
1

SLearn: A Case for Task Sampling based Learning
for Cluster Job Scheduling

Akshay Jajoo, Y. Charlie Hu, Fellow, IEEE, Xiaojun Lin, Fellow, IEEE , Nan Deng

✦

Abstract
The ability to accurately estimate job runtime properties allows

a scheduler to effectively schedule jobs. State-of-the-art online

cluster job schedulers use history-based learning, which uses past

job execution information to estimate the runtime properties of

newly arrived jobs. However, with fast-paced development in

cluster technology (in both hardware and software) and changing

user inputs, job runtime properties can change over time, which

lead to inaccurate predictions.

In this paper, we explore the potential and limitation of

real-time learning of job runtime properties, by proactively

sampling and scheduling a small fraction of the tasks of each

job. Such a task-sampling-based approach exploits the similarity

among runtime properties of the tasks of the same job and

is inherently immune to changing job behavior. Our analytical

and experimental analysis of 3 production traces with different

skew and job distribution shows that learning in space can be

substantially more accurate. Our simulation and testbed eval-

uation on Azure of the two learning approaches anchored in a

generic job scheduler using 3 production cluster job traces shows

that despite its online overhead, learning in space reduces the

average Job Completion Time (JCT) by 1.28×, 1.56×, and 1.32×
compared to the prior-art history-based predictor. We further

analyze the experimental results to give intuitive explanations

to why learning in space outperforms learning in time in these

experiments. Finally, we show how sampling-based learning can

be extended to schedule DAG jobs and achieve similar speedups

over the prior-art history-based predictor.
1

1 Introduction
In big-data compute clusters, jobs arrive online and compete to

share the cluster resources. In order to best utilize the cluster

and to ensure that jobs also meet their service level objectives,

efficient scheduling is essential. However, as jobs arrive online,

their runtime characteristics are not known a priori. Due to this

lack of information, it is challenging for the cluster scheduler to

determine the right job execution order that optimizes schedul-

ing metrics such as maximal resource utilization or application

service level objectives.

An effective way to tackle the challenges of cluster schedul-

ing is to learn the runtime characteristics of pending jobs, which

The work was done while the author was pursuing his Ph.D. at Purdue
University.
1. An earlier conference version of this work is published in proceedings of

USENIX NSDI 2022 [42].

allows the scheduler to exploit offline scheduling algorithms

that are known to be optimal, e.g., Shortest Job First (SJF) for

minimizing the average completion time. Indeed, there has been

a large amount of work [52], [44], [47], [26], [35], [43], [49], [55]

on learning job runtime characteristics to facilitate cluster job

scheduling.

In essence, all of the previous learning algorithms learn job

runtime characteristics from observing historical executions of

the same jobs, which execute the same code but process different

sets of data, or of similar jobs, which have matching features

such as the same application name, the same job name, or the

same user who submitted the job.

The effectiveness of the above history-based learning schemes

critically rely on two conditions to hold true: (1) The jobs are

recurring; (2) The performance of the same or similar jobs will

remain consistent over time.

In practice, however, the two conditions often do not hold

true. First, many previous work have acknowledged that not all

jobs are recurrent. For example, in the traces used in Corral

[43] and Jockey [29], only 40% of the jobs are recurrent, and

Morpheus [44] shows that only 60% of the jobs are recurrent.

Second, even the authors of history-based prediction schemes

such as 3Sigma [47] and Morpheus [44] strongly argued why

runtime properties of jobs, even with the same input, will not

remain consistent and will keep evolving. The primary reason is

due to updates in cluster hardware, application software, and user

scripts to execute the cluster jobs. Another work has highlighted

fallacies of the data driven and machine learning type systems

[?]. Third, our own analysis of three production cluster traces

(§4) have also shown that historical job runtime characteristics

have considerable variations.

In this paper, we explore an alternative approach to learning

runtime properties of distributed jobs online to facilitate cluster

job scheduling. The approach is motivated by the following key

observations about distributed jobs running on shared clusters:

(1) a job typically has a spatial dimension, i.e., it typically consists

of many tasks; and (2) the tasks (in the same phase) of a job

typically execute the same code and process different chunks

of similarly sized data [9], [16]. These observations suggest that

if the scheduler first schedules a few sampled tasks of a job,

known as pilot tasks, to run till finish, it can use the observed

runtime properties of those tasks to accurately estimate those of

the whole job. Effectively, such a task-sampling-based approach

learns job properties in the spatial dimension. We denote the new

learning scheme as SLearn, for “learning in space”.

Intuitively, by using the execution of pilot tasks to predict the

2

properties of other tasks, SLearn avoids the primary drawback

of history-based learning techniques, i.e., relying on jobs to be

recurring and job properties to remain stationary over time.

However, learning in space introduces two new challenges: (1)

its estimation accuracy can be affected by the variations of task

runtime properties, i.e., task skew; (2) delaying scheduling the

remaining tasks of a job till the completion of sampled tasks may

potentially hurt the job’s completion time.

In this paper, we perform a comprehensive comparative

study of history-based learning (learning in time) and sampling-

based learning (learning in space), to systematically answer the

following questions: (1) Can learning in space be more accurate
than learning in time? (2) If so, can delaying scheduling the
remaining tasks of a job till the completion of sampled tasks be
more than compensated by the improved accuracy and result in
improved job performance, e.g., completion time?

We answer the first question via quantitative analysis, and

trace and experimental analysis based on three production job

traces, including two public cluster traces from Google released

in 2011 and 2019 [8], [11] and a private trace from 2Sigma [1]. We

answer the second question by designing a generic scheduler that

schedules jobs based on job runtime estimates to optimize a given

performance metric, e.g., average job completion time (JCT), and

then plug into the scheduler different prediction schemes, in

particular, learning in time and learning in space, to compare

their effectiveness. Finally, we analyze the experimental results

to give intuitive explanations to the positive answers to these

two questions.

We summarize the major findings and contributions of this

paper as follows:

• Based on literature survey and analysis using three production

cluster traces, we show that history is not a stable and accurate

predictor for runtime characteristics of distributed jobs (§4).

