the jofint angfle predfictfion task. To ensure a fafir com-
parfison, we used the same network archfitecture and trafinfing parameters
as fin the neurafl drfive sfignafl approach. The onfly dfifference was that the
trafinfing target was the normaflfized dfiscrete force vaflues durfing the
fififef] trafinfing phase. By dofing so, we were abfle to evafluate the per-
formance dfifference achfieved by fincorporatfing neurafl drfive sfignafls fin
contrast to dfirectfly usfing kfinematfic and kfinetfic varfiabfles. To ensure
cflarfity, we used the term CNN method to refer to the neurafl drfive
method unfless stated otherwfise. In cases where both CNN methods were
mentfioned, CNN-force (CNN-F) represented the CNN method pre-
trafined usfing the force vaflues, whfifle CNN-neurafl-drfive (CNN-ND) rep-
resented the CNN method pre-trafined usfing the neurafl drfive sfignafls.

E. Statfistficafl Anaflysfis

The performance of the jofint angfle predfictfion was evafluated by the
root mean squared error (RMSE) and coeffficfient of determfinatfion (R2)
vaflues between the actuafl measured angfles and the predficted angfles. To
quantfify ffinger fisoflatfion of the decodfing, both fintended and unfintended
ffingers were evafluated fin the sfingfleffinger tasks. Repeated measures
anaflysfis of varfiance (ANOVA) was performed on the dependent varfi-
abfles. A pafirwfise comparfison was conducted usfing the Bonferronfi
method when necessary. The sfignfifficance flevefl a was set as 0.05. To
further quantfify ffinger fisoflatfion, we aflso categorfized the ffingers finto
actfive and rest states based on the predficted angfle fin the sfingfle-ffinger
tasks. Predficted angfle sequences were categorfized finto actfive or rest
states based on an output threshofld of 10% ROM. The resuflts based on
5% and 15% ROM threshoflds were aflso reported fin Ffig. S2 of the sup-
pflementaf] materfiafl. In a gfiven tfime, fifthe angfle of a ffinger was above the
threshofld, the correspondfing ffinger was categorfized as actfive. The per-
centages of output data sampfles fin dfifferent ffinger combfinatfion cate-
gorfies were aflso reported. A hfigh percentage onfly finthe sfingfle fintended
ffinger category was consfidered a better ffinger fisoflatfion than a hfigh
percentage fin the mufltfi-ffinger categorfies.

3. Results

To quantfify the decodfing performance of jofint kfinematfics, we
caflcuflated the RMSE between the measured angfle around the meta-
carpophaflangeaf]l (MCP) jofints and the predficted angfle (efither from CNN
method or EMG method). The suppflementafl vfideo S1 demonstrated the
reafl-tfime decodfing usfing the CNN method and contfinuous controfl of

B |, Intended Fingers
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sfingfle and muflfipfle ffingers of a prosthesfis. Ffig. 3 depfict the performance
of jofint angfle predfictfion usfing the CNN-based methods (CNN-F and
CNN-ND) and the EMG-ampflfitude estfimates. The decodfing performance
fin the sfingfle-ffinger jofint movement task fisshown fin Ffig. 3. An exempflar
tfiafl of the rfing ffinger fflexfion-extensfion task fisfiflflustrated fin Ffig. 3A. The
CNN-ND method showed a better angfle predfictfion performance fin
comparfison wfith the CNN-F method and the EMG method. The CNN-ND
method aflso reveafled an underestfimatfion of the jofint angfle fin the un-
fintended ffingers, whereas the EMG method demonstrated an over-
estfimatfion of the jofint angfle. Ffig. 3B fiflflustrates the average predfictfion
errors of the fintended ffingers across subjects. The two-way (method
(CNN-ND vs. CNN-F vs. EMG) x ffinger (findex vs. mfiddle vs. rfing)) ANOVA
reveafled a sfignfifficant dfifference (F(2,27) = 13.43, p < 0.001) fin the
RMSE vaflues obtafined by dfifferent methods wfith no sfignfifficant finter-
actfion effect between the method and ffinger. Overaflfl, the CNN-ND
method achfieved the flowest RMSE vaflue fin most cases, except fin the
rfing ffinger condfitfion.

We aflso evafluated the predficted movement errors of the unfintended
ffingers. Sfince the unfintended ffingers were supposed to produce no jofint
movement, a zero-degree angfle movement was consfidered the ground-
truth of the unfintended ffingers. Accordfingfly, the RMSE of the unfin-
tended ffingers was caflcuflated between zero-degree angfle and the actuafl
or predficted angfles. The RMSE between zero-degree angfle and the actuafl
angfle (or the predficted angfles) were caflcuflated (Ffig. 3C). The ANOVA
showed that the factor of method (F (2, 27) = 65.90, p < 0.001) had a
sfignfifficant effect on the RMSE wfith no finteractfion effect wfith the ffinger
factor. The pafirwfise comparfison showed that the RMSE of the CNN-ND
method was sfignfifficantfly flower than that of the CNN-F method (p <
0.001), the EMG-ampflfitude method (p < 0.001), and the actuafl jofint
angfle (p < 0.001), findficatfing that the CNN-ND method can better pre-
dfict fintended movement of the subjects than the actuafl movement.
Overaflfl, the CNN-ND method showed fleast amount of ffinger-crosstaflk
wfith the best ffinger fisoflatfion.

