SLearn: A Case for Task Sampling based Learning
for Cluster Job Scheduling

Akshay Jajoo, Y. Charlie Hu, Fellow, IEEE, Xiaojun Lin, Fellow, [EEE, Nan Deng

ABSTRACT

The ability to accurately estimate job runtime properties allows
a scheduler to effectively schedule jobs. State-of-the-art online
cluster job schedulers use history-based learning, which uses past
job execution information to estimate the runtime properties of
newly arrived jobs. However, with fast-paced development in
cluster technology (in both hardware and software) and changing
user inputs, job runtime properties can change over time, which
lead to inaccurate predictions.

In this paper, we explore the potential and limitation of
real-time learning of job runtime properties, by proactively
sampling and scheduling a small fraction of the tasks of each
job. Such a task-sampling-based approach exploits the similarity
among runtime properties of the tasks of the same job and
is inherently immune to changing job behavior. Our analytical
and experimental analysis of 3 production traces with different
skew and job distribution shows that learning in space can be
substantially more accurate. Our simulation and testbed eval-
uation on Azure of the two learning approaches anchored in a
generic job scheduler using 3 production cluster job traces shows
that despite its online overhead, learning in space reduces the
average Job Completion Time (JCT) by 1.28 X, 1.56 X, and 1.32X
compared to the prior-art history-based predictor. We further
analyze the experimental results to give intuitive explanations
to why learning in space outperforms learning in time in these
experiments. Finally, we show how sampling-based learning can
be extended to schedule DAG jobs and achieve similar speedups
over the prior-art history-based predictor. *

1 INTRODUCTION

In big-data compute clusters, jobs arrive online and compete to
share the cluster resources. In order to best utilize the cluster
and to ensure that jobs also meet their service level objectives,
efficient scheduling is essential. However, as jobs arrive online,
their runtime characteristics are not known a priori. Due to this
lack of information, it is challenging for the cluster scheduler to
determine the right job execution order that optimizes schedul-
ing metrics such as maximal resource utilization or application
service level objectives.

An effective way to tackle the challenges of cluster schedul-
ing is to learn the runtime characteristics of pending jobs, which

The work was done while the author was pursuing his Ph.D. at Purdue
University.

1. An earlier conference version of this work is published in proceedings of
USENIX NSDI 2022 [42].

allows the scheduler to exploit offline scheduling algorithms
that are known to be optimal, e.g., Shortest Job First (SJF) for
minimizing the average completion time. Indeed, there has been
a large amount of work [52], [44], [47], [26], [35], [43], [49], [55]
on learning job runtime characteristics to facilitate cluster job
scheduling.

In essence, all of the previous learning algorithms learn job
runtime characteristics from observing historical executions of
the same jobs, which execute the same code but process different
sets of data, or of similar jobs, which have matching features
such as the same application name, the same job name, or the
same user who submitted the job.

The effectiveness of the above history-based learning schemes
critically rely on two conditions to hold true: (1) The jobs are
recurring; (2) The performance of the same or similar jobs will
remain consistent over time.

In practice, however, the two conditions often do not hold
true. First, many previous work have acknowledged that not all
jobs are recurrent. For example, in the traces used in Corral
[43] and Jockey [29], only 40% of the jobs are recurrent, and
Morpheus [44] shows that only 60% of the jobs are recurrent.
Second, even the authors of history-based prediction schemes
such as 3Sigma [47] and Morpheus [44] strongly argued why
runtime properties of jobs, even with the same input, will not
remain consistent and will keep evolving. The primary reason is
due to updates in cluster hardware, application software, and user
scripts to execute the cluster jobs. Another work has highlighted
fallacies of the data driven and machine learning type systems
[?]. Third, our own analysis of three production cluster traces
(§4) have also shown that historical job runtime characteristics
have considerable variations.

In this paper, we explore an alternative approach to learning
runtime properties of distributed jobs online to facilitate cluster
job scheduling. The approach is motivated by the following key
observations about distributed jobs running on shared clusters:
(1) a job typically has a spatial dimension, i.e., it typically consists
of many tasks; and (2) the tasks (in the same phase) of a job
typically execute the same code and process different chunks
of similarly sized data [9], [16]. These observations suggest that
if the scheduler first schedules a few sampled tasks of a job,
known as pilot tasks, to run till finish, it can use the observed
runtime properties of those tasks to accurately estimate those of
the whole job. Effectively, such a task-sampling-based approach
learns job properties in the spatial dimension. We denote the new
learning scheme as SLEARN, for “learning in space”.

Intuitively, by using the execution of pilot tasks to predict the

properties of other tasks, SLEARN avoids the primary drawback
of history-based learning techniques, i.e., relying on jobs to be
recurring and job properties to remain stationary over time.
However, learning in space introduces two new challenges: (1)
its estimation accuracy can be affected by the variations of task
runtime properties, ie., task skew; (2) delaying scheduling the
remaining tasks of a job till the completion of sampled tasks may
potentially hurt the job’s completion time.

In this paper, we perform a comprehensive comparative
study of history-based learning (learning in time) and sampling-
based learning (learning in space), to systematically answer the
following questions: (1) Can learning in space be more accurate
than learning in time? (2) If so, can delaying scheduling the
remaining tasks of a job till the completion of sampled tasks be
more than compensated by the improved accuracy and result in
improved job performance, e.g., completion time?

We answer the first question via quantitative analysis, and
trace and experimental analysis based on three production job
traces, including two public cluster traces from Google released
in 2011 and 2019 [8], [11] and a private trace from 2Sigma [1]. We
answer the second question by designing a generic scheduler that
schedules jobs based on job runtime estimates to optimize a given
performance metric, e.g., average job completion time (JCT), and
then plug into the scheduler different prediction schemes, in
particular, learning in time and learning in space, to compare
their effectiveness. Finally, we analyze the experimental results
to give intuitive explanations to the positive answers to these
two questions.

We summarize the major findings and contributions of this
paper as follows:

o Based on literature survey and analysis using three production
cluster traces, we show that history is not a stable and accurate
predictor for runtime characteristics of distributed jobs (§4).

o We propose SLEARN, a novel learning approach that uses
sampling in the spatial dimension of jobs to learn job runtime
properties online. We also provide solutions to practical issues
such as dealing with thin jobs (jobs with a few tasks only) and
work conservation (§3, §5.1.2).

e Via quantitative, trace and experimental analysis, we demon-
strate that SLEARN can predict job runtime properties with
much higher accuracy than history-based schemes. For the
2Sigma, Google 2011, and Google 2019 cluster traces, the
median prediction error are 18.98%, 13.68%, and 51.84% for
SLEARN, much lower than 36.57%, 21.39%, and 71.56% for the
state-of-the-art history-based 3Sigma, respectively (§4).

o We show that learning job runtime properties by sampling job
tasks, although delays scheduling the remaining tasks of a job,
can be more than compensated by the improved accuracy, and
as a result reduces the average JCT. In particular, our extensive
simulations and testbed experiments using a prototype on
a 150-node cluster in Microsoft Azure show that compared
to the prior-art history-based predictor, SLEARN reduces the
average JCT by 1.28%, 1.56Xx, and 1.32x for the extracted
2Sigma, Google 2011 and Google 2019 traces, respectively
(§5.3).

o We show how the sampling-based learning can be extended
to schedule DAG jobs. Using a DAG trace generated from
the Google 2019 trace, we show a hybrid sampling-based and
history-based scheme reduces the average JCT by 1.25X over
a pure history-based scheme (§6).

2

TABLE 1: Summary of selected previous work that use history-
based learning techniques.

Name Property Estimation Learning
estimated technique frequency
Corral Job runtime Offline model | On arrival
[43] (not updated)
DCOSR | Memory elasti- | Offline model | Scheduler
[35] city profile (not updated) | dependent
Jockey Job runtime Offline Periodic
[29] simulator
3Sigma Job runtime Offline On arrival
[47] history dist. model

2 BACKGROUND AND RELATED WORK

In this section, we provide a brief background on the cluster
scheduling problem, review existing learning-based schedulers,
and discuss their weaknesses.

2.1 Cluster Scheduling Problem

In both public and private clouds, clusters are typically shared
among multiple users to execute diverse jobs. Such jobs typically
arrive online and compete for shared resources. In order to best
utilize the cluster and to ensure that jobs also meet their service
level objectives (SLOs), efficient job scheduling is essential. Since
jobs arrive online, their runtime characteristics are not known
a priori. This lack of information makes it challenging for the
scheduler to determine the right order for running the jobs
that maximizes resource utilization and/or meets application
SLOs. Additionally, jobs have different SLOs. For some meeting
deadlines is important while for others faster completion or
minimizing the use of networks is more important. Such a
diverse set of objectives pose further challenges to effective job
scheduling [30], [29], [19], [43]. [44], [56], [55].

2.2 Job Model

We consider big-data compute clusters running data-parallel
frameworks such as Hadoop [4], Hive [6], Dryad [36], Scope [22],
and Spark [7] that run simple MapReduce jobs [27] or more
complex DAG-structured jobs, where each job processes a large
amount of data. Each job consists of one or multiple stages,
such as map or reduce, and each stage partitions the data
into manageable chunks and runs many parallel tasks, each for
processing one data chunk.

2.3 Existing Learning-based Schedulers

An effective way to tackle the challenges of cluster scheduling is
to learn runtime characteristics of pending jobs. As such cluster
schedulers using various learning methods have been proposed
[43], [44], [19], [47], [52], [35], [49], [21], [50], [24], [45]. In
essence, all previous learning schemes are history-based, i.e., they
learn job characteristics by observations made from the past job
executions.? In particular, existing learning approaches can be
broadly categorized into the following groups, as summarized in
Table 1.

Learning offline models. Corral’s prediction model is designed
with the primary assumptions that most jobs are recurring in
nature, and the latency of each stage of a multi-stage job is

2. Some recent work use the characteristics of completed mini-batches as
a proxy for the remaining mini-batches, to improve the scheduling of ML
jobs [54]. However, such jobs are different in that the mini-batches in general
experience significantly less (task-level) variations than what we studied in
this paper.

proportional to the amount of data processed by it, which do
not always hold true [43].

DCOSR [35] predicts the memory usage for data parallel
compute jobs using an offline model built from a fixed number
of profile runs that are specific to the framework and depend on
the framework’s properties. Any software update in the existing
frameworks, addition of new framework or hardware update will
require an update in profile.

For analytics jobs that perform the same computation peri-
odically on different sets of data, Tetris [31] takes measurements
from past executions of a job to estimate the requirements for
the current execution.

Learning offline models with periodic updates. Jockey [29]
periodically characterizes job progress at runtime, which along
with a job’s current resource allocation is used by an offline
simulator to estimate the job’s completion time and update the
job’s resource allocation. Jockey relies on job recurrences and
cannot work with new jobs.