• We propose SLearn, a novel learning approach that uses

sampling in the spatial dimension of jobs to learn job runtime

properties online. We also provide solutions to practical issues

such as dealing with thin jobs (jobs with a few tasks only) and

work conservation (§3, §5.1.2).

• Via quantitative, trace and experimental analysis, we demon-

strate that SLearn can predict job runtime properties with

much higher accuracy than history-based schemes. For the

2Sigma, Google 2011, and Google 2019 cluster traces, the

median prediction error are 18.98%, 13.68%, and 51.84% for

SLearn, much lower than 36.57%, 21.39%, and 71.56% for the

state-of-the-art history-based 3Sigma, respectively (§4).

• We show that learning job runtime properties by sampling job

tasks, although delays scheduling the remaining tasks of a job,

can be more than compensated by the improved accuracy, and

as a result reduces the average JCT. In particular, our extensive

simulations and testbed experiments using a prototype on

a 150-node cluster in Microsoft Azure show that compared

to the prior-art history-based predictor, SLearn reduces the

average JCT by 1.28×, 1.56×, and 1.32× for the extracted

2Sigma, Google 2011 and Google 2019 traces, respectively

(§5.3).

• We show how the sampling-based learning can be extended

to schedule DAG jobs. Using a DAG trace generated from

the Google 2019 trace, we show a hybrid sampling-based and

history-based scheme reduces the average JCT by 1.25× over

a pure history-based scheme (§6).

TABLE 1: Summary of selected previous work that use history-

based learning techniques.

Name Property Estimation Learning
estimated technique frequency

Corral Job runtime Offline model On arrival

[43] (not updated)

DCOSR Memory elasti- Offline model Scheduler

[35] city profile (not updated) dependent

Jockey Job runtime Offline Periodic

[29] simulator

3Sigma Job runtime Offline On arrival

[47] history dist. model

2 Background and Related Work
In this section, we provide a brief background on the cluster

scheduling problem, review existing learning-based schedulers,

and discuss their weaknesses.

2.1 Cluster Scheduling Problem
In both public and private clouds, clusters are typically shared

among multiple users to execute diverse jobs. Such jobs typically

arrive online and compete for shared resources. In order to best

utilize the cluster and to ensure that jobs also meet their service

level objectives (SLOs), efficient job scheduling is essential. Since

jobs arrive online, their runtime characteristics are not known

a priori. This lack of information makes it challenging for the

scheduler to determine the right order for running the jobs

that maximizes resource utilization and/or meets application

SLOs. Additionally, jobs have different SLOs. For some meeting

deadlines is important while for others faster completion or

minimizing the use of networks is more important. Such a

diverse set of objectives pose further challenges to effective job

scheduling [30], [29], [19], [43], [44], [56], [55].

2.2 Job Model
We consider big-data compute clusters running data-parallel

frameworks such as Hadoop [4], Hive [6], Dryad [36], Scope [22],

and Spark [7] that run simple MapReduce jobs [27] or more

complex DAG-structured jobs, where each job processes a large

amount of data. Each job consists of one or multiple stages,

such as map or reduce, and each stage partitions the data

into manageable chunks and runs many parallel tasks, each for

processing one data chunk.

2.3 Existing Learning-based Schedulers
An effective way to tackle the challenges of cluster scheduling is

to learn runtime characteristics of pending jobs. As such cluster

schedulers using various learning methods have been proposed

[43], [44], [19], [47], [52], [35], [49], [21], [50], [24], [45]. In

essence, all previous learning schemes are history-based, i.e., they
learn job characteristics by observations made from the past job

executions.
2
In particular, existing learning approaches can be

broadly categorized into the following groups, as summarized in

Table 1.

Learning offline models. Corral’s prediction model is designed

with the primary assumptions that most jobs are recurring in

nature, and the latency of each stage of a multi-stage job is

2. Some recent work use the characteristics of completed mini-batches as

a proxy for the remaining mini-batches, to improve the scheduling of ML

jobs [54]. However, such jobs are different in that the mini-batches in general

experience significantly less (task-level) variations than what we studied in

this paper.

3

proportional to the amount of data processed by it, which do

not always hold true [43].

DCOSR [35] predicts the memory usage for data parallel

compute jobs using an offline model built from a fixed number

of profile runs that are specific to the framework and depend on

the framework’s properties. Any software update in the existing

frameworks, addition of new framework or hardware update will

require an update in profile.

For analytics jobs that perform the same computation peri-

odically on different sets of data, Tetris [31] takes measurements

from past executions of a job to estimate the requirements for

the current execution.

Learning offline models with periodic updates. Jockey [29]

periodically characterizes job progress at runtime, which along

with a job’s current resource allocation is used by an offline

simulator to estimate the job’s completion time and update the

job’s resource allocation. Jockey relies on job recurrences and

cannot work with new jobs.

Learning from similar jobs. Instead of using execution history

from the exact same jobs, JVuPredict [51] matches jobs on the

basis of some common features such as application name, job

name, the user who owns the job, and the resource requested

by the job. 3Sigma [47] extends JVuPredict [51] by introducing a

new idea on prediction: instead of using point metrics to predict

runtimes, it uses full distributions of relevant runtime histories.

However, since it is impractical to maintain precise distributions

for each feature value, it resorts to approximating distributions,

which compromises the benefits of having full distributions.

2.4 Learning from History: Assumptions and Reality
Predicting job runtime characteristics from history information

relies on the following two conditions to hold, which we argue

may not be applicable to modern day clusters.

Condition 1: The jobs are recurring. Many previous works

have acknowledged that not all jobs are recurrent. For example,

the traces used in Corral [43] and Jockey [29] show that only

40% of the jobs are recurrent and Morpheus [44] shows that 60%

of the jobs are recurrent.

Condition 2: The performance of the same or similar jobs
will remain consistent over time. Previous works [47], [44],
[43], [29] that exploited history-based prediction have considered

jobs in one of the following two categories. (1) Recurring jobs: A
job is re-scheduled to run on newly arriving data; (2) Similar
jobs: A job has not been seen before but has some attributes in

common with some jobs executed in the past [51], [47]. Many

of the history-based approaches only predict for recurring jobs

[44], [43], [29], while some others [47], [51], [24], [45] work for

both categories of jobs.

