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A B S T R A C T

Background: Manual dexterity is a fundamental motor skill that allows us to perform complex daily tasks.
Neuromuscular injuries, however, can lead to the loss of hand dexterity. Although numerous advanced assistive
robotic hands have been developed, we still lack dexterous and continuous control of multiple degrees of
freedom in real-time. In this study, we developed an efficient and robust neural decoding approach that can
continuously decode intended finger dynamic movements for real-time control of a prosthetic hand.
Methods: High-density electromyogram (HD-EMG) signals were obtained from the extrinsic finger flexor and
extensor muscles, while participants performed either single-finger or multi-finger flexion-extension movements.
We implemented a deep learning-based neural network approach to learn the mapping from HD-EMG features to
finger-specific population motoneuron firing frequency (i.e., neural-drive signals). The neural-drive signals re-
flected motor commands specific to individual fingers. The predicted neural-drive signals were then used to
continuously control the fingers (index, middle, and ring) of a prosthetic hand in real-time.
Results: Our developed neural-drive decoder could consistently and accurately predict joint angles with signifi-
cantly lower prediction errors across single-finger and multi-finger tasks, compared with a deep learning model
directly trained on finger force signals and the conventional EMG-amplitude estimate. The decoder performance
was stable over time and was robust to variations of the EMG signals. The decoder also demonstrated a sub-
stantially better finger separation with minimal predicted error of joint angle in the unintended fingers.
Conclusions: This neural decoding technique offers a novel and efficient neural-machine interface that can
consistently predict robotic finger kinematics with high accuracy, which can enable dexterous control of assistive
robotic hands.

1. Introduction

The human digits are capable of performing precise, coordinated
movements with little conscious effort. Neuromuscular injuries, on the
other hand, can lead to impairment of the hand function, limiting
community living. A number of assistive devices, such as prosthetic
hands or exoskeleton gloves, have been developed to restore impaired or
lost hand functions [1–4]. However, clinical translation of these robotic
devices has been limited. One major limiting factor is the lack of a robust
neural-machine interface that can reliably translate the user’s intended
motions to control these multi-degree-of-freedom (DoF) devices.
Particularly for the hand, an accurate decoding of individual finger

movements remains a long-standing challenge.
For individuals with voluntary muscle activation capability, surface

electromyography (EMG) has been widely used for motor intent detec-
tion for the control of assistive devices [5–7]. Typically, pattern recog-
nition is used to classify a finite set of intended movements [8–11], or
the movement of a specific joint is made proportional to EMG features
(such as EMG amplitude) [12–14]. These global EMG-based control
strategies are sensitive to interference. For example, the EMG amplitude
can be biased by varying distances and tissue types located between the
target muscle and the surface electrode. EMG signals can also be
contaminated by motion artifacts and crosstalk of multiple muscles in
close proximity [15,16]. All of these interferences can limit robust
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control of robotic devices. Consequently, the stability and accuracy of
such control strategies is not satisfactory, thereby limiting robust
dexterous control of robotic hands.

Alternatively, motoneuron firing activity can also be used as a neural
interface [17]. The frequency/probability of the motoneuron firing at
the population level can directly reflect the neural drive from the brain
to the muscles. Essentially, the spinal cord output signal (firing events)
can be used to decode the spinal input signal (motor command from the
brain). The decoded neural drive signal can be more robust for decoding
motor intent than global EMG activities, because the binary firing events
are less susceptible to noise than measuring analog EMG features.
Currently, motoneuron firing events are extracted through motor unit
(MU) decomposition of high-density sEMG (HD-EMG) recordings, which
separates the superimposed action potentials into individual moto-
neuron firing activities [18–23]. Different real-time MU decomposition
algorithms have shown great promise for neural decoding purposes [24,
25]. Nevertheless, one drawback of the decomposition approach is the
high computational intensity and computational inefficiency associated
with the extraction of individual MU firing activity. Namely, spike trains
of individual MUs are extracted, and these firing events are then merged
to represent the population neuron firing behavior. Essentially, infor-
mation of firing rates of individual MUs, extracted from the most
computationally intensive steps of the decomposition, is not utilized.

