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Abstract—We present a new way of producing a channel chart
for cellular wireless communications in polar coordinates. We
estimate the angle of arrival θ and the distance between the base
station and the user equipment ρ using the MUSIC algorithm
and inverse of the root sum squares of channel coefficients (ISQ)
or linear regression (LR). We compare this method with the
channel charting algorithms principal component analysis (PCA),
Samson’s method (SM), and autoencoder (AE). We show that ISQ
and LR outperform all three in both performance and complexity.
The performance of LR and ISQ are close, with ISQ having less
complexity.

Index Terms—Channel charting, user equipment (UE), channel
state information (CSI), MUSIC, PCA, SM, AE.

I. INTRODUCTION

In a cellular wireless communication system, a channel chart
is created from channel state information (CSI) that preserves
the relative distance information between user equipments
(UEs) [1], [2]. This chart helps the base station (BS) locate the
UEs, which can help in many applications for cellular wireless
communications such as handover, cell search, user local-
ization, and more. Previous papers have proposed estimation
of a channel chart using Cartesian coordinates. The seminal
reference [1] compared three algorithms, namely principal
component analysis (PCA), Sammon’s mapping (SM), and
autoencoder (AE). All of these algorithms try to convert the
channel coefficients into the angular domain and then try to
extract two features for each UE and these two features will
represent the UE location in the channel chart. Reference
[3] tries to use the AE algorithm in a supervised fashion by
allowing some of the UEs to have global positioning system
(GPS) data for exact location and use it to improve the AE
learning of the geometry. In this letter we propose to estimate
the location of UE in the channel chart in polar coordinates.
We first estimate the angle of arrival (AoA) θ using the MUSIC
algorithm based on the channel coefficients correlation matrix
[4]. For the distance between the BS and the UE ρ, we first
sum the power on all antennas for each UE, then we take
the inverse of the root of the sums and use it as ρ. As an
alternative, we consider linear regression and compare the
results of these approaches and those of PCA, SM, and AE.
We use the same simulation environment in [1] with slight
modifications.

This work is partially supported by NSF grant 2030029.

II. ESTIMATING θ AND ρ

In a cellular wireless communication system, estimating θ
and ρ can happen concurrently as they do not depend on each
other. We will first discuss how to estimate θ by using the
MUSIC algorithm. From Fig. 1, we can see that each antenna
element in the multiple antenna array of the BS will receive
a ray that travels an additional distance λ

2 cos(θ) than the
previous element. This means for each antenna element, the
incremental phase shift is ej(π cos(θ)). With this shift, we get
what is called the steering vector

A = (1, ejπ cos(θ), ejπ2 cos(θ), . . . , ejπ(N−1) cos(θ))T . (1)

This steering vector is embedded within the CSI covariance
matrix (R) along with noise. If we decompose R into its
eigenvectors and examine the corresponding eigenvalues, we
can separate the eigenvectors into a signal subspace S and
a noise subspace N . The noise eigenvectors will have very
small eigenvalues. The subspaces S and N are orthogonal to
each other. Therefore, the dot product of the noise subspace
eigenvectors matrix N and the steering vector will be almost
zero. We can use this concept to find the correct angle by
sweeping θ in the steering vector as illustrated in Algorithm 1,
where PMF stands for probability mass function.

We will now discuss how to estimate ρ. The simple channel
ray model can be depicted as

h = a(d) ej(
2πd
λ +ϕ) where a(d) ∼ d−2, (2)

where the first term in channel phase is linearly proportional
with the distance d between the transmitter and the receiver
and the second term ϕ is a uniformly distributed random

Algorithm 1 MUSIC Procedure
Calculate the CSI covariance matrix R = E[hhH ]
Get the eigenvectors and eigenvalues of R
Separate system subspace S and noise subspace N
for θ = 0 : 180 in increments of 1/2 do

Calculate the steering vector A(θ)
Calculate the PMF(θ) = 1

Norm(A(θ)·N)
end for
Search the PMF for a peak and find the corresponding θ
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Fig. 1. Angle of arrival (θ) relation with phase.

variable in [0, 2π). The channel amplitude is a random vari-
able (Rayleigh(QNLOS) or Rician(QLOS)) which is inversely
proportional to the distance square for free space, ∼d−2. The
number 2 in this expression is called the path loss exponent.
For more crowded environments the path loss exponent can be
3 or 4. Our proposal is a rather direct and simple approach. We
calculate the square root inverse of the sum of CSI magnitudes
for all antennas as

ρ =
1√∑N−1

n=0 abs(hn)
. (3)

Earlier, we tried a supervised approach by assuming we know
the location of 256 (out of 2048) UEs and do a linear
regression with the logarithm of the sum of CSI magnitudes
for all antennas to find a and b in

ρ = aX + b , where X = log

N−1∑
n=0

abs(hn). (4)

But, as we will show later, the unsupervised performance is
almost identical to the linear regression. We will show later
that both methods correlate with real ρ linearly.