However, even the authors of history-based prediction

schemes such as 3Sigma [47] and Morpheus [44] strongly argued

why runtime properties of jobs, even with the same input, will

keep evolving. The primary reason is that updates in cluster hard-

ware, application software, and user scripts to execute the cluster

jobs affect the job runtime characteristics. They found that in a

large Microsoft production cluster, within a one-month period,

applications corresponding to more than 50% of the recurring

jobs were updated. The source code changed by at least 10% for

applications corresponding to 15-20% of the jobs. Additionally,

over a one-year period, the proportion of two different types

of machines in the cluster changed from 80/20 to 55/45. For a

TABLE 2: Comparison of learning in time and learning in space

of job runtime properties.

Applicability Adapti- Accuracy Runtime

veness overhead

Time Recurring jobs No/Yes Depends No

Space New/Recurring jobs Yes Depends Yes

same production Spark job, there is a 40% difference between the

running time observed on the two types of machines [44].

For these reasons, although the state-of-the-art history-based

system 3Sigma [47] uses sophisticated prediction techniques, the

predicted running time for more than 23% of the jobs have at

least 100% error, and for many the prediction is off by an order

of magnitude.

3 SLearn – Learning in Space
In this paper, we explore an alternative approach to learning

job runtime properties online in order to facilitate cluster job

scheduling. The approach is motivated by the following key

observations about distributed jobs running in shared clusters:

(1) a distributed job has a spatial dimension, i.e., it typically

consists of many tasks; (2) all the tasks in the same phase of a job

typically execute the same code with the same settings [9], [16],

[12], and differ in that they process different chunks of similarly

sized data. Hence, it is likely that their runtime behavior will be

statistically similar.

The above observations suggest that if the scheduler first

schedules a few sampled tasks of a job to run till finish, it can

use the observed runtime properties of those tasks to accurately

estimate those of the whole job. In a modular design, such

an online learning scheme can be decoupled from the cluster

scheduler. In particular, upon a job arrival, the predictor first

schedules sampled tasks of the job, called pilot tasks, till their
completion, to learn the job runtime properties. The learned job

properties are then fed into the cluster job scheduler, which

can employ different scheduling polices to meet respective SLOs.

Effectively, the new scheme learns job properties in the spatial

dimension, i.e.,learning in space. We denote the new learning

scheme as SLearn.

Table 2 summarizes the pros and cons of the two learning ap-

proaches along four dimensions: (1) Applicability: As discussed
in §2.3, most history-based predictors cannot be used for the jobs

of a new category or for categories for which the jobs are rarely

executed. In contrast, learning in space has no such limitation;

it can be applied to any new job. (2) Adaptiveness to change:
Further, history-based predictors assume job runtime properties

persist over time, which often does not hold, as discussed in §2.4.

(3) Accuracy: The accuracy of the two approaches are directly

affected by how they learn, i.e., in space versus in time. The ac-

curacy of history-based approaches is affected by how stable the

job runtime properties persist over time, while that of sampling-

based approach is affected by the variation of the task runtime

properties, i.e., the extent of task skew. (4) Runtime overhead:
The history-based approach has an inherent advantage of having

very low to zero runtime overhead. It performs offline analysis

of historical data to generate a prediction model. In contrast,

sampling-based predictors do not have offline cost, but need to

first run a few pilot tasks till completion before scheduling the

remaining tasks. This may potentially delay the execution of non-

sampled tasks.

The above qualitative comparison of the two learning ap-

proaches raises the following two questions: (1) Can learning

4

in space be more accurate than learning in time? (2) If so, can
delaying scheduling the remaining tasks of a job till the completion
of sampled tasks be more than compensated by the improved
accuracy, so that the overall job performance, e.g., completion time,
is improved? We answer the first question via analytical, trace

and experimental analysis in §4 and the second question via

a case study of cluster job scheduling using the two types of

predictors in §5.

4 Accuracy Analysis
In this section, we perform an in-depth study of the predic-

tion accuracy of the two learning approaches: learning in time
(history-based learning) and learning in space (task-sampling-

based learning). Both approaches can potentially be used to learn

different job properties for different optimization objectives. In

this paper, we focus on job completion time because it is an

important metric that has been intensively studied in recent

work [34], [35], [28], [43], [47], [32].

4.1 Analytical Comparison
We first present a theoretical analysis of the prediction accu-

racies of the two approaches. We caution that here we use

a highly-stylized model (e.g., two jobs and normal task-length

distributions), which does not capture the possible complexity

in real clusters, such as heavy parallelism across servers and

highly-skewed task-length distributions. Nonetheless, it reveals

important insights that help us understand in which regimes

history-based schemes or sampling-based schemes will perform

better. Consider a simple case of two jobs j1 and j2, where each
job has n tasks. The size of each task of j1 is known. Without

loss of generality, let us assume that the task size of j1 is 1.

Thus, the total size of j1 is n. The size of a task of j2 is however

unknown. Let x denote the average task size of j2, and this its

total size is nx. Clearly, if we knew x precisely, then we should

have scheduled j1 first if x > 1 and j2 first if x ≤ 1. However,
suppose that we only know the following: (1) (Prior distribution:)

x follows a normal distribution with mean µ and variance σ2
o ;

(2) Given x, the size of a random task of the job follows a

normal distribution with mean x and variance σ2
1 . Intuitively,

σ2
o captures the variation of mean task-lengths across many i.i.d.

copies of job j2, i.e., job-wise variation, while σ2
1 captures the

variation of task-lengths within a single run of job j2, i.e., task-
wise variation. We note that the parameters σ2

o and σ2
1 are not

used by the predictors below.

Now, consider two options for estimating the mean task-

length x:1) A history-based approach (§4.1.1) and (2) a sampling-

based approach where we sample m tasks from j2 (§4.1.2).

4.1.1 History-based Schemes
Since no samples of job j2 are used, the best predictor for its

mean task length is µ. In other words, the scheduling decision

will be based on µ only. The difference between the true mean

task length, x, and µ is simply captured by the job-wise variance

σ2
o .