Accordingly, the purpose of the current study was to develop a robust
and efficient neural decoder that can continuously decode the motor
intent of individual fingers, feasible for dexterous and continuous con-
trol of robotic hands in real time (Fig. 1). We implemented a deep neural
network model to establish continuous mapping from global EMG fea-
tures to population motoneuronal firing frequency for individual finger
muscles, without the intermediate process of MU decomposition. While
MU decomposition was used to label annotations for offline model
training, the trained model could continuously predict the neural signals
for real-time prosthetic control without MU decomposition. Recently,
deep neural network models, such as convolutional neural networks
(CNNs) and recurrent neural networks (RNNs), have been used for
neural signal processing. For example, In the context of sEMG-based
gesture classification, accurate pattern classification can be achieved
using multi-stream CNNs [26,27]. Inter-person recognition of hand
gestures is also feasible after fine-tuning the network parameters [28].
Moreover, there has also been a growing body of work that explored
deep learning techniques for the continuous estimation of dynamic
movements. For instance, an earlier work utilized CNN to establish a
regression-based decoding of wrist movements [29]. Geng et al. [30]
developed a CNN-attention network to predict joint angles during hand
grasping movements. Studies have also employed long-short term
memory networks to predict continuous finger movements [31–33].
Collectively, these studies implemented deep learning models to learn a
direct mapping between EMG signals and motor output (fingertip force
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or joint kinematics). It is unclear whether the model trained on one type
of motor output can be generalized to the other type (e.g., models
trained on force may not generalize well in joint kinematic prediction).
Recently, we have also established a generic CNN model for accurate
decoding of fingertip forces [34]. The results showed that the
CNN-based decoder demonstrated similar decoding accuracy compared
with the MU-decomposition based approach. However, the CNN model
was not finger specific and can only predict one finger output at a time.

To address these issues, we first established a generalized model
initially trained on subject cohorts, and the model was then personalized
to individual subjects for decoding of individual finger kinematics, with
the target finger and the joint angles predicted simultaneously. Finally,
the decoder was evaluated for the control of a multi-DoF robotic hand.
Our results showed that the developed decoder could accurately predict
the users’ finger kinematics, and could consistently control the robotic
hands to the desired joint angles over time, with minimal movements
occurred in the undesired fingers, comparing with a EMG amplitude
approach and a CNN model directly trained on force signals.

The research framework is visualized in Fig. 1. The main contribu-
tion of this paper was two-fold: (1) We developed a novel neural decoder
that can directly learn the motoneuronal firing frequencies from global
EMG features. Different from MU decomposition approaches, we ob-
tained the populational firing information directly from EMG features
without the need for decomposing individual MU activities after model
initial training. As a result, our approach is highly efficient for online
implementations. (2) We implemented the neural-drive-based inde-
pendent control of single-finger and multiple-finger movements of ro-
botic hand in real time. We demonstrated that the neural-drive
information could lead to high performance, real-time prosthesis con-
trol. Compared with the conventional global EMG amplitude-based and
deep learning-based approaches, our method shows superiority in ac-
curacy, robustness, and finger isolation during real-time prosthesis
control.

2. Methods

A. Participants

Ten neurologically intact participants (three females and seven
males, age: 23–36) were recruited for this study. Prior to the experiment,
all participants were given informed consent via protocols (#16–0801)
approved by the University Institutional Review Board.

B. Experimental Protocol

The experiment was composed of repetitive dynamic finger flexion
and extension tasks. During data acquisition, subjects were seated in
front of a desk with their right forearm in the neutral position supported

Fig. 1. Overview of the research framework. High-
density electromyographic (HD-EMG) signals were
obtained from the extrinsic finger flexor and extensor
muscles. Convolutional neural network (CNN)-based
models were used to learn the mapping from HD-EMG
amplitude and frequency features to finger-specific
neural drive signals (i.e., populational neuron firing
frequency). The predicted neural drive signals were
then used to continuously control the joint angles of
the index, middle, and ring fingers of a prosthetic
hand.
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by a large foam pad, with a fixed wrist angle. After skin preparation, two 8
´  16 HD-EMG electrode grids (a 3-mm recording diameter for each
electrode and an inter-electrode distance of 10 mm) (OT Bioelettronica)
covered the anterior and posterior sides of the forearm to record EMG
signals of extrinsic finger flexor and extensor muscles. The electrode grid
was placed based on palpation of the targeted muscles. The biosignal
amplifier EMG-USB2+ (OT Bioelettronica) was used to sample the EMG
signals at 2048 Hz with a gain of 1000 and band-pass filtered at 10–900
Hz. Joint kinematics of the metacarpophalangeal (MCP) joints of the
index, middle, and ring fingers were recorded using a custom-made
sensor glove, and the MCP angle data were sampled at 100 Hz.