Learning from similar jobs. Instead of using execution history
from the exact same jobs, JVuPredict [51] matches jobs on the
basis of some common features such as application name, job
name, the user who owns the job, and the resource requested
by the job. 3Sigma [47] extends JVuPredict [51] by introducing a
new idea on prediction: instead of using point metrics to predict
runtimes, it uses full distributions of relevant runtime histories.
However, since it is impractical to maintain precise distributions
for each feature value, it resorts to approximating distributions,
which compromises the benefits of having full distributions.

2.4 Learning from History: Assumptions and Reality

Predicting job runtime characteristics from history information
relies on the following two conditions to hold, which we argue
may not be applicable to modern day clusters.

Condition 1: The jobs are recurring. Many previous works
have acknowledged that not all jobs are recurrent. For example,
the traces used in Corral [43] and Jockey [29] show that only
40% of the jobs are recurrent and Morpheus [44] shows that 60%
of the jobs are recurrent.

Condition 2: The performance of the same or similar jobs
will remain consistent over time. Previous works [47], [44],
[43], [29] that exploited history-based prediction have considered
jobs in one of the following two categories. (1) Recurring jobs: A
job is re-scheduled to run on newly arriving data; (2) Similar
jobs: A job has not been seen before but has some attributes in
common with some jobs executed in the past [51], [47]. Many
of the history-based approaches only predict for recurring jobs
[44], [43], [29], while some others [47], [51], [24], [45] work for
both categories of jobs.

However, even the authors of history-based prediction
schemes such as 3Sigma [47] and Morpheus [44] strongly argued
why runtime properties of jobs, even with the same input, will
keep evolving. The primary reason is that updates in cluster hard-
ware, application software, and user scripts to execute the cluster
jobs affect the job runtime characteristics. They found that in a
large Microsoft production cluster, within a one-month period,
applications corresponding to more than 50% of the recurring
jobs were updated. The source code changed by at least 10% for
applications corresponding to 15-20% of the jobs. Additionally,
over a one-year period, the proportion of two different types
of machines in the cluster changed from 80/20 to 55/45. For a

3

TABLE 2: Comparison of learning in time and learning in space
of job runtime properties.

Applicability Adapti- | Accuracy | Runtime

veness overhead
Time Recurring jobs No/Yes | Depends No
Space | New/Recurring jobs Yes Depends Yes

same production Spark job, there is a 40% difference between the
running time observed on the two types of machines [44].

For these reasons, although the state-of-the-art history-based
system 3Sigma [47] uses sophisticated prediction techniques, the
predicted running time for more than 23% of the jobs have at
least 100% error, and for many the prediction is off by an order
of magnitude.

3 SLEARN — LEARNING IN SPACE

In this paper, we explore an alternative approach to learning
job runtime properties online in order to facilitate cluster job
scheduling. The approach is motivated by the following key
observations about distributed jobs running in shared clusters:
(1) a distributed job has a spatial dimension, ie., it typically
consists of many tasks; (2) all the tasks in the same phase of a job
typically execute the same code with the same settings [9], [16],
[12], and differ in that they process different chunks of similarly
sized data. Hence, it is likely that their runtime behavior will be
statistically similar.

The above observations suggest that if the scheduler first
schedules a few sampled tasks of a job to run till finish, it can
use the observed runtime properties of those tasks to accurately
estimate those of the whole job. In a modular design, such
an online learning scheme can be decoupled from the cluster
scheduler. In particular, upon a job arrival, the predictor first
schedules sampled tasks of the job, called pilot tasks, till their
completion, to learn the job runtime properties. The learned job
properties are then fed into the cluster job scheduler, which
can employ different scheduling polices to meet respective SLOs.
Effectively, the new scheme learns job properties in the spatial
dimension, ie.,learning in space. We denote the new learning
scheme as SLEARN.

Table 2 summarizes the pros and cons of the two learning ap-
proaches along four dimensions: (1) Applicability: As discussed
in §2.3, most history-based predictors cannot be used for the jobs
of a new category or for categories for which the jobs are rarely
executed. In contrast, learning in space has no such limitation;
it can be applied to any new job. (2) Adaptiveness to change:
Further, history-based predictors assume job runtime properties
persist over time, which often does not hold, as discussed in §2.4.
(3) Accuracy: The accuracy of the two approaches are directly
affected by how they learn, i.e., in space versus in time. The ac-
curacy of history-based approaches is affected by how stable the
job runtime properties persist over time, while that of sampling-
based approach is affected by the variation of the task runtime
properties, i.e., the extent of task skew. (4) Runtime overhead:
The history-based approach has an inherent advantage of having
very low to zero runtime overhead. It performs offline analysis
of historical data to generate a prediction model. In contrast,
sampling-based predictors do not have offline cost, but need to
first run a few pilot tasks till completion before scheduling the
remaining tasks. This may potentially delay the execution of non-
sampled tasks.

The above qualitative comparison of the two learning ap-
proaches raises the following two questions: (1) Can learning

in space be more accurate than learning in time? (2) If so, can
delaying scheduling the remaining tasks of a job till the completion
of sampled tasks be more than compensated by the improved
accuracy, so that the overall job performance, e.g., completion time,
is improved? We answer the first question via analytical, trace
and experimental analysis in §4 and the second question via
a case study of cluster job scheduling using the two types of
predictors in §5.

4 ACCURACY ANALYSIS

In this section, we perform an in-depth study of the predic-
tion accuracy of the two learning approaches: learning in time
(history-based learning) and learning in space (task-sampling-
based learning). Both approaches can potentially be used to learn
different job properties for different optimization objectives. In
this paper, we focus on job completion time because it is an
important metric that has been intensively studied in recent
work [34], [35], [28], [43], [47], [32].

4.1 Analytical Comparison

We first present a theoretical analysis of the prediction accu-
racies of the two approaches. We caution that here we use
a highly-stylized model (e.g., two jobs and normal task-length
distributions), which does not capture the possible complexity
in real clusters, such as heavy parallelism across servers and
highly-skewed task-length distributions. Nonetheless, it reveals
important insights that help us understand in which regimes
history-based schemes or sampling-based schemes will perform
better. Consider a simple case of two jobs j; and j2, where each
job has n tasks. The size of each task of j; is known. Without
loss of generality, let us assume that the task size of j; is 1.
Thus, the total size of j; is n. The size of a task of j5 is however
unknown. Let denote the average task size of js, and this its
total size is nx. Clearly, if we knew x precisely, then we should
have scheduled j; first if x > 1 and js first if * < 1. However,
suppose that we only know the following: (1) (Prior distribution:)
x follows a normal distribution with mean z and variance o2;
(2) Given z, the size of a random task of the job follows a
normal distribution with mean x and variance o?. Intuitively,
02 captures the variation of mean task-lengths across many i.i.d.
copies of job ja, ie., job-wise variation, while o7 captures the
variation of task-lengths within a single run of job jo, i.e., task-
wise variation. We note that the parameters o2 and o7 are not
used by the predictors below.

Now, consider two options for estimating the mean task-
length z:1) A history-based approach (§4.1.1) and (2) a sampling-
based approach where we sample m tasks from jo (§4.1.2).

4.1.1 History-based Schemes

Since no samples of job jo are used, the best predictor for its
mean task length is . In other words, the scheduling decision
will be based on p only. The difference between the true mean
task length, x, and p is simply captured by the job-wise variance
o2.

4.1.2 Sampling-based Schemes

Suppose that we sample m tasks from jo. Collect the sampled
task lengths into a vector:

ij (ylayZa 7ym)

Then, based on our probabilistic model, we have

TABLE 3: Summary of trace properties.

Trace Arrival | Resource | Resource | Indiv. task
time requested usage duration
2Sigma Yes Yes No Yes
Google 2011 Yes Yes Yes Yes
Google 2019 Yes Yes Yes Yes
_ (yi—o)?

P (yilz) = \/%016 ,
_(wi—=)?
Pylz) =T e 1

2mo,

We are interested in an estimator of x given 3. We have

P (2|f) = P(glz)-P(z) _ __P(g|z)-P(z)

P(y) — [, P(¥lz)-P(z)dx
m 1 . 1
.) i=1 ;1§yl+;gl‘r
1 mo 1 % _<20%+20§) o 72”*‘201
= —= |5 = e 1 o
Vor |of T o] ’

where the last step follows from standard results on the posterior
distribution with Gaussian priors (see, e.g., [18]). In other words,
conditioned on ¥, = also follows a normal distribution with mean

i1 U%yi-i-a%u) 1
———1—+—° and variance = .
2T 2

= m oy 1
2 2 p)

Note that this represents the estimator quality using the
information of both job-wise variations and task-wise variations.
If the estimator is not informed of the job-wise variations, we
can take 02 — 400, and the conditional distribution of z given
i/ becomes normal with mean % >t y; and variance %

From here we can draw the following conclusions. First,
whether history-based schemes or sampling-based schemes have
better prediction accuracy for an unknown job depends on the
relationship between job-wise variations o2 and the task-wise
variation o%. If the job-wise Variationgis large but the task-
wise variation is small, i.e., 03 >> %, then sampling-based
schemes will have better prediction accuracy. Conversely, if the

job-wise variation is small but the task-wise variation is large,

2
ie, 02 << %, then history-based schemes will have better

prediction accuracy. Second, while the accuracy of history-based
schemes is fixed at 02, the accuracy of sampling-based schemes
improves as m increases. Thus, when we can afford the overhead
of more samples, the sampling-based schemes become favorable.
Our results from experimental data below will further confirm
these intuitions.

4.2 Trace-based Variability Analysis

Our theoretical analysis in §4.1 provides insights on how the
prediction accuracies of the two approaches depend on the
variation of job run times across time and space. To understand
how such variations fare against each other in practice, we next
measure the actual variations in three production cluster traces.
Table 3 summarizes the information available in the traces that
are used in our analysis.

Traces. Our first trace is provided by 2Sigma [1]. The cluster
uses an internal proprietary job scheduler running on top of a
Mesos cluster manager [2]. This trace was collected over a period
of 7 months, from January to July 2016, and from 441 machines
and contains approximately 0.4 million jobs [17].

We also include two publicly available traces from Google
released in May 2011 and May 2019 [8], [11], collected from 1
and 8 Borg [53] cells over periods of 29 and 31 days, respec-
tively. The machines in the clusters are highly heterogeneous,
belonging to at least three different platforms that use different

micro-architectures and/or memory technologies [20]. Further,
according to [9], the machines in the same platform can have
substantially different clock rates, memory speed, and core
counts. Since the original Google 2019 trace has data from 8
different cells located in 8 different locations, and given that we
already have two other traces from the US, we chose the batch
tier of Cluster G in the Google 2019 trace, which is located in
Singapore [12], as our third trace to diversify our trace collection.

We calculate the variations in task runtimes for each job
across time and across space as follows.

Variation across time. To measure the variation in mean task
runtime for a job across the history, we follow the following
prediction mechanism defined in 3Sigma [47] to find similar jobs.