4.1.2 Sampling-based Schemes
Suppose that we sample m tasks from j2. Collect the sampled

task lengths into a vector:

y⃗ = (y1, y2, ..., ym).

Then, based on our probabilistic model, we have

TABLE 3: Summary of trace properties.

Trace Arrival Resource Resource Indiv. task
time requested usage duration

2Sigma Yes Yes No Yes

Google 2011 Yes Yes Yes Yes

Google 2019 Yes Yes Yes Yes

P (yi|x) = 1√
2πσ1

e
− (yi−x)2

2σ2
1 ,

P (y⃗|x) =
∏m

i=1
1√
2πσ1

e
− (yi−x)2

2σ2
1

We are interested in an estimator of x given y⃗. We have

P (x|y⃗) = P (y⃗|x)·P (x)
P (y⃗) = P (y⃗|x)·P (x)∫

x P (y⃗|x)·P (x)dx

= 1√
2π

[
m
σ2
1
+ 1

σ2
o

] 1
2 · e

−
(

m

2σ2
1
+ 1

2σ2
o

)x−

∑m
i=1

1
σ2
1

yi+
1
σ2
o

µ

m
σ2
1

+ 1
σ2
o


,

where the last step follows from standard results on the posterior

distribution with Gaussian priors (see, e.g., [18]). In other words,

conditioned on y⃗, x also follows a normal distribution with mean

=

∑m
i=1

1

σ2
1
yi+

1
σ2
o
µ

m

σ2
1
+ 1

σ2
o

and variance =
1

m

σ2
1
+ 1

σ2
o

.

Note that this represents the estimator quality using the

information of both job-wise variations and task-wise variations.

If the estimator is not informed of the job-wise variations, we

can take σ2
o → +∞, and the conditional distribution of x given

y⃗ becomes normal with mean
1
m

∑m
i=1 yi and variance

σ2
1

m .

From here we can draw the following conclusions. First,

whether history-based schemes or sampling-based schemes have

better prediction accuracy for an unknown job depends on the

relationship between job-wise variations σ2
o and the task-wise

variation σ2
1 . If the job-wise variation is large but the task-

wise variation is small, i.e., σ2
o >>

σ2
1

m , then sampling-based

schemes will have better prediction accuracy. Conversely, if the

job-wise variation is small but the task-wise variation is large,

i.e., σ2
o <<

σ2
1

m , then history-based schemes will have better

prediction accuracy. Second, while the accuracy of history-based

schemes is fixed at σ2
o , the accuracy of sampling-based schemes

improves asm increases. Thus, when we can afford the overhead

of more samples, the sampling-based schemes become favorable.

Our results from experimental data below will further confirm

these intuitions.

4.2 Trace-based Variability Analysis
Our theoretical analysis in §4.1 provides insights on how the

prediction accuracies of the two approaches depend on the

variation of job run times across time and space. To understand

how such variations fare against each other in practice, we next

measure the actual variations in three production cluster traces.

Table 3 summarizes the information available in the traces that

are used in our analysis.

Traces. Our first trace is provided by 2Sigma [1]. The cluster

uses an internal proprietary job scheduler running on top of a

Mesos cluster manager [2]. This trace was collected over a period

of 7 months, from January to July 2016, and from 441 machines

and contains approximately 0.4 million jobs [17].

We also include two publicly available traces from Google

released in May 2011 and May 2019 [8], [11], collected from 1

and 8 Borg [53] cells over periods of 29 and 31 days, respec-

tively. The machines in the clusters are highly heterogeneous,

belonging to at least three different platforms that use different

5

micro-architectures and/or memory technologies [20]. Further,

according to [9], the machines in the same platform can have

substantially different clock rates, memory speed, and core

counts. Since the original Google 2019 trace has data from 8

different cells located in 8 different locations, and given that we

already have two other traces from the US, we chose the batch

tier of Cluster G in the Google 2019 trace, which is located in

Singapore [12], as our third trace to diversify our trace collection.

We calculate the variations in task runtimes for each job

across time and across space as follows.

Variation across time. To measure the variation in mean task

runtime for a job across the history, we follow the following

prediction mechanism defined in 3Sigma [47] to find similar jobs.

As discussed in §2.3, 3Sigma [47] uses multiple features to

identify a job and predicts its runtime using the feature that

gives the least prediction error in the past. We include all six

features used in 3Sigma: application name, job name, user name

(the owner of the job), job submission time (day and hour), and

resources requested (cpu and memory) by the job.

For each feature, we define the set of similar jobs as all

the jobs executed in the history window (defined below) that

had the same feature value. Next, we calculate the average task

runtime of each job in the set. Then, we calculate the Coefficient
of Variation (CoV) of the average task runtimes across all the

jobs in the set. We repeat the above process for all the features.

We then compare the CoV values thus calculated and pick the

minimum CoV. Effectively, the above procedure selects the least

possible variation across history.

Varying the history length in prediction across time.
3Sigma used the entire history for prediction. Intuitively, the

length of the history affects the trade-off between the number of

similar jobs and the staleness of the history information. For this

reason, we optimized 3Sigma by finding and using the history

length that gives the least variation. Specifically, we define the

length of history based on a window size w, i.e., the number of

past consecutive days. In our analysis below, we vary w among

3, 7, and 14 for the three traces.

Variation across space. To measure the extent of variation

across space, we look at the CoV (CoV = σ
µ) in the task runtimes

within a job. As shown in §4.1, the variance in the task runtime

predicted from sampling is
σ2
1

m , where σ2
1 is the variance in the

runtimes across all the tasks within the job and m is the number

of tasks sampled. Thus, we first estimate σ2
1 from all tasks within

the job. We then report the CoV of our task runtime prediction

after sampling m tasks as
σ1/

√
m

µ . Our complete scheduler

design in §5.1 uses an adaptive sampling algorithm which mostly

uses 3% for the three traces. Thus, for measuring the extent of

variation across space here, we assume a 3% sampling ratio and

plot
σ1

(
√
0.03×numberOfTasksInJob)×µ

.

Variability comparison. For consistency, all analysis results

here are for the same, shortest trace period that can be used

for sliding-window-history based analysis, e.g., the last 15 days

under the 14-day window for the 29-day Google 2011 trace. (The

analysis then varies the length of the sliding window in history-

based learning.)

