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Abstract

Understanding dielectric response and charge transport in ion-containing polymers is essential for
the design and implementation of these materials in energy-related applications. Our previous
study identified the significant impacts of anion chemical composition on ion conduction for

poly(ethylene oxide)-based lithium ionomers with polymer-fixed sulfonylimide (MTLi) and



sulfonate counterions (J. Mater. Chem. C, 2022, 10, 14569). In this study, we further explore the
dielectric response and Li" conduction in the context of different ion states using DFT. The most
relevant ion states impacting the dielectric response and Li" conduction are represented with a
four-state model. DFT calculation using cluster continuum solvation model captures the local
solvation effects of poly(ethylene oxide) and reveals low cluster dissociation energy between
neutral and charged states. Low cluster dissociation energy explains the weakly aggregated
morphology with low aggregation number based on X-ray scattering pattern and implies that Li*
rapidly exchanges between different ion states. Consequently, Li" can hop along aggregates for
high ion content MTLi which results in its significant dielectric response, comparable conductivity,
and lower Haven ratio despite stronger aggregation than the low ion content counterparts. Different
from typical ionomers where raising ion content is detrimental to the ion transport and dielectric
response, the understandings based on different ion states for MTLi offer new insights to promote

ion conduction and dielectric response for single-ion conducting ionomers.

Introduction
Single-ion conducting ionomers are potential materials for applications such as solid-state

12-17 and electrode coatings.'®?? Specifically, the

electrolytes,'® actuators,”!! fuel cell membranes,
growing need to develop safe electrolytes compatible with lithium anodes for electric vehicles
further stimulates research in lithium single-ion conducting ionomers, which have lithium cations
as the sole mobile counterions.?*3! While many potential applications require maximizing ion
transport and/or dielectric response, most single-ion conducting ionomers exhibit low conductivity

and dielectric constant.> ***! With mobile counterions, the dielectric response for ion-containing

polymers strongly correlates with the charge transport.’? 33 36 37. 40. 4247 UJpderstanding the



correlation between dielectric response and charge transport offers new perspectives to optimize
energy materials design. For example, raising the dielectric constant has shown the potential to

promote ion transport,'!47-54

Lithium single-ion conducting ionomers based on poly(ethylene oxide) (PEO) and polymer-fixed
sulfonylimide counterions exhibit the highest conductivities among different polymerized anions
and have demonstrated success in battery testing.* 24 2% 3565 Recently, it has been shown that the
superior conductivity for these sulfonylimide-lithium ionomers compared with sulfonate-lithium
ionomers is due to the more weakly aggregated morphology of the former.*® In particular, high-
ion-content sulfonylimide-lithium ionomer exhibits an extremely high dielectric constant (> 100
at 120 °C), which increases with temperature. This behavior differs from typical dipolar relaxation,
for which the thermal randomization of dipoles reduces the dielectric constant at higher
temperature.’”® Understanding such distinctive relaxation phenomena and their relevance to
charge transport can impact the design and implementation of electrolytes in many applications

where dielectric and transport properties are of primary interest.

Here, we re-analyzed the experimental data for a series of PEO-based sulfonylimide-lithium
single-ion conducting ionomers (which we call “MTLi” — see Figure 1) from a prior study.®® To
further understand the unique dielectric response and ion conduction behavior of MTLi, we
employed DFT computation with a simple four-state model which is used to represent the many
ionic states present in ionomers. The relative populations of the four states (contact ion pair,
quadrupole, triple cation, and triple anion) are assessed based on a cluster-continuum solvation

model, which takes the specific interactions between Li" and the ether oxygen lone pairs of PEO



into account by including explicit dimethyl ether molecules.”” The calculation results suggest
significant amounts of Li" in all the ionic states, in contrast to the dominant presence of the
quadrupole state previously discussed for sulfonate-lithium ionomers,** 3% 36 66- 71 that suggests
strong ion aggregation. Our DFT results agree with an MD simulation for PEO-based
sulfonylimide-lithium single-ion conducting ionomers, where an easy reorganization of ion
aggregates was reported.”? The combination of experimental and simulation results implies that
Li" can hop along the ion aggregates with small ion aggregation spacing and low cluster
dissociation energy between the neutral and charged states. Such mechanism rationalizes the
extremely high dielectric constant and low Haven ratio which will be further discussed in this
study. Therefore, the high dielectric constant is a consequence rather than the cause of the ion

transport for high ion content PEO-based sulfonylimide-lithium ionomers.**- 4> 43