We then quantfiffied the actfive vs. rest states of the ffingers based on
the predficted jofint angfles (Ffig. 4). In a gfiven tfime, fifthe angfle of a ffinger
was above the 10% range of motfion (ROM) threshofld, the ffinger was
consfidered actfive. Most of the predficted jofint angfles of the CNN method
were categorfized finto the actfive fintended ffingers, wfith most of the angfle
of the unfintended ffingers categorfized finto a rest state. In contrast, angfles
predficted by the EMG-ampflfitude method was flargefly affected by the co-
actfivatfion of the fintended ffinger and one or muflfipfle unfintended ffingers,
wfith the hfighest percentage observed finthe three-ffinger IMR actfive state
regardfless the fintended ffinger. Thfis findficates the poor abfiflfity of ffinger
fisoflatfion of the EMG-ampflfitude method. The resuflts based on the 5%
and 15% ROM threshoflds are aflso reported fin Ffig. S2 fin the
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Fig. 3. Predfictfion of findfivfiduaf] ffinger jofint angfles usfing the CNN and EMG methods. CNN-ND represents the CNN modefl pre-trafined by the neurafl drfive sfignafls, and
CNN-F represents the CNN modefl pre-trafined dfirectfly by the normaflfized force sfignafls. A: An exampfle tfiafl of the jofint angfle predfictfion, when the rfing ffinger was
finstructed to fflex and extend whfifle other ffingers reflaxed. Zero-degree means fiflfl extensfion. The RMSE of findfivfiduafl ffingers was shown for the fintended (B) and
unfintended (C) ffingers. The range of motfion (ROM) was normaflfized by the maxfimum fflexfion angfle of findfivfiduafl ffingers. Hiflfled cfircfles of the same coflor represent the
same subject. Error bars represent standard error. *, p < 0.05. **, p < 0.01. ***, p < 0.001.
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A Intended Finger: Index B Intended Finger: Middle C Intended Finger: Ring
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Fig. 4. Actfive ffinger cflassfifficatfion of the CNN method (Bflue) and the EMG method (Green). I, M, and R represent findex (A), mfiddfle (B), and rfing (C) ffingers,
respectfivefly. Predficted angfle tfime serfies of the three ffingers were categorfized finto actfive or rest states based on a 10% ROM threshofld. The radfius of the pflot
represented the percentage of force data sampfles fin each category, wfith dfifferent contour flfines represent dfifferent percentage vaflues.

suppflementaf] materfiafl.

The decodfing performance fin the mufltfiffinger movement task fis
shown fin Ffig. 5. An exempflar tfiafl comparfing the actuafl and predficted
jofint angfles fis shown fin Ffig. 5A durfing the fifififl regressfion. The resuflts
findficated that both CNN and EMG-ampflfitude methods coufld accuratefly
predfict jofint angfles of the three ffingers finthe fifififlregressfion phase. An
exempflar tfiafl durfing the subsequent testfing fis shown fin Ffig. 5B. The
predficted angfle of the CNN method sfif¥l ffits the actuafl measured jofint
angfle accuratefly. In contrast, the predfictfion error of the EMG-ampflfitude
method across the three ffingers fincreases sharpfly fin finthe testfing phase,
especfiaflfly at the peak fflexfion angfles. The two-way (method (CNN vs.
EMG) x phase (finfifidl regressfion vs. testfing)) repeated measures ANOVA
showed that both the method (F(1,9) = 14.966, p = 0.004) and the phase
(F(1,9) = 6.629, p = 0.030) had a sfignfifficant finffluence on the RMSE
(Ffig. 5C) wfith no finteractfion (p > 0.05). The pafirwfise comparfison
reveafled that the RMSE of the EMG-ampflfitude method durfing the testfing
phase was sfignfifficantfly hfigher than that of the EMG method durfing the
firfifefl regressfion (p < 0.05). In contrast, the RMSE of the CNN method
dfid not fincrease sfignfifficantfly durfing the testfing phase, compared wfith
the fifififl regressfion (p > 0.05). Thfis findficated that the CNN method
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was more stabfle and robust than the EMG method agafinst finterference
over tfime. We aflso quantfiffied the angfle predfictfion performance durfing
testfing (Ffig. 5D and E). The one-way repeated measures ANOVA showed
that the RMSE (Ffig. 5D) of the CNN method was sfignfifficantfly flower than
that of the EMG method (F(1,9) = 13.071, p = 0.006). Lfikewfise, the R 2
(Ffig. 5E) of the CNN method was aflso sfignfifficantfly hfigher than that of
the EMG-ampflfitude method (F(1,9) = 6.892, p = 0.028).