Fig. 1(a)–Fig. 1(c) show the CDFs of CoVs in task duration

measured across space and across history for multiple history

window sizes for the three traces. We see that in general using

a shorter sliding window reduces the prediction error of 3Sigma,

and the CoVs across tasks are moderately lower than the CoVs

TABLE 4: CoV in task runtime across time and across space for

the the 2Sigma, Google 2011, and Google 2019 traces.

Trace CoV over Time CoV over Space

P50 P90 P50 P90

2Sigma 1.00 3.10 0.18 0.55

Google 2011 0.20 0.73 0.04 0.58

Google 2019 1.35 1.67 0.70 1.33

across history for the Google 2011 trace but significantly lower

for 2Sigma and Google 2019 traces. For example, for the 2Sigma

trace, the CoV across history is higher than the CoV across tasks

for 85.40% of the jobs (not seen in Fig. 1(a) as jobs are ordered

differently in different CDFs) and for more than 30% of the jobs,

the CoV across history is at least 12.10× higher than the CoV

across tasks.

Table 4 summarizes the results, where the CoVs across time

correspond to the best history window size, i.e., 3 days for both

Google traces and 14 days for the 2Sigma trace. As shown in

the table, the P50 (P90) CoV across history are 1.00 (3.10) for the

2Sigma trace, 0.20 (0.73) for the Google 2011 trace, and 1.35 (1.67)

for the Google 2019 trace. In contrast, the P50 (P90) CoV value

across the task duration of the same set of jobs is much lower,

0.18 (0.55) for the 2Sigma trace, 0.04 (0.58) for the Google 2011

trace, and 0.70 (1.33) for the Google 2019 trace.

Fig. 1(d) and Fig. 1(e) further show the CDF of CoVs for CPU

usage and Disk IO time for the Google 2011 trace (such resource

usage is not available in the 2Sigma trace). The figures show

that the variation in the values of these properties when sampled

across space is also considerably lower compared to the variation

observed over time.

4.3 Experimental Prediction Error Analysis
Recall from our analysis in §4.1 that lower task-wise variation

than job-wise variation (§4.2) will translate into better prediction

accuracy of sampling-based schemes over history-based schemes.

While our analysis in §4.1 assumes normal distribution, we

believe that a similar conclusion will hold in more general

settings. To validate this, we next implement a sampling-based

predictor SLearn, and experimentally compare it against a state-

of-the-art history-based predictor 3Sigma [47] in estimating the

job runtimes directly on production job traces.

Workload characteristics. Since the three production traces

described in §4.2 are too large, as in 3Sigma [47], we extracted

smaller traces for experiments using the procedure described

below.

Since the history-based predictor 3Sigma needs a history

trace, we followed the same process as in [47] to extract the train-

ing trace for 3Sigma and the execution trace for all predictors, in

three steps. (1) We divided each original trace in chronological

order in two halves. (2) We compressed 2Sigma jobs to 150 tasks

or fewer, by applying a compression ratio of original cluster

size/150. Since the Google traces do not have many wide jobs

yet the original clusters are very wide, with 12.5K machines, we

dropped jobs with more than 150 tasks
3
. (3) We next selected the

execution trace following the process below from the second half;

these became 2STrace, GTrace11 and GTrace19, respectively. (4)

We then selected jobs from the first half of each original trace

that are feature-clustered with those jobs in the execution trace

to form the ”history” trace for 3Sigma.

3. This is to avoid potential bias towards SLearn. A job with more than

150 tasks will have to be scheduled in more than one phase, which will be in

favor of SLearn by diminishing the sampling overhead.

6

0 1 2 3 4 5 tail
CoVs in task duration

0.0

0.2

0.4

0.6

0.8

1.0
CD

F

Space
History-3 days
History-7 days
History-14 days

(a) Task runtime – 2Sigma

0 1 2 3 4 5
CoVs in task duration

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Space
History-3 days
History-7 days
History-14 days

(b) Task runtime – Google 11

0 1 2 3 4 5
CoVs in task duration

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Space
History-3 days
History-7 days
History-14 days

(c) Task runtime – Google 19

0 1 2 3 4 5
CoVs in CPU usage

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Space
History-3 days
History-7 days
History-14 days

(d) CPU usage – Google 11

0 1 2 3 4 5 tail
CoVs in diskIO time

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Space
History-3 days
History-7 days
History-14 days

(e) Disk IO time – Google 11

Fig. 1: CDF of CoV of runtime properties across space and across time with varying history windows, using the 2Sigma, Google 2011

and Google 2019 traces. Single-task jobs are excluded from the analysis across space.

TABLE 5: Statistics for system load per 1000s sliding window.

Trace Average P50 P90

2STrace 1.05 0.13 2.47

GTrace11 1.01 0.29 1.49

GTrace19 1.04 0.09 0.91

We extracted the execution trace from each of the above-

mentioned second halves by randomly selecting 1250 jobs with

equal probability. Then, for each extracted trace, we adjust the

arrival time of the jobs so that the average cluster load matches

that in the original trace [17], [8], [11]. Table 5 summarizes the

workload per window of the extracted traces, where a window

is defined as a 1000-second interval sliding by 100 seconds at a

time, and the load per window is the total runtime of all the jobs

arrived in that window, normalized by the total number of CPUs

in the cluster times the window length, i.e., 1000s. We see that

for all three traces, the average system load is close to 1, though

the load fluctuates over time, which is preserved by the random

uniform job extraction.

Prediction mechanisms and experimental setups. We im-

plement the 3Sigma predictor following its description in [47].

After learning the job runtime distribution (§4.2), it uses a utility

function of the estimated job runtime associated with every job

to derive its estimated runtime from the distribution, by inte-

grating the utility function over the entire runtime distribution.

Since our goal is to minimize the average JCT, we used a utility

function that is inversely proportional to the square of runtime.

We kept all the default settings we learned from the authors of

3Sigma [47].

As in §4.2, SLearn samples max(1, 0.03 · S) tasks per job,
where S is the number of tasks in the job. We only show the

results for wide jobs (with 3 or more tasks) as in the complete

SLearn design (§5.1.1), only wide jobs go through the sampling

phase.