As discussed in §2.3, 3Sigma [47] uses multiple features to
identify a job and predicts its runtime using the feature that
gives the least prediction error in the past. We include all six
features used in 3Sigma: application name, job name, user name
(the owner of the job), job submission time (day and hour), and
resources requested (cpu and memory) by the job.

For each feature, we define the set of similar jobs as all
the jobs executed in the history window (defined below) that
had the same feature value. Next, we calculate the average task
runtime of each job in the set. Then, we calculate the Coefficient
of Variation (CoV) of the average task runtimes across all the
jobs in the set. We repeat the above process for all the features.
We then compare the CoV values thus calculated and pick the
minimum CoV. Effectively, the above procedure selects the least
possible variation across history.

Varying the history length in prediction across time.
3Sigma used the entire history for prediction. Intuitively, the
length of the history affects the trade-off between the number of
similar jobs and the staleness of the history information. For this
reason, we optimized 3Sigma by finding and using the history
length that gives the least variation. Specifically, we define the
length of history based on a window size w, i.e, the number of
past consecutive days. In our analysis below, we vary w among
3,7, and 14 for the three traces.

Variation across space. To measure the extent of variation

across space, we look at the CoV (CoV = Z) in the task runtimes

within a job. As shown in §4.1, the variance in the task runtime
2

predicted from sampling is %, where o2 is the variance in the
runtimes across all the tasks within the job and m is the number
of tasks sampled. Thus, we first estimate O’% from all tasks within
the job. We then report the CoV of our task runtime prediction
after sampling m tasks as @ Our complete scheduler
design in §5.1 uses an adaptive sampling algorithm which mostly
uses 3% for the three traces. Thus, for measuring the extent of
variation across space here, we assume a 3% sampling ratio and

g1
plot (v/0.03xnumberO fTasksInJob)X’

Variability comparison. For consistency, all analysis results
here are for the same, shortest trace period that can be used
for sliding-window-history based analysis, e.g., the last 15 days
under the 14-day window for the 29-day Google 2011 trace. (The
analysis then varies the length of the sliding window in history-
based learning.)

Fig. 1(a)-Fig. 1(c) show the CDFs of CoVs in task duration
measured across space and across history for multiple history
window sizes for the three traces. We see that in general using
a shorter sliding window reduces the prediction error of 3Sigma,
and the CoVs across tasks are moderately lower than the CoVs

5

TABLE 4: CoV in task runtime across time and across space for
the the 2Sigma, Google 2011, and Google 2019 traces.

Trace CoV over Time | CoV over Space
P50 P90 P50 P90
2Sigma 1.00 3.10 0.18 0.55
Google 2011 | 0.20 0.73 0.04 0.58
Google 2019 | 1.35 1.67 0.70 1.33

across history for the Google 2011 trace but significantly lower
for 2Sigma and Google 2019 traces. For example, for the 2Sigma
trace, the CoV across history is higher than the CoV across tasks
for 85.40% of the jobs (not seen in Fig. 1(a) as jobs are ordered
differently in different CDFs) and for more than 30% of the jobs,
the CoV across history is at least 12.10x higher than the CoV
across tasks.

Table 4 summarizes the results, where the CoVs across time
correspond to the best history window size, i.e., 3 days for both
Google traces and 14 days for the 2Sigma trace. As shown in
the table, the P50 (P90) CoV across history are 1.00 (3.10) for the
2Sigma trace, 0.20 (0.73) for the Google 2011 trace, and 1.35 (1.67)
for the Google 2019 trace. In contrast, the P50 (P90) CoV value
across the task duration of the same set of jobs is much lower,
0.18 (0.55) for the 2Sigma trace, 0.04 (0.58) for the Google 2011
trace, and 0.70 (1.33) for the Google 2019 trace.

Fig. 1(d) and Fig. 1(e) further show the CDF of CoVs for CPU
usage and Disk IO time for the Google 2011 trace (such resource
usage is not available in the 2Sigma trace). The figures show
that the variation in the values of these properties when sampled
across space is also considerably lower compared to the variation
observed over time.

4.3 Experimental Prediction Error Analysis

Recall from our analysis in §4.1 that lower task-wise variation
than job-wise variation (§4.2) will translate into better prediction
accuracy of sampling-based schemes over history-based schemes.
While our analysis in §4.1 assumes normal distribution, we
believe that a similar conclusion will hold in more general
settings. To validate this, we next implement a sampling-based
predictor SLEARN, and experimentally compare it against a state-
of-the-art history-based predictor 3Sigma [47] in estimating the
job runtimes directly on production job traces.

Workload characteristics. Since the three production traces
described in §4.2 are too large, as in 3Sigma [47], we extracted
smaller traces for experiments using the procedure described
below.

Since the history-based predictor 3Sigma needs a history
trace, we followed the same process as in [47] to extract the train-
ing trace for 3Sigma and the execution trace for all predictors, in
three steps. (1) We divided each original trace in chronological
order in two halves. (2) We compressed 2Sigma jobs to 150 tasks
or fewer, by applying a compression ratio of original cluster
size/150. Since the Google traces do not have many wide jobs
yet the original clusters are very wide, with 12.5K machines, we
dropped jobs with more than 150 tasks . (3) We next selected the
execution trace following the process below from the second half;
these became 2STrace, GTracell and GTracel9, respectively. (4)
We then selected jobs from the first half of each original trace
that are feature-clustered with those jobs in the execution trace
to form the history” trace for 3Sigma.

3. This is to avoid potential bias towards SLEARN. A job with more than
150 tasks will have to be scheduled in more than one phase, which will be in
favor of SLEARN by diminishing the sampling overhead.

1.0 T
=
0.8
& a : & 06 il &5 &
O94 / —— Space Co4 l' —— Space Oo94 i —— Space Oo4 { —— Space o Space
’ / ------ History-3 days ’ ,1 ~~~~~~ History-3 days : i e History-3 days B I History-3 days - History-3 days
0.2 // —-— History-7 days 0.2 7 —-— History-7 days 0.2 J —-— History-7 days 0.2 / —-— History-7 days —-— History-7 days
--- History-14 days -=-- History-14 days --- History-14 days -=-- History-14 days --- History-14 days
0.0 Y Y 0.0 4 Y 0.0 Y Y 0.0 4 Y Y Y
0 1 2 3 4 5 tail 0 1 2 3 4 5 0 1 2 4 5 0 1 2 3 4 5 0 1 2 3 4 5 tail

CoVs in task duration CoVs in task duration

(a) Task runtime - 2Sigma

CoVs in task duration

(b) Task runtime — Google 11 (c) Task runtime — Google 19

CoVs in CPU usage CoVs in diskIO time

(d) CPU usage - Google 11 (e) Disk IO time — Google 11

Fig. 1: CDF of CoV of runtime properties across space and across time with varying history windows, using the 2Sigma, Google 2011
and Google 2019 traces. Single-task jobs are excluded from the analysis across space.

TABLE 5: Statistics for system load per 1000s sliding window.

Trace Average | P50 | P90
2STrace 1.05 0.13 | 2.47
GTracell 1.01 0.29 1.49
GTracel9 1.04 0.09 | 0.91

We extracted the execution trace from each of the above-
mentioned second halves by randomly selecting 1250 jobs with
equal probability. Then, for each extracted trace, we adjust the
arrival time of the jobs so that the average cluster load matches
that in the original trace [17], [8], [11]. Table 5 summarizes the
workload per window of the extracted traces, where a window
is defined as a 1000-second interval sliding by 100 seconds at a
time, and the load per window is the total runtime of all the jobs
arrived in that window, normalized by the total number of CPUs
in the cluster times the window length, i.e., 1000s. We see that
for all three traces, the average system load is close to 1, though
the load fluctuates over time, which is preserved by the random
uniform job extraction.

Prediction mechanisms and experimental setups. We im-
plement the 3Sigma predictor following its description in [47].
After learning the job runtime distribution (§4.2), it uses a utility
function of the estimated job runtime associated with every job
to derive its estimated runtime from the distribution, by inte-
grating the utility function over the entire runtime distribution.
Since our goal is to minimize the average JCT, we used a utility
function that is inversely proportional to the square of runtime.
We kept all the default settings we learned from the authors of
3Sigma [47].

As in §4.2, SLEARN samples maz(1,0.03 - S) tasks per job,
where S is the number of tasks in the job. We only show the
results for wide jobs (with 3 or more tasks) as in the complete
SLEARN design (§5.1.1), only wide jobs go through the sampling
phase.

Results. Fig. 2 shows the CDF of percentage error in the
predicted job runtimes for the three traces. We see that SLEARN
has much better prediction accuracy than 3Sigma. For 2STrace,
GTracell, and GTracel9, the P50 prediction error are 18.30%,
9.15%, 21.39% for SLEARN but 36.57%, 21.39%, 71.56% for 3Sigma,
respectively, and the P90 prediction error are 58.66%, 49.95%,
92.25% for SLEARN but 475.78%, 294.52%, 1927.51% for 3Sigma,
respectively.

5 INTEGRATING SAMPLING-BASED LEARNING
JoB SCHEDULING: A CASE STuDY

WITH

In this section, we answer the second key question about the
sampling-based learning: Can delaying scheduling the remaining
tasks till completing the sampled tasks be compensated by the

improved prediction accuracy? We answer it through extensive
simulation and testbed experiments.

Our approach is to design a generic scheduler, denoted as GS,
that schedules jobs based on job runtime estimates to optimize
a given performance metric, average job completion time (JCT).
We then plug into GS different prediction schemes to compare
their end-to-end performance.

5.1 Scheduler and Predictor Design
5.1.1 Generic Scheduler GS

GS replaces the scheduling component of a cluster manager like
YARN [5]. The key scheduling objective of GS is to minimize the
average JCT. Additionally, GS is designed to avoid starvation.

The scheduling task in GS is divided into two phases, (1)
job runtime estimation, and (2) efficient and starvation-free
scheduling of jobs whose runtimes have been estimated. We
focus here on the scheduling mechanism and discuss the different
job runtime estimators in §5.1.2 and §5.1.3.

Inter-job scheduling. Shortest job first (SJF) is known to
be optimal in minimizing the average JCT when job execution
depends on a single resource. Previous work has shown that
scheduling distributed jobs even with prior knowledge is NP-
hard (e.g., [23]), and an effective online heuristic is to order the
distributed jobs based on each job’s total size [40], [41], [39]
[37]. In GS we use a similar heuristic; the jobs are ordered based
on their total estimated runtime, i.e., mean task runtime X
number of tasks.

Starvation avoidance. SJF is known to cause starvation to long
jobs. Hence, in GS we adopt a well-known multi-level priority
queue structure to avoid job starvation [25], [48], [46], [38]. Once
GS receives the runtime estimates of a job, it assigns the job to a
priority queue based on its runtime. Within a queue, we use FIFO
to schedule jobs. Across the queues, we use weighted sharing
of resources, where a priority queue receives a resource share
according to its priority.