This manuscript is organized as follows: we first discuss the four-state model based on a cluster-
continuum DFT computation. The implications of the calculated results are further illustrated
based on the experimental data from X-ray, dielectric relaxation spectroscopy (DRS) and pulsed
field gradient nuclear magnetic resonance (PFG-NMR). X-ray scattering at 393 K, dielectric
relaxation spectroscopy (DRS) measured with a sample thickness of 0.1 mm, and the measured Li
diffusion coefficient from pulsed field gradient nuclear magnetic resonance (PFG-NMR) are
reproduced from Ref. 66. X-ray scattering at 303 K and DRS spectra measured with larger sample
thickness (1.7 mm) for the lowest ion content ionomer are presented in this study. Lastly, the
correlation between ion conduction and dielectric response is discussed. The unique dielectric
response and high ion conduction for high ion content MTLi is perhaps attributed to Li" hopping

along ion aggregates due to comparably low ion cluster dissociation energy and small spacing



between aggregates (short hopping distance). Although such an ion conduction mechanism cannot
be validated experimentally, MD simulations have predicted such a hopping mechanism for some
ionomers with weak ionic interactions.’> ”* The proposed ion conducting mechanism ties in nicely
with our experimental and DFT simulation work, and suggests that delocalized ion chemistries

could be the path forward to create soft single-ion conductors with superior ionic conductivity.

Experimental

Synthesis and characterization of the PEO-based sulfonylimide-lithium ionomers MTLi20,
MTLi37, and MTLi52 have been reported in our previous study.®® Here, we briefly summarize
the experimental results for the synthesized MTLi ionomers. The structure of the synthesized
MTLi is shown in Figure 1 with random monomer distribution as previously discussed.®® Table
1 summarizes the main characterization results from our previous study® for MTLi including
dispersity D, molecular weight Mn, stoichiometric Li* number density no, glass transition
temperature Tg, the static dielectric constant &s, and the aggregation number (AN) showing raising

&s with increased ion content.
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Figure 1. Chemical structure of the investigated ionomer MTLi. The “M” in MTLi comes from
the methacrylate monomer containing the counterion, and the “T” comes from the

[(zrifluoromethane)sulfonamidosulfonyl|propyl counterion moiety.



Table 1. Characterization results of synthesized single-ion conducting ionomers MTLi reproduced

from Ref 66.5
Sample? bb My* ny T &s ANE®
g/mol nm’ K 393 K)
MTLi20 1.33 68970 0.29 223 29 5
MTLi37 1.31 61500 0.58 244 72 9
MTLIi52 1.25 63100 0.88 271 132 13

a. Numbers on the right of the polymer abbreviation indicate the ion content (mol%) in the

random copolymer (e.g., the ion content for MTLi20 is 20 mol%).

b. Measured with SEC in 0.05 M LiBr/DMF based on poly(ethylene glycol) standards.

c. Based on NMR end-group analysis.
d. Measured with DSC with a heating and cooling rate of 20 K/min.

e. Aggregation number calculated from X-ray aggregate spacing.

Dielectric Relaxation Spectroscopy (DRS)

To further understand the dielectric response of MTLi, we measured the dielectric response of

MTLi ionomers with different sample thickness. In addition to the standard parallel plate sample

cell using the silica spacer with a thickness of 0.1 mm, we performed new measurements using our

homebuilt liquid cell with significantly larger thickness (d = 1.7 mm) under the same measurement

condition to push the onset of electrode polarization to lower frequency. The new measurement



discussed in this study reveals two separate peaks for MTLi20 which validates the presence of two
underlying relaxation processes for MTLi ionomers (Figure 6a, Figure S1, 2). Excellent
agreement between the liquid and sandwich cells confirms the thickness-independent dielectric
response (Figure S2) and helps with the spectra fitting to determine the characteristic relaxation
time and relaxation strength with suppressed electrode polarization contribution. Fitting details
can be found in SI. For MTLi37 and MTLi52, measurements were attempted with d = 1.7 mm and
the spectra was shown in Figure S3. However, the spectra from d = 1.7 mm for MTLi37 and
MTLi52 are not further analyzed due to the difficulties of controlling precise sample thickness

with homebuilt liquid cell, and only the spectra from d = 0.1 mm are fitted and further analyzed.

