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The expected number of distinct consecutive patterns
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Abstract. Let πn be a uniformly chosen random permutation on [n]. Using an analysis of the probability that two
overlapping consecutive k-permutations are order isomorphic, we show that the expected number of distinct consecutive

patterns of all lengths k ∈ {1, 2, . . . , n} in πn is n2

2
(1−o(1)) as n → ∞. This exhibits the fact that random permutations

pack consecutive patterns near-perfectly.
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1 Introduction

Let π = πn be a permutation on [n]. The one-line notation will be used for permutations in this paper;
e.g., (2134) is shorthand for π(1) = 2;π(2) = 1;π(3) = 3;π(4) = 4. We say that πn contains a pattern
µ = µk of length k if there are k indices n1 < n2 < . . . < nk such that (π(n1), π(n2), . . . , π(nk)) are in
the same relative order as (µ(1), µ(2), . . . , µ(k)). We say that πn consecutively contains the pattern µk
if there are k consecutive indices (m,m+1, . . . ,m+k−1) such that (π(m), π(m+1), . . . , π(m+k−1))
are in the same relative order as (µ(1), µ(2), . . . , µ(k)). Let ϕ(πn) be the number of distinct consecutive
patterns of all lengths k; 1 ≤ k ≤ n, contained in πn. We focus on the case where πn is a uniformly
chosen random permutation on [n], denote the random value of ϕ(πn) by X, and study, in this paper,
its expected value E(X).

Throughout the paper we will employ the o, O notation, defined as follows for non-negative se-
quences an and bn and constants K,L:

an = o(bn) if
an
bn
→ 0 (n→∞);

an = O(bn) if
an
bn
≤ K (n→∞);

an = ω(bn) if
bn
an
→ 0 (n→∞);

an = Ω(bn) if
an
bn
≥ L (n→∞); and

an = Θ(bn) if an = O(bn) and an = Ω(bn).

1.1 Distinct subsequences and non-consecutive patterns

For context, first we summarize results on the extremal values of ψ(πn), where ψ(πn) is the number
of distinct (and not necessarily consecutive) patterns of all lengths contained in πn. The identity
permutation reveals that

min
πn∈Sn

ψ(πn) = min
πn∈Sn

ϕ(πn) = n+ 1,

since the embedded patterns are ∅, 1, 12, . . . , (12 . . . n). On the other hand, motivated by a question
posed by Herb Wilf at the inaugural Permutation Patterns meeting, held in Dunedin in 2003 (PP2003),
several authors have studied the maximum value of ψ(πn). First we have the trivial pigeonhole bound

max
πn∈Sn

ψ(πn) ≤
n∑

k=1

min

((
n

k

)
, k!

)
∼ 2n, (1)

which was mirrored soon after PP2003 by Coleman [6]:

max
πn∈Sn

ψ(πn) ≥ 2n−2
√
n+1 (n = 2k); (2)

which led to (
max
πn∈Sn

ψ(πn)

)1/n

→ 2.

A team of researchers began to see if this (surprising) bound could be improved. This led to the result
in [1] that

max
πn∈Sn

ψ(πn) ≥ 2n
(
1− 6

√
n2−

√
n/2

)
, (3)
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and thus to the conclusion that maxπn∈Sn ψ(πn) ∼ 2n. Alison Miller improved both the upper and
lower bounds (2) and (3), showing in [10] that

2n −O(n22n−
√
2n) ≤ max

πn∈Sn

ψ(πn) ≤ 2n −Θ(n2n−
√
2n). (4)

By extracting the constants in (4) and conducting an asymptotic analysis, Fokuoh showed in [9] that
the trivial upper bound actually performs better than the one in (4) for small and not-too-small values
of n, though, of course (4) does better asymptotically.