In particular, GS uses N queues, Qg to Qnx_1, with each
queue having a lower queue threshold Qi;’ and a higher threshold
th for job runtimes. We set QY = 0, Q?\}i_l = 00, Qé‘;l =
Q,"- A queue with a lower index has a higher priority. GS uses
exponentially growing queue thresholds, i.e., Qgil =E- Qgi. To
avoid any bias, we use the multiple priority queue structure with
the same configuration when comparing different job runtime
estimators.

Basic scheduling operation. GS keeps track of resources being
used by each priority queue. It offers the next available resource
to a queue such that the weighted sharing of resources among the
queues for starvation avoidance is maintained. Resources offered
to a queue are always offered to the job at the head of the queue.

1.0 — 1.0 S 1.0 —_
—— SLearn : —— Slearn —— Slearn e
0.81 —.- 3sigma ' 0.84 —.- 3Sigma 0.8 —.- 3Sigma
w 0.6 / w 0.6 w 0.6 e
a fa o
©0.44 © 0.4 ©o0.44
0.24 0.24 0.24
4 /_/'
0.01 - 0.0+ 0.04

104 10-3 102 10~ 109 10! 102

104 10-3 102 10! 10° 10' 102

104 10-3 10-2 10~ 10° 10' 102

Prediction error

(a) 2STrace

Prediction error

(b) GTracell

Prediction error

(c) GTracel9

Fig. 2: Job runtime prediction accuracy.

Place it in the
highest priority
queue for execution

Place it in the second
highest priority
queue for sampling

a2 Sampling |completes
SE
Job Finish Job Fstlmate jC?b 5|ze.an'd place it
runs in appropriate priority queue
Fig. 3: Job life-cycle in SLEARN
5.1.2 SLEARN

To seamlessly integrate SLEARN with GS, we need to use one of
the priority queues for scheduling sampled tasks. We denote it
as the sampling queue. Figure 3 depicts the stages a job may go
through in its life cycle in SLEARN. In the following, we provide
details on how we handled design challenges faced in SLEARN.

Fast sampling. One design challenge is to determine the
priority for the sampling queue w.r.t. the other priority queues.
On one hand, sampled tasks should be given high priority so that
the job runtime estimation can finish quickly. On the other hand,
we should not make the jobs whose runtimes have already been
estimated wait further for learning for new jobs. To balance
the two factors, we use the second highest priority in GS as the
sampling queue.

Handling thin jobs. Recall that in SLEARN, when a new job
arrives, SLEARN only schedules its pilot tasks, and delays other
tasks until the pilot tasks finish and the job runtime is estimated.
Such a design choice can inadvertently lead to higher JCTs for
thin jobs, e.g., a two-task job would experience serialization of
its two tasks. To avoid JCT degradations for thin jobs, we place
a job directly in the highest priority queue if its width is under a
threshold . We refer to the threshold as thinLimit.

Basic operations. Upon the arrival of a new job, the cluster
manager asynchronously communicates the job’s information to
GS, which relays the information to SLEARN. If the number of
tasks in the job is under thinLimit, SLEARN assigns it to the
highest priority queue; otherwise, the job is assigned to the
sampling queue, where a subset of its tasks (pilot tasks) will
be scheduled to run. Once a job’s runtime is estimated from
sampling, it is placed in the priority queue corresponding to the
estimate, where the rest of its tasks will be scheduled.

How many pilot tasks to schedule? When a new job arrives,
SLEARN first needs to determine the number of pilot tasks.
Sampling more tasks can give higher estimation accuracy, but
also consumes more resources early on, which can potentially
delay other jobs, if the job turns out to be a long job and
should have been scheduled to run later under SJF. Further,
we found the best sampling ratio (SR) appears to vary across
difference traces. To balance the trade-off, we use an adaptive
algorithm to dynamically determine the SR, as shown in Figure 4.
The basic idea of the algorithm is to suggest an SR that has
resulted in the lowest job completion time normalized by the
job runtime based on the recent past. To achieve this, for every
value in a defined range of possible SRs (between 1% and 5%), the
scheduler maintains a running score (srScoreM ap), which is
the average normalized JCT of 1" recently finished jobs that used
the corresponding SR. In practice we found that a 7" value of 100
works reasonably well. During system start-up, the scheduler
tries sampling ratios of 2%, 3%, and 4% for the first 3T jobs
(Line 2-7). It further tries sampling ratios of 1% and 5% if going
down from 3% to 2% or going up from 3% to 4% reduces the
normalized JCT. Afterwards, for each new job, it uses the SR that
has the lowest running score. Finally, upon each job completion,
the score map is updated (Line 16-24).

Complexity The GETCURRENTSAMPLINGPERCENTAGE procedure
runs in constant time plus the time of getMinValue(srScoreMap).
getMinValue(srScoreMap) also runs in time linear in the total
number of possible sampling ratios, which is a constant in our
case. UPDATESCOREONJOBCOMPLETION() takes the same time as
UPDATESCOREMAPsS() plus a constant time. The runtime of Up-
DATESCOREMAPS is linear in 7', the number of recently completed
jobs to be tracked.

How to pick pilot tasks? Once the SR is chosen, SLEARN selects
pilot tasks for a job randomly.

How to estimate from sampled tasks? Several methods
such as bootstrapping, statistical mean or median can be used
to predict job properties from sampled tasks. In GS, we use
The time
complexity to calculate the mean is linear in the total number
of tasks in the job.

empirical mean to predict the mean task runtime.

Work conservation. When the system load is low, some ma-
chines may be idle while the non-sampling tasks are waiting for
the sampling tasks to finish. In such cases, SLEARN schedules
non-sampling tasks of jobs to run on otherwise idle machines. In
work conservation, the jobs are scheduled in the FIFO order of
their arrival.

1: procedure GETCURRENTSAMPLINGPERCENTAGE(JoD j)

2 if j in First T jobs then

3 return 3

4: else if j in Second T jobs then

5: return 2

6 else if j in Third T jobs then

7 return 4

8 minScore = getMinValue(srScoreMap)

9: if minScore.SR == 2 then
10: if 1.1*minScore.value < srScoreMap([3].value then
11: return 1
12: if minScore.SR == 4 then
13: if srScoreMap[3].value > 1.1"minScore.value then
14: return 5
15: return minScore.SR

16: procedure UPDATESCOREONJOBCOMPLETION(Job j)

17: ST = j.sT > Get j’s sampling ratio.
18: normalized]CT = j.jct > Get j’s normalized JCT.
19: UpdateScoresMap(sr, normalized]CT)

20: procedure UPDATESCOREMAPS(sr, normalized]CT)

21: if Len(jobWiseSrScoresMap([sr])> 7" then

22: Drop first element of jobWiseSrScoresMap[sr]

23: jobWiseSrScoresMap[sr].append(normalizedJCT)

24: srScoreMap/[sr].value = mean(jobWiseSrScoresMap[sr])

Fig. 4: Adaptive sampling algorithm in SLEARN.

5.1.3 Baseline Predictors and Policies

We compare SLEARN’s effectiveness against four different base-
line predictors and two policies: (1) 3Sigma: as discussed in
§4.3. (2) 3SigmaTL: same as 3Sigma but handles thin jobs in
the same way as SLEARN; they are directly placed in the highest
priority queue. This is to isolate the effect of thin job handling. (3)
PoINT-EsT: same as 3Sigma, with the only difference being that,
instead of integrating a utility function over the entire runtime
history, it predicts a point estimate (median in our case) from
the history. (4) LAS: The Least Attained Service [48] policy
approximates SJF online without explicitly learning job sizes,
and is most recently implemented in the Kairos [28] scheduler.
LAS uses multiple priority queues and the priority is inversely
proportional to the service attained so far, i.e., the total execution
time so far. We use the sum of all the task execution time to be
consistent with all the other schemes. (5) FIFO: The FIFO policy
in YARN simply prioritizes jobs in the order of their arrival. Since
FIFO is a starvation free policy, there is no need for multiple
priority queues. (6) ORACLE: ORACLE is an ideal predictor that
always predicts with 100% accuracy.

5.2 Experimental Setup

We evaluated SLEARN’s performance against the six baseline
schemes discussed above by plugging them in GS and execute
the 3 traces (2STrace, GTracell, and GTracel9) using large scale
simulations and on a 150-node testbed cluster in Azure (§5.3.4).

Cluster setup. We implemented GS, SLEARN and baseline
estimators with 11 KLOC of Java and python2. We used an
open source java patch for Gridmix [15] and open source java
implementation of NumericHistogram [13] for Hadoop. We used
some parts from DSS, an open source job scheduling simulator
[10], in simulation experiments.

We implemented a proxy scheduler wrapper that plugs into
the resource manager of YARN [5] and conducted real cluster
experiments on a 150-node cluster in MS Azure [14].

8

TABLE 6: Performance improvement of SLEARN over 3Sigma
under adaptive sampling and fixed-ratio sampling.
Fraction of tasks chosen as pilot tasks

1% 2% 3% 4% 5% 10% Adap.
2STrace
P50 pred. error (%) 194 19.0 19.0 18.7 184 169 19.0
Avg. JCT speedup (x) 1.24 1.23 1.27 1.26 1.27 1.28 1.28
P50 speedup (x) 093 092 093 092 093 091 0.92
GTracell
P50 pred. error (%) 144 140 13.6 13.1 127 9.09 13.7
Avg. JCT speedup (x) 1.52 1.55 1.54 1.56 1.58 1.51 1.56
P50 speedup (x) 1.00 1.00 1.00 1.00 1.00 1.00 1.00
GTracel9
P50 pred. error (%) 55.7 53.8 47.1 465 42.1 36.1 518
Avg. JCT speedup (x) 1.31 1.31 1.31 132 1.28 1.24 1.32
P50 speedup (x) 1.07 1.07 1.05 1.05 1.01 1.00 1.07

Following the methodology in recent work on cluster job
scheduling [47], [51], [24], we implemented a synthetic generator
based on the Gridmix implementation to replay jobs that follow
the arrival time and task runtime from the input trace. The Yarn
master runs on a standard DS15 v2 server with 20-core 2.4 GHz
Intel Xeon E5-2673 v3 (Haswell) processor and 140GB memory,
and the slaves run on D2v2 with the same processor with 2-core
and 7GB memory.

Parameters. The default parameters for priority queues in GS
in the experiments are: starting queue threshold (Q4?) is 106
ms, exponential threshold growth factor (£) is 10, number of
queues (V) is set to 10, and the weights for time sharing assigned
to individual priority queues decrease exponentially by a factor
of 10. Previous work (e.g., [40]) and our own evaluation have
shown that the scheduling results are fairly insensitive to these
configuration parameters. We omit their sensitivity study here
due to page limit. SLEARN chooses the number of pilot tasks
for wide jobs using the adaptive algorithm described in §5.1.2
and the threshold for thin jobs is set to 3. We evaluate the
effectiveness of adaptive sampling in §5.3.1 and the sensitivity
to thinLimit in §5.3.5.

Performance metrics. We measure three performance metrics
in the evaluation: JCT speedup, defined as the ratio of a JCT
under a baseline scheme over under SLEARN, the job runtime
estimation accuracy, and job waiting time.

