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Abstract. This manuscript is aimed at addressing several long standing challenges in the
application of Koopman analysis to dynamic mode decomposition (DMD). Principle among these
challenges are the convergence of the algorithms and existence of the associated Koopman modes.
This paper introduces two major innovations to address these challenges, where Koopman operators
are removed from the analysis in favor of Liouville operators (known as Koopman generators in special
cases), and these operators are shown to be compact for appropriately selected pairs of Hilbert spaces
as the domain and range of the operator. While these operators no longer admit eigenfunctions in
the general analysis due to the domain and the range being different, reconstruction of system
trajectories using a suitably modified DMD algorithm is still possible. Furthermore, the sacrifice
of eigenfunctions realizes theoretical goals of DMD analysis, such as convergence and existence of
Koopman modes, that have yet to be achieved in existing literature. In the case where the domain
is embedded in the range, an eigenfunction approach is recovered, along with a more typical DMD
routine that leverages a norm-convergent finite rank representation. The manuscript concludes with
a description of two DMD algorithms that converge when a dense collection of occupation kernels,
arising from the data, are leveraged in the analysis.

1. Introduction. This manuscript is aimed at addressing several long standing
challenges in the application of Koopman analysis in dynamic mode decomposition
(DMD). Principle among these challenges are the convergence of associated DMD al-
gorithms and the existence of Koopman modes, where the former has only been estab-
lished with respect to the strong operator topology (SOT) (which does not guarantee
the convergence of the spectrum), and the latter requires the Koopman operator to
be compact as well as self-adjoint or normal, which is a rare occurrence in typical
applications of DMD.

DMD methods are data analysis methods that aim to decompose a time series
corresponding to a nonlinear dynamical system into a collection of dynamic modes
[14, 4, 16, 13]. When they are effective, a given time series can be expressed as a
linear combination of dynamic modes and exponential functions whose growth rates
are derived from the spectrum of a finite rank representation of a particular operator,
usually the Koopman operator.

In [26], DMD methods were extended to infinite feature sets, and this included the
first instance of kernel methods appearing in connection with DMD. Kernel functions
were leveraged there to evaluate inner products between two infinite feature represen-
tations of finite dimensional data, a machine learning methodology frequently referred
to as the “kernel trick.” However, [26] does not analyze the impact a space has on the
collection of available Koopman operators, which are frequently unbounded operators
over the kernel spaces. Unoundedness has been well explored in the literature under
the guise of composition operators, of which Koopman operators are a special case
(cf. [5, 6]).
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The use of Koopman operators places certain constraints on the continuous time
dynamics that can be studied with DMD methods. In particular, Koopman operators
analyze continuous time dynamics through a discrete time proxy obtained by fixing
a time-step for a continuous time system [15]. However, only a small subset of con-
tinuous time dynamics satisfy the forward complete property necessary to obtain a
discretization [19]. Moreover, to establish convergence guarantees for DMD routines,
additional structure is required of Koopman operators, where a sequence of finite rank
operators converges to the Koopman operator in norm only if the Koopman operator
is compact (see, e.g., [17, Theorem 3.3.3]). Compactness is rarely satisfied for Koop-
man operators, where even the Koopman operator obtained through discretization of
the simplest dynamical system ẋ = 0 is the identity operator and is not compact.
More generally, it was established in [23] that no composition operator (including
Koopman operators) is compact over an L2 space having non-atomic measure. A
partial result has been demonstrated for when Koopman operators are bounded in
[13], where a sequence of finite rank operators converge to a Koopman operator in
the Strong Operator Topology (SOT). However, SOT convergence does not guarantee
convergence of the spectra [13], which is necessary for a DMD routine.

There are stronger theoretical difficulties associated with Koopman operators. It
has been demonstrated that among the typical Hilbert spaces leveraged in sampling
theory, such as the exponential dot product’s [5], the Gaussian radial basis function
(RBF)’s [12], and the polynomial kernel’s native spaces as well as the classical Paley
Wiener space [6], the only discrete time dynamics that yield a bounded Koopman
operator are those dynamics that are affine. Hence, depending on the kernel function
selected for the approximation of a Koopman operator, a given Koopman operator
can at best be expected to be a densely defined operator, which obviates the afore-
mentioned convergence properties.

Another motivation for the use of Koopman operators in the study of continuous
time dynamical systems is a heuristic that for small time steps the spectra and eigen-
functions of the resultant Koopman operator should be close to that of the Liouville
operator representing the continuous time systems [3]. However, for two fixed time
steps, the corresponding Koopman operators can have different collections of eigen-
functions and eigenvalues, and these are artifacts of the discretization itself [12]. Since
in most cases the Koopman operators are used for this analysis, it is not clear if there
is a method for distinguishing which of these eigenfunctions and eigenvalues are a
product of the discretization and which are fundamental to the dynamics themselves.

Finally, and perhaps most alarming, is that Koopman modes themselves exist
for only a small subset of Koopman operators [12]. Specifically, if a Koopman op-
erator is self-adjoint, then it admits an orthonormal basis of eigenfunctions [3], and
the projection of the full state observable onto this basis yields a collection of (vector
valued) coefficients attached to these basis functions. These coefficients are known as
Koopman Modes or Dynamic Modes. Koopman operators are not necessarily diago-
nalizable over a given Hilbert space, and when they are diagonalizable, their complete
eigenbasis is not always an orthogonal basis. Hence, as the full state observable is
projected on larger and larger finite collections of eigenfunctions, the weights attached
to each eigenfunction will change as more are added. This adjustment to the weights
with the addition of more eigenfunctions is why a series expansion is only ever given in
Hilbert space theory when there is an orthonormal basis of eigenfunctions, otherwise
an expansion is written as limit of finite linear combinations of eigenfunctions.1

1There are notable exceptions, such as in atomic decomposition [27, Section 2.5]. However, this
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To address these limitations, two major modifications are made, where Koopman
operators are removed from the analysis in light of Liouville operators (known as
Koopman generators in special cases), and these operators are shown to be compact
for certain pairs of Hilbert spaces selected separately as the domain and range of
the operator. While eigenfunctions are discarded in the general analysis, a viable
reconstruction algorithm is still achievable, and the sacrifice of eigenfunctions realizes
the theoretical goals of DMD analysis that have yet to be achieved in other contexts. It
should be noted that Liouville and Koopman operators rarely admit a diagonalization,
and as such, this approach discards that additional assumption on the operators.

However, at the cost of well defined Dynamic Modes, an eigenfunction approach is
still achievable when the domain is embedded in the range of the operator. This allows
for the search of eigenfunctions through finite rank approximations that converge
to the Liouville operator. The result is a norm convergence DMD routine (using
eigenfunctions), which is an achievement over the SOT convergent results previously
established in the field [13]. This gives a balance between the two convergence methods
presented in this manuscript, where well defined modes come at the price of ease of
reconstruction, and a straightforward reconstruction algorithm may not have well
defined limiting dynamic modes (a problem shared with all other DMD routines).

To be explicit, the singular DMD approach (Section 4 and Section 6) yields the
following benefits:

1. Eliminates the requirement of forward completeness (similar to the method
given in [20]).

2. Provides well defined dynamic modes.
3. Approximates a compact operator, thereby achieving convergence.
4. Yields an orthonormal basis through which the full state observable may be

decomposed.
However, this achievement comes at the expense of eigenfunctions of the given

operator. As it turns out, the abandonment of eigenfunctions for the analysis does not
actually limit the applicability, where even for very simple dynamics, such as f(x) =
x2 in the one dimensional setting, the corresponding Liouville operators will have no
eigenfunctions over any space of continuous functions. For the present example, the
solution to the eigenfunction equation, g′(x)x2 = λg(x), gives g(x) = eλ/x for λ 6= 0,
a discontinuous function on the real line. Additionally, reconstruction of the original
time series may still be achieved using Runge-Kutta like methods.