Turning to words, in [2] the authors studied the expected number E(ξ(W )) of distinct subsequences
of all lengths contained in the word W = Wn obtained when n letters s1, . . . , sn are independently
generated from a d-letter alphabet – with the ith letter being “typed” with probability αi (they also
covered the two-state Markov case). In the simplest case, when d = 2, it was shown in [2] (with
α1 := α) that asymptotically

E(ξ(W )) ∼ k
(
1 +

√
α(1− α)

)n
,

which contains the earlier result from [8] that in the equiprobable case, E(ξ(W )) ∼ k(32)
n for a constant

k.
The fact that E(ξ(W )) ∼ An for A < 2 might suggest that the same is true for E(ψ(πn)). But

consider the following argument. Since

k!≫
(
n

k

)
for large k, it would seem reasonable, via a heuristic “balls in boxes” argument that most or all of the
patterns of large size contained in πn would be distinct. It was accordingly conjectured in [9] that

E(ψ(πn)) ∼ 2n. (5)

While we are unable to prove that (5) holds, we show in this paper that the following is true for
the number X of distinct consecutive patterns contained in a random permutation:

Main Theorem

E(X) = max
πn∈Sn

(ϕ(πn))(1− o(1)) =
n2

2
(1− o(1)).

2 Proof of main theorem

Lemma 2.1 For any πn ∈ Sn,

ϕ(πn) ≤
n∑

k=1

min{(n− k + 1), k!} ≤ n2

2
(1 + o(1)).

Proof. There are k! permutation patterns of length k. However, not all of these can be present unless
the number of consecutive positions of length k, namely (n− k + 1), provide “enough room” for this
to occur, i.e., if (n− k + 1) ≥ k! This proves the first inequality. Next note that

ϕ(πn) ≤
n∑

k=1

min{(n− k + 1), k!} ≤
n∑

k=1

(n− k + 1) =
n∑

k=1

k ≤ n2

2
(1 + o(1)). (6)

This completes the proof. ✷

Lemma 2.2
n∑

k=1

min{(n− k + 1), k!} ≥ n2

2
(1− o(1)).
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Proof. The equation (n− k + 1) = k!, by Stirling’s approximation, holds if

√
2πk

(
k

e

)k

(1 + o(1)) + k = n+ 1,

which is true if and only if

(exp{k log k − k + (1/2)(log k + log(2π)) + o(1)}) (1 + o(1)) = exp{log n(1 + o(1))}.

A good approximation to the above is the solution to k log k = log n, namely

k =
log n

log log n
(1 + o(1)),

which yields, with

an =

⌈
log n

log log n
(1 + o(1))

⌉
,

n∑
k=1

min{(n− k + 1), k!} ≥
n∑

k=an

(n− k + 1) ∼ (n− an)2

2
=
n2

2
(1− o(1)),

as asserted. ✷

We mention that the evidence in support of the Main Theorem is strong, as evidenced by the
following data for small n (the evidence in support of (5) is not as strong; see [9])

n
∑n

k=1min(n− k + 1, k!) Bound attained (Y/N) E(X)

3 4 Yes 3.67

4 6 Yes 5.83

5 9 Yes 8.7

6 13 Yes 12.33

7 18 Yes 16.78

8 24 Yes 22.08

For example, the permutation 14325 contains the 9=
∑5

k=1min{k!, 6− k} patterns 1, 12, 21, 132, 321,
213, 1432, 3214, and 14325.

A study of patterns that occur in consecutive positions in a permutation is not new. For example,
the so called vincular patterns partially follow this scheme. More relevant to this paper, however, is
the work of [3] and [7] on non-consecutive permutations that touches on some of the aspects of this
paper. Of far greater relevance, however, are the works of Borga and Penaguiao [4], [5], who study the
feasible region for consecutive patterns, showing that this is the cycle polytope of the overlap graph.
They also make deep comparisons between classical and consecutive occurrences of patterns.

2.1 Auxiliary random variables

First recall that an is the integer k that first causes min{n − k + 1, k!} = (n − k + 1). To ease the
analysis, we could lower bound the expected number of distinct patterns of all lengths by the expected
number of distinct patterns of length ≥ an. We will see later that it facilitates the analysis even
more if we count the expected number of distinct patterns of length bn or more, where bn ≥ an will
be chosen later. We will attack our problem using several auxiliary random variables. We wish to
analyze the behavior of

X =
n∑

k=1

Xk,
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where Xk is the number of distinct patterns of length k. Next, let us list the sets of n−k+1 consecutive
positions of length k lexicographically starting from k = 1 and going till k = n, thus getting the list

1, 2, . . . , n, (1, 2), (2, 3), . . . , (n− 1, n), (1, 2, 3), (2, 3, 4), . . . , (n− 2, n− 1, n), . . .