During the experiment, subjects extended and flexed one designated
finger (one of index, middle, and ring fingers) or three finger concur-
rently, following a target trajectory comprised of half-sinewaves
(Fig. 2B), ranging from 0% (full extension) to 100% (full flexion)
range of motion (ROM). The finger movements were repeated four times
within each trial in 10 s, and eight trials were performed. Overall, a total
of 32 dynamic movements (4 finger patterns ´  8 trials) were recorded
for each subject. The first 3 trials were used for CNN model refinement, 1
trials were used for validation, and the remaining 4 trials were used to
construct the regression functions (Fig. 2C) between the predicted
neural drive and the measured joint angles of each finger. Lastly, to test
the decoder performance, the participants controlled the prosthetic
finger joints using the predicted joint angle based on the regression
function (Fig. 2D). They produced different finger flexion and extension
movements from 0% to 100% ROM with 4 repetitions in 16 s, using
either one of the three fingers or three fingers concurrently (Fig. 2E). A
different movement velocity was used to evaluate the generalizability of
the neural network decoder.

C. Neural Decoder

Feature Extraction: Two types of features, termed the amplitude map
and the frequency map, were extracted from raw EMG recordings before
fed into the network. The 128-channel HD-EMG recordings were first
segmented into a sequence of 96-sample (46.88 ms) windows with a step
size of 64 samples (31.25 ms). Five consecutive segments were used to
utilize the temporal information between segments. The amplitude map
was extracted by computing the root-mean-square (RMS) value of each
channel separately in each signal segment. The 128 RMS values were
then rearranged into a 16 ´  8 (height ´  width) map as the original
electrode grid spatial layout (see in Fig. 1). The amplitude maps from
five consecutive windows were stacked to a 3-dimensional tensor Famp Î
RT´H´W (Time ´  Spatial ´  Spatial), where T =  5, H =  16, and W =  8.
Likewise, the frequency map was extracted via Fast Fourier Transform
separately on each 128-channel on each segment, resulting in the fre-
quency feature Fspec Î RN´M´T (Spatial ´  Frequency ´  Time), where N
=  128, M =  49, and T =  5.

Data Labelling: To label the EMG data for supervised learning, we
used offline state-of-the-art MU decomposition method, the fast inde-
pendent component analysis (FastICA) method [21,22] to extract the
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firing times of individual motor units (MUs). The pseudocode of the
algorithm is shown in the Supplemental material. Briefly, the raw EMG
signals were first extended by an extension factor (f =  10) and whit-
ened. The separation vectors and associated signal sources representing
individual MU information were obtained via a fixed-point iteration
algorithm [21,23,35]. The binary firing events of individual MU were
separated from the background signal sources through a binary classi-
fication using the Kmeans++ algorithm [36,37]. A modified ‘silhouette
distance’ (SIL) measurement [38] was used to quantify the separation
quality of the source signals, where source signals with low SIL values
(<0.6) were excluded from the MU pool. The retained binary firing
activities were further summated to a single composite train, from which
the populational firing frequency of the MU pool can be obtained. The
population firing frequency was then normalized via min-max normal-
ization, the normalized firing frequency was then scaled up by a factor of
15, and categorized and labeled into 16 classes ranging from 0 to 15.
Inherently, label 0 corresponds to the obtained lowest firing frequency
and label 15 corresponded to the highest firing frequency.

Neural network: We used a multiple-view convolutional neural
network (CNN) to extract high-level representations from global EMG
features. The network consists of two branches, termed the frequency
domain branch and the time domain branch, respectively (see in Sup-
plementary Materials. Table S1). Therefore, the frequency domain
branch enabled the exploration of the correlation of frequency spec-
trums between time frames. By sliding the kernel (ω Î RN´p´q) pixel by
pixel across the input frequency feature (Equation (1)), where Fspec refers
to the frequency spectrum feature map, Y is the output intermediate
feature map, and i,j are the coordinates indicating the location of the
kernels on the input feature. Because action potentials in HD-EMG sig-
nals could arrive at different channels at different times, the third
dimension of the kernels explored the spatial-frequency

Yij =  
p  1     q  1 

ωabFspec (i+a)(j+b) (1)
a=0     b=0

Likewise, the time-domain branch was used to extract the informa-
tion from the amplitude feature. The kernels (ν Î RT´p´q) were encour-
aged to template matching the activated regions on the EMG amplitude
maps, which could be formulated as Equation (2), where Famp refers to
the amplitude feature map, Z is the output representation map, and i,j
are the coordinates indicating the location of the kernels on the input
feature.