Workload. We used the same training data for history-based
estimators and the test traces (2STrace, GTracell and GTracel9)
as described in §4.3.

5.3 Experimental Results
5.3.1 Effectiveness of Adaptive Sampling

In this experiment, we evaluate the effectiveness of our adaptive
algorithm for task sampling. Fig. 5 shows how the sampling
ratio selected by the adaptive algorithm for each job varies
between 1% and 5% over the duration of the three traces. We
further compare average JCT speedup and P50 speedup under
the adaptive algorithm with those under a fixed sampling ratio,
ranging between 1% and 10%. Table 6 shows that the adaptive
sampling algorithm leads to the best speedups for 2STrace and
GTracel9 and is about only 1% worse than the best for GTracell.
Interestingly, we observe that no single sampling ratio works the
best for all traces. Nonetheless, the adaptive algorithm always
chooses one that is the best or closest to the best in terms of JCT
speedup. More importantly, we see that the adaptive algorithm
does not always use the sampling ratio with the best prediction

Sampling ratio

0 100K 200K 300K 400K

Job arrival time (sec)

500K

(a) 2STrace

600K

5%

IS

X
|
!
]

w
X

N
ES

5%

io

4%

w
R

N
X

Sampling rati

=
B

1%

0 20K 40K 60K 80K 100K 120K 140K 160K

Job arrival time (sec)

(b) GTracell

0

200K 400K 600K 800K 1000K 1200K 1400K
Job arrival time (sec)

(c) GTracel9

Fig. 5: Sampling ratios selected by the adaptive sampling algorithm. The duration of initial 37" jobs appear varying due to uneven

arrival times.

—— P10-P90 —— P10-P90 —— P10-P90
102 P50 102 P50 102 P50
_(%‘ ® Average g ® Average g ® Average
@ 10! ® 101 7.29 0 101
o =% ° =% 363
v 3'.29 n 2,17 il o
[1.28 1.26 197 1.42) = 156 1,55 1.65 ° — 132 132 1.72] 1.54
100 G @ 2100 = oz Z100] [€] [e] [*] [e
] ®

3Sigma 3SigmaTL LAS Point FIFO Oracle
Other predictors and policies

(a) 2STrace

3Sigma 3SigmaTL LAS Point FIFO Oracle
Other predictors and policies

(b) GTracell

3Sigma 3SigmaTL LAS Point FIFO Oracle
Other predictors and policies

(c) GTrace19

Fig. 6: JCT speedup using SLEARN as compared to other baseline schemes for the three traces.

accuracy, which shows that it effectively balances the tradeoff
between prediction accuracy and sampling overhead.

5.3.2 Prediction Accuracy

SLEARN achieves more accurate estimation of job runtime over
3Sigma - the details were already discussed in §4.3.

5.3.3 Average JCT Improvement

We now compare the JCT speedups achieved using SLEARN over
using the five baseline schemes defined in §5.1.3.

Fig. 6(a) shows the results for 2STrace. We make the following
observations. (1) Compared to ORACLE, SLEARN achieves an
average and P50 speedups of 0.79x and 0.73 X, respectively. This
is because SLEARN has some estimation error; it places 10.91% of
wide jobs in the wrong queues, 3.54% in lower queues and 7.37%
in higher queues. (2) SLEARN improves the average JCT over
3Sigma by 1.28 x. This significant improvement of SLEARN comes
from much higher prediction accuracy compared to 3Sigma
(Fig. 2). (3) The improvement of SLEARN over 3SigmaTL, 1.26 X,
is similar to that over 3Sigma, confirming thin job handling only
played a small role in the performance difference of the two
schemes. To illustrate SLEARN’s high prediction accuracy, we
show in Table 7 the fraction of wide jobs that were placed in
correct queues by SLEARN and 3Sigma. We observe that SLEARN
consistently assigns more wide jobs to correct queues than
3Sigma for all three traces. (4) Compared to POINT-EST, SLEARN
improves the average JCT by 1.42X. Again, this is because
SLEARN estimates runtimes with higher accuracy. (5) Compared
to LAS, SLEARN achieves an average JCT speedup of 1.91x
and P50 speedup of 1.29x. This is because LAS pays a heavy
penalty in identifying the correct queues of jobs by moving
them across the queues incrementally. (6) Lastly, compared with
FIFO, SLEARN achieves an average JCT speedup of 3.29 X and P50
speedup of 8.45x.

Fig. 6(b) shows the results for GTracell. Scheduling under
SLEARN again outperforms all other schemes. In particular, using

TABLE 7: Percentage of the wide jobs that had correct queue
assignment.

Prediction | SLEARN | 3Sigma
Technique

2STrace 89.09% 73.84%
GTracell 86.45% 76.20%
GTracel9 73.96% 58.07%

SLEARN improves the average JCT by 1.56X compared to using
3Sigma, 1.55X compared to using 3SigmaTL, 2.17 X compared to
using Point-Est, and 1.65X compared to using the LAS policy.
Fig. 6(c) shows that scheduling under SLEARN outperforms all
other schemes for GTracel9 too. In particular, using SLEARN
improves the average JCT by 1.32X, 1.32X, 1.54X, and 1.72X
compared to using 3Sigma, 3SigmaTL, PoINT-EsT and the LAS
policy, respectively.

In summary, our results above show that SLEARN’s higher
estimation accuracy outweighs its runtime overhead from sam-
pling, and as a result achieves much lower average job comple-
tion time than history-based predictors and the LAS policy for
the three production workloads.

5.3.4 Testbed Experiments

We next perform end-to-end evaluation of SLEARN and 3Sigma
on our 150-node Azure cluster. Fig. 7 shows the CDF of JCT
speedups using SLEARN over 3Sigma using 2STrace, GTracell
and GTrace1l9. SLEARN’s performance on the testbed is similar to
that observed in the simulation. In particular, SLEARN achieves
average JCT speedups of 1.33X%, 1.46X, and 1.25X over 3Sigma
for the 2STrace, GTracell, and GTracel9 traces, respectively.

5.3.5 Sensitivity to Thin Job Bypass

Finally, we evaluate SLEARN’s sensitivity to thinLimt. Table 8
shows that for GTracell and GTracel9, the average JCT speedup
barely varies with thinLimit, but for 2STrace, there is a big dip
when increasing thinLimit to 4 or 5. This is because a significant
number of jobs in 2STrace have width 4, which causes the

1.0 [—— g
oz 5 —— P10-P90 —— P10-P90
0.8 a P50 QlOZ P50
o 10.54 ® Average S ® Average
w 0.6 g10ty | e g 3
a ° 910!
[oX Q.
“o4 3 » 5:4
—- GTracell 2 ° 1.38 L—, ° ° :
02 Yy - 2STrace S100 1.86 080 o =100 8 (2B -
0.0 —— GTracel9 = 079
Of=—~ 8]
101 10° 10! 10? 103 Bin-1 Bin-2 Bin-3 Bin-4 3Sigma LAS Point FIFO Oracle
JCT speedup over 3Sigma Bins Other predictors and policies for DAGs

Fig. 7: [Testbed] CDF of speedup: SLEARN

vs 3Sigma. bins in Table 9.

TABLE 8: Sensitivity analysis for thinLimit. Table shows average
JCT speedup over 3Sigma.

thinLimit 2 3 4 5 6
2STrace 1.23x | 1.28x | 1.14x | 0.97x | 0.84x

GTracell | 1.54x | 1.56x | 1.55x | 1.54x | 1.53x

GTracel19 | 1.33x | 1.32x | 1.32x | 1.30x | 1.29x

number of thin jobs to increase from 18.84% to 58.50% when
increasing thinLimit from 4 to 5.

5.4 Intuitive Explanation

Recall that §4 positively answered the first questions we asked in
Intro: (1) Can learning in space be more accurate than learning
in time? And §5.3 positively answered the second question: (2) If
so, can delaying scheduling the remaining tasks of a job till the
completion of sampled tasks be more than compensated by the
improved accuracy and result in improved job performance, e.g.,
completion time?

In this section, we delve into detailed results in §5.3 to
provide intuitive explanations for the positive answers to the
above two questions.

First, §5.4.1 gives the intuition to the positive answer to
question 1. Then §5.4.2, 5.4.3 and 5.4.4 give the intuition to the
positive answer to Question 2.

5.4.1 Visualizing the difference in CoVs of runtime across
history (time) and tasks (space)

In this section, we show results to visualize the difference in
variation of runtimes across history (runtime of similar jobs over
time) and tasks (runtime of tasks of the same job i.e., space). For
clarity, we show the result for 70 jobs extracted at random from
the 2Sigma trace, plotted in the order of job arrival in Figure 10.
For each job, we plot the following two values on the y-axis: (1)
the CoV in average task runtime across history. and (2) the CoV
in task runtimes within the job. We use the exact same process
as described in §4.2. For the history window we have chosen a
30-day period (which was found to give the least variation across
history as shown in Figurel(a));

It is clearly seen that the variation across history (time)
is significantly higher than variation across tasks (space). For
the whole trace the variation across history is higher than the
variation across tasks for more than 85% of the jobs. We observe
similar behaviour for the other two traces.

5.4.2 Impact of Sampling on Job Waiting Time

To evaluate sampling overhead and gain insight into why
sampling pilot tasks first under SLEARN does not hurt the overall
average JCT, we next compare the normalized waiting time of
jobs, calculated as the average waiting time of its tasks under the
respective scheme, divided by the mean task length of the job.

Fig. 8: Performance breakdown into the Fig. 9: JCT speedup using SLEARN-DAG

over baselines for GTrace19-DAG.

Fig. 11 shows the CDF of the normalized job waiting time
under SLEARN and 3Sigma. Here, we focus on explaining the
CDF for GTracell in Fig. 11(b), but similar explanation can be
given for the other two traces. We see that the CDF curves in
Fig. 11(b) can be divided into three segments. (1) The first seg-
ment, where both SLearn and 3Sigma have normalized waiting
time (NWT) less than 0.04, covers 36.58% of the jobs, and 35.57%
of the jobs are common. These jobs have almost identical NW'T,
much lower than 1 under both schemes. This happens because
during low system load periods, e.g., lower than 1, the scheduler,
under both schemes, will schedule all the tasks to run; under
SLEARN it schedules non-sampled tasks of jobs to run before
their sampled tasks complete due to work conservation. (2) The
second segment, where both schemes have NWT between 0.04
and 1.90, covers 30.51% of the jobs, and 20.38% of the jobs are
common. Out of these 20.38% of the jobs, 29.81% have lower
NWT under SLEARN and 70.19% have lower NWT under 3Sigma.
This happens because when the system load is moderate, the
jobs experience longer waiting time under SLEARN (because of
the sampling delay) than under 3Sigma. (3) The third segment,
where both schemes have NWT above 1.90, cover 32.91% of the
jobs, and 24.68% of jobs are common. Out of these 24.68%, 83.08%
have lower waiting time under SLEARN and 16.92% under 3Sigma.
This happens because when the system load is relatively high,
although jobs incur the sampling delay under SLEARN, they also
experience queuing delay under 3Sigma. Thus, the impact of the
sampling delay is relatively less significant. Instead, the more
accurate prediction of SLEARN allows them to be scheduled more
closely to under Shortest Job First than under 3Sigma.