III. SIMULATION ENVIRONMENT AND ASSUMPTIONS

In this letter we reused and integrated our algorithm into the
simulation environment in [1] so that we can fairly compare
the performance improvement. We adopted the simulation
parameters in Table III. We assume the antenna elements
and the UEs are in the same plane. We present three cases
depending on the dimensions of the simulation environment
which is 1000m x 500m as in [1]. In the first case, the
dimensions are the same as the dimensions in [1]. In the
second case we see the performance of reducing this to 50%
of the original dimensions. In the last case, the dimensions are
reduced to 25% of the original dimensions. We refer to our
algorithms as ISQ (inverse square root sum) and LR (linear
regression).

TABLE I
SIMULATION PARAMETERS FOR THE CELLULAR WIRELESS

COMMUNICATION SYSTEM

Parameter Value

Antenna array ULA with spacing λ/2 = 15 cm
Number of array antennas 32

Number of UEs 2048
Carrier frequency 2.0 GHz

Bandwidth 312.5 kHz
SNR 0 dB

IV. COMPLEXITY ANALYSIS COMPARISON

When we compare the complexity of our algorithm against
the three algorithms used in [1], the most important advantage
is that our algorithm does not require training or an abundant
number of CSI to be able to reduce dimensionality efficiently.
We can calculate the channel chart even for one UE data. This
can make us calculate the channel chart sequentially (real-
time) as the data is received, rather than store the data of 2048
UEs and use it all at once as in the case of PCA, SM, or AE,
which consumes a very large amount of memory and com-
plexity. The other advantage is the latency. Other algorithms
need to collect the data of all UEs, which can take some time,
and if the system is mobile, the geometry might have already
changed by the time the channel chart is calculated. In our
case, we can calculate each UE channel chart as we receive
it, which makes our algorithm much more efficient. The
computational complexity per UE in our algorithm is mostly
due to the MUSIC algorithm complexity, which consists of
calculating the covariance matrix, the decomposition of the
eigenvalues, PMF of θ and the peak search, all of this can
be approximated by O(M2p+M2N) as in [5] where in our
case M is the number of antenna elements, p is the number
of angles searched which in our case is 360 (0 to 180 in 1/2
degree steps), and N is the number of UEs which is 2048. This
complexity is lower than that of PCA which is O(M2N+M3),
SM which is O(N2) or, AE is much more complex but
hard to quantify exactly. The conclusion from this section is
that our algorithm is much simpler, and has lower latency
(suitable for the mobile environment), than other algorithms
presented in [1]. In addition to being computationally simpler,
our algorithm requires less memory.

V. PERFORMANCE COMPARISON

We now compare the performance of our algorithm em-
ploying three cellular wireless communication channels that
were used in [1]. In [1], these are called Vanilla LOS (LOS),
Quadriga LOS (QLOS), and Quadriga NLOS (QNLOS) [6].
We will use the same nomenclature. For each channel we
compare three scenarios discussed in Section III. The results
are summarized in Table II for k-nearest neighbors equal to
102. As in [1] we use continuity (CT) and trustworthiness
(TW) as performance measures. CT measures if neighbors in
the original space are close in the representation space. TW
measures how well the feature mapping avoids introducing
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new neighbor relations that were absent in the original space.
Let VK(ui) be the K-neighborhood of point ui in the original
space. Also, let r̂(i, j) be the ranking of point vj among the
neighbors of point vi, ranked according to their similarity to
vi. Then the point-wise continuity of the representation vi of
the point ui is defined as

CTi(K) = 1− 2

K(2N − 3K − 1)

∑
j∈VK(ui)

(r̂(i, j)−K).

The (global) continuity a point set {un}Nn=1 and its repre-
sentation {vn}Nn=1 is CT(K) = 1

N

∑N
i=1 CTi(K). Now, let

UK(vi) be the set of “false neighbors” that are in the K-
neighborhood of vi, but not of ui in the original space. Also,
let r(i, j) be the ranking of point ui in the neighborhood of
point ui, ranked according to their similarity to ui. The point-
wise trustworthiness of the representation of point ui is then

TWi(K) = 1− 2

K(2N − 3K − 1)

∑
j∈UK(vi)

(r(i, j)−K).

The (global) trustworthiness between a point set {un}Nn=1 and
its representation {vn}Nn=1 is TW(K) = 1

N

∑N
i=1 TWi(K).