p  1     q  1

Zij = νab     amp (i+a)(j+b)
a=0     b=0

Since the localized activation regions on the amplitude features were
associated with individual finger movements, the network could
potentially learn the mapping between the EMG features produced by
different finger muscle compartments and the populational firing fre-
quency of individual fingers. By providing a sequence of consecutive
EMG features in different time frames to the network, the transition

Fig. 2. Neural network model initial training, refinement, and testing for real-time control of prosthesis. A: Initial training of the neural network using a large dataset to
establish a generic mapping from EMG features to population firing frequency. B: The CNN model parameters were refined using subject specific data from dynamic
single- and multi-finger movement tasks. The MCP joints started from full extension (0% ROM), and flexed to 100% ROM, and extended back to 0% ROM. C: Perform a
quadratic regression to convert populational firing frequency to joint angle. Data from the single- and multi-finger movement tasks were used for the regression. D:
Real-time control of a prosthesis using the CNN model prediction through an angle controller. E: Testing of the angle prediction performance using data
from the single- and multi-finger movement tasks (0–100% ROM).
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rules of sEMG features over time is also taken into consideration.
The high-level representations yielded by the two branches were

flattened and concatenated. Two fully connected layers were used for
feature fusion. At last, three output layers were used in parallel to pre-
dict the populational MU firing frequencies generated by the index,
middle, and ring fingers concurrently. Specifically, each output layer in
charge of predicting the firing frequencies of the current input EMG
features were produced by the muscle contraction of one of the three
fingers. The final output of each output layer is a 16-dimensional vector,
in which each element represents the probability (after softmax opera-
tion) of the predicted firing frequency. The predicted firing frequency
was identical to the input class label (defined as the normalized discrete
firing frequencies ranging from 0 to 15).

Let yj denotes the labeled class of i Î {0, 1, 2} referring to the index of
individual fingers, and j Î {0, 1, 2, …, 15} refers to the class of the firing
frequency. pj denotes the corresponding predicted probability. We
applied the Cross Entropy Loss between the target labels and predicted
probabilities, which is a summation of all the three output layers
(Equation (3)):

L =    
∑ ∑  ∑

y i  log p i
)

(3)
O i j

where O represents each observation, D and C represent the total ac-
count of output layers (enrolled fingers) and firing frequency classes,
respectively.

D Neural Decoder Training

Initial training: The initial training established a generic mapping
from EMG features to population firing frequency of individual fingers.
We used a dataset of isometric finger force tasks from a series of earlier
studies [24,39,40] to train the neural network (Fig. 2A). These datasets
encompassed a range of scenarios, including EMG recordings when
subjects performed isometric flexion/extension force of individual fin-
gers. Additionally, the datasets included recordings while subjects per-
formed multiple finger dynamic movements, either sequentially [39] or
concurrently [40]. The firing frequency of each finger was obtained by
compositing the firing events of individual MUs grouped by fingers. The
obtained firing frequency was labeled and served as the target class for
supervised training. One trial of data was hold out for validation. The
network weights were updated for 1500 iterations using Adam Opti-
mizer [41] to minimize L . The model with the highest validation score
(defined as the average correlation coefficients between the predicted
firing frequencies and the measured forces of the index, middle, and ring
fingers) was selected for subsequent applications.

Model fine-tuning: After the neural decoder was trained on HD-EMG
signals when subjects performed isometric force tasks, it is essential to
enhance the performance on predicting dynamic finger movements for
dexterous robotic hand control. The joint angle decoding performance
without this refinement is shown in Fig. S1 in the supplementary ma-
terial. Therefore, we fine-tuned the neural decoder using data obtained
from the current study involving finger dynamic movements. In
particular, the network was personalized to each subject by fine-tuning
the network weights using the first 3 trials from each subject, with 1 trial
hold out for validation. The network was trained for 80 iterations, the
network weights that yielded the best validation score was selected for
further application.

Joint angle prediction: To predict joint angle using the refined model,
we set up a regression function. First, the firing frequency predicted by
the neural decoder was smoothed by a moving average filter (500 ms
window with a moving step of 31.25 ms). The smoothed firing frequency
was further filtered by a Kalman filter [24]. As a result, the smoothed
firing frequencies were updated every 31.25 ms (32 Hz) for the three
individual fingers concurrently. 32 Hz was chosen because the data
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packet can be obtained from the acquisition system was limited at 32 Hz.
We used a quadratic regression over linear regression based on an earlier
study [42]. We built three bivariate quadratic regression models using
the last four trials of each subject from the current study (Fig. 2C), to
predict MCP angles of the three fingers based on the smoothed firing
frequency.