Results. Fig. 2 shows the CDF of percentage error in the

predicted job runtimes for the three traces. We see that SLearn

has much better prediction accuracy than 3Sigma. For 2STrace,

GTrace11, and GTrace19, the P50 prediction error are 18.30%,

9.15%, 21.39% for SLearn but 36.57%, 21.39%, 71.56% for 3Sigma,

respectively, and the P90 prediction error are 58.66%, 49.95%,

92.25% for SLearn but 475.78%, 294.52%, 1927.51% for 3Sigma,

respectively.

5 Integrating Sampling-based Learning with
Job Scheduling: A Case Study
In this section, we answer the second key question about the

sampling-based learning: Can delaying scheduling the remaining

tasks till completing the sampled tasks be compensated by the

improved prediction accuracy? We answer it through extensive

simulation and testbed experiments.

Our approach is to design a generic scheduler, denoted as GS,

that schedules jobs based on job runtime estimates to optimize

a given performance metric, average job completion time (JCT).

We then plug into GS different prediction schemes to compare

their end-to-end performance.

5.1 Scheduler and Predictor Design
5.1.1 Generic Scheduler GS
GS replaces the scheduling component of a cluster manager like

YARN [5]. The key scheduling objective of GS is to minimize the

average JCT. Additionally, GS is designed to avoid starvation.

The scheduling task in GS is divided into two phases, (1)

job runtime estimation, and (2) efficient and starvation-free

scheduling of jobs whose runtimes have been estimated. We

focus here on the scheduling mechanism and discuss the different

job runtime estimators in §5.1.2 and §5.1.3.

Inter-job scheduling. Shortest job first (SJF) is known to

be optimal in minimizing the average JCT when job execution

depends on a single resource. Previous work has shown that

scheduling distributed jobs even with prior knowledge is NP-

hard (e.g., [23]), and an effective online heuristic is to order the

distributed jobs based on each job’s total size [40], [41], [39]

[37]. In GS we use a similar heuristic; the jobs are ordered based

on their total estimated runtime, i.e., mean task runtime ×
number of tasks.

Starvation avoidance. SJF is known to cause starvation to long

jobs. Hence, in GS we adopt a well-known multi-level priority

queue structure to avoid job starvation [25], [48], [46], [38]. Once

GS receives the runtime estimates of a job, it assigns the job to a

priority queue based on its runtime. Within a queue, we use FIFO

to schedule jobs. Across the queues, we use weighted sharing

of resources, where a priority queue receives a resource share

according to its priority.

In particular, GS uses N queues, Q0 to QN−1, with each

queue having a lower queue threshold Q
lo
q and a higher threshold

Q
hi
q for job runtimes. We set Q

lo
0 = 0, Q

hi
N−1 = ∞, Q

lo
q+1 =

Q
hi
q . A queue with a lower index has a higher priority. GS uses

exponentially growing queue thresholds, i.e., Qhi
q+1 = E · Qhi

q . To

avoid any bias, we use the multiple priority queue structure with

the same configuration when comparing different job runtime

estimators.

Basic scheduling operation. GS keeps track of resources being

used by each priority queue. It offers the next available resource

to a queue such that the weighted sharing of resources among the

queues for starvation avoidance is maintained. Resources offered

to a queue are always offered to the job at the head of the queue.

7

10−4 10−3 10−2 10−1 100 101 102

Prediction error

0.0
0.2
0.4
0.6
0.8
1.0

CD
F

SLearn
3Sigma

(a) 2STrace

10−4 10−3 10−2 10−1 100 101 102

Prediction error

0.0
0.2
0.4
0.6
0.8
1.0

CD
F

SLearn
3Sigma

(b) GTrace11

10−4 10−3 10−2 10−1 100 101 102

Prediction error

0.0
0.2
0.4
0.6
0.8
1.0

CD
F

SLearn
3Sigma

(c) GTrace19

Fig. 2: Job runtime prediction accuracy.

Job Arrives

Is job
thin?

Yes No

Place it in the
highest priority

queue for execution

Place it in the second
highest priority

queue for sampling

Job Finish
Estimate job size and place it
in appropriate priority queue

Jo
b

ru
n

s

Job
runs

Sampling completes

Fig. 3: Job life-cycle in SLearn

5.1.2 SLearn

To seamlessly integrate SLearn with GS, we need to use one of

the priority queues for scheduling sampled tasks. We denote it

as the sampling queue. Figure 3 depicts the stages a job may go

through in its life cycle in SLearn. In the following, we provide

details on how we handled design challenges faced in SLearn.

Fast sampling. One design challenge is to determine the

priority for the sampling queue w.r.t. the other priority queues.

On one hand, sampled tasks should be given high priority so that

the job runtime estimation can finish quickly. On the other hand,

we should not make the jobs whose runtimes have already been

estimated wait further for learning for new jobs. To balance

the two factors, we use the second highest priority in GS as the

sampling queue.

Handling thin jobs. Recall that in SLearn, when a new job

arrives, SLearn only schedules its pilot tasks, and delays other

tasks until the pilot tasks finish and the job runtime is estimated.

Such a design choice can inadvertently lead to higher JCTs for

thin jobs, e.g., a two-task job would experience serialization of

its two tasks. To avoid JCT degradations for thin jobs, we place

a job directly in the highest priority queue if its width is under a

threshold . We refer to the threshold as thinLimit.

Basic operations. Upon the arrival of a new job, the cluster

manager asynchronously communicates the job’s information to

GS, which relays the information to SLearn. If the number of

tasks in the job is under thinLimit, SLearn assigns it to the

highest priority queue; otherwise, the job is assigned to the

sampling queue, where a subset of its tasks (pilot tasks) will

be scheduled to run. Once a job’s runtime is estimated from

sampling, it is placed in the priority queue corresponding to the

estimate, where the rest of its tasks will be scheduled.

How many pilot tasks to schedule? When a new job arrives,

SLearn first needs to determine the number of pilot tasks.