DFT Computations

DFT computations were performed with Gaussian09 software to calculate the energy of different
Li" states using a cluster continuum solvation model developed for ionomers.”® The computations
were performed with DFT B3LYP/6-31G++(d, p) with a PCM solvation model (solvent=diethyl
ether). Diethyl ether (DME) represents the ethylene-oxide based polymer matrix well, as validated
by previous research,”® using the same scale factor of 1.1. DME molecules are explicitly added to
the neat Li* and Li" clusters (ion pair TLi, triple cation LiTLi", triple anion TLiT", and quadrupole
T2Li2) to evaluate the number of DME molecules in the first solvation shell. The computed Li*
solvation energy and the number of DME in the first solvation shell agree with the literature value

despite a slightly larger basis set.”

Optimized cluster geometries from Gaussian calculations are
shown in Figure 2. Li" associates with four oxygens from either the sulfonylimide anion or the

DME molecules in each geometry.



An isolated Li" cation binds with oxygens on four DME molecules. Li" in a contact ion pair (TLi)
binds monodentate to one oxygen on the sulfonylimide anion and three DME oxygens. The
negative triple ion (TLiT") has Li" binding to single oxygens on two different sulfonylimide anions
and two DME oxygens. The positive triple ion (LiTLi") has two Li’, each binding to different
oxygens on sulfonylimide and three DME oxygens. The quadrupole (T2Li2) has two Li", each

binding to different oxygens on the two sulfonylimide anions and two DME oxygens.

% 3%
€ TLi+ 3DME] TLiT-+ 2DME ~

LiTLi*+ 6DME

Figure 2. Optimized cluster geometry for Li +4DME (lone Li* state), TLi + 3DME (ion pair state),
TLiT- + 2DME (triple anion state), LiTLi* + 6DME (triple cation state), and T2Li> + 4DME
(quadrupole state). Carbon atom (C): dark grey. Hydrogen atom (H): light grey. Oxygen atom (O):
red. Sulfur atom (S): yellow. Nitrogen atom (N): blue. Lithium atom (L1i): pink. Fluorine atom (F):

cyan.



Results and Discussion
To enable further understandings and molecular insights on the dielectric response and ion
conduction for the MTLi ionomers based on the experimental results reported in our previous
study,®® DFT computation is employed to calculate the representative ion states based on four-state
model which are most relevant to the dielectric response and charge transport. We first illustrate
the concept of the four-state model shown in Figure 3a. The four-state model simplifies the
complicated ion states present in ionomers to two dissociated states: triple cation LiTLi" and triple
anion TLiT~ and two associated states: ion pair TLi and quadrupole T2Li> (Figure 3a).”> 7 The
energy of the four ion states are calculated with a cluster-continuum solvation model (CCM) with
explicitly added solvent molecules to represent the specific interaction known between Li" and
ethers.”® 7> Dimethyl ether (DME) is selected as the solvent, as suggested in a previous study, to
represent the neutral PEO matrix.”® Solvation energy is computed with different number of DME
to determine the number of DME within the first solvation shell for the four ion states. The DME
solvated neat Li* state is also included for comparison. Figure 3b plots the solvation energy
AEEEY . ion(N) as a function of the number of DME molecules for the DME-ion complex cluster
as:

AEvation(N) = —E{GSter+npme + Ectuster + NEpifs Eq. 1

The onset of the AESSY (N) plateau gives the number of DME in the first solvation shell (i.e.,

solvation

adding more DME molecules does not further lower the system energy), which consists of 6 DME
molecules for the LiTLi", 4 DME for the T2Li2, 3 DME for the TLi, 2 DME for the TLiT and 4
DME for Li". The 4 DME calculated for Li* agrees with other study despite a slightly larger basis
set.”’ The distance between Li" and the oxygen atom from the DME molecule is 2.0 = 0.1 A,

which is consistent with similar calculations for Li* and ether-based solvents.”% 78 80-83
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Figure 3. DFT computation based on the four-state model. (a) Illustration of the four-state model.
The black circle represents the Li*, and the red ellipse represents the sulfonylimide anion. (b)
Calculated AEESM ,i0n based on Eq. 1 with respect to the number of DME molecules. The
solvation of Li" with DME is included for comparison (blue filled squares). Filled red squares
represent the LiTLi". Open purple squares represent T2Li2. Open black squares represent the TLi.