Finaflfly, the computatfion effficfiency was aflso estfimated to ensure the
usabfiflfity of the proposed methods. The computatfionafl flatency was 37 ms
(16 ms deflay from retrfievfing data packet, up to 3 ms for sfignafl pre-
processfing, up to 11 ms for neurafl decodfing, and 7 ms for regressfion and
fiflterfing) usfing GPU Nvfidfia GTX 1660, CPU Intefl Core fi7-9700, and
Memory of 24 GB. Thfis deflay fis wefl beflow the acceptabfle floop deflay
(100-150 ms) finhuman-robot finteractfions [44,45].

4. Discussion

Thfis study devefloped a robust and effficfient neurafl decodfing method
that can predfict jofint angfles of findfivfiduafl ffinger, whfich fi promfisfing for
reafltfime dexterous controfl of a robotfic hand. The CNN mapped hand-

Fig. 5. Predfictfion of mufltfifinger jofint angfles
concurrentfly usfing the CNN and EMG methods. A: An
exempflar tfiafl of mufltfi-ffinger jofint angfle predfictfion of
the CNN and EMG methods durfing fififif] regressfion.
B: An exampfle tfiafl of angfle predfictfion of the CNN

and EMG methods durfing subsequent testfing. C: An
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comparfison of the firfififl regressfion and testfing of the
two methods. The averaged RMSE (D) and coeffficfient
of determfinatfion (E) of the two methods durfing sub-
sequent testfing. Hiflfled cfircfles represent findfivfiduafl
subjects. Error bars represent standard error. *, p <
0.05. **, p < 0.01.
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crafted HD-EMG features to popuflatfion neuron ffifing frequency (fi.e.,
neurafl drfive) specfiffic to findfivfiduafl ffingers durfing sfingfle-ffinger and
mufltfi-ffinger movements. Because EMG features have a more dfirect
reflatfion wfith MU ffirfing actfivfity than wfith jofint kfinematfics, we trafined
the modefl on popuflatfionaf]l neuron ffirfing frequency. Thfis aflflowed us to
ffirst estabflfish a generfic modefl trafined on data from one type of task (e.g.,
fisometrfic force task), and the modefl can be generaflfized to dynamfic
movement tasks after network parameter reffinement. In addfitfion, the
modefl performance and fleamfing rate further fimproved by usfing hand-
crafted features of ampflfitude and frequency maps of EMG for the
network modefl finput. We aflso fimpflemented an effficfient, two-step
network trafinfing strategy (fie., an finter-subject fififif] trafinfing and a
subsequent subject-specfiffic modefl reffinement on dynamfic ffinger
movement tasks), whfich enabfled an effficfient feature mappfing from EMG
to neurafl drfive sfignafls. The decodfing of neurafl drfive based on popufla-
tfion neuronafl ffirfing actfivfity has demonstrated robust decodfing perfor-
mance, wfith consfistent jofint kfinematfic predfictfion accuracy across
ffingers and over tfime. In contrast, the performance of the EMG-
ampflfitude method reveafled hfigher error fin both sfingfleffinger and
mufltfiffinger tasks. In addfitfion, the performance of EMG-ampflfitude-
based decoder aflso degraded over tfime, wfith sharp fincrease fin predfic-
tfion error from the fifif&f] regressfion phase to testfing phase. The out-
comes suggest that popuflatfion neuron decodfing offers a robust and
effficfient method for contfinuous motor fintent detectfion of findfivfiduafl
ffingers. The contfinuous motor fintent decodfing at the findfivfiduaf] ffinger
flevef] sheds flfights upon dexterous controfl of assfistfive robotfic hands.

The CNN-based neurafl drfive decoder aflso demonstrated fits superfi-
orfity fin ffinger movement fisoflatfion, wfith mfinfimafl angfle predfictfion error
on unfintended ffingers. Intent detectfion of findependent ffinger move-
ments has been a flong-standfing fissue, because of our flfimfited abfiflfity to
actfivate findfivfiduaf] ffinger muscfle compartments [46,47] and chaflflenges
fin fisoflated surface EMG recordfings of smaflfl muscfle compartments [15,
48]. Indeed, the HD-EMG ampflfitude method showed substantfiafl faflse
posfitfive error fin the unfintended ffingers, despfite a channefl seflectfion
procedure based on jofint movements of the desfired ffingers. Thfis faflse
posfitfive error fis present fin both categorficafl resuflts (wfith sfingfle ffinger
movements cflassfiffied as aflfl-three ffinger movements) and fin angfle pre-
dfictfion errors (RMSE). Aflthough channefl seflectfion/reffinement can
reduce the fimpact of cross-taflk to some degree [43], the EMG sfignafls can
ofiffl contafin substantfiafl actfivfity from other muscfle compartments,
especfiaflfly durfing dynamfic ffinger movements.