(1, 2, . . . n)

The number of patterns of length ≥ bn equal those contained in the portion of the above list starting
with (1, 2, . . . , bn). The number of distinct patterns of length ≥ bn thus equals

n∑
k=bn

(n− k + 1)− Yk,

where Yk is the number of patterns which are “repeat” patterns of length k, i.e., those that have
appeared lexicographically before.

Also, for 1 ≤ k ≤ n, let Zk be the number of pairs of consecutive positions (overlapping or not)
that yield the same pattern of length k, and let Z =

∑n
k=1 Zk.

We give an example to fix these ideas: For n = 8, consider the permutation

14573268.

It is easy to check that a8 = 3 and we lexicographically list the patterns of length 3 and higher, getting
the list 123, 123, 231, 321, 213, 123, 1234, 2341, 3421, 4213, 2134, 13452, 34521, 35214, 42135, 145632,
346215, 462156, 1457326, 3462157, and 14573268. The only pattern that repeats is the pattern 123 of
length 3, and it repeats twice. Thus the number of distinct patterns of length 3 or more is

[(8− 3 + 1)− 2] + (8− 4 + 1) + (8− 5 + 1) + (8− 6 + 1) + (8− 7 + 1) + (8− 8 + 1)

= 21− 2 = 19.

Note moreover that we will later be replacing an by bn.
In the above example, the pattern 123 appears lexicographically in the first, second, and sixth

sets of consecutive positions, and so there are
(
3
2

)
= 3 sets of offending pairs of consecutive positions.

In general, if a pattern such as 123 appears r times, then its contribution to Y3 is r − 1, while its
contribution to Z3 is the larger quantity

(
r
2

)
. Moreover Yk = 0 iff Zk = 0 since there are no repeated

patterns if and only if there are no pairs of equal patterns. If Yk = 1 then there is a k-pattern that
repeats once and hence there is one pair of equal patterns. Thus Yk = 1 iff Zk = 1, and, in general,
we will see that Yk ≤ Zk.

Formalizing the above example discussion and example we see that

E(X) =
n∑

k=1

E(Xk) ≥
n∑

k=bn

E(Xk) =
n∑

k=bn

((n− k + 1)− E(Yk)) , (7)

where Yk denotes the number of k patterns that are consecutively contained in the random n-
permutation as lexicographical repeats.

We introduced the variables Zk above since Yk is difficult to work with directly. Since Zk counts
pairs of patterns of length k, we organize them according to

(i) the magnitude of the overlap l; 0 ≤ l ≤ k − 1 between the pairs; and
(ii) the starting position j of the first pattern in the pair;

Thus

Zk =
n−k+1∑
j=1

k−1∑
l=1

Ij,l,k +
n−k+1∑
j=1

∑
r≤tj

Ij,0,k,r (8)
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where for l ≥ 1, the indicator variable Ij,l,k equals one iff (π(j), . . . , π(j + k − 1)) and (π(j + k −
l) . . . , π(j + 2k − l − 1)) are order isomorphic (Ij,l,k equals zero otherwise.) For l = 0, Ij,0,k,r = 1 if
(π(j), . . . , π(j + k − 1)) and (π(j + k − 1 + r), . . . , π(j + 2k − 2 + r)) are order isomorphic. Note that
for l = 0, there are several consecutive positions disjoint from (j, j+1, . . . , j+k−1), where we loosely
bound the number of these positions by an unspecified tj ≤ n.

Observe also that for some j’s towards the end, not all l ≥ 1 (or r’s in the case of l = 0), are
feasible and in this case we have P(Ij,l,k = 1) = 0 or P(Ij,0,k,r = 0). We will see several spots where a
non-zero upper bound is used for expressions such as these instead of 0. We have seen above that for
any k,

Yk = 0 (resp. 1)⇔ Zk = 0 (resp. 1).

Note that for any k

E(Zk) =

n−k+1∑
j=1

k−1∑
l=1

E(Ij,l,k) +
n−k+1∑
j=1

∑
r≤tj

E(Ij,0,k,r)

=
n−k+1∑
j=1

k−1∑
l=1

P(Ij,l,k = 1) +
n−k+1∑
j=1

∑
r≤tj

P(Ij,0,k,r = 1).