Filled cyan squares represent TLiT".

The interaction energy per mole of Li* for each DME-solvated ion state (ion pair, triple cation,

triple anion, quadrupole, and neat Li*) AESSY. . ..o are computed with respect to the ground state

based on neat Li*, T- and DME as:

AETGf{lekSDME = _E;")LCiIZsDME + EfﬁM + E7ISEM + 3E51€II\)§ Eq.2
AEL%‘%HGDME = _Efi%liwDME + 2Elf)ierM + E7BEM + 6E51€11\g)/2 Eq.3
AE%%HDME = _E;’LC%HDME + EfiiM +2E7M + 2Ebyy Eq. 4
AEYC:;:%2+4DME = (_ETBgf/iI2+4DME + ZELPiiM +2E7M + 4EFy) /2 Eq.5
AEfiC-I-I\ZDME = fiﬁ-ﬂgDME + Efing +4Epig Eq. 6
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The computed value based on Eq. 2—6 is compared in Figure 4, showing the interaction energy as
follows: AESLF epme > DEfsiizrapme > DEfiiispme > OE[Tlivepms > AEfiiapme - The
quadrupole state is favored over the ion pair state, and the triple cation state is preferable to the
DME-solvated Li". The highest AE is for the TLiT negative triple ion because the TLiT" cluster

1s more stable than the lone anion state.
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Figure 4. Interaction energy per mol of Li* AESSY . iion calculated with DFT using cluster

solvation model based on Eq. 2—6. These AESSY. ... are the net depth of the attractive well;

larger AE means a more favored ion state.

In addition to the interaction energy, the energy difference between the associated cluster and the

dissociated cluster AESSM iation 1S calculated, and the results are listed in Table 2. Dissociation

from quadrupole T2Li> to DME solvated Li" (Li-DME) results in the highest AESSY. . 1ion- Ton

pair TLi dissociating into triple cation LiTLi" and triple anion TLiT- gives the lowest AES5Y . vion:

The trend of AESEM implies that: 1) significant aggregation with large aggregation number

dissociation

is not favorable; 2) the possibility of Li* to occupy both charged and neutral states; and 3) solvated

11



CCM iation to form single Li*

Li" is not the main contributor to ion conduction. The highest AE
solvated by 4 DME (Li-DME) agrees with a recent MD simulation result which suggests that Li"

transport through clusters is more favorable than through the PEO matrix.”

Table 2. Energy difference between associated and dissociated clusters per mol Li".

Associated — Energy of Energy of AESEM o ion®
dissociated Associated states Dissociated states (kJ/mol)
TaLis — 2TLi E(T:Li>+4DME) + 2*E(TLi+3DME) 12.8
2*E(DME)

T2Lir+TLi— E(T:Li2+4DME) + E(TLiT+2DME) + 12.9
LiTLi"+TLiT-  E(TLi+3DME) + E(DME) E(LiTLi*+6DME)
T2Li2 — TLiT- E(T:Li2+4DME) E(Li*+4DME) + 32.3

+(Li-DME)" E(TLiT+2DME)

3TLi— 3*E(TLi+3DME) E(TLiT+2DME) + 5.0

LiTLi*+TLiT" E(LiTLi++6DME) + E(DME)

a. AESEM iation= (Energy of the dissociated states — Energy of the associated states)/mol of Li*.

DFT computations suggest that Li" can be found in all the states due to the similar interaction
energy for different ion states (Figure 4) and moderate dissociation energy between associated
and dissociated clusters (Table 2). The interaction energy and dissociation energy without
explicitly added DME are summarized in Figure S4 and Table S3, which highlights the solvation

effect of DME in lowering the dissociation energy and the interaction energy for charged ion states

12



(i.e., LiTLi" and (Li-DME)"). The solvation effect arises from the comparable electronegativity of
an oxygen atom from DME (-0.39 e) versus an oxygen atom of a sulfonylimide anion (-0.56 e)

when each are bound to Li" (Figure 2).