The DMD routine leveraging the case where the domain is embedded in the range
provides the following advantages (Section 5 and Section 7):

1. Eliminates the requirement of forward completeness (similar to the method
given in [20]).

2. Approximates a compact operator, thereby achieving convergence.
3. Yields an approximate eigenbasis through which the full state observable may

be decomposed.
It should be noted that there have been several attempts at providing compact

operators for the study of DMD. The approaches [9] and [19] find compact operators
through the multiplication of auxiliary operator against Koopman and Liouville oper-
ators respectively. However, the resultant operators are not the operators that truly
correspond to the dynamics in question, and as such, the decomposition of those oper-
ators can only achieve heuristic results. The approach taken presently gives compact
Liouville operators directly connected with the continuous time dynamics. Specific

is another rare property of a basis.
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examples of compact Liouville operators are given in Section 3. However, these exam-
ples are not meant to be exhaustive, and other pairs of Hilbert spaces and dynamics
may still determine more compact operators.

2. Reproducing Kernel Hilbert Spaces. A reproducing kernel Hilbert space
(RKHS), H, over a set X is a space of functions from X to R such that the functional
of evaluation, Exg := g(x) is bounded for every x ∈ X. By the Riesz theorem, this
means for each x ∈ X there exists a function Kx ∈ H such that 〈f,Kx〉H = f(x)
for all f . The function Kx is called the kernel function centered at X, and the
function K(x, y) := 〈Ky,Kx〉H is called the kernel function corresponding to H. Note
that Ky(x) = K(x, y). Classical examples of kernel functions in data science are
the Gaussian radial basis function for µ > 0, K(x, y) = exp(− 1

µ‖x − y‖
2), and the

exponential dot product kernel, exp( 1
µx
>y) [24, Section 4.1].

The function K(x, y) is a positive definite kernel function, which means that for
every finite collection of points, {x1, . . . , xM} ⊂ X, the Gram matrix (K(xi, xj))

M
i,j=1

is positive definite. For each positive definite kernel function, there exists a unique
RKHS for which K is the kernel function for that space by the Aronszajn-Moore
theorem in [1].

Given a RKHS, H, over a compact set X ∈ Rn consisting of continuous functions

and given a continuous signal, θ : [0, T ] → X, the linear functional g 7→
∫ T
0
g(θ(t))dt

is bounded. Hence, there exist a function, Γθ ∈ H, such that 〈g,Γθ〉H =
∫ T
0
g(θ(t))dt

for all g ∈ H. The function Γθ is called the occupation kernel in H corresponding to
θ. These occupation kernels were first introduced in [20, 21].

2.1. Dynamic Mode Decomposition from the Perspective of RKHSs.
The motivation for DMD methods arise from the behavior of eigenfunctions of cer-
tain dynamic operators, and when the full state observable is projected onto those
eigenfunctions, a model is obtained in the form of a linear combination of exponential
functions. While dynamic operators over RKHSs may not admit a complete eigen-
decomposition, DMD methods aim to construct a finite rank approximation of the
dynamic operator and to leverage the eigenfunctions of the approximating operator
for modeling the state of the unknown dynamic operator. That is, determining eigen-
functions for the generator itself is not the purpose of DMD methods. DMD methods
first approximate an operator, preferably in the operator norm, and then the eigen-
functions that are leveraged for the model are the eigenfunctions of the finite rank
approximation.

The objective is to find functions for which

(2.1) |Afφ(x)− λφ(x)| < ε

for some λ and some small positive ε and all x within some workspace, which con-
trasts with other methods that achieve almost everywhere or almost sure convergence
[11, 7, 8, 10]. Once accomplished, given a trajectory, ẋ = f(x), the eigenfunction
behaves approximately as φ(x(t)) = x(0)eλt. The significance of RKHSs is that norm
convergence implies pointwise convergence, which has been leveraged in approxima-
tion and machine learning frameworks since the 1990s [24, 25]. Since norm conver-
gence in a RKHS of continuous functions yields uniform convergence over compact
sets, kernel methods allow for a relaxation of (2.1), where it is sufficient to satisfy
‖Afφ − λφ‖H < ε. In turn, if a finite rank approximation of Af , call it Ãf , is close
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enough, it is sufficient to satisfy ‖Af − Ãf‖ < ε, and the rest follows as

|Afφ(x)− λφ(x)| < C‖Afφ− λφ‖H
C‖Afφ− Ãfφ‖H < C‖Af − Ãf‖H < Cε,

where C is a positive constant that depends on the workspace and the kernel function,
and the function φ is assumed to be normalized. In the case where the kernel is the
Gaussian RBF, C may be taken to be 1.

It is important to note that finite rank operators themselves are almost always
diagonalizable, and determining a collection of approximate eigenfunctions from the
eigenfunctions of the finite rank operators is certainly well defined. However, to obtain
a close approximation of a dynamic operator using a finite rank operator requires
compactness (see, e.g., [17, Theorem 3.3.3]), which motivates the investigation of the
present manuscript.

3. Compact Liouville Operators. This section demonstrates the existence of
compact Liouville operators, given formally as Afg(x) = ∇g(x)f(x), where compact-
ness is achieved through the consideration of differing spaces for the domain an range
of the operator. Section 3.1 builds on a classical result where differentiation between
differing weighted Hardy spaces can be readily shown to be compact. Following a
similar argument, Section 3.2 presents several examples of compact Liouville opera-
tors over spaces of functions of several variables. We would like to emphasize that the
collections of compact Liouville operators are not restricted to these particular pairs
of functions spaces, but rather this section provides several examples demonstrating
the existence of such operators, thereby validating the approach in the sequel.

3.1. Inspirations from Classical Function Theory. Consider the weighted
Hardy spaces (cf. [2]), H2

ω, where ω = {ωm}∞m=0 is a sequence of positive real num-
bers such that |ωm+1/ωm| → 1, and g(z) =

∑∞
m=0 amz

m is a function in H2
ω if the

coefficients of g satisfy ‖g‖2H2
ω

:=
∑∞
m=0 ωm|am|2 <∞. Each weighted Hardy space is

a RKHS over the complex unit disc D = {z ∈ C : |z| = 1} with kernel function given

as Kω(z, w) =
∑∞
m=0 ωmz

mw̄m, and the monomials
{

zm√
ωm

}∞
m=0

form an orthonormal

basis for each space.
The weighted Hardy space corresponding to the sequence ω(0) := {1, 1, . . .} is the

classical Hardy space, H2, that was introduced by Riesz in 1923 [18]. The Dirichlet
space corresponds to the weight sequence ω(1) = {(m + 1)}∞m=0, and the Bergman
space corresponds to ω(−1) = {(m+1)−1}∞m=0. Of interest here is the weighted Hardy
space corresponding to ω(3) := {m3}∞m=0, which will be denoted as H2

3 for convenience.
It is immediately evident that the operation of differentiation on elements of H2

3

is bounded as an operator from H2
3 to H2. The reason for this inclusion can be seen

directly through the power series for these function spaces. In particular, a function
h(z) =

∑∞
m=0 amz

m is in H2
3 if ‖h‖H2

3
=
∑∞
m=0(m+ 1)3|am|2 <∞, and in the Hardy

space if ‖h‖H2 =
∑∞
m=0 |am|2 <∞.

A function g in H2
3 has derivative g′(z) =

∑∞
m=1mamz

m−1 =
∑
m=0(m +

1)am+1z
m, and by considering the Hardy space norm,∥∥∥∥ ddz g

∥∥∥∥
H2

=
∞∑
m=0

(m+ 1)2|am+1|2 ≤
∞∑
m=0

(m+ 1)3|am+1|2,

but this is exactly the H2
3 norm on g less the constant term. Hence differentiation
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is a bounded operator from the space H2
3 to the Hardy space with operator norm at

most 1.

Proposition 3.1. The operator d
dz : H2

3 → H2 is compact. Moreover, if f : D→
D is a bounded analytic function corresponding to a bounded multiplication operator,
Mfg := g(x)f(x), over the Hardy space, then the Liouville operator, Af := Mf

d
dz , is

compact from H2
3 to H2.