Fig. 12 shows the task waiting dynamics (CDF of waiting
times of the tasks of that job) for a job that had the same JCT
under both SLEARN and 3Sigma, and Fig. 13 shows a job that
experienced a significant speedup under SLEARN over 3Sigma,
for all 3 traces. We see that for both types of jobs, both the
sampled tasks and most of the non-sampled tasks in SLEARN
started much earlier compared to their starting moments under
3Sigma. The same observation holds true for most of the jobs.
These results suggest that sampling does not inflate the waiting
time of the jobs. A detailed analysis of how the system load
of the trace affects the relative job performance under the two
predictors can be found in §5.4.4.

5.4.3 Binning Analysis

Previous sections aim to visualize the role of prediction accuracy
and waiting time due to sampling. To gain further insight into
how jobs with different width and size are affected by SLEARN
over 3Sigma, we divide the jobs into four bins in Table 9 for
2STrace and show the JCT speedups for each bin in Fig. 8. The
results for the other two traces are similar and are omitted due

tail ® .
.5 3.5 ") e History cov
T ° . . x Task cov
< 3.0 °
325 ¢
VN b (] (] - [] Y [3
n 2.0) [J
S 1.5 2 S & ° o0 2 e
= 1.0 _a® hd .A - Py ® [] [) 8 o a
w0 . [L ® v e et P bl
>0.5 X e - .5 e® o x x X ox x XPe ® % 52 e
80_0 X o xXXy X xx X @ Xx D Kxgx xX XX ’xxxxxx % xBX xQOsux$Xoox XXx XX g Xy

0 10 20 30 40 50 60 70

Job id

Fig. 10: CoVs across time and space for 70 jobs selected randomly from the 2Sigma trace. The x-axis represents job ids in the order

of their arrival.

R — SLearn ST Lo — SLearn
0.8/ —— 3Sigma //’ 0.8/ —— 3Sigma
. 0.6 . 0.6
[a) [a)
O O

0.4 0.4

0.2 0.2

0.0 0.0

ST LR — SLearn

,./‘ 0.8/ —— 3Sigma

0.6

CDF

0.4

0.2

0.0

1074 1073 1072 10~! 10° 10! 10%? 103

10~4 1073 1072 107! 10° 10! 102

10-4107310-2 107! 10° 10! 10? 10° 104

Normalized job waiting time

(a) 2STrace

Normalized job waiting time

(b) GTracell

Normalized job waiting time

(c) GTracel9

Fig. 11: CDF of waiting times for all wide jobs for the 3 traces.

1.0 100
—— Slearn
0.8) .. 3Sigma 0.8
50.6 i 0.6
“o.4 Oo.4
0.2 0.2
0.0

102 107! 10° 10t 102

Task waiting time (KSec)

(a) 2STrace - JCT Speedup - 1.00x

Task waiting time (KSec)

(b) GTracell - JCT Speedup - 1.01 %

1071 10° 10! 102
Task waiting time (KSec)

(c) GTracel9 - JCT Speedup - 1.01x

107! 10

Fig. 12: Task waiting times for jobs having similar JCT under SLEARN and 3Sigma.

1.0 1.0
—— SlLearn
0.8 o8{ 3Sigma
uw 0.6 w 0.6
a a
©o0.4 0.4
0.2 0.2
0.0 0.0 i 0.0
107! 100 10t 107! 100 10t 100 10t 102

Task waiting time (KSec)

(a) 2STrace - JCT Speedup - 6.40x

Task waiting time (KSec)

(b) GTracel1 - JCT Speedup - 4.23 X

Task waiting time (KSec)

(c) GTracel19 - JCT Speedup - 3.80%

Fig. 13: Task waiting times for jobs that performed significantly better under SLEARN compared to 3Sigma

TABLE 9: Breakdown of jobs based on total duration and width
(number of tasks) for 2STrace. Shown in brackets are a bin’s
fraction of all the jobs in the trace in terms of job count and total
job runtime.

width < 3 (thin)

width > 3 (wide)

size < 10%s (sm)

bin-1 (4.55%, 0.01%)

bin-2 (28.73%, 0.06%)

size > 10%s (Ig)

bin-3 (14.29%, 5.41%)

bin-4 (52.43%, 94.52%)

to page limit.

We make the following observations. (1) SLEARN improves
the JCT for 82.46% of the jobs in Bin-1 and the average JCT
speedup for the bin is 10.54x. This happens because the jobs in
this bin are thin and hence SLEARN assigns them high priorities,

which is also the right thing to do since these jobs are also small.
(2) For bin-2, SLEARN achieves an average JCT speedup of 1.86 %
from better prediction accuracy of SLEARN. The speedups are
lower than for Bin-1 as the jobs have to undergo sampling.
However, Bin-1 and Bin-2 make up only 0.01% and 0.06% of
the total job runtime and thus have little impact on the overall
JCT. (3) Bin-3, which has 14.29% of the jobs and accounts for
5.41% of the total job size, has a slowdown of 20.00%. The
main reason is that SLEARN treats thin jobs in the FIFO order,
whereas 3Sigma schedules them based on predicted sizes. (4) Bin-
4, which accounts for a majority of the job and total job size, has
an average speedup of 1.38x, which contributes to the overall
speedup of 1.28x. The job speedups come from more accurate

job runtime estimation of SLEARN over 3Sigma. Finally, we note
that while for the 2Sigma trace, the majority of thin jobs are
large, for the Google 2011 (Google 2019) trace, only 1.90% (1.60%)
of the total number of jobs are thin and large and they make up
only 0.5% (0.5%) of the total job runtime..

5.4.4 How does the system load affect the speedups of
SLEARN over 3Sigma?

In this section, we provide an intuitive explanation for SLEARN’s
JCT speedup over 3Sigma in Section 5.2.4 for 2STrace in Figure
5(a). Figure 14 shows seven timeline values comparing SLEARN
and 3Sigma for the 2STrace as follows:

e The top curve shows the total workload arrived in the past
1000 seconds, in terms of execution duration. The values are
plotted in steps of 1000 seconds along the x-axis. A unit
along the y-axis corresponds to the workload that needs
1000 seconds of the entire cluster’s compute capacity. Thus
a workload of 1 in steady state implies no queue build-up
under 100% utilization of the whole cluster.

o The next three curves show the resistance faced by newly
arrived jobs under ORACLE, 3Sigma and SLEARN, respec-
tively, where resistance for a job is defined as the amount
of higher priority workload existing at the time of its
arrival, including the remaining duration of the already
scheduled tasks. A unit along the y-axis for these curves
also corresponds to the workload that needs 1000 seconds
of the entire cluster’s compute capacity. For wide jobs (i.e.,
with 3 or more tasks), under SLEARN we show the resistance
value corresponding to the moment when the job’s size
estimation is over and it has been placed in its estimated
priority queue. The resistance values are plotted along the
x-axis corresponding to each job’s arrival time.

o The next two curves correspond to the percentage predic-
tion error in 3Sigma and SLEARN, respectively. They show
signed error which are capped at 1000, e.g., a value of -20 on
error curves means the job was estimated to be 20% smaller
and a value of 1000 means job was estimated at least 1000%
larger. The values are plotted along the x-axis corresponding
to each job’s arrival time.

e The bottom curve shows the job speedup (positive values)
or slowdown (negative values) of SLEARN compared to
3Sigma, plotted along the x-axis corresponding to each job’s
arrival time. Thus all values are either above 1, showing the
speedups of jobs under SLEARN over under 3Sigma, or below
-1, showing the speedups of jobs under 3Sigma over under
SLEARN.

With the above definitions of the curves, we next discuss how
these curves in Fig. 14 provides insights to when and why
SLEARN outperforms 3Sigma.

e The speedup curve (bottom) shows the speedup under
SLEARN over under 3Sigma happens when the workload
is high, e.g., between 600s and 620s, and 800s to 840s.
Conversely, when the workload is below 1, e.g., between
400 and 600s, the two scheme perform similarly and there is
no speedup of either scheme. In such cases, task sampling
SLEARN did not hurt jobs because non-sampled tasks did not
have to wait for completion of sampled tasks due to work
conservation (§5.1.2).

e Intuitively, under any scheme, a job’s completion time is
roughly proportional to its own total runtime (which is
independent of the scheduling) plus the resistance it sees

12

upon arrival, because the resistance value indicates the
amount of workload that needs to be scheduled before the
arriving job gets to run.

o The resistance value, in turn, depends on the recently arrived
workload and the prediction error and hence the scheduling
decision for them.

o First, if more workload has arrived in the recent past, it is
likely that a newly arrived job will face higher resistance.
This is shown by the strong correlation between the load
curve and the ORACLE resistance curve.

e Second, high runtime prediction error can lead to high re-
sistance. When the job runtime is estimated by the predictor
to be larger than its actual size, it may be misplaced in a
lower priority queue. If the error is more than 1000% then
the job will definitely be placed in a lower priority queue.
In such cases, the job will likely face higher resistance than
it would have with accurate estimation. Conversely, when
the job runtime is underestimated, it may be placed in a
higher priority queue. Though such a job will finish faster
than otherwise, it will create more resistance for other jobs
that are actually smaller than it and thus slow them down.

e The above impact of prediction error on resistance can be
seen in Fig. 14. Since the prediction accuracy of SLEARN is
high, it has less impact on the resistance and as a result its
resistance (fourth curve) is very similar to that of ORACLE
(second curve)®. In contrast, the resistance curve for 3Sigma
(third curve) has many spikes, e.g., between 800s and 1050s,
which happen when the workload (top curve) is high and it
has high positive prediction error (fifth curve).

e Finally, we can see that where ever there is higher resistance
under 3Sigma (third curve) compared to under SLEARN
(fourth curve), e.g., between 800s and 1000s, jobs experience
speedups under SLEARN over under 3Sigma.

While the above explanation using Fig. 14 is based on the
performance of SLEARN and 3Sigma relative to that of ORACLE,
Table 10 gives a direct comparison of the scheduling behavior
of the jobs under the two schemes in terms of runtime over-
estimation/underestimation, prediction error, and the resulting
misplacement to the priority queues. We see that a larger number
jobs are misplaced under 3Sigma compared to SLEARN which led
to the overall lower performance under 3Sigma.

In summary, whether a job finishes faster under SLEARN
compared to 3Sigma depends on two factors: the recent workload
and the runtime prediction error. Due to higher prediction error
of 3Sigma compared to SLEARN, during high workload, jobs are
more likely to be misplaced to the priorty queues and hence
face higher resistance, which results in longer average completion
time under 3Sigma.