The regression function is:
(                                         (

Ji (t) =     
�̅̅̅̅̅ ̅ ̅ ̅ ̅ ̅ ̅ ̅ ̅ ̅ ��̅̅̅̅̅ ̅ ̅ ̅ ̅ ̅ ̅ ̅ ̅ ̅ �

+

�̅̅̅̅̅̅̅̅̅̅̅̅̅ ̅ ��̅̅̅̅̅̅̅̅̅̅̅̅̅ ̅ � 
+  Ci (4)

terms
r

for flexor terms for extensor

Where J represents the estimated joint angle for the i-th finger, D (t) is
the neural drive signals of flexor muscle, and Df,i(t) is the neural drive
signals of the extensor muscle. The coefficients a , b , c , d and C
represent the regression coefficients. This regression allowed us to
establish a relation between the resulting joint angle of each finger and
the measured EMG amplitude or the populational firing rate of the flexor
and extensor muscles.

Real-time prosthesis control: To evaluate the performance of the neural
encoder for real-time prosthesis control, real-time decoding of intended
joint angles were performed on HD-EMG signals when subjects per-
formed dynamic MCP flexion and extension tasks (Fig. 2D and E). The
predicted angles of the CNN method were used to control the MCP joint of
the index, middle, and ring fingers of the prosthetic hand (i-Limb,
Ossur) through a custom MATLAB (MathWorks Inc) interface. Supple-
mental video S1 demonstrated the real-time joint kinematic control of
the prosthetic hand. Three angle sensors were fixed on the prosthetic
fingers to record the MCP joint angles. The angle information was sent to a
custom-made proportional derivative (PD) controller as feedback
signals to control the MCP angle of each of the three fingers of the
prosthesis. The controller updated the reference angle at a rate of 8 Hz,
while motor commands were updated at a rate of 32 Hz.

Supplementary video related to this article can be found at https://d
oi.org/10.1016/j.compbiomed.2023.107139

As a comparison with the neural network decoder, we also per-
formed angle prediction using a EMG amplitude method [43] (termed
EMG method). First, the top 60 channels with the highest RMS value out
of the 128 EMG channels were selected separately for the flexor and
extensor muscles. The EMG data during the activation of individual
intended fingers were used for the channel selection. Second, because of
EMG activities associated with inevitable activation of unintended fin-
gers, some of the selected top 60 channels could represent motor output of
unintended fingers. This could lead to false positive errors in motor
output predictions of intended fingers. To address this issue, we per-
formed a channel refinement procedure to further remove channels with
potential EMG recordings (i.e., cross-talk) of unintended fingers. Spe-
cifically, the EMG amplitude (RMS) was calculated using the moving
average filter (500-ms window with a moving step of 31.25 ms) for the
individual 60 channels. A regression analysis was then performed be-
tween the EMG amplitude and different finger angles during dynamic
movement tasks. If the coefficient of determination (R ) value with the
intended fingers were higher than with the other two fingers, the given
EMG channel was retained. Otherwise, the channel was removed. The
assumption was that the EMG channel with muscle activities associated
with a given finger should have a high correlation with the motor output
of that finger. Finally, the RMS values of the retained EMG channels
were calculated using the same moving average filter method and
averaged across channels for each finger. The same Kalman filter was
applied to the average RMS values. Three bivariate quadratic functions
for the EMG method were constructed using data from the angle
regression trials.

In addition, to highlight the benefit of utilizing neural drive signals,
we conducted a comparative analysis between our neural drive method
and a similar CNN approach that directly used the force signals as the
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training target. The rationale behind this comparison was that EMG
features were correlated with both kinematic and kinetic variables.
Therefore, the knowledge learned from the force prediction task could
be transferred to the joint angle prediction task. To ensure a fair com-
parison, we used the same network architecture and training parameters
as in the neural drive signal approach. The only difference was that the
training target was the normalized discrete force values during the
initial training phase. By doing so, we were able to evaluate the per-
formance difference achieved by incorporating neural drive signals in
contrast to directly using kinematic and kinetic variables. To ensure
clarity, we used the term CNN method to refer to the neural drive
method unless stated otherwise. In cases where both CNN methods were
mentioned, CNN-force (CNN–F) represented the CNN method pre-
trained using the force values, while CNN-neural-drive (CNN-ND) rep-
resented the CNN method pre-trained using the neural drive signals.