The next result formally proves that E(Yk) ≤ E(Zk).

Proposition 2.3 For each k, Yk ≤ Zk, i.e., the random variable (r.v.) Yk is majorized by the r.v.
Zk and thus E(Yk) ≤ E(Zk).

Proof. Suppose that

Yk = r =
∑
m

rm,

where rm is the number of repeats of the mth pattern-type. Then there are
(
rm+1

2

)
pairs of isomorphic

patterns of the mth pattern type, and since for each m, rm ≤
(
rm+1

2

)
, the proposition is proved. ✷

Lemma 2.4 For l = 0 and any feasible j, r, P(Ij,0,k,r = 1) = 1
k! .

Proof. Consider any set of k consecutive positions disjoint from (and lexicographically greater than)
{j, j + 1, . . . , j + k − 1}. The probability that these positions contains a pattern isomorphic to the
one in {j, j + 1, . . . , j + k − 1} is k!·1

k!2
= 1

k! , since given the pattern in the first set of k positions, the
pattern in the second set must be the same. This proves the result. ✷

Lemma 2.5 For l = k − 1 and any k, P(Ij,k−1,k = 1) = 2
(k+1)! .

Proof. Consider the k + 1 spots spanned by the two sets of positions. If the numbers in these spots
are monotone increasing or monotone decreasing then we have that Ij,k−1,k = 1, so P(Ij,k−1,k = 1) ≥

2
(k+1)! . If, on the other hand the numbers in positions (j, j + 1, . . . , j + k − 1) are not monotone

increasing or decreasing, then (in the increasing case), there exist indices i, i + 1, i + 2 such that
π(i+ 1) > max{π(i), π(i+ 2)}. But then, for the pattern in the k positions shifted to the right by 1,
π(i) > π(i+ 1), so that we cannot have Ij,k−1,k = 1. Thus P(Ij,k−1,k = 1) = 2

(k+1)! . ✷

Lemma 2.6 For 1 ≤ l ≤ ⌊k2⌋,

P(Ij,l,k = 1) ≤ 3k

k!
. (9)
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X X X X X X X X X X

O O O O O O O O O O

← l→ ← k − 2l→

ρ1 ω1

ρ2 ω2 ρ3

Figure 1: Consecutive overlapping patterns, l ≤ ⌊k2⌋

Proof. Denote the two k-patterns in question, overlapping in l positions, by η1 and η2. For any patterns
ξ1, ξ2, we write ξ1 ≃ ξ2 if ξ1 and ξ2 are order isomorphic. We must have the following situation shown
in Figure 1:

ρ1 ≃ ρ2 ≃ ρ3,

and

ω1 ≃ ω2

in order for η1 and η2 to be consistent with being order isomorphic. Thus

P(η1 ≃ η2) ≤ P(ρ1 ≃ ρ2 ≃ ρ3, w1 ≃ w2)

≤ 1

l!2
1

(k − 2l)!
. (10)

Now if k = 3m for some integer m then it is easy to show that the trinomial coefficient

k!

l!2(k − 2l)!

is maximized on setting l = k
3 . This may be done by setting β(l) = k!

l!2(k−2l)!
and solving the quadratic

that arises on setting β(l + 1)/β(l) ≥ 1, to identify the non-decreasing regions of β. Thus for some
constant K, by Stirling’s approximation we get

k!

(l!2)(k − 2l)!
≤ k!

(k/3)!3
∼ K · 3

k

k
,

and thus (10) yields

P(η1 ≃ η2) ≤ K ·
3k

k! · k
≤ 3k

k!
. (11)

Moreover if k = 3m + 1 or k = 3m + 2, then the trinomial coefficient is maximized by setting l and
k− 2l to be as equal as possible and it is easy to verify that the bound in (9) holds as well. Note that
the bound in (9) is uniform, i.e., independent of the value of l ≤ ⌊k/2⌋. Also, any analysis that tries
to be more exact gets very complicated rapidly and so we will settle for the upper bound in (9). ✷

The same kind of analysis, in which we use consistency with order isomorphism as a driving
method, is used for l > ⌈k2⌉, which we turn to next.

Lemma 2.7 For k − 2 ≥ l > ⌈k2⌉,

P(Ij,l,k = 1) ≤
(

1

(k − l)!