6 ScHEDULING FOR DAG JoBs

In earlier sections, we have focused on the benefits of sampling-
based prediction. On the other hand, we envision that there are
situations where it would be beneficial to combine sampling-
based and history-based predictions. Below, we present our
preliminary work applying such a hybrid strategy for scheduling
DAG jobs. We will discuss several other use cases of a hybrid

4. We note that there can be some exceptions where jobs face lower
resistance under SLEARN compared to under ORACLE, e.g., between time 200 -
400 KSec in Fig. 14. This happens because of mis-prediction in SLEARN, e.g.,
when it underestimates the runtime of some jobs and places them in lower
priority queues than otherwise, the subsequently arriving job will experience
lower resistance.

- Load —— Oracle 3Sigma ____ Slearn __ 3Sigma _ Slearn Speed
0a Resistance Resistance Resistance Error Error peedup
50 A ;
2 351 :
Q _ i i
- 18 _.“...... Nod _4__.’|JIA"|\ \ u-',l._.-.}! _li__..__'..._.a_l___j'tlj"».'_--_l-.;u.\\\"-__‘ul\l'___nl.ldf.l\h\bh_-‘lﬂ-i._.‘n!)_\n_-..'l_u.a-_.i___.
w§ 140 |
S8 90 % |
8o g0 A iy) I ! g oy
°8 o P e O 0 NN it b ool Y it s ms o~
T T T T T T
m§ 140
Es 90
'@-5 50 A
< 1491 i ' ' r : :
cc |
58 291)
dg 58 _I‘—_..’.u‘ - "‘m'l'.)“k-.l‘n—-»*‘rmkﬂ __________ zr"“'-l-'-«ﬁ—...b—'h'-—-— tuu_-.oulh.w _E.L}\JL"““JL“\’”-
T T
10 T 1 m 1 i i it T
Es 7 IR .'i,l_] IV RTEE!
Qi 3 13y :' s}il il ”'! Lo
™ 0 Bl - AR AT H\"J ‘,w,mw~ r\w" e P TOT | PTTH
_ 10 T T
55 77
35 31
T T L T T
o 210 S ; .
2 140 - ! ,
o 7041 ! '
L% 0 _-.~-__,L.LJ.J/,.,..}_..._A-,....__.wJ.‘A‘.Au_-\»‘ AJL-—/~§L&~~N*/AMM\J——A’A~JL‘f[»—‘-‘h.wuur_lx—-l.\o-/.a--N.»n-.
T T T
0 200 400 600 800 1000 1200
time (KSec)

Fig. 14: Correlation between load, resistance, estimation error and speedup for 2STrace.

TABLE 10: Fraction of overestimated jobs and incorrect queue placement for 2STrace. Job performance in the third and seventh

column is relative to the ORACLE.

Overestim- Misplaced Slowed Average (P50) Underesti- Misplaced Speedup Average (P50)
ated jobs overestimated | misplaced | Positive error mated jobs | underestimated | misplaced Negative error
jobs jobs jobs jobs
3Sigma 59.78% 17.50% 12.19% 898.5% (48.00)% 40.22% 8.65% 6.88% -37.0% (-28.57)%
SLEARN 43.75% 3.54 % 2.85% 30.65% (18.19)% 55.45% 7.37% 3.64% -26.79% (-20.69)%

strategy in §7. Note that for multi-phase DAG jobs, simply
applying sampling-based prediction to each phase in turn cannot
estimate the whole DAG runtime ahead of time. Instead, our
hybrid design below aims to learn the runtime properties and
optimize the performance of a multi-phase DAG job as a whole
(e.g., [29], [32]).

Hybrid learning for DAGs (SLEARN-DAG). The key idea of
SLEARN-DAG is to adjust history-based prediction of the runtime
of DAG jobs using sampling-based learning of its first stage.
Upon arrival of a new DAG job, we estimate the runtime of its
first stage using sampling-based prediction as described in §5.1.2,
denoted as ds. We also estimate the duration of this stage using
history-base 3Sigma, denoted as d},, and compute the adjustment
ratio of d . For each of the remaining stages of the DAG, we
predict thelr runtime using 3Sigma and then multiply it with the
adjustment ratio. In a nutshell, this hybrid design reduces the
error of history-based prediction due to staleness of the learning
data, while avoiding the delay of sampling across all other stages.

History-based learning for DAGs (3S16MA-DAG). This is a
straight-forward extension of 3Sigma. Upon arrival of a DAG
job, it predicts independently the runtime for each stage using
the 3Sigma and sums up the estimated runtime of all stages as
the estimated runtime of the entire DAG.

We similarly extended other baselines described in §5.1.3 for
DAG job.

Experimental setup. We evaluated SLEARN-DAG against
3S16MA-DAG by replaying cluster trace in simulation exper-
iments based on GS (§5.1.1). We kept the simulation setup
and parameters the same as used in the other experiments. In
particular, a DAG is placed in the corresponding priority queue
based on its estimated total runtime.

DAG Traces. The only publically available DAG trace we could
find is a trace from Alibaba[3], which could not be used as it
does not contain features required for history-based prediction
using 3Sigma. Instead, we followed the ideas in previous work,

e.g., Branch Scheduling [33], to generate a synthetic DAG trace
of about 900 jobs using the Google 2019 trace [11], denoted as
GTrace19-DAG. The number of stages in DAGs in the GTrace19-
DAG was randomly choosen to be between 2-5 and each stage is
a complete job from the Google 2019 trace. The jobs that are part
of the same DAG have the same jobname and the same username.

Results. The results in Fig. 9 show that SLEARN-DAG achieves
significant speedup over other designs. The speedup is 1.26Xx
over 3S1GMA-DAG, 2.15x over LAS-DAG, and 1.74 X over POINT-
EsT-DAG. Looking deeper, we find that our sampling-based pre-
diction still yields higher prediction accuracy: the P50 prediction
error is 33.90% for SLEARN-DAG, compared to 47.21% for 3S1GMa-
DAG. On the other hand, for DAG jobs the relative overhead of
sampling (e.g, the delay) is lower since only the first stage is
sampled. Together, they produce speedup comparable to earlier
sections.

7 Discussions AND FUTURE WORK

Combining history and sampling. In addition to improving
the scheduling of DAG jobs (§6), we discuss several additional
motivations for combining history- and sampling-based learn-
ing. (1) For workloads with both recurring and first-time jobs,
sampling-based learning can be used to estimate properties
for first-time jobs, while history-based learning can be used
for recurring jobs. (2) When the workload has both thin and
wide jobs, history-based learning can be used for estimating
the runtime for thin jobs, while sampling-based learning is
used for wide jobs. (3) History-based learning can be used to
establish a prior distribution, and sampling-based approach can
be used to refine the posterior distribution. Such a combination
is potentially more accurate than using either approach alone.
For example, knowing the prior distribution of task lengths can
help to develop better max task-length predictors, which can
be useful for jobs with deadlines. (4) Though not seen in the
production traces used in our study, in cases when task-wise
variation and job-wise variation fluctuate, adaptively switching
between the two prediction schemes may also help. (5) When
the cluster is heterogeneous, an error adjustment using history,
similar to what we did in §6, can be applied.

Dynamic adjustment of ThinLimit. ThinLimit is a subjective
threshold. It helps in segregating jobs for which waiting time
due to sampling overshadows the improvement in prediction
accuracy. The optimal choice of this limit will depend on the
cluster load at the moment and hence can be adaptively chosen
like the sampling percentage (Fig. 4 on page 8).
Using other functions for estimations. In this paper we have
used mean for estimating job runtime from runtime of sampled
tasks. Another interesting direction of work could be exploring
the use of other statistical functions for estimating job runtime
or other job execution metrics.

We could also explore integrating sampling-based learning
with other scheduling goals like deadline or as in Aladdin [?].

Heterogeneous clusters. Extending sampling-based learning
to heterogeneous clusters requires adjusting the task sampling
process. One idea is to schedule pilot tasks on homogeneous
servers and then scale their runtime to different types of servers
using the ratio of machine speeds.

8 CONCLUSIONS

In this paper, we performed a comparative study of task-
sampling-based prediction and history-based prediction com-

14

monly used in the current cluster job schedulers. Our study
answers two key questions: (1) Via quantitative, trace and ex-
perimental analysis, we showed that the task-sampling-based
approach can predict job runtime properties with much higher
accuracy than history-based schemes. (2) Via extensive simula-
tions and testbed experiments of a generic cluster job scheduler,
we showed that although sampling-based learning delays non-
sampled tasks till completion of sampled tasks, such delay can be
more than compensated by the improved accuracy over the prior-
art history-based predictor, and as a result reduces the average
JCT by 1.28%, 1.56%, and 1.32x for three production cluster
traces. These results suggest task-sampling-based prediction of-
fers a promising alternative to the history-based prediction in
facilitating cluster job scheduling.

Acknowledgement We thank the journal editor-in-chief, the

associate-editor, and the anonymous reviewers for their helpful
comments. This work was supported in part by NSF grant
2113893.

Authors

Akshay Jajoo is currently a research scientist at Bell
Labs. He received his Ph.D. from Purdue in 2020.
He received his B.Tech from IIT Guwahati, India,
in 2015 with President Shankar Dayal Sharma gold
medal. He was a finalist in the prestigious Honda Yes
award. Dr. Jajoo is also DAAD WISE and Charpak
Scholar. His research interests include cloud com-
puting, computer networks, distributed systems and
decentralized systems. He also has experience work-
ing in computer vision and RAM error correction.

Y. Charlie Hu is Michael and Katherine Birck Pro-
fessor of ECE at Purdue University. He received his
Ph.D. degree in Computer Science from Harvard
University in 1997. From 1997 to 2001, he was a
research scientist at Rice University. His research
interests include mobile computing, operating sys-
tems, distributed systems, and wireless networking.
He has published over 180 papers in these areas. Dr.
Hu received the NSF CAREER Award in 2003. He is
an IEEE Fellow and an ACM distinguished scientist.

Xiaojun Lin (502 M’05 SM’12 F’17) received his
B.S. from Zhongshan University, Guangzhou, China,
in 1994, and his M.S. and Ph.D. degrees from Purdue
University in 2000 and 2005, respectively. He is cur-
rently a Professor of ECE at Purdue University. Dr.
Lin’s research interests are in the analysis, control
and optimization of large and complex networked
systems, including both communication networks
and power grid. He received the NSF CAREER award
in 2007.

REFERENCES

—
—=
(=)

[t

(12]

(13]

—r—

—_
N G
— =

—
=

(17]

(18]

(19]

[20]

[21]

[22]

[23

[t

[24

=

[25]

[26]

] Google

2sigma hedge fund. www.twosigma.com.

2sigma’s proprietary job scheduler.
https://www.twosigma.com/insights/article/cook-a-fair-preemptive-
resource-scheduler-for-compute-clusters/.

Alibaba cluster trace. https://github.com/alibaba/clusterdata.

Apache hadoop. http://hadoop.apache.org.

Apache hadoop yarn. https://hadoop.apache.org/docs/current/hadoop-
yarn/hadoop-yarn-site/ YARN.html.