Sampling more tasks can give higher estimation accuracy, but

also consumes more resources early on, which can potentially

delay other jobs, if the job turns out to be a long job and

should have been scheduled to run later under SJF. Further,

we found the best sampling ratio (SR) appears to vary across

difference traces. To balance the trade-off, we use an adaptive

algorithm to dynamically determine the SR, as shown in Figure 4.

The basic idea of the algorithm is to suggest an SR that has

resulted in the lowest job completion time normalized by the

job runtime based on the recent past. To achieve this, for every

value in a defined range of possible SRs (between 1% and 5%), the

scheduler maintains a running score (srScoreMap), which is

the average normalized JCT of T recently finished jobs that used

the corresponding SR. In practice we found that a T value of 100

works reasonably well. During system start-up, the scheduler

tries sampling ratios of 2%, 3%, and 4% for the first 3T jobs

(Line 2–7). It further tries sampling ratios of 1% and 5% if going

down from 3% to 2% or going up from 3% to 4% reduces the

normalized JCT. Afterwards, for each new job, it uses the SR that

has the lowest running score. Finally, upon each job completion,

the score map is updated (Line 16–24).

Complexity The GetCurrentSamplingPercentage procedure

runs in constant time plus the time of getMinValue(srScoreMap).
getMinValue(srScoreMap) also runs in time linear in the total

number of possible sampling ratios, which is a constant in our

case. UpdateScoreOnJobCompletion() takes the same time as

UpdateScoreMaps() plus a constant time. The runtime of Up-

dateScoreMaps is linear in T , the number of recently completed

jobs to be tracked.

How to pick pilot tasks? Once the SR is chosen, SLearn selects

pilot tasks for a job randomly.

How to estimate from sampled tasks? Several methods

such as bootstrapping, statistical mean or median can be used

to predict job properties from sampled tasks. In GS, we use

empirical mean to predict the mean task runtime. The time

complexity to calculate the mean is linear in the total number

of tasks in the job.

Work conservation. When the system load is low, some ma-

chines may be idle while the non-sampling tasks are waiting for

the sampling tasks to finish. In such cases, SLearn schedules

non-sampling tasks of jobs to run on otherwise idle machines. In

work conservation, the jobs are scheduled in the FIFO order of

their arrival.

8

1: procedure GetCurrentSamplingPercentage(Job j)

2: if j in First T jobs then
3: return 3

4: else if j in Second T jobs then
5: return 2

6: else if j in Third T jobs then
7: return 4

8: minScore = getMinValue(srScoreMap)

9: if minScore.SR == 2 then
10: if 1.1*minScore.value < srScoreMap[3].value then
11: return 1

12: if minScore.SR == 4 then
13: if srScoreMap[3].value > 1.1*minScore.value then
14: return 5

15: return minScore.SR

16: procedure UpdateScoreOnJobCompletion(Job j)

17: sr = j.sr ▷ Get j’s sampling ratio.

18: normalizedJCT = j.jct ▷ Get j’s normalized JCT.

19: UpdateScoresMap(sr, normalizedJCT)

20: procedure UpdateScoreMaps(sr, normalizedJCT)

21: if Len(jobWiseSrScoresMap[sr])> T then
22: Drop first element of jobWiseSrScoresMap[sr]

23: jobWiseSrScoresMap[sr].append(normalizedJCT)

24: srScoreMap[sr].value = mean(jobWiseSrScoresMap[sr])

Fig. 4: Adaptive sampling algorithm in SLearn.

5.1.3 Baseline Predictors and Policies
We compare SLearn’s effectiveness against four different base-

line predictors and two policies: (1) 3Sigma: as discussed in

§4.3. (2) 3SigmaTL: same as 3Sigma but handles thin jobs in

the same way as SLearn; they are directly placed in the highest

priority queue. This is to isolate the effect of thin job handling. (3)
Point-Est: same as 3Sigma, with the only difference being that,

instead of integrating a utility function over the entire runtime

history, it predicts a point estimate (median in our case) from

the history. (4) LAS: The Least Attained Service [48] policy

approximates SJF online without explicitly learning job sizes,

and is most recently implemented in the Kairos [28] scheduler.

LAS uses multiple priority queues and the priority is inversely

proportional to the service attained so far, i.e., the total execution
time so far. We use the sum of all the task execution time to be

consistent with all the other schemes. (5) FIFO: The FIFO policy

in YARN simply prioritizes jobs in the order of their arrival. Since

FIFO is a starvation free policy, there is no need for multiple

priority queues. (6) Oracle: Oracle is an ideal predictor that

always predicts with 100% accuracy.

5.2 Experimental Setup
We evaluated SLearn’s performance against the six baseline

schemes discussed above by plugging them in GS and execute

the 3 traces (2STrace, GTrace11, and GTrace19) using large scale

simulations and on a 150-node testbed cluster in Azure (§5.3.4).

Cluster setup. We implemented GS, SLearn and baseline

estimators with 11 KLOC of Java and python2. We used an

open source java patch for Gridmix [15] and open source java

implementation of NumericHistogram [13] for Hadoop. We used

some parts from DSS, an open source job scheduling simulator

[10], in simulation experiments.

We implemented a proxy scheduler wrapper that plugs into

the resource manager of YARN [5] and conducted real cluster

experiments on a 150-node cluster in MS Azure [14].

TABLE 6: Performance improvement of SLearn over 3Sigma

under adaptive sampling and fixed-ratio sampling.

Fraction of tasks chosen as pilot tasks

1% 2% 3% 4% 5% 10% Adap.

2STrace

P50 pred. error (%) 19.4 19.0 19.0 18.7 18.4 16.9 19.0

Avg. JCT speedup (×) 1.24 1.23 1.27 1.26 1.27 1.28 1.28

P50 speedup (×) 0.93 0.92 0.93 0.92 0.93 0.91 0.92

GTrace11

P50 pred. error (%) 14.4 14.0 13.6 13.1 12.7 9.09 13.7

Avg. JCT speedup (×) 1.52 1.55 1.54 1.56 1.58 1.51 1.56

P50 speedup (×) 1.00 1.00 1.00 1.00 1.00 1.00 1.00

GTrace19

P50 pred. error (%) 55.7 53.8 47.1 46.5 42.1 36.1 51.8

Avg. JCT speedup (×) 1.31 1.31 1.31 1.32 1.28 1.24 1.32

P50 speedup (×) 1.07 1.07 1.05 1.05 1.01 1.00 1.07

Following the methodology in recent work on cluster job

scheduling [47], [51], [24], we implemented a synthetic generator

based on the Gridmix implementation to replay jobs that follow

the arrival time and task runtime from the input trace. The Yarn

master runs on a standard DS15 v2 server with 20-core 2.4 GHz

Intel Xeon E5-2673 v3 (Haswell) processor and 140GB memory,

and the slaves run on D2v2 with the same processor with 2-core

and 7GB memory.