Proof. To see that differentiation is a compact operator from the H2
3 to the Hardy

space, we may select a sequence of finite rank operators that converge in norm to
differentiation. In particular, note that the monomials form an orthonormal basis of
the Hardy space as is evident from the given norm. Let αM := {1, z, . . . , zM} be
the first M monomials in z, and let PαM be the projection onto the span of these
monomials. The operator PαM

d
dz is a finite rank operator, where the image of this

operator is a polynomial of degree up to M .
To demonstrate that this sequence of finite rank operators converges to differen-

tiation in the operator norm it must be shown that the difference under the operator
norm, ∥∥∥∥PαM d

dz
− d

dz

∥∥∥∥H2

H2
3

:= sup
g∈H2

3

‖PαM d
dz g −

d
dz g‖H2

‖g‖H2
3

,

goes to zero. Note that

‖PαM
d

dz
g − d

dz
g‖2H2 =

∞∑
m=M+1

(m+ 1)2|am+1|2

=

∞∑
m=M+1

1

m+ 1
(m+ 1)3|am+1|2 ≤

1

M + 1

∞∑
m=M+1

(m+ 1)3|am+1|2 ≤
1

M + 1
‖g‖H2

3
.

Hence
∥∥PαM d

dz −
d
dz

∥∥H2

H2
3
≤ 1

M+1 → 0. This proves that differentiation is a compact

operator from H2
3 to H2.

If a function, f , is a bounded analytic function on the closed unit disc, then
it is the symbol for a bounded multiplier over H2. Hence, the Mf

d
dz is a compact

operator from H2
3 to H2. To be explicit, since PαM

d
dz has finite rank, Mf

(
PαM

d
dz

)
also has finite rank. Moreover,

∥∥MfPαM
d
dz −Mf

d
dz

∥∥H2

H2
3

=
∥∥Mf

(
PαM

d
dz −

d
dz

)∥∥H2

H2
3
≤

‖Mf‖H
2

H2

∥∥PαM d
dz −

d
dz

∥∥H2

H2
3
→ 0. Hence, Mf

d
dz is an operator norm limit of finite rank

operators, and is compact. Finally, it can be seen that Mf
d
dz g(z) = g′(z)f(z) =

Afg(z), and Af is a compact Liouville operator from H2
3 to H2.

3.2. Compact Liouville Operators of Several Variables. The example of
the previous section demonstrated that compact Liouville operators may be obtained
in one dimension. However, this is readily extended to higher dimensions through
similar arguments, and in particular can be demonstrated for dot product kernels of
the form K(x, y) = (1 + µx>y)−1. In some cases, such as with the exponential dot
product kernel and the Gaussian RBF, where the kernel functions over Rn decompose
as a product of kernel functions over R for the individual variables, the establishment
of compact Liouville operators from the single variable spaces to an auxiliary range
RKHSs yields compact Liouville operators through tensor products of the respective
spaces.
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The exponential dot product kernel, with parameter µ > 0, is given as K(x, y) =
exp

(
µx>y

)
. In the single variable case, the native space for this kernel may be

expressed as F 2
µ(R) =

{
f(x) =

∑∞
m=0 amx

m :
∑∞
m=0 |am|2

m!
µm <∞

}
. This definition

can be readily extended to higher dimensions, where collection of monomials, xα µ
|α|
√
α!

,

with multi-indices α ∈ Nn form an orthonormal basis. The norm of functions in
F 2
µ(Rn) will be denoted by ‖g‖µ.

In this setting, if µ2 > µ1 (i.e. 1/µ1 > 1/µ2), then by arguments similar to those
given in the previous section, it follows that partial differentiation with respect to
each variable is a compact operator from F 2

µ1
to F 2

µ2
. However, since multiplication

operators are unbounded from F 2
µ to itself for every µ > 0, another step is necessary

to ensure compactness.

Lemma 3.2. Suppose that η < µ, then given any polynomial of several variables,
f , the multiplication operator Mf : F 2

η (Rn)→ F 2
µ(Rn) is bounded.

Proof. To facilitate a clarity of exposition, this will be proven with respect to
functions of a single variable. The same arguments extend to the spaces of several
variables, albeit with more bookkeeping.

Let g ∈ F 2
η . Then g(x) =

∑∞
m=0 amx

m, and ‖g‖2η =
∑∞
m=0 |am|2

m!
ηm .

For f ≡ 1, M1 is the identity operator. Thus, the boundedness of M1 is equivalent
to demonstrating that F 2

η is boundedly included in F 2
µ . In particular, note that

‖M1g‖2µ = ‖g‖2µ =
∞∑
m=0

|am|2
m!

µm
=
∞∑
m=0

|am|2
(
η

µ

)m
m!

ηm

<

∞∑
m=0

|am|2
m!

ηm
= ‖g‖2η

Fix k ∈ N and consider the multiplication operator Mxk : F 2
η → F 2

µ defined
as Mxkg := xg for all g ∈ F 2

η . Note that the power series of Mxkg is given as

xg(x) =
∑∞
m=0 amx

m+k =
∑∞
m=k am−kx

m. Hence,

‖xkg(x)‖2µ =

∞∑
m=k

|am−k|2
m!

µm
=
∞∑
m=0

|am|2
(m+ k)!

µm+k

=
∞∑
m=0

|am|2
(m+ k)!

m!µk
m!

µm
=
∞∑
m=0

|am|2
(
m+ k

m!µk

)(
η

µ

)m
m!

ηm
,

and as
(
m+k
m!µk

)(
η
µ

)m
is bounded as a function of m by some constant C > 0 (owing

to the exponential decay of (η/µ)
m

), it follows that ‖Mxk‖
F 2
µ

F 2
η
< C.

Hence, by linear combinations of monomials it has been demonstrated that a
multiplication operator with polynomial symbol is a bounded operator.

Remark 3.3. The authors emphasize that the collection of bounded multiplica-
tion operators between these spaces is strictly larger than the those with polynomial
symbols. The purpose of this lemma is to simply support the existence of compact
Liouville operators, rather than to provide a complete classification.

Theorem 3.4. Let µ3 > µ1, and suppose that f is a vector valued function over
several variables, where each entry is a polynomial. Then the Liouville operator Af :
F 2
µ1

(Rn)→ F 2
µ3

(Rn) defined as Afg = ∇g · f is a compact operator.
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Proof. Let f = (f1, f2, . . . , fn)>, and select µ2 such that µ1 < µ2 < µ3. For
each i = 1, . . . , n, the operator of partial differentiation ∂

∂xi
: F 2

µ1
(Rn) → F 2

µ2
(Rn)

is a compact operator, and the multiplication operator Mfi : F 2
µ2

(Rn) → F 2
µ3

(Rn) is

bounded. Hence, the operator Mfi
∂
∂xi

is compact. As Af = Mf1
∂
∂x1

+ · · ·+Mfn
∂
∂xn

,

it follows that Af is a compact operator from F 2
µ1

(Rn) to F 2
µ3

(Rn).

This section has thus established the existence of compact Liouville operators
between various pairs of spaces. It is emphasized that these are not the only pairs for
which a compact Liouville operator may be determined.

4. Singular Dynamic Mode Decomposition for Compact Liouville Op-
erators. The objective of this section is to determine a decomposition of the full
state observable, gid(x) := x, with respect to an orthonormal basis obtained from a
Liouville operator corresponding to a continuous time dynamical system ẋ = f(x).
We will let H and H̃ be two RKHSs over Rn such that the Liouville operator,
Afg(x) = ∇g(x)f(x) is compact as an operator from H to H̃. To obtain an orthonor-
mal basis, a singular value decomposition for the compact operator Af is obtained.
Specifically, note that as Af is compact, so is A∗f . Hence, A∗fAf is diagonalizable
as a self adjoint compact operator. Thus, there is a countable collection of non-
negative eigenvalues σ2

m ≥ 0 and eigenfunctions ϕm corresponding to A∗fAf , such

that A∗fAfϕm = σ2
mϕm. Since A∗fAf is self adjoint, {ϕm}∞m=0 may be selected in

such a way that they form an orthonormal basis of H. The functions ϕm are the right
singular vectors of Af .