Apache hive. http://hive.apache.org.

Apache spark. http://spark.apache.org.

Cluster trace from google - 2011. https://github.com/google/cluster-
data/blob/master/ClusterData2011_ 2.md.

A document released by google containing schema
and details of the cluster trace released by
google. https://drive.google.com/open?id=0B5g07T
_ gRDg9Z0IsSTEtTWtpOWS.

Dss scheduler. https://github.com/epfl-labos/DSS.

cluster-usage traces, retrieved 21st july 2020.
https://research.google/tools/datasets/google-cluster-workload-traces-
2019/.

Google cluster-usage traces, retrieved 21st
july 2020. https://drive.google.com/file/d/
10r6¢cnJ5cJ89fPWCgj7j4LtLBqYNIRII9/view.

Hadoop patch for numeric histogram.

https://issues.apache.org/jira/browse/YARN-2672.

Microsoft azure. http://azure.microsoft.com.

A patch for gridmix. https://issues.apache.org/jira/browse/YARN-2672.
Personal communication with a 2sigma engineer regarding properties
of the 2sigma trace used.

A private trace collected by 2sigma engineers from their clusters.
www.twosigma.com.

Resutls on the posteriro distribution
ors. https://people.eecs.berkeley.edu/
spring10/lectures/lecture5.pdf.

F. Ahmad, S. T. Chakradhar, A. Raghunathan, and T. N. Vijaykumar.
Shufflewatcher: Shuffle-aware scheduling in multi-tenant mapreduce
clusters. In 2014 USENIX Annual Technical Conference (USENIX ATC
14), pages 1-13, Philadelphia, PA, 2014. USENIX Association.

G. Amvrosiadis, J. W. Park, G. R. Ganger, G. A. Gibson, E. Baseman, and
N. DeBardeleben. On the diversity of cluster workloads and its impact
on research results. In USENIX ATC’ 18).

E. Boutin, J. Ekanayake, W. Lin, B. Shi, J. Zhou, Z. Qian, M. Wu, and
L. Zhou. Apollo: Scalable and coordinated scheduling for cloud-scale
computing. In USENIX OSDI’'14), pages 285-300, Broomfield, CO.

R. Chaiken, B. Jenkins, P.-A. Larson, B. Ramsey, D. Shakib, S. Weaver,
and J. Zhou. Scope: Easy and efficient parallel processing of massive
data sets. Proc. VLDB Endow., 1(2):1265-1276, Aug. 2008.

M. Chowdhury, Y. Zhong, and L. Stoica. Efficient coflow scheduling with
varys. SIGCOMM ’14. ACM.

A. Chung, J. W. Park, and G. R. Ganger. Stratus: Cost-aware container
scheduling in the public cloud. SoCC "18. ACM.

E. G. Coffman and L. Kleinrock. Feedback queueing models for time-
shared systems. Journal of the ACM (JACM), 15(4):549-576, 1968.

C. Curino, D. E. Difallah, C. Douglas, S. Krishnan, R. Ramakrishnan,
and S. Rao. Reservation-based scheduling: If you’re late don’t blame us!
SOCC ’14. ACM.

J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on
large clusters. In USENIX OSDI’04.

P. Delgado, D. Didona, F. Dinu, and W. Zwaenepoel. Kairos: Preemptive
data center scheduling without runtime estimates. SoCC *18. ACM.

A. D. Ferguson, P. Bodik, S. Kandula, E. Boutin, and R. Fonseca. Jockey:
Guaranteed job latency in data parallel clusters. EuroSys ’12. ACM.

A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and
I. Stoica. Dominant resource fairness: Fair allocation of multiple
resource types. NSDI'11. USENIX.

R. Grandl, G. Ananthanarayanan, S. Kandula, S. Rao, and A. Akella.
Multi-resource packing for cluster schedulers. SIGCOMM ’14. ACM.

R. Grandl, M. Chowdhury, A. Akella, and G. Ananthanarayanan. Altru-
istic scheduling in multi-resource clusters. In USENIX OSDI’16).

Z.Hu, D. Li, Y. Zhang, D. Guo, and Z. Li. Branch scheduling: Dag-aware
scheduling for speeding up data-parallel jobs. IWQo0S’19. ACM.

Z. Huang, B. Balasubramanian, M. Wang, T. Lan, M. Chiang, and D. H.
Tsang. Need for speed: Cora scheduler for optimizing completion-times
in the cloud. In IEEE INFOCOM’15.

with gaussian pri-
jordan/courses/260-

(35

=

(36]

(37

—

(38

=

(39

—

[40

[t

[41

—

(42

—

[43

—_

[44

[l

[45]

[46]

(47]

(48]

[49

-

(50

=

(51]

(52]

(53]

(54]

(55]

(56]

15

C.Iorgulescu, F. Dinu, A. Raza, W. U. Hassan, and W. Zwaenepoel. Don’t
cry over spilled records: Memory elasticity of data-parallel applications
and its application to cluster scheduling. In USENIX ATC’17).

M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad: Distributed
data-parallel programs from sequential building blocks. EuroSys *07.
A. Jajoo. EXPLOITING THE SPATIAL DIMENSION OF BIG DATA JOBS
FOR EFFICIENT CLUSTER JOB SCHEDULING. PhD thesis, Purdue
University Graduate School, 2020.

A. Jajoo, R. Gandhi, and Y. C. Hu. Graviton: Twisting space and time
to speed-up coflows. In 8th USENIX Workshop on Hot Topics in Cloud
Computing (HotCloud 16), Denver, CO, 2016. USENIX Association.

A. Jajoo, R. Gandhi, Y. C. Hu, and C.-K. Koh. Saath: Speeding up
coflows by exploiting the spatial dimension. In Proceedings of the
13th International Conference on Emerging Networking EXperiments and
Technologies, CONEXT ’17, New York, NY, USA, 2017. ACM.

A. Jajoo, Y. C. Hu, and X. Lin. Your coflow has many flows: Sampling
them for fun and speed. In 2019 USENIX Annual Technical Conference
(USENIX ATC 19), pages 833-848, Renton, WA, 2019.

A. Jajoo, Y. C. Hu, and X. Lin. A case for sampling based learning
techniques in coflow scheduling. CoRR, abs/2108.11255, 2021. http:
//arxiv.org/abs/2108.11255.

A. Jajoo, Y. C. H. Hu, X. Lin, and N. Deng. A case for task sampling
based learning for cluster job scheduling. In Proceedings of the 19th
USENIX Conference on Networked Systems Design and Implementation,
NSDI'22, Berkeley, CA, USA, 2022. USENIX Association.

V. Jalaparti, P. Bodik, I. Menache, S. Rao, K. Makarychev, and M. Caesar.
Network-aware scheduling for data-parallel jobs: Plan when you can.
SIGCOMM ’15. ACM.

S. A. Jyothi, C. Curino, I. Menache, S. M. Narayanamurthy, A. Tumanov,
J. Yaniv, R. Mavlyutov, I. Goiri, S. Krishnan, J. Kulkarni, and S. Rao.
Morpheus: Towards automated slos for enterprise clusters. In USENIX
OSDI’'16, pages 117-134, Savannah, GA.

S. Krishnaswamy, S. Loke, and A. Zaslavsky. Estimating computation
times of data-intensive applications. IEEE Distributed Systems Online,
5(4):1 - 12, 2004.

M. Nuyens and A. Wierman. The foreground-background queue: a
survey. Performance evaluation, 65(3-4):286-307, 2008.

J. W. Park, A. Tumanov, A. Jiang, M. A. Kozuch, and G. R. Ganger.
3sigma: Distribution-based cluster scheduling for runtime uncertainty.
EuroSys ’18, pages 2:1-2:17. ACM.

I A. Rai, G. Urvoy-Keller, and E. W. Biersack. Analysis of las scheduling
for job size distributions with high variance. SIGMETRICS ’03. ACM.
K. Rajan, D. Kakadia, C. Curino, and S. Krishnan. Perforator: Eloquent
performance models for resource optimization. SoCC "16. ACM.

W. Smith, I. Foster, and V. Taylor. Predicting application run times
using historical information. In D. G. Feitelson and L. Rudolph, editors,
Job Scheduling Strategies for Parallel Processing, pages 122-142. Springer
Berlin Heidelberg, 1998.

A. Tumanov, A. Jiang, J. W. Park, M. A. Kozuch, and G. R. Ganger.
Jamaisvu: Robust scheduling with auto-estimated job runtimes. In
Technical Report CMU-PDL-16-104. Carnegie Mellon University, 2016.
A. Tumanov, T. Zhu, J. W. Park, M. A. Kozuch, M. Harchol-Balter, and
G. R. Ganger. Tetrisched: Global rescheduling with adaptive plan-ahead
in dynamic heterogeneous clusters. EuroSys *16. ACM.

A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and
J. Wilkes. Large-scale cluster management at google with borg. ESys’15.
W. Xiao, R. Bhardwaj, R. Ramjee, M. Sivathanu, N. Kwatra, Z. Han,
P. Patel, X. Peng, H. Zhao, Q. Zhang, F. Yang, and L. Zhou. Gandiva:
Introspective cluster scheduling for deep learning. In USENIX OSDI’18).
Y. Xu, K. Sui, R. Yao, H. Zhang, Q. Lin, Y. Dang, P. Li, K. Jiang, W. Zhang,
J.-G. Lou, M. Chintalapati, and D. Zhang. Improving service availability
of cloud systems by predicting disk error. In USENIX ATC’18, 2018.

M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S. Shenker, and
I. Stoica. Delay scheduling: A simple technique for achieving locality
and fairness in cluster scheduling. EuroSys *10. ACM.

http://arxiv.org/abs/2108.11255
http://arxiv.org/abs/2108.11255

	Introduction
	Background and Related Work
	Cluster Scheduling Problem
	Job Model
	Existing Learning-based Schedulers
	Learning from History: Assumptions and Reality

	SLearn – Learning in Space
	Accuracy Analysis
	Analytical Comparison
	History-based Schemes
	Sampling-based Schemes

	Trace-based Variability Analysis
	Experimental Prediction Error Analysis

	Integrating Sampling-based Learning with Job Scheduling: A Case Study
	Scheduler and Predictor Design
	Generic Scheduler GS
	SLearn
	Baseline Predictors and Policies

	Experimental Setup
	Experimental Results
	Effectiveness of Adaptive Sampling
	Prediction Accuracy
	Average JCT Improvement
	Testbed Experiments
	Sensitivity to Thin Job Bypass

	Intuitive Explanation
	Visualizing the difference in CoVs of runtime across history (time) and tasks (space)
	Impact of Sampling on Job Waiting Time
	Binning Analysis
	How does the system load affect the speedups of SLearn over 3Sigma?

	Scheduling for DAG Jobs
	Discussions and Future Work
	Conclusions
	Biographies
	Akshay Jajoo
	Y. Charlie Hu
	Xiaojun Lin

	References