E. Statistical Analysis

The performance of the joint angle prediction was evaluated by the
root mean squared error (RMSE) and coefficient of determination (R )
values between the actual measured angles and the predicted angles. To
quantify finger isolation of the decoding, both intended and unintended
fingers were evaluated in the single-finger tasks. Repeated measures
analysis of variance (ANOVA) was performed on the dependent vari-
ables. A pairwise comparison was conducted using the Bonferroni
method when necessary. The significance level α was set as 0.05. To
further quantify finger isolation, we also categorized the fingers into
active and rest states based on the predicted angle in the single-finger
tasks. Predicted angle sequences were categorized into active or rest
states based on an output threshold of 10% ROM. The results based on
5% and 15% ROM thresholds were also reported in Fig. S2 of the sup-
plemental material. In a given time, if the angle of a finger was above the
threshold, the corresponding finger was categorized as active. The per-
centages of output data samples in different finger combination cate-
gories were also reported. A high percentage only in the single intended
finger category was considered a better finger isolation than a high
percentage in the multi-finger categories.

3. Results

To quantify the decoding performance of joint kinematics, we
calculated the RMSE between the measured angle around the meta-
carpophalangeal (MCP) joints and the predicted angle (either from CNN
method or EMG method). The supplemental video S1 demonstrated the
real-time decoding using the CNN method and continuous control of
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single and multiple fingers of a prosthesis. Fig. 3 depict the performance
of joint angle prediction using the CNN-based methods (CNN–F and
CNN-ND) and the EMG-amplitude estimates. The decoding performance
in the single-finger joint movement task is shown in Fig. 3. An exemplar
trial of the ring finger flexion-extension task is illustrated in Fig. 3A. The
CNN-ND method showed a better angle prediction performance in
comparison with the CNN–F method and the EMG method. The CNN-ND
method also revealed an underestimation of the joint angle in the un-
intended fingers, whereas the EMG method demonstrated an over-
estimation of the joint angle. Fig. 3B illustrates the average prediction
errors of the intended fingers across subjects. The two-way (method
(CNN-ND vs. CNN–F vs. EMG) ´  finger (index vs. middle vs. ring)) ANOVA
revealed a significant difference (F(2,27) =  13.43, p <  0.001) in the
RMSE values obtained by different methods with no significant inter-
action effect between the method and finger. Overall, the CNN-ND
method achieved the lowest RMSE value in most cases, except in the
ring finger condition.

We also evaluated the predicted movement errors of the unintended
fingers. Since the unintended fingers were supposed to produce no joint
movement, a zero-degree angle movement was considered the ground-
truth of the unintended fingers. Accordingly, the RMSE of the unin-
tended fingers was calculated between zero-degree angle and the actual
or predicted angles. The RMSE between zero-degree angle and the actual
angle (or the predicted angles) were calculated (Fig. 3C). The ANOVA
showed that the factor of method (F (2, 27) =  65.90, p <  0.001) had a
significant effect on the RMSE with no interaction effect with the finger
factor. The pairwise comparison showed that the RMSE of the CNN-ND
method was significantly lower than that of the CNN–F method (p <
0.001), the EMG-amplitude method (p <  0.001), and the actual joint
angle (p <  0.001), indicating that the CNN-ND method can better pre-
dict intended movement of the subjects than the actual movement.
Overall, the CNN-ND method showed least amount of finger-crosstalk
with the best finger isolation.

We then quantified the active vs. rest states of the fingers based on
the predicted joint angles (Fig. 4). In a given time, if the angle of a finger
was above the 10% range of motion (ROM) threshold, the finger was
considered active. Most of the predicted joint angles of the CNN method
were categorized into the active intended fingers, with most of the angle
of the unintended fingers categorized into a rest state. In contrast, angles
predicted by the EMG-amplitude method was largely affected by the co-
activation of the intended finger and one or multiple unintended fingers,
with the highest percentage observed in the three-finger IMR active state
regardless the intended finger. This indicates the poor ability of finger
isolation of the EMG-amplitude method. The results based on the 5%
and 15% ROM thresholds are also reported in Fig. S2 in the