For σm 6= 0, the left singular vectors may be determined as ψm :=
Afϕm
σm

, and the

collection of nonzero ψm form an orthonormal set in H̃. This may be seen via

〈ψm, ψm′〉H̃ =
1

σmσm′
〈Afϕm, Afϕm′〉H̃

=
1

σmσm′
〈ϕm, A∗fAfϕm′〉H =

σ2
m′

σmσm′
〈ϕm, ϕm′〉 =

σ2
m′

σmσm′
δm,m′ ,

where δ·,· is the Kronecker delta function.
Finally,

Afg =
∑
σm 6=0

〈g, ϕm〉Hσmψm

for all g ∈ H, and

A∗fh =
∑
σm 6=0

〈h, ψm〉H̃σmϕm.

To find a decomposition for the full state observable, gid, first note that the full
state observable is vector valued, whereas the Hilbert spaces consist of scalar valued
functions. To ameliorate this discrepancy, we will work with the individual entries of
the full state observable, namely the maps x 7→ (x)i, for i = 1, . . . , n, which are the
mappings of x to its individual components. When (x)i resides in the Hilbert space,
such as with the space F 2

µ(Rn), and (x)i may be directly expanded with respect to the
right singular vectors of Af . If (x)i is not in the space, as in the case with the Gaussian
RBF, if the space is universal, then a suitable approximation may be determined over
a fixed compact subset, and the approximation will be expanded instead. Performing
the entry wise decomposition of the full state observable is equivalent to performing
the decomposition over vector valued RKHSs with diagonal kernel operators, and
replacing the gradient of g with the matrix valued derivative.
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Hence, for each i = 1, . . . , n, we have (x)i =
∑∞
m=0(ξm)iϕm(x), where (ξm)i =

〈(x)i, ϕm〉H . The vectors ξm are called the singular Liouville modes of the dynamical
system with respect to the pair of Hilbert space H and H̃.

Note that for a trajectory of the system, given as x(t), it can be seen that

ẋ(t) = f(x(t)) = ∇gid(x(t))f(x(t)) = Afgid(x(t))

=
∞∑
m=0

〈gid, ϕm〉Hσmψm(x(t)) =
∞∑
m=0

ξmσmψm(x(t)).

Hence, x(t) satisfies a differential equation with respect to the left singular vectors
of the Liouville operator and the singular Liouville modes. Given these quantities,
reconstruction of x(t) is possible using tools from the solution of initial value problems.
In particular, the following form of the equation may be exploited:

x(t) = x(0) +
∞∑
m=0

ξmσm

∫ t

0

ψm(x(τ))dτ.

5. Recovering an Eigenfunction Approach in Special Cases. While the
majority of this manuscript is aimed at the singular DMD, where the domain and
range are different for the compact Liouville operator, there is still a possibility of
obtaining an eigendecomposition in special cases. In particular, for many of the ex-
amples shown above, the domain and range spaces have similar structure and the
range space has less stringent requirement for the functions it contains. This means
that the domain itself may be embedded in the range space, and if there is a com-
plete set of eigenfunctions in this embedded space, then the operator may still be
diagonalized.

Note that the operator is still mapping between two different Hilbert spaces, which
means that the inner product on the embedding is different than the inner product on
the domain. This difference will appear in the numerical methods given in subsequent
sections.

The following is a well known result (cf. [27, Theorem 2.10]), and is included here
for illustration purposes.

Proposition 5.1. If µ1 < µ2, then F 2
µ1

(Rn) ⊂ F 2
µ2

(Rn).

Proof. Again this is shown for the single variable case, where the multivariate
case follows by an identical argument, but with more bookkeeping.

Suppose that g ∈ F 2
µ1

(R) with g(z) =
∑∞
m=0 amz

m. Then

‖g‖2F 2
µ2

(R) =
∞∑
m=0

|am|2
m!

µm2
=
∞∑
m=0

|am|2
(
µ1

µ2

)m
m!

µm1
≤
∞∑
m=0

|am|2
m!

µm1
= ‖g‖2F 2

µ1
(R).

Since the quantity on the right is bounded, so is the quantity on the left. Hence
g ∈ F 2

µ2
(R).

Example 1. A simple example demonstrating that an eigenbasis may be found
between the two spaces arises in the study of Ax : F 2

µ1
(R) → F 2

µ2
(R) for µ1 < µ2.

Note that an eigenfunction, ϕ, for Ax must reside in F 2
µ1

(R) ∩ F 2
µ2

(R) = F 2
µ1

(R),

and satisfy ϕ′(x)x = λϕ(x). Consequently, takes the form ϕ(x) = xλ, and is in
F 2
µ1

(R) only for λ = 0, 1, 2, . . .. Hence, the eigenfunctions of Ax are the monomials.
Monomials are contained in F 2

µ1
(R) and form a complete eigenbasis for both spaces.

Note that the norm of xm is
√

m!
µm1

in F 2
µ1

(R) and
√

m!
µm2

in F 2
µ2

(R).
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The following proposition is obtained in the same manner as in the classical case.

Proposition 5.2. Suppose that H and H̃ are two RKHSs over Rn, and that
H ⊂ H̃. If ϕ ∈ H is an eigenfunction for Af as Afφ = λφ, then given a trajectory
x : [0, T ]→ Rn satisfying ẋ = f(x) the following holds ϕ(x(t)) = eλtϕ(x(0)).

Proof. Since Afϕ = ∇ϕf , it follows that

d

dt
ϕ(x(t)) = ∇ϕ(x(t))ẋ(t) = ∇ϕ(x(t))f(x(t)) = Afϕ(x(t)) = λϕ(x(t)).

That is, d
dtϕ(x(t)) = λϕ(x(t)). Thus, the conclusion follows.

Suppose that Af : H → H̃ has a complete eigenbasis in the sense that the span
of the eigenfunctions, {ϕm}∞m=1, are dense in H. If gid, is the full state observable,
then each entry of gid, (x)i for i = 1, . . . , n, may be expressed as

(x)i = lim
M→∞

M∑
m=1

(ξm,M )iϕm(x),

where (ξm,M )i is the m-th coefficient obtained from projecting (x)i onto the span of
the first M eigenfunctions. If the eigenfunctions are orthogonal, then the dependence
on M may be removed from ξm,M . Hence, the full state observable is obtained from

(5.1) gid(x) = lim
M→∞

M∑
m=1

ξm,Mϕm(x),

with ξm,M being the vector obtained by stacking (ξm,M )i. Finally, by substituting
x(t) into this representation (where ẋ = f(x)), the following holds

(5.2) x(t) = gid(x(t)) = lim
M→∞

M∑
m=1

ξm,Me
λtϕm(x(0)).

Hence, this methodology yields a DMD routine, where the finite rank represen-
tations will converge to the compact Liouville operators, following the proof given in
the Appendix of [19].

6. Singular Dynamic Mode Decomposition Algorithm. This section is
aimed at determining a convergent algorithm that can determine approximations of
the singular Liouville modes and the singular vectors of Af . While an eigenfunction
expansion is still possible in the case of nested spaces, the Singular DMD algorithm is
technically more general. Moreover, the SVD ensures the existence of dynamic modes,
which may not be well defined fixed concepts for the eigenfunction case.

From the data perspective, a collection of trajectories, {γj : [0, Tj ] → Rn}Mj=1,
corresponding to an unknown dynamical system, f : Rn → Rn, as γ̇j = f(γj) have
been observed. The objective of DMD is to get an approximation of the dynamic
modes of the system, and to obtain an approximate reconstruction of a given trajec-
tory. Once a reconstruction is determined, then data driven predictions concerning
future states of the trajectory may be determined. A DMD routine is somewhat like
a Fourier series representation, which can reproduce a continuous trajectory exactly,
however DMD methods exploit a trajectory’s underlying dynamic structure.

This routine effectively interpolates the action of the Liouville operator on a
collection of basis functions. When these basis functions form a complete set within
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the Hilbert space, which can be achieved by selecting a dense collection of short
trajectories throughout the workspace, then a sequence of finite rank approximations
determined by this routine converges to the compact Liouville operator in norm.
Which means that the left and right singular functions of the finite rank operators in
the sequence converge to those of the Liouville operator, and that the singular values
converge as well.