Different ion states contribute differently to the dielectric response and the ion conduction. The
ion pair TLi contributes to the dielectric response and the measured Dui+ since TLi can move with
the segmental motion of the polymer but not to ionic conductivity since the pair is net neutral. The
quadrupole T2Li2 represents the simplest ion aggregate and in some sense all ion aggregates
composed of multiple ion pairs which barely contribute to dielectric response and the measured
Li" diffusion, since such aggregates cannot move. The positive triple ion state LiTLi" significantly
contributes to the measured Dvi+ and conductivity opc, since this state has a positive charge and
can move by polymer segmental motion. The negative triple ion TLiT" stabilizes the anions (since
the PEO matrix barely solvates the anions) and does not contribute to either dielectric constant or
ionic conductivity, since TLiT cannot move. The presence of such negatively charged clusters has
been reported for PEQ/LiTFSI electrolytes.®* # Based on the different ion states calculated with
DFT, experimental data from X-ray scattering, dielectric relaxation spectroscopy and PFG-NMR
will be further discussed, suggesting that the high ion content MTLi (i.e., MTL152) demonstrates
a novel ion hopping mechanism which results in significant dielectric response and promoted ion

conduction at elevated temperatures.” 73

The first piece of experimental data is from X-ray scattering, which indicates a weakly aggregated
morphology with small spacing between aggregates.®® Figure 5 compares the scattering pattern

for MTLi at ambient (303 K) and at elevated temperature (393 K, reproduced from Ref 66).° As

13



discussed in Ref 66,% three characteristic peaks are identified: a low-g peak at 2.5 nm™! attributed
to the spacing between ion aggregates (Gaggregates), @ secondary high-¢ peak at 9.0 nm™ attributed
to the spacing between solvated ions mostly from anion-anion correlation due to its higher electron
density contrast (ganion), and a high-g peak at 10.5 nm™ attributed to the amorphous halo dominated
by the scattering of pendant PEO9 chains and neighboring ions (gamorphous).>* 3% 41 887 Raising
temperature drives the formation of ion aggregates indicated from the increased relative intensity
(£(q)aggregate/ 1(q)amorphous) at 393K than 303 K. Temperature has negligible impact on the location
of the peak positions for gaggregates, suggesting that the corresponding spacing is independent of
temperature. The spacing between ion aggregates for MTLi is smaller than typical ionomers with
harder anions such as sulfonate.>* 3> 4! The smaller spacing indicates a lower average aggregation
number (AN, the average number of Li" per cluster, see Table 1) which can facilitate Li* hopping

along the aggregates as implied from a recent MD study for PEO-based ionomers.”

393K 303K
°%%  MTLi52 MTLi52
°%%  MTLi20 MTLi20 _
; c(r)oo"'> "E/’( MTLi37 ‘ qamorphous
8 9 qanionl 1
]
=
. ....qaggregate.s £ oome
0.1 10

1 s
q (nm-1)
Figure 5. X-ray scattering patterns of MTLi52, MTLi37, and MTLi20 at 393 K and 303K. Each

pattern is shifted vertically on the logarithmic intensity scale to superimpose the peaks of the
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amorphous halos (the highest g peaks). Data at 393 K is reproduced from Figure 3a of J. Mater.

Chem. C, 2022, 10, 14569. Copyright 2022 The Royal Society of Chemistry.

Ion states also impact the dielectric and conductivity spectra from DRS, which further supports
the ion hopping mechanism. Noticeably, MTLi52 shows significant relaxation strength which
increases with raising temperature despite its most aggregated morphology (Figure 5). Rather than
showing one broad relaxation peak as observed for other PEO-based sulfonate lithium ionomers,”
33, 41,66 the DRS spectra of MTLi reveals a significant secondary relaxation termed o after the
onset of DC conductivity. The presence of two underlying relaxation processes is exemplified with
MTLi20 measured with larger sample thickness (d = 1.7 mm) to push the onset of electrode
polarization to lower frequency (Figure 6a, Figure S2a). Consistent results are obtained with
different sample thickness which help resolve the secondary o from the high frequency a process
(Figure S1). For MTLi137 and MTLIi52, only one broader peak was resolved with d = 1.7 mm

(Figure S3) therefore only the spectra measured from samples with d = 0.1 mm were further

analyzed due to the difficulties of controlling sample thickness for high 7z samples.