Fig. 3. Prediction of individual finger joint angles using the CNN and EMG methods. CNN-ND represents the CNN model pre-trained by the neural drive signals, and
CNN–F represents the CNN model pre-trained directly by the normalized force signals. A: An example trial of the joint angle prediction, when the ring finger was
instructed to flex and extend while other fingers relaxed. Zero-degree means full extension. The RMSE of individual fingers was shown for the intended (B) and
unintended (C) fingers. The range of motion (ROM) was normalized by the maximum flexion angle of individual fingers. Filled circles of the same color represent the
same subject. Error bars represent standard error. *, p <  0.05. **, p <  0.01. ***, p <  0.001.
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Fig. 4. Active finger classification of the CNN method (Blue) and the EMG method (Green). I, M, and R represent index (A), middle (B), and ring (C) fingers,
respectively. Predicted angle time series of the three fingers were categorized into active or rest states based on a 10% ROM threshold. The radius of the plot

represented the percentage of force data samples in each category, with different contour lines represent different percentage values.

supplemental material.
The decoding performance in the multi-finger movement task is

shown in Fig. 5. An exemplar trial comparing the actual and predicted
joint angles is shown in Fig. 5A during the initial regression. The results
indicated that both CNN and EMG-amplitude methods could accurately
predict joint angles of the three fingers in the initial regression phase. An
exemplar trial during the subsequent testing is shown in Fig. 5B. The
predicted angle of the CNN method still fits the actual measured joint
angle accurately. In contrast, the prediction error of the EMG-amplitude
method across the three fingers increases sharply in in the testing phase,
especially at the peak flexion angles. The two-way (method (CNN vs.
EMG) ´  phase (initial regression vs. testing)) repeated measures ANOVA
showed that both the method (F(1,9) =  14.966, p =  0.004) and the phase
(F(1,9) =  6.629, p =  0.030) had a significant influence on the RMSE
(Fig. 5C) with no interaction (p >  0.05). The pairwise comparison
revealed that the RMSE of the EMG-amplitude method during the testing
phase was significantly higher than that of the EMG method during the
initial regression (p <  0.05). In contrast, the RMSE of the CNN method
did not increase significantly during the testing phase, compared with
the initial regression (p >  0.05). This indicated that the CNN method

was more stable and robust than the EMG method against interference
over time. We also quantified the angle prediction performance during
testing (Fig. 5D and E). The one-way repeated measures ANOVA showed
that the RMSE (Fig. 5D) of the CNN method was significantly lower than
that of the EMG method (F(1,9) =  13.071, p =  0.006). Likewise, the R
(Fig. 5E) of the CNN method was also significantly higher than that of
the EMG-amplitude method (F(1,9) =  6.892, p =  0.028).

Finally, the computation efficiency was also estimated to ensure the
usability of the proposed methods. The computational latency was 37 ms
(16 ms delay from retrieving data packet, up to 3 ms for signal pre-
processing, up to 11 ms for neural decoding, and 7 ms for regression and
filtering) using GPU Nvidia GTX 1660, CPU Intel Core i7-9700, and
Memory of 24 GB. This delay is well below the acceptable loop delay
(100–150 ms) in human-robot interactions [44,45].

4. Discussion

This study developed a robust and efficient neural decoding method
that can predict joint angles of individual finger, which is promising for
real-time dexterous control of a robotic hand. The CNN mapped hand-

Fig. 5. Prediction of multi-finger joint angles
concurrently using the CNN and EMG methods. A: An
exemplar trial of multi-finger joint angle prediction of
the CNN and EMG methods during initial regression.
B: An example trial of angle prediction of the CNN
and EMG methods during subsequent testing. C: An
comparison of the initial regression and testing of the
two methods. The averaged RMSE (D) and coefficient
of determination (E) of the two methods during sub-
sequent testing. Filled circles represent individual
subjects. Error bars represent standard error. *, p <
0.05. **, p <  0.01.
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crafted HD-EMG features to population neuron firing frequency (i.e.,
neural drive) specific to individual fingers during single-finger and
multi-finger movements. Because EMG features have a more direct
relation with MU firing activity than with joint kinematics, we trained
the model on populational neuron firing frequency. This allowed us to
first establish a generic model trained on data from one type of task (e.g.,
isometric force task), and the model can be generalized to dynamic
movement tasks after network parameter refinement. In addition, the
model performance and learning rate further improved by using hand-
crafted features of amplitude and frequency maps of EMG for the
network model input. We also implemented an efficient, two-step
network training strategy (i.e., an inter-subject initial training and a
subsequent subject-specific model refinement on dynamic finger
movement tasks), which enabled an efficient feature mapping from EMG
to neural drive signals. The decoding of neural drive based on popula-
tion neuronal firing activity has demonstrated robust decoding perfor-
mance, with consistent joint kinematic prediction accuracy across
fingers and over time. In contrast, the performance of the EMG-
amplitude method revealed higher error in both single-finger and
multi-finger tasks. In addition, the performance of EMG-amplitude-
based decoder also degraded over time, with sharp increase in predic-
tion error from the initial regression phase to testing phase. The out-
comes suggest that population neuron decoding offers a robust and
efficient method for continuous motor intent detection of individual
fingers. The continuous motor intent decoding at the individual finger
level sheds lights upon dexterous control of assistive robotic hands.