DMD routines involving the Koopman operator add the additional requirement
of forward completeness for the sake of discretization. This method as well as that of
[19] sidestep that requirement by accessing the Liouville operators directly through
their connection with the occupation kernels of the RKHSs. To wit, given two RKHSs
of continuously differentiable functions, H and H̃, with kernels K and K̃ respectively,
and a compact Liouville operator, Af : H → H̃, the occupation kernel, Γγj ∈ H̃
corresponding to the trajectory γj satisfies

(6.1) A∗fΓγj = K(·, γj(Tj))−K(·, γj(0)),

where K is the kernel function for the space H. In particular, given g ∈ H,

〈Afg,Γγj 〉H̃ =

∫ Tj

0

∇g(γj(t))f(γj(t))dt

=

∫ Tj

0

ġ(γj(t))dt = g(γj(Tj))− g(γj(0)) = 〈g,Kγj(T ) −Kγj(0)〉H .

The objective is to construct a finite rank approximation of Af through which
an SVD may be performed to find approximate singular values and singular vectors,
and to ultimately approximate the singular Liouville modes. Note that since the
dynamics are unknown, the adjoint must be approximated instead, where the action
of the adjoint on the occupation kernels provides a sample of the operator. Thus,
the finite rank representation will be determined through the restriction of H̃ to the
span of the ordered basis α = {Γγj}Mj=1. A corresponding basis for H must also be
selected, and given the available information, β = {K(·, γj(Tj))−K(·, γj(0))} is most
reasonable. Of course, this leads to a rather benign matrix representation of

[A∗f ]βα =

1
. . .

1

 .

Moreover, if this matrix is input into an SVD routine, typical algorithms would not
be aware of the non-orthogonal inner products between the basis elements. To rectify
this, two orthonormal bases α′ and β′ may be obtained from an eigendecomposition
of the Gram matrices (which are assumed to be strictly positive definite)

(6.2) G̃ :=

 〈Γγ1 ,Γγ1〉H̃ · · · 〈Γγ1 ,ΓγM 〉H̃
...

. . .
...

〈ΓγM ,Γγ1〉H̃ · · · 〈ΓγM ,ΓγM 〉H̃


= V ΛV ∗ :=

 | |
ṽ1 · · · ṽM
| |

λ̃1 · · ·
λ̃M


− ṽ∗1 −

...
− ṽ∗M −


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for α and

(6.3) G =

 〈A
∗
fΓγ1 , A

∗
fΓγ1〉H · · · 〈A∗fΓγ1 , A

∗
fΓγM 〉H

...
. . .

...
〈A∗fΓγM , A

∗
fΓγ1〉H · · · 〈A∗fΓγM , A

∗
fΓγM 〉H


= Ṽ Λ̃Ṽ ∗ :=

 | |
v1 · · · vM
| |

λ1 · · ·
λM


− v∗1 −

...
− v∗M −


for β. A more meaningful representation of A∗f may be found by re-expressing [A∗f ]βα
in terms of the orthornormal sets α′ = {qj}Mj=1 and β′ = {pj}Mj=1 where

pj =
1√
v∗jGvj

M∑
`=1

(vj)`(K(·, γ`(T`))−K(·, γ`(0))), and

qj =
1√
ṽ∗j G̃ṽj

M∑
`=1

(ṽj)`Γγ` .

In other words the orthonormal set α′ is given by,

(6.4)

 q1(x)
...

qM (x)

 =



(√
ṽ∗1G̃ṽ1

)−1
. . . (√

ṽ∗M G̃ṽM

)−1
 Ṽ >

Γγ1(x)
...

ΓγM (x)

 ,

and a similar expression may be written for the orthonormal set β′. Write

(6.5) Ṽ0 = Ṽ diag

((√
ṽ∗1G̃ṽ1

)−1
, . . . ,

(√
ṽ∗M G̃ṽM

)−1)
,

and

(6.6) V0 = V diag

((√
v∗1Gv1

)−1
, . . . ,

(√
v∗MGvM

)−1)
,

where the coefficients of each column of V0 and Ṽ0 correspond to functions of norm 1
for their respective spaces. It follows that

(6.7) [A∗f ]β
′

α′ = V −10 [A∗f ]βαṼ0 = V −10 Ṽ0.

That is, the matrix representation with respect to the bases β′ and α′ are obtained
by sending elements of α′ to α, computing the action of [A∗f ]βα on this transformation,
and then sending the result expressed in terms of the β basis to β′.

Now the approximate singular vectors may be obtained for Af by taking the SVD

of [A∗f ]β
′

α′ . In particular, the right singular vectors of [A∗f ]β
′

α′ will be correspond to the
approximate left singular functions of Af and vice versa. In particular, writing the
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SVD of [A∗f ]β
′

α′ as

[A∗f ]β
′

α′ = Û Σ̂V̂ ∗ =

 | |
û1 · · · ûM
| |


σ̂

2
1

. . .

σ̂2
M


− v̂∗1 −

...
− v̂∗M −

 ,

and the approximate right singular vector for Af is ϕ̂j = 1√
u∗jGpuj

∑
`(ûj)`p`, and the

approximate left singular vector for Af is ψ̂j = 1√
v̂∗jGq v̂j

∑
`(v̂j)`q`, where Gp and Gq

are the Gram matrices for the ordered bases β′ and α′ respectively.
Translating this to the original bases α and β, we find the following:

(6.8) ϕ̂j =
1√

û∗jGpûj
u>j V

>
0

 K(·, γ1(T1))−K(·, γ1(0))
...

K(·, γM (TM ))−K(·, γM (0))

 ,

and

(6.9) ψ̂j =
1√

v̂∗jGq v̂j
v̂>j Ṽ

>
0

Γγ1
...

ΓγM

 .

Thus, if x : [0, T ]→ Rn satisfies ẋ = f(x), then it may be approximately expressed
through the integral equation

(6.10) x(t) ≈ x(0) +

∫ t

0

M∑
j=1

σj ξ̂jψ̂j(x(τ))dτ,

where

(6.11) f(x) ≈
M∑
j=1

σj ξ̂jψ̂j(x)

serves as an approximation of the vector field f and

(6.12) ξ̂j =

〈(x)1, ϕ̂j〉H
...

〈(x)n, ϕ̂j〉H

 = diag

(
1√

û∗1Gpû1
, · · · , 1√

û∗MGpûM

)

×

− û>1 −
...

− û>M −

V >0

 (γ1(T1))j − (γ1(0))j
...

(γM (TM ))j − (γM (0))j


are the DMD modes. The singular DMD technique is summarized in Algorithm 6.1.

7. The Eigenfunction based DMD Algorithm. In this section it will be
assumed that Af : H → H̃ is a compact operator, and that H ⊂ H̃. Since Af is com-
pact, it is bounded, which means that unlike [12] and [19], no additional assumptions
are needed concerning the domain of this operator.
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Algorithm 6.1 Pseudocode for the singular DMD routine of Section 6. Once the
singular DMD modes, the right and left singular vectors, and the singular values
are returned, (6.10) can be used, along with a numerical integration routine, to re-
construct trajectories of the system starting from any given initial condition x(0).

Evaluation of the left singular vector ψ̂ at x(τ) itself requires evaluation of the occu-
pation kernels Γγj (x(τ)), which can be achieved using the integral representation of

the occupation kernel as Γγj (x(τ)) =
∫ Tj
0
K̃ (x(τ), γj(t)) dt (cf. [19]). The choice of

numerical integration routine can have a significant impact on the overall results, and
it is advised that a high accuracy method is leveraged in practice.