) k
k−l

−1

. (12)



A. ALLEN ET AL. 8

η1: A B A B A B A B

η2: A B A B A B A B

Figure 2: Consecutive overlapping patterns, l ≥ ⌈k2⌉

Proof. We first illustrate the idea of the proof for k = 8; l = 6; see Figure 2. If the first two elements of
η1 form the pattern AB, then so must the first two elements of η2, which are also the third and fourth
elements of η1 – forcing the third and fourth elements of η2 to form an AB pattern too. This repetition
of the AB pattern persists till we reach the end of η2, for a total of four induced AB patterns caused
by the first two elements of η1. Thus

P(Ij,l,k = 1) ≤
(
1

2!

)4

.

In general the pattern in the first k − l positions of η1 is repeated ⌊ k
k−l⌋ ≥

k
k−l − 1 times, each of

which has a probability 1
(k−l)! . This completes the proof. ✷

2.2 Putting it all together

For k ≥ bn (bn is still to be specified), we seek to find
∑k−1

l=0 P(Ij,l,k = 1). We address the case of l = 0,
l = k − 1 first. By Lemmas 2.4 and 2.5, we have∑

r≤tj

P(Ij,0,k,r = 1) ≤ n

k!
, (13)

and

P(Ij,k−1,k = 1) ≤ 2

(k + 1)!
. (14)

Hence
n∑

k=bn

n−k+1∑
j=1

∑
r≤tj

P(Ij,0,k,r = 1) ≤ n3

k!
, (15)

and
n∑

k=bn

n−k+1∑
j=1

P(Ij,k−1,k = 1) ≤ 2n2

(k + 1)!
. (16)

For the case of small overlaps, Lemma 2.6 gives

n∑
k=bn

n−k+1∑
j=1

⌊k/2⌋∑
l=1

P(Ij,k,l = 1) ≤ n2k3k

k!
. (17)

Finally, for the large overlap case, we have

n∑
k=bn

n−k+1∑
j=1

k−2∑
l=⌈k/2⌉

P(Ij,k,l = 1)

≤ n2
∑
l

(
1

(k − l)!

) k
k−l

−1

= n2
∑
l

(
1

(k − l)!

) l
k−l

. (18)
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In (18), the l = k − 2 term is 2(1/2)k/2, which we treat separately. For the other terms we use the
inequality r! ≥

√
2πr(r/e)r to provide the estimate

(
1

(k − l)!

) l
k−l

≤

{(
1

(k − l)!

) 1
k−l

}k/2

≤
(
e(1 + o(1))

k − l

)k/2

≤ (0.96)k, (19)

where we plug in l = k − 3 at the last step. The total contribution of the large overlap case is thus

2n2
(
1

2

)k/2

+ n2k(0.96)k (20)

Proposition (2.3) together with (15), (16), (17), and (20) yield

n∑
k=bn

E(Yk) ≤
n∑

k=bn

E(Zk) ≤
n3

k!
+

2n2

(k + 1)!
+

n23k

(k − 1)!

+ 2n2
(
1

2

)k/2

+ n2k(0.96)k

= T1 + T2 + T3 + T4 + T5 say. (21)

Clearly, T1 ≥ T2 and T5 ≥ T4. Moreover T5 ≥ T1 if k · k!(0.96)k ≥ n, or, since k! ≥ (k/e)k if
(
k
3

)k ≥ n,
which certainly holds if k ≥ lnn. Finally, T5 ≥ T3 if (0.32)k ≥ 1/k!, which holds if k ≥ 7 or if n ≥ e7.
Thus the dominant term in (21) is n2k(0.96)k provided that n is large enough and k ≥ lnn. In this
case,

∑n
k=bn

E(Zk) ≤ 5n2k(0.96)k ≤ n4(0.96)k ≤ 1 if (e−0.0408...)k ≤ e−4 lnn, or if k ≥ 100 lnn. With
the above discussion in mind, we let

bn = ⌈100 lnn⌉,

which yields

E(X) ≥

 n∑
k=⌈100 lnn⌉

(n− k + 1)

− 1

=
(n− ⌈100 lnn⌉)2

2
(1− o(1))− 1

=
n2

2
(1− o(1)),

proving the main theorem.
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