The CNN-based neural drive decoder also demonstrated its superi-
ority in finger movement isolation, with minimal angle prediction error
on unintended fingers. Intent detection of independent finger move-
ments has been a long-standing issue, because of our limited ability to
activate individual finger muscle compartments [46,47] and challenges
in isolated surface EMG recordings of small muscle compartments [15,
48]. Indeed, the HD-EMG amplitude method showed substantial false
positive error in the unintended fingers, despite a channel selection
procedure based on joint movements of the desired fingers. This false
positive error is present in both categorical results (with single finger
movements classified as all-three finger movements) and in angle pre-
diction errors (RMSE). Although channel selection/refinement can
reduce the impact of cross-talk to some degree [43], the EMG signals can
still contain substantial activity from other muscle compartments,
especially during dynamic finger movements.

In contrast, the decoding of neural drive using neural network
models can accurately detect finger joint angles in both single-finger and
multi-finger tasks, with predicted movements of the unintended fingers
controlled in a low level. In fact, the predicted joint angle was even
lower than the actual measured joint angle in the unintended fingers
from the data glove. This is beneficial from a motor intent detection
perspective for robotic control, in that the decoded joint movements
from neural drive directly reflect the movement intention rather than
the actually produced movements. The underestimation of joint angle in
the unintended fingers can arise from several factors. First, the surface
HD-EMG grid on the forearm only captured activities of the extrinsic
muscles near the skin surface. Activities of the intrinsic finger muscles in
the hand and the flexor digitorum profundus were not recorded, which
could contribute to the actual movement of the MCP joint in the unde-
sired fingers. Second, it is well known that there is coordinated move-
ment among fingers that limit finger independent. Mechanical coupling
from the tendinous structure and skin connections across fingers [46,49]
is one factor that leads to these coordinated finger movements. Never-
theless, this mechanical coupling effect was not factored in the CNN
model.

The current study focused on the decoding of intended movements of
individual fingers, and the decoder performance was validated on the
real-time control of individual prosthetic fingers. Our decoding
approach can also be used for the control of exoskeleton hands to assist
individuals with hand impairment. In future work, we will extend the

Computers in Biology and Medicine 162 (2023) 107139

current work to decode all five digits, especially the thumb movement,
which will allow us to evaluate the decoding method in functional tasks
involving object manipulations. Second, it is important to note that the
data from different sources often exhibit heterogeneity and may not
follow the assumption of being independently and identically distrib-
uted (i.i.d.). This raises concerns about the robustness of our deep
learning model when applied to diverse application scenarios. There-
fore, it is crucial to thoroughly evaluate and examine the robustness of
our model across various real-world scenarios, taking into account the
potential variations and challenges present in the data [50]. The current
study only evaluated intact individuals, future work will investigate the
performance of the decoder on amputees, which is more challenging
since there will be a limit on the length of residual arm needed for the
HD-EMG electrode placement. In addition, the muscle recruitment
patterns may also change due to amputation. As a result, further opti-
mization of the neural decoder may be needed to consider different
muscle activation patterns of different amputee subjects. Lastly, the
current CNN model is a black-box approach, and we do not have direct
information regarding what information were extracted by the model. It
is crucial to investigate the explainability of the proposed model before
implementation in practical applications [50].

In conclusion, this study implemented a deep neural network as a
robust and efficient neural decoding method to predict population
neuron firing frequency (i.e., neural drive) from single finger move-
ments. The predicted neural drive was then used to control single-finger
or multi-finger movements of a robotic hand in a real-time manner. Our
results showed that the extracted MU firing frequency information can
lead to accurate and robust predictions of joint angles, compared with
the HD-EMG amplitude method. Further development of this decoding
method can potentially provide a reliable neural-machine interface that
can continuously decode individuated finger movements for intuitive
control of robotic hands with high movement dexterity.
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