Require: Sampled trajectories {γj : [0, T ]→ Rn}Mj=1

Require: Kernel function K : Rn × Rn → R of the domain RKHS H
Require: Kernel function K̃ : Rn × Rn → R of the range RKHS H̃
Require: A numerical integration routine

1: Construct the matrix G̃ in (6.2) using 〈Γγj ,Γγi〉H̃ =
∫ Ti
0

∫ Tj
0
K̃(γi(τ), γj(t))dtdτ

and a numerical integration routine (cf. [19])
2: Construct the matrix G in (6.3) using (6.1)
3: Compute eigenvalues, λ̃i, and eigenvectors, ṽi, of G̃
4: Compute eigenvalues, λi, and eigenvectors, vi, of G
5: Construct the matrices Ṽ0 and V0 using (6.5) and (6.6), respectively

6: Construct the matrices Gp =
[
〈pi, pj〉H

]M
i,j=1

and Gq =
[
〈qi, qj〉H̃

]M
i,j=1

using (6.4)

and a similar expression for β′

7: Construct the finite rank representation [A∗f ]β
′

α′ using (6.7)
8: Construct the approximate right and left singular vectors of Af using the left and

right singular vectors of [A∗f ]β
′

α′ and (6.8) and (6.9), respectively

9: Construct the singular DMD modes ξ̂j using (6.12)

10: return Singular DMD modes, ξ̂j , approximate normalized right and left singular

vectors ϕ̂j , ψ̂j , respectively, and approximate singular values σj for j = 1, · · · ,M

7.1. Derivation of the Eigenfunction Method. For a collection of observed
trajectories, {γ1, . . . , γM} consider the collection of occupation kernels for the space
H, denoted by α = {Γγ1 , . . . ,ΓγM }Mm=1, and the occupation kernels for the space H̃,

denoted by β = {Γ̃γ1 , . . . , Γ̃γM }. Let Pα be the projection from H to H onto the

span of α, and let P̃α and P̃β be the corresponding projections onto the spans of α

and β respectively (viewed as subspaces of H̃). The numerical method presented in
this section will construct a matrix representation for the operator P̃αP̃βAfPα, where

the matrix, [P̃αP̃βAfPα]αα, represents this operator on the span of α in the domain
and range respectively. Note that since the matrix representation is defined over α,
[P̃αP̃βAfPα]αα = [P̃αP̃βAf ]αα.

Recall that for a function g ∈ H̃, P̃βg is a linear combination of the functions of

β as
∑M
m=1 wmΓ̃γm , where the weights are obtained via 〈Γ̃γ1 , Γ̃γ1〉H̃ · · · 〈Γ̃γ1 , Γ̃γM 〉H̃

...
. . .

...

〈Γ̃γM , Γ̃γ1〉H̃ · · · 〈Γ̃γM , Γ̃γM 〉H̃


 w1

...
wM

 =

 〈g, Γ̃γ1〉H̃...

〈g, Γ̃γM 〉H̃

 ,

and the matrix Gβ :=
[
〈Γ̃γi , Γ̃γj 〉H̃

]M
i,j=1

is the Gram matrix for the basis β in the
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space H̃.
Hence, for each Γγj , the weights for the projection,

∑M
m=1 wmΓ̃γm , of AfΓγj onto

the span of β may be obtained as

 〈Γ̃γ1 , Γ̃γ1〉H̃ · · · 〈Γ̃γ1 , Γ̃γM 〉H̃
...

. . .
...

〈Γ̃γM , Γ̃γ1〉H̃ · · · 〈Γ̃γM , Γ̃γM 〉H̃


 w1

...
wM



=

 〈AfΓγj , Γ̃γ1〉H̃
...

〈AfΓγj , Γ̃γM 〉H̃

 =

 〈Γγj , A
∗
f Γ̃γ1〉H
...

〈Γγj , A∗f Γ̃γM 〉H



=

 〈Γγj ,Kγ1(T1) −Kγ1(0)〉H
...

〈Γγj ,KγM (TM ) −KγM (0)〉H

 =

 Γγj (γ1(T1))− Γγj (γ1(0))
...

Γγj (γM (TM ))− Γγj (γM (0))

 .

Next, a projection of
∑M
m=1 wmΓ̃γm onto the span of α within H̃ must be performed.

For each Γ̃γj , the weights corresponding to its projection,
∑M
l=1 vl,jΓγl , onto the span

of α are given via

 〈Γγ1 ,Γγ1〉H̃ · · · 〈Γγ1 ,ΓγM 〉H̃
...

. . .
...

〈ΓγM ,Γγ1〉H̃ · · · 〈ΓγM ,ΓγM 〉H̃


 v1,j

...
vM,j

 =

 〈Γ̃γj ,Γγ1〉H̃...

〈Γ̃γj ,ΓγM 〉H̃

 .

Computation the inner products 〈Γγi ,Γγj 〉H̃ and 〈Γ̃γj ,Γγi〉H̃ in the equation above is
detailed in Section 7.2.

Hence, the projection of AfΓγj is given as

P̃αP̃βAfΓγj =

M∑
m=1

wm

M∑
`=1

v`,mΓγ` =

M∑
m=1

wm

M∑
`=1


 〈Γγ1 ,Γγ1 〉H̃ · · · 〈Γγ1 ,ΓγM 〉H̃

..

.
. . .

..

.
〈ΓγM ,Γγ1 〉H̃ · · · 〈ΓγM ,ΓγM 〉H̃


−1 

〈Γ̃γm ,Γγ1 〉H̃
.
..

〈Γ̃γm ,ΓγM 〉H̃



> Γγ1

...
ΓγM



=



〈Γ̃γ1 , Γ̃γ1 〉H̃ · · · 〈Γ̃γ1 , Γ̃γM 〉H̃

.

.

.
. . .

..

.

〈Γ̃γM , Γ̃γ1 〉H̃ · · · 〈Γ̃γM , Γ̃γM 〉H̃


−1 

Γγj (γ1(T1))− Γγj (γ1(0))

.

..
Γγj (γM (TM ))− Γγj (γM (0))



>

×


 〈Γγ1 ,Γγ1 〉H̃ · · · 〈Γγ1 ,ΓγM 〉H̃

.

..
. . .

.

..
〈ΓγM ,Γγ1 〉H̃ · · · 〈ΓγM ,ΓγM 〉H̃


−1 

〈Γ̃γ1 ,Γγ1 〉H̃ · · · 〈Γ̃γM ,Γγ1 〉H̃
.
..

〈Γ̃γ1 ,ΓγM 〉H̃ · · · 〈Γ̃γM ,ΓγM 〉H̃



> Γγ1

.

..
ΓγM

 ,
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and the final representation, [P̃αP̃βAf ]αα is given as

[P̃αP̃βAf ]αα =(7.1) 〈Γγ1 ,Γγ1〉H̃ · · · 〈Γγ1 ,ΓγM 〉H̃
...

. . .
...

〈ΓγM ,Γγ1〉H̃ · · · 〈ΓγM ,ΓγM 〉H̃


−1 〈Γ̃γ1 ,Γγ1〉H̃ · · · 〈Γ̃γM ,Γγ1〉H̃

...

〈Γ̃γ1 ,ΓγM 〉H̃ · · · 〈Γ̃γM ,ΓγM 〉H̃



×

 〈Γ̃γ1 , Γ̃γ1〉H̃ · · · 〈Γ̃γ1 , Γ̃γM 〉H̃
...

. . .
...

〈Γ̃γM , Γ̃γ1〉H̃ · · · 〈Γ̃γM , Γ̃γM 〉H̃


−1

×

 Γγ1(γ1(T1))− Γγ1(γ1(0)) · · · ΓγM (γ1(T1))− ΓγM (γ1(0))
...

Γγ1(γM (TM ))− Γγ1(γM (0)) · · · ΓγM (γM (TM ))− ΓγM (γM (0))

 .

Note that when H = H̃ and the occupation kernels are assumed to be in the domain
of the Liouville operator, the first two matrices cancel, and the representation reduces
to that of [19].

Under the assumption of diagonalizability for (7.1), which holds for almost all
matrices, an eigendecomposition for (7.1) may be determined as

[P̃αP̃βAf ]αα =

 | |
V1 · · · VM
| |


λ1 . . .

λM


 | |
V1 · · · VM
| |

−1 ,

where each column, Vj , is an eigenvector of [P̃αP̃βAf ]αα with eigenvalue λj . The
corresponding normalized eigenfunction is given as

(7.2) ϕ̂j(x) =
1√

V >j GαVj
V >j

Γγ1
...

ΓγM

 ,

where the normalization is performed in the Hilbert space H through the Gram matrix
for α, Gα, according to H’s inner product. Set V̄j := 1√

V >j GαVj
Vj , and let V̄ :=(

V̄1 · · · V̄M
)
.