Characteristic relaxation frequency and relaxation strength can be obtained from fitting dielectric
spectra shown in Figure 6a and Figure S1. Figure 6a reveals a strong correlation between ion

transport and dielectric response. Real permittivity £ (open pink circles), imaginary permittivity &"

_Eae’(w)

(open gray circles), and the derivative formula of real permittivity qor(w) = e

(open
green circles) were plotted with fitting details included in Supporting Information (Figure S1 and

Table S1). In addition to the dielectric spectra, conductivity spectra are plotted as the real

conductivity 6" (open blue squares) and the imaginary conductivity 6" (open purple squares). The

15



characteristic frequencies for the a and a2 processes wq and wq2 from dielectric spectra are marked
with vertical lines (solid blue line and dashed red line). Two dielectric constants are determined:
the static dielectric constant &s indicated with red solid line and the Coulombic dielectric constant
¢ indicated with blue solid line. At low frequencies, the electrode polarization dominates the
spectra, and the peak for &" indicates the characteristic frequency for electrode polarization (EP,
wep) which depends on sample thickness (Figure S2a). The wep and wq can also be determined
from conductivity spectra: the low-frequency peak due to EP can be found from the ¢" spectra.®?
At high frequency, the w« approximates the frequency of the onset of DC conductivity from the ¢’
spectra (ws). Between wep and wq is the w2, suggesting that o2 occurs after the onset of DC

conductivity which will be further discussed for its relevance with different ion states.
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Figure 6. DRS spectra and the determination of ¢s and ¢c. (a) Dielectric spectra for MTLi20 at 293
K with d = 1.7 mm. (b) Temperature dependence of static dielectric constant &s (crossed symbols,
reproduced from Figure 4c of J. Mater. Chem. C, 2022, 10, 14569. Copyright 2022 The Royal
Society of Chemistry)®® and Coulombic dielectric constant ec (open symbols, this study). The
Coulombic dielectric constants are typical of all PEO-based ionomers while the static dielectric

constant of MTLi52 is surprisingly large at high temperatures.

16



Temperature dependence of low-frequency &s and high-frequency ec are compared in Figure 6b
with the & data reproduced from Ref 66.°° Noticeable, the high temperature & increases with
raising ion content, and the &s of MTLi52 reaches ~160 at 150 °C. Such high &s despite more severe
ion aggregation (Figure 5) can be understood from the cluster continuum DFT computation which
shows low cluster dissociation energy (Table 2). The o process is attributed to the Li* exchange
and potential cluster reorganization during the charge transport which creates charge separation
and results in significant dielectric strength that are much larger than the relaxation strength
expected from dipolar relaxation of EO and contact ion pairs. Our DFT computation results align
with a recent MD simulation study demonstrating facile reorganization of ion clusters for high ion
content PEO-based sulfonylimide lithium ionomer at elevated temperature.”” Because the ion
exchange and possible cluster reorganization are thermally activated and depend on the ion number
density, high ion content MTLi52 demonstrates the highest &s at 150 °C. In contrast, &c show typical
temperature dependence for dipolar relaxation with a moderate value between 10—20.%% 88 The
high frequency a is attributed to the rotation of polar ethylene oxide groups as reported for other

PEO-based lithium ionomers which precedes diffusive ion motion,3% 33 40 43,48

Ton states also impact the measured PFG-NMR results which depend on how Li* sample different
ion states at the measurement temperatures. Figure 7a compares opc (open squares) and oNmR
(filled stars) from the Dvi+ reported in Ref 66.° Despite the lowest opc for MTLi52 at ambient
temperature, its opc emulates that of MTLi20 and MTLi37 at 423 K. onmr for MTLi152 agrees well
with opc, while onmr 1s higher than opc for MTLi120 and MTLi37. The ratio of onmr and opc gives

the Haven ratio H (H = onmr/ opc). The value of H depends on the ion-ion correlation for the