Both point-wise and global CT and TW are between 0 and 1,
with larger values being better [1]. One can see from Table II
that LR and ISQ substantially outperform the techniques in [1],
namely PCA, SM, and AE. Comparing our two techniques LR
and ISQ, we find that LR (supervised) is only slightly better
than ISQ (less than 0.5% in the case of LOS and less than 0.1%
in the case of QLOS and QNLOS). This is negligible compared
to the overhead of using GPS and relaying this information to
the BS. We note that the reason we look at less than 100%
area scale in Table II and in the sequel is the possibility of
getting sufficiently good performance with smaller distances.

Fig. 2 and Fig. 3 present the channel charts. Fig. 2 presents
the case for 100% of the original dimensions and Fig. 3
presents the case for 25% of the original dimensions. In both
figures, columns 1 through 4 correspond to PCA, SM, AE,
and MUSIC (ISQ) algorithms. Therefore, one should compare
the fourth column with the other three columns on a row by
row basis. The considered system geometry is given in [1,
Fig. 1(a)]. The goal of the channel chart is to employ CSI
and then derive a chart which preserves the distances in the
system geometry. It can be seen from Fig. 2 and Fig. 3 that
our algorithm does a significantly better job than PCA, SM,
and AE in that regard. In particular, the letters VIP present in
[1, Fig. 1(a)] can be seen to be much more preserved with our
algorithm.

Fig. 4 shows the correlation of the estimated ρ with that of
the real ρ. Both methods correlate with real ρ almost linearly.

Fig. 5–Fig. 7 plot TW and CT values for PCA, SM, AE,
ISQ, and LR algorithms. Fig. 5 is for 100% of the original
dimensions, Fig 6 is for 50% of the original dimensions, Fig. 7
is for 25% of the original dimensions. The horizontal axis is
for k-nearest neighbors and the number varies between 0 and
100. The first through third columns are for the LOS, QLOS,

TABLE II
PERFORMANCE COMPARISON FOR TW AND CT AT k-nearest = 102

Measure/Area Scale/Channel PCA SM AE LR ISQ

TW

1

LOS 0.8565 0.7986 0.8303 0.9929 0.9887
QLOS 0.8447 0.8359 0.8655 0.9119 0.9125
QNLOS 0.8500 0.8459 0.8533 0.9090 0.9095

1/2

LOS 0.8596 0.8200 0.8349 0.9932 0.9889
QLOS 0.8579 0.8343 0.8510 0.9056 0.9050
QNLOS 0.8682 0.8661 0.8747 0.9376 0.9386

1/4

LOS 0.8570 0.7616 0.8118 0.9930 0.9886
QLOS 0.8630 0.8724 0.8667 0.9494 0.9489
QNLOS 0.8842 0.8885 0.8997 0.9544 0.9545

CT

1

LOS 0.9270 0.8749 0.8921 0.9967 0.9941
QLOS 0.9219 0.9007 0.8718 0.9445 0.9360
QNLOS 0.9250 0.9242 0.9158 0.9339 0.9315

1/2

LOS 0.9279 0.9004 0.8915 0.9969 0.9941
QLOS 0.9343 0.9047 0.9296 0.9604 0.9504
QNLOS 0.9331 0.9296 0.9210 0.9516 0.9529

1/4

LOS 0.9271 0.8432 0.8616 0.9968 0.9940
QLOS 0.9348 0.9390 0.9297 0.9699 0.9688
QNLOS 0.9360 0.9377 0.9325 0.9593 0.9602

and QNLOS channels, respectively. For the LOS channel, ISQ
and LR substantially outperform the other three algorithms
with negligible difference between the two. This is especially
true for TW. For the QLOS and QNLOS channels, and for
CT, LR and ISQ beat the other three, with LR being better
than ISQ. For the same channels, for TW, LR and ISQ have
close performance yet they are substantially better than the
remaining three.

VI. CONCLUSION AND FUTURE WORK

The algorithm presented in this letter significantly outper-
forms the three algorithms in the seminal paper [1], both in
performance and computational complexity. The improvement
can reach 23% in some cases. The most important advantage of
our algorithm over other dimensionality reduction algorithms
is that we can calculate each UE data independently as it
comes, so it is much faster and simpler. We assumed a 2-
D environment and we used static channels and single sub
carrier CSI as in [1].
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Fig. 2. Original dimensions.
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Fig. 3. 25% of original dimensions.
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Fig. 5. TW and CT performance of PCA, SM, AE, ISQ, and LR, original dimensions.
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Fig. 6. TW and CT performance of PCA, SM, AE, ISQ, and LR, 50% of original dimensions.
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Fig. 7. TW and CT performance of PCA, SM, AE, ISQ, and LR, 25% of original dimensions.
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