The Gram matrix for the normalized eigenbasis may be quickly computed as
V̄ >GαV̄ , and the weights for the projection of the full state observable onto this
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Algorithm 7.1 Pseudocode for the eigenfunction based DMD routine of Section 7.
Once the singular DMD modes, the normalized eigenfunctions, and the eigenvalues
are returned, (7.5) can be used along with a numerical integration routine to recon-
struct trajectories of the system starting from any given initial condition x(0). Similar
to Algorithm 6.1, evaluation of the eigenfunctions at x(0) requires the integral rep-

resentation Γγj (·) =
∫ Tj
0
K (·, γj(t)) dt. The choice of numerical integration routine

can have a significant impact on the overall results, and it is advised that a high
accuracy method is leveraged in practice. If the matrices in steps 1, 2, and 3 are close
to singular, they can be regularized by adding εIM×M where ε > 0 is a small constant.

Require: Sampled trajectories {γj : [0, T ]→ Rn}Mj=1

Require: Kernel function K : Rn × Rn → R of the domain RKHS H
Require: Kernel function K̃ : Rn × Rn → R of the range RKHS H̃
Require: A numerical integration routine

1: Construct the matrix Gβ :=
[
〈Γ̃γi , Γ̃γj 〉H̃

]M
i,j=1

using 〈Γ̃γj , Γ̃γi〉H̃ =∫ Ti
0

∫ Tj
0
K̃(γi(τ), γj(t))dtdτ and a numerical integration routine (cf. [19])

2: Construct the matrix
[
〈Γγi ,Γγj 〉H̃

]M
i,j=1

using (7.8) and a numerical integration

routine

3: Construct the matrix
[
〈Γ̃γi ,Γγj 〉H̃

]M
i,j=1

using (7.7) and a numerical integration

routine
4: Construct the matrix

[
Γγj (γi(Ti))− Γγj (γi(0))

]M
i,j=1

using the integral represen-

tation Γγj (·) =
∫ Tj
0
K (·, γj(t)) dt and a numerical integration routine

5: Construct the matrix [P̃αP̃βAf ]αα using (7.1) and compute its eigenvalues, λi, and
eigenvectors, Vi

6: Use (7.2) and a numerical integration routine to compute the eigenfunctions ϕ̂j
7: Use (7.3) and a numerical integration routine to compute the singular DMD modes

ξ̂j
8: return Singular DMD modes, ξj , eigenfunctions, ϕ̂j , and eigenvalues λj for j =

1, · · · ,M

eigenbasis may be written as

− ξ̂>1 −
...

− ξ̂>M −

 = (V̄ >GαV̄ )−1

 〈(x)1, ϕ̂1〉H · · · 〈(x)n, ϕ̂1〉H
...

. . .
...

〈(x)1, ϕ̂M 〉H · · · 〈(x)n, ϕ̂M 〉H

(7.3)

= (V̄ >GαV̄ )−1V̄ >

 〈(x)1,Γγ1〉H · · · 〈(x)n,Γγ1〉H
...

. . .
...

〈(x)1,ΓγM 〉H · · · 〈(x)n,ΓγM 〉H



= (V̄ >GαV̄ )−1V̄ >


∫ T1

0
γ1(t)>dt

...∫ T1

0
γM (t)>dt


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and thus,

(7.4) gid(x) ≈
M∑
m=1

ξ̂mϕ̂m(x).

The approximation error (with respect to the norm of the RKHS) approaches zero if
the number of trajectories increases and the corresponding collection of occupation
kernels forms a dense set. Convergence in the norm of the RKHS implies uniform
convergence on compact subsets of the domain.

Consequently, a trajectory x : [0, T ] → Rn satisfying ẋ = f(x) may be approxi-
mately expressed as

(7.5) x(t) = gid(x(t)) ≈
M∑
m=1

ξ̂me
λmtϕ̂m(x(0)),

where the eigenfunctions for the finite rank approximation of Af play the role of
eigenfunctions for the original operator, Af . Furthermore, the vector field f may be
approximated as

(7.6) f(x) ≈
M∑
m=1

λmξ̂mϕ̂m(x).

Note that for a given ε > 0 there is a sufficiently large collection of trajectories

and occupation kernels such that ‖P̃αP̃βAfPα−Af‖H̃H < ε. Hence, if ϕ̂ is a normalized
eigenfunction for the finite rank representation with eigenvalue λ, then

‖λϕ̂−Af ϕ̂‖H̃ = ‖P̃αP̃βAfPαϕ̂−Af ϕ̂‖H̃ ≤ ε‖ϕ̂‖H = ε.

Consequently, given a compact subset of Rn and a given tolerance, ε0, a finite rank
approximation may be selected such that for each normalized eigenfunction the rela-
tion

∣∣ d
dt ϕ̂(x(t))− λϕ̂(x(t))

∣∣ < ε0 for all x(t) in the compact set. Hence, for sufficiently
rich information, ϕ̂(x(t)) ≈ eλtϕ̂(x(0)).

7.2. Computational Remarks for the Eigenfunction Method. Some en-
tries for the matrices in the above computations require a bit more analysis. Namely,
this includes the inner products, 〈Γγi ,Γγj 〉H̃ and 〈Γγi , Γ̃γj 〉H̃ . All the other quantities
have been discussed at length in [20, 21, 19].

The second quantity simply utilizes the functional definition of the function Γ̃γj as

a function in H̃, 〈Γγi , Γ̃γj 〉H̃ =
∫ Tj
0

Γγi(γj(t))dt =
∫ Tj
0

∫ Ti
0
K(γj(t), γi(τ))dτdt, where

K is the kernel function for H. Note that this means

(7.7) 〈Γγi , Γ̃γj 〉H̃ = 〈Γγi ,Γγj 〉H .

However, the first quantity is more complicated and is context dependent. In particu-
lar, Γγi is not the occupation kernel corresponding to H̃, so it’s functional relationship

cannot be exploited in the same manner. On the other hand, Γγi(x) =
∫ Ti
0
K(x, γi(t)).

To compute the inner product in H̃, a specific selection of spaces must be considered.
In the particular setting where H = F 2

µ1
(Rn) and H̃ = F 2

µ2
(Rn), with µ1 <

µ2, it follows that Γγi(x) =
∫ T
0
eµ1x

>γi(t)dt. Moreover, K(x, γi(t)) = eµ1x
>γi(t) =
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Fig. 1. A selection of the real parts of approximate Liouville modes obtained using the exponen-
tial dot product kernel, where the domain corresponds to µ1 = 1/10000 and the range corresponds
to µ2 = 1/9999.

e
µ2x
>
(
µ1
µ2
γ(t)

)
= K̃(x, (µ1/µ2)γi(t)). Hence, Γγi(x) = Γ̃(µ1/µ2)γi(x), and

(7.8) 〈Γγi ,Γγj 〉H̃ = 〈Γ̃(µ1/µ2)γi , Γ̃(µ1/µ2)γj 〉H̃

=

∫ Ti

0

∫ Tj

0

K̃((µ1/µ2)γi(t), (µ1/µ2)γj(τ))dτdt.
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The eigenfunction approach to singular DMD is summarized in Algorithm 7.1.

Fig. 2. A selection of true and reconstructed snapshots for the cylinder flow example. From top
to bottom, the first column presents the true snapshots at t = 0.18s, t = 1.08s, t = 1.58s, t = 2.24s,
and t = 2.98s, respectively, the second column presents the corresponding reconstructed snapshots,
and the third column presents snapshots reconstructed using kernel DMD (see [26]). Parameters for
the two methods are tuned manually to yield the smallest reconstruction error.

8. Numerical Results. This section presents the results obtained through im-
plementation of the eigenfunction method in Section 7 with the domain viewed as
embedded in the range of the operator.

8.1. Experiment 1: Cylinder flow. This experiment uses the benchmark
cylinder flow data set found in [14]. The dataset is a time series of fluid vorticity field
snapshots for the wake behind a circular cylinder at Reynolds number Re = 100. The
dataset comprises 151 snapshots sampled at h = 0.02s. To implement the developed
method, the dataset was segmented into strings of adjacent snapshots of length 5
yielding 147 trajectories. The exponential dot product kernel is used with parameters
selected by trial and error as µ1 = 1/10000 and µ2 = 1/9999. Numerical integration is
performed using Simpson’s Rule. To improve numerical stability, each Gram matrix
is regularized by adding εIM×M with ε = 1× 10−5.