17



system of interests, with H = 1 implying fully independent ion motions (as in dilute solution). 32
In single-ion conducting ionomers, one main contributor to the higher H is the formation of ion
pairs (cation-anion correlation) since the diffusivity of the polymerized ions is much lower than
the mobile counterion.”" %> ** The temperature dependence of Haven ratio H is shown in Figure
7b, reproduced from Ref 66.° Ion hopping explains the remarkably low H (~1) observed for
MTLi52 in the 373-423 K range (below which the Dri+ cannot be measured due to fast spin
relaxation) which indicates that during random motions (diffusion) the majority of Li" in MTLi52
is in a state with a net charge, as opposed to some ions undergoing ion pair motion.”!> %% %4 In
contrast, higher H for lower ion content MTLi20 and MTLi37 implies the pairwise diffusion of
Li* that contributes to Dri+ but not opc (hence higher onmr than opc and thus higher H).”! %3 %4
Although ion aggregation reduces the Dri+ for MTLi52 compared with MTLi20 and MTLi37,% it
also reduces the negative anion contribution to the measured opc. Because of the small aggregate-
aggregate spacing (daggregates = 27/Gaggregates, Figure 5) and low dissociation energy (Table 2), Li"
is able to hop among the aggregates for the most aggregated MTLi52 at elevated temperature,
resulting in lower H (~ 1) and comparable opc to the lower ion content MTLi20 and MTLi37.7!- %3
This scenario is very different from high ion-content PEO-based ionomers with more charge
localized anions (e.g., sulfonate), where raising ion content results in much worse opc and higher
H since those ionomers form discrete aggregates with larger spacing and drastically increased

aggregation number.? 33 41- 66
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Figure 7. (a) DC conductivity opc measured with DRS (open symbols, reproduced from Figure 2a

of J. Mater. Chem. C, 2022, 10, 14569. Copyright 2022 The Royal Society of Chemistry) and

2 Dri+.PFG

NMR conductivity onmr (stars) based on oyyg = nge po

(no is the stoichiometric Li"

number density listed in Table 1). (b) Temperature dependence of Haven ratio H = oNmR /oDC
reproduced from Figure 6a of J. Mater. Chem. C, 2022, 10, 14569. Copyright 2022 The Royal
Society of Chemistry.%® The surprising result is that Haven ratio is unity for MTLi52, which

suggests that ion motion is dominated by ion states with a net charge (not ion pairs).

The molecular scenario of different ion states for MTLi calculated with DFT ties in nicely with
the experimental data from X-ray, DRS and PFG-NMR where MTLi52 demonstrates high
dielectric constant (> 150 at 150 °C), low Haven ratio (H ~1), and comparable opc despite stronger
ion aggregation than lower ion content MTLi20 and MTLi37. Furthermore, the correlation
between ion conduction and dielectric response can be understood based on the contributing ion
states. Figure 8a demonstrates the temperature dependence of wa (open symbols), w2 (crossed
symbols), and wep (filled symbols) compared with the measured D+ (stars) from PFG-NMR_
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The Dvi+ is vertically shifted and can be superimposed nicely with the wq, indicating the diffusion
length scale is roughly independent of temperature. The similar temperature dependence between
the @ determined from DRS and the Dvi+ (stars) from PFG-NMR indicates that the origin for the
charge transport and dielectric response is similar for ion-containing ionomers, and is relevant to

the different ion states Li" can sample.
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Figure 8. Correlating charge transport to dielectric response. (a) Temperature dependence of wa
(open symbols), wa2 (crossed symbols), and wep (filled symbols from samples with d = 0.1 mm)
compared with the measured Dii+ (stars) from PFG-NMR. Data for Dii+ is reproduced from Figure
2b of J. Mater. Chem. C, 2022, 10, 14569. Copyright 2022 The Royal Society of Chemistry.® (b)
BNN relationship plotted based on the product of the low-frequency permittivity &s and the ion
rearrangement frequency wa2 (crossed symbols) and the product of the Columbic permittivity &c

between the o and o2 processes and the wa (open symbols).
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Figure 8b demonstrates the Barton—Nakajima—Namikawa (BNN) relationship. Crossed symbols
represent the BNN relationship with the low-frequency w2 (see Figure 6a and Figure 8a) and the
low-frequency “static” dielectric constant &s (see Figure 6) as:*>’

Opc = Begeqwyn Eq.7
Such a BNN relation was empirically proposed long ago and is now understood in terms of ions
moving a distance of order the Debye length on the time scale 1/wq2.*° A wide range of B (from
0.4—50) was reported for ionomers using the low-frequency s and wq2.** Here, the prefactor B for
MTLi ionomers is 11 for MTLi20, 5 for MTLi37, and 5.5 for MTLi52 (crossed symbols). As
previously discussed, the a2 process involves the contribution from different ion states exchanging
during charge transport. Consequently, how the conducting Li" cations sample various ion states
could impact the prefactor B, resulting in a nonuniform value for ionomers with different chemical

compositions. 40 42 43. 52,98

Another way to plot the BNN relationship is to use high frequency Coulombic dielectric constant
ec determined before the onset of diffusive ion motion and the high frequency w. (see Figure 6a)
as:

Opc = Becgowq Eq. 8
Scaling with ec and w« shows nicely superimposed data with B equal to 1 (B =1 is indicated by the
straight line), which is similar to the original BNN scaling observed for ion-conducting inorganic
glasses using the onset frequency of DC conductivity we and the corresponding permittivity value

s'(a)c).99’ 100
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The exact slope of 1 for the BNN scaling means that charge transport and dielectric response are
coupled, though the magnitude of prefactor B depends on which dielectric constant is used.*% 42 46:
5294, 101 The same prefactor B obtained for MTLi with different ion contents based on high-
frequency e is a consequence of its relevance on the time scale that ions start to exchange states.
Therefore, & better represents the polarity of the polymer matrix based on this study and others. 4
42.43 In contrast, the low-frequency &s involves significant contribution from the low-frequency o

process (the ionic relaxation). The high & measured for MTLi52 at elevated temperature is the

consequence rather than the cause of promoted ion transport.

Different ion states impact the dielectric response and charge transport for single-ion conducting
ionomers. With low cluster dissociation energy, Li" in MTLi is able to hop along the ion aggregates
resulting in the unique dielectric and ion conduction behavior drastically different from typical
single-ion conducting ionomers with charge localized polymerized anion.> 3% 4!- 6 Rather than
relying on the solvated ions for ion conduction, Li" in MTLi is able to hop along the aggregates
and contributes to the measured opc. Consequently, high ion content MTLi (i.e., MTLi52) exhibits
higher &s, comparable opc and reduced H at elevated temperatures compared with its low ion
content counterparts (i.e., MTLi20 and MTLi37) despite a lower Dvi+ due to raised 7 and stronger
ion aggregation. The unique ion conduction and dielectric behavior for MTLi compared with other
lithium ionomers with charge localized polymerized anions highlights the significant impacts of
ion states, and implicates the possibility of tailoring the chemistry of ions and polymer matrix to
promote dielectric response and ion conduction to overcome the 7 limitation of single-ion

conducting ionomers.? 33 41 66
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Conclusion

Based on the experimental results for a series of PEO-based sulfonylimide lithium ionomers
previously reported,’ this study uses a cluster continuum DFT computation with explicit solvation
of Li" with dimethyl ether molecules representing PEO, to enable a molecular-level understanding
for seemingly contradicting experimental results. The complicated ion states are simplified with a
four-state model including ion pair, quadrupole, triple cation, and triple anion, which represent the
most relevant ion states impacting ion conduction and dielectric response, since all states with two
or more anions are effectively crosslinks that cannot move in that state. This DFT computation
indicates a low cluster dissociation energy and the possibility of Li* sampling all four different ion
states. Consequently, high ion content ionomer MTLi52 exhibits a different ion conduction
mechanism at elevated temperature where Li" can hop along clusters, resulting in high &s, low H
(~1) and comparable opc than its lower content counterparts (i.e., MTLi20 and MTLi37) despite a
more aggregated morphology. The proposed ion conduction mechanism ties in nicely with the

experimental results and is supported by a recent MD simulation.”?

The implication of this study is two-fold. Firstly, it reveals a strong correlation between dielectric
response and charge transport; both are impacted by the different ion states the conducting Li* can
sample. The high &s exemplified by MTLi52 is mainly contributed by the ionic a2 relaxation, thus
the low-frequency es is a consequence rather than the cause of charge transport, and is not the
effective dielectric constant that controls all reorientational and translational ion motions (that is
the Coulombic dielectric constant . which is relevant on the time scale that ions exchange states).
Secondly, the fundamental understandings for ion conduction and dielectric response discussed in

this study for sulfonylimide lithium ionomers explains why sulfonylimide seems to be one of the
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most effective anions found thus far and has shown promising results from battery tests. 2% 53

Charge-delocalized anions are actively being pursued to further promote ionic conductivity for
polymer electrolytes and could overcome the limitation for lithium-conducting ionomers based on

28, 60, 66, :

including new ones.!%% 193

polymer T,
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