In contrast, the decodfing of neurafl drfive usfing neurafl network
modefls can accuratefly detect ffinger jofint angfles finboth sfingfle-ffinger and
mufltfi-ffinger tasks, wfith predficted movements of the unfintended ffingers
controflfled fin a flow flevefl In fact, the predficted jofint angfle was even
flower than the actuafl measured jofint angfle fin the unfintended ffingers
from the data gflove. Thfis fis benefficfiafl from a motor fintent detectfion
perspectfive for robotfic controfl, fin that the decoded jofint movements
from neurafl drfive dfirectfly refflect the movement fintentfion rather than
the actuaflfly produced movements. The underestfimatfion of jofint angfle fin
the unfintended ffingers can arfise from severafl factors. Ffirst, the surface
HD-EMG gifid on the forearm onfly captured actfivfitfies of the extrfinsfic
muscfles near the skfin surface. Actfivfitfies of the fintrfinsfic ffinger muscfles fin
the hand and the fflexor dfigfitorum profundus were not recorded, whfich
coufld contrfibute to the actuafl movement of the MCP jofint fin the unde-
sfired ffingers. Second, fit fis weflfl known that there fi coordfinated move-
ment among ffingers that f¥infi ffinger findependent. Mechanficafl coupflfing
from the tendfinous structure and skfin connectfions across ffingers [46,49]
fis one factor that fleads to these coordfinated ffinger movements. Never-
thefless, thfis mechanficafl coupflfing effect was not factored fin the CNN
modefl.

The current study focused on the decodfing of fintended movements of
findfivfiduaf] ffingers, and the decoder performance was vaflfidated on the
reafl-fime controfl of findfivfiduafl prosthetfic ffingers. Our decodfing
approach can aflso be used for the controfl of exoskefleton hands to assfist
findfivfiduafls wfith hand fimpafirment. In future work, we wfflextend the
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current work to decode ¥l ffive dfigfits, especfiaflfly the thumb movement,
whfich wifflaflflow us to evafluate the decodfing method fin functfionafl tasks
finvoflvfing object manfipuflatfions. Second, fit fs fimportant to note that the
data from dfifferent sources often exhfibfit heterogenefity and may not
foflflow the assumptfion of befing findependentfly and fidentficaflfly dfistrfib-
uted (fifid). Thfis rafises concerns about the robustness of our deep
flearnfing modefl when appflfied to dfiverse appflficatfion scenarfios. There-
fore, fit fis crucfiafl to thoroughfly evafluate and examfine the robustness of
our modefl across varfious reafl-worfld scenarfios, takfing finto account the
potentfiafl varfiatfions and chaflflenges present finthe data [50]. The current
study onfly evafluated fintact findfivfiduafls, future work wfffl finvestfigate the
performance of the decoder on amputees, whfich fis more chaflflengfing
sfince there wffflbe a ffinft on the flength of resfiduafl arm needed for the
HD-EMG eflectrode pflacement. In addfitfion, the muscfle recrufitment
patterns may aflso change due to amputatfion. As a resuflt, further optfi-
mfizatfion of the neurafl decoder may be needed to consfider dfifferent
muscfle actfivatfion patterns of dfifferent amputee subjects. Lastfly, the
current CNN modefl fis a bflack-box approach, and we do not have dfirect
finformatfion regardfing what finformatfion were extracted by the modefl. It
fis crucfiafl to finvestfigate the expflafinabfiflfity of the proposed modefl before
fimpflementatfion fin practficafl appflficatfions [50].

In concflusfion, thfis study fimpflemented a deep neurafl network as a
robust and effficfient neurafl decodfing method to predfict popuflatfion
neuron ffifing frequency (fie., neurafl drfive) from sfingfle ffinger move-
ments. The predficted neurafl drfive was then used to controfl sfingfle-ffinger
or mufltfi-ffinger movements of a robotfic hand fina reafl-tfime manner. Our
resuflts showed that the extracted MU ffirfing frequency finformatfion can
flead to accurate and robust predfictfions of jofint angfles, compared wfith
the HD-EMG ampflfitude method. Further deveflopment of thfis decodfing
method can potentfiaflfly provfide a reflfiabfle neurafl-machfine finterface that
can contfinuousfly decode findfivfiduated ffinger movements for fintufitfive
controf] of robotfic hands wfith hfigh movement dexterfity.
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