Presented in Figure 1 are a selection of approximate Liouville modes obtained
for this operator through the finite rank approximation determined by Section 7.
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Fig. 3. The plot on the left shows true sample trajectory of the scalar system ẋ = 1+x2 starting
from x(0) = −0.5 and the corresponding approximation generated using generated using (7.5). The
plot on the right shows the same true sample trajectory along with the approximation generated using
kernel DMD (see [26]). Parameters for the two methods are tuned manually to yield the smallest
reconstruction error.

Examples of the reconstructed and original data are shown in Figure 2.
The results are compared with an implementation of the kernel DMD method

developed in [26], implemented with snapshots 1 to 150 as the input matrix and
snapshots 2 to 151 as the output matrix, and using the exponential dot product
kernel, with parameter µ = 500.

8.2. Experiment 2: Systems with finite escape time. This experiment
demonstrates applicability of the developed method to systems with finite escape
time. Ten trajectories of the scalar system ẋ = 1 + x2 are generated, starting from
initial conditions equally spaced between −1 and 1 over a time horizon of 0.5s. The
trajectories are sampled every h = 0.02s to generate a dataset. The exponential dot
product kernel is used with parameters selected by trial and error as µ1 = 1/4.71 and
µ2 = 1/4.7. Numerical integration is performed using Simpson’s Rule. To improve
numerical stability, each Gram matrix is regularized by adding εIM×M with ε =
1× 10−7.

The resulting model is used to generate a trajectory of the system, starting from
x(0) = −0.5 over a longer time horizon of 0.7s. The developed method is compared
against the kernel DMD method from [26]. Kernel DMD is implemented using a
dataset containing 45 snapshots of the system, corresponding to the values of x at 0s,
0.25s, and 0.5s in 15 trajectories of the system starting from initial conditions equally
spaced between −1 and 1. The exponential dot product kernel is used with parameter
selected by trial and error as µ = 1/1.7.

Selection of parameters for the exponential dot product kernel lacks the theoretical
backing that the Gaussian RBF kernels enjoy. As shown in [22], if Gaussian RBF
kernels are used, then the fill distance of the data provides guidance for selection of
the parameter. Both the exponential dot product kernel and the Gaussian RBF are
universal kernels, however, and are can be used effectively for approximation purposes.
Heuristically, the selection of the parameter for the exponential dot product kernel can
be made to prevent large data points from appearing directly inside the exponential
function. Such selection can be achieved, for example, by setting the parameter so
that the exponent in the kernel is within [−1, 1].

Figure 3 shows a representative trajectory of the system starting from x(0) =
−0.5, reconstructed using the developed method. Figure 4 shows the error between
approximation of the vector field 1 + x2, generated using (7.6), and the true vector
field.

9. Discussion. The methods presented in this manuscript give two algorithms
for performing a DMD. Together with the compactness of the Liouville operators, the



22 J. A. ROSENFELD AND R. KAMALAPURKAR

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0

2

4

6

8 10-3

Fig. 4. The error between the vector field of the scalar system ẋ = 1+x2 and the corresponding
approximation generated using generated using (7.6).

singular DMD approach guarantees the existence of dynamic modes and convergence
through singular value decomposition of compact operators. Singular DMD is a gen-
eral purpose approach to performing a DMD for when the domain and range of the
operators disagree. The major drawback of this approach is that even though it can
guarantee the existence of dynamic modes, which cannot be done for eigenfunction
methods, the reconstruction involves the solution of an initial value problem, which
is technically more involved than the eigenfunction approach.

The second method adds an additional assumption to the problem, where the
domain is assumed to be embedded in the range of the operator. These embeddings
frequently occur in the study of RKHSs, where the adjustment of a parameter loosens
the requirement on functions within that space. It was demonstrated that this em-
bedding may be established for the exponential dot product kernel, and it also holds
for the native spaces of Gaussian RBFs with differing parameters.

Convergence of these routines follow the proof found in [19], which is a general
purpose approach for showing convergence of operator level interpolants to the com-
pact operators they are approximating. In particular, given an infinite collection of
trajectories for a dynamical system, if the span of the occupation kernels form a
dense subset of their respective Hilbert spaces, convergence of the overall algorithm
is achieved.

The density of the occupation kernels corresponding to trajectories are easily
established for Lipschitz continuous dynamics. This follows since, given any initial
point, x0 in Rn, there is a T0 such that the trajectory starting at x0, γx0 , exists over
the interval [0, T0]. Consider the sequence of occupation kernels indexed by δ ∈ [0, T0],

Γγx0 ,δ(x) :=
∫ δ
0
K(x, γx0

(t))dt. Then 1
δΓγx0 ,δ → K(x, x0) in the Hilbert space norm.

Hence, as x0 was arbitrary, every kernel may be approximated by an occupation
kernel corresponding to a trajectory, and since kernels are dense in H, so are these
occupation kernels. Finally, if H and H̃ are spaces of real analytic functions, the
dynamics must also be real analytic by the same proof found in [20]. Spaces of real
analytic functions include the Gaussian RBF and the exponential dot product kernel
space.

Simulation results demonstrate the efficacy of the developed method. As shown in
Figure 2, the developed model reproduces the vorticity field of the flow past a cylinder.
A 3 seconds long trajectory is reproduced from a dataset that uses 147 trajectories,
each 0.1 seconds long. The developed method can also be used to model systems
with non-Lipschitz dynamics as indicated by Figure 4, where the vector field 1 +x2 is
approximated using 10 trajectories, each 0.5 seconds long. While the approximation
results in Figures 3 and 4 indicate divergence of the reproduced trajectory and vector
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field from the true trajectory and vector field for large t and large x, respectively,
such divergence is to be expected when a numerical approximation technique is used
to approximate non-Lipschitz models.

Figure 2 indicates that the performance of singular DMD, when applied to the
cylinder flow problem, is slightly worse than the kernel DMD method in [26]. On the
other hand, as indicated by Figure 3, when applied to a system that exhibits finite
escape time, the developed method marginally outperforms kernel DMD. It should be
noted that the performance of both methods is sensitive to the selection of kernels,
kernel parameters, and hyperparameters such as sample times, number of trajectories,
and lengths of trajectories. In the numerical experiments above, the parameters and
the hyperparameters were manually selected to minimize reconstruction errors. As
such, the comparison is not quantitatively meaningful, it only serves an illustrative
purpose. While the numerical results are interesting, the authors do not expect that
the developed algorithm will perform better in practice. The operator norm con-
vergence guarantees, absent from results such as [13, 19, 26] and related literature
on Koopman-based DMD, and well-posedness of the Liouville operator for systems
with finite escape time, where Koopman operators are not well-defined, are the key
contributions of this work.

One interesting result of the structure of the finite rank approximation given in
Section 7 is that as µ1 → µ2, the first two matrices cancel. The matrix computations
then approach the computations in [19]. Hence, for close enough µ1 and µ2 the
computations are computationally indistinguishable from [19] over a fixed compact
set containing the trajectories.

Finally, it should be noted that this methodology is not restricted to spaces of
analytic functions, but rather it can work for a large collection of pairs of spaces. As a
rule, the range space should be less restrictive as to the collection of functions in that
space than the domain space. With this in mind, for many of the cases where compact
Liouville operators may be established, the domain will embed into the range. The
complications arise in computing the first matrix in (7.1), where the inner product of
the occupation kernels for the domain are computed in the range space. Hence, the
explicit description for spaces of real analytic functions help resolve that computation.

10. Conclusion. This paper presented a theoretical and algorithmic framework
that achieves many long standing goals of DMD. To wit, by selecting differing domains
and ranges for the Liouville operators (sometimes Koopman generators), the resulting
operators are compact. This comes at the sacrifice of eigenfunctions when the domain
is not embedded in the range of the operator, but achieves well defined dynamic modes
and convergence. Reconstruction can then be determined using typical numerical
methods for initial value problems. However, in the case of an embedding between
the spaces, an algorithm may be established to determine approximate eigenfunctions
for the operators, resulting in a more typical DMD routine that also converges.
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