Parameters. The default parameters for priority queues in GS

in the experiments are: starting queue threshold (Qhi
0) is 106

ms, exponential threshold growth factor (E) is 10, number of

queues (N) is set to 10, and the weights for time sharing assigned

to individual priority queues decrease exponentially by a factor

of 10. Previous work (e.g., [40]) and our own evaluation have

shown that the scheduling results are fairly insensitive to these

configuration parameters. We omit their sensitivity study here

due to page limit. SLearn chooses the number of pilot tasks

for wide jobs using the adaptive algorithm described in §5.1.2

and the threshold for thin jobs is set to 3. We evaluate the

effectiveness of adaptive sampling in §5.3.1 and the sensitivity

to thinLimit in §5.3.5.

Performance metrics. We measure three performance metrics

in the evaluation: JCT speedup, defined as the ratio of a JCT

under a baseline scheme over under SLearn, the job runtime

estimation accuracy, and job waiting time.

Workload. We used the same training data for history-based

estimators and the test traces (2STrace, GTrace11 and GTrace19)

as described in §4.3.

5.3 Experimental Results
5.3.1 Effectiveness of Adaptive Sampling
In this experiment, we evaluate the effectiveness of our adaptive

algorithm for task sampling. Fig. 5 shows how the sampling

ratio selected by the adaptive algorithm for each job varies

between 1% and 5% over the duration of the three traces. We

further compare average JCT speedup and P50 speedup under

the adaptive algorithm with those under a fixed sampling ratio,

ranging between 1% and 10%. Table 6 shows that the adaptive

sampling algorithm leads to the best speedups for 2STrace and

GTrace19 and is about only 1% worse than the best for GTrace11.

Interestingly, we observe that no single sampling ratio works the

best for all traces. Nonetheless, the adaptive algorithm always

chooses one that is the best or closest to the best in terms of JCT

speedup. More importantly, we see that the adaptive algorithm

does not always use the sampling ratio with the best prediction

9

0 100K 200K 300K 400K 500K 600K
Job arrival time (sec)

1%

2%

3%

4%

5%
Sa

m
pl

in
g

ra
tio

(a) 2STrace

0 20K 40K 60K 80K 100K 120K 140K 160K
Job arrival time (sec)

1%

2%

3%

4%

5%

Sa
m

pl
in

g
ra

tio

(b) GTrace11

0 200K 400K 600K 800K 1000K 1200K 1400K
Job arrival time (sec)

1%

2%

3%

4%

5%

Sa
m

pl
in

g
ra

tio

(c) GTrace19

Fig. 5: Sampling ratios selected by the adaptive sampling algorithm. The duration of initial 3T jobs appear varying due to uneven

arrival times.

3Sigma 3SigmaTL LAS Point FIFO Oracle
Other predictors and policies

100

101

102

JC
T

Sp
ee

du
p

1.28 1.26 1.91 1.42
3.29

0.79

P10-P90
P50
Average

(a) 2STrace

3Sigma 3SigmaTL LAS Point FIFO Oracle
Other predictors and policies

100

101

102

JC
T

Sp
ee

du
p

1.56 1.55 1.65 2.17

7.29

0.82

P10-P90
P50
Average

(b) GTrace11

3Sigma 3SigmaTL LAS Point FIFO Oracle
Other predictors and policies

100

101

102

JC
T

Sp
ee

du
p

1.32 1.32 1.72 1.54
3.63

0.91

P10-P90
P50
Average

(c) GTrace19

Fig. 6: JCT speedup using SLearn as compared to other baseline schemes for the three traces.

accuracy, which shows that it effectively balances the tradeoff

between prediction accuracy and sampling overhead.

5.3.2 Prediction Accuracy
SLearn achieves more accurate estimation of job runtime over

3Sigma – the details were already discussed in §4.3.

5.3.3 Average JCT Improvement
We now compare the JCT speedups achieved using SLearn over

using the five baseline schemes defined in §5.1.3.

Fig. 6(a) shows the results for 2STrace. We make the following

observations. (1) Compared to Oracle, SLearn achieves an

average and P50 speedups of 0.79× and 0.73×, respectively. This

is because SLearn has some estimation error; it places 10.91% of

wide jobs in the wrong queues, 3.54% in lower queues and 7.37%

in higher queues. (2) SLearn improves the average JCT over

3Sigma by 1.28×. This significant improvement of SLearn comes

from much higher prediction accuracy compared to 3Sigma

(Fig. 2). (3) The improvement of SLearn over 3SigmaTL, 1.26×,

is similar to that over 3Sigma, confirming thin job handling only

played a small role in the performance difference of the two

schemes. To illustrate SLearn’s high prediction accuracy, we

show in Table 7 the fraction of wide jobs that were placed in

correct queues by SLearn and 3Sigma. We observe that SLearn

consistently assigns more wide jobs to correct queues than

3Sigma for all three traces. (4) Compared to Point-Est, SLearn

improves the average JCT by 1.42×. Again, this is because

SLearn estimates runtimes with higher accuracy. (5) Compared

to LAS, SLearn achieves an average JCT speedup of 1.91×
and P50 speedup of 1.29×. This is because LAS pays a heavy

penalty in identifying the correct queues of jobs by moving

them across the queues incrementally. (6) Lastly, compared with

FIFO, SLearn achieves an average JCT speedup of 3.29× and P50

speedup of 8.45×.

Fig. 6(b) shows the results for GTrace11. Scheduling under

SLearn again outperforms all other schemes. In particular, using

TABLE 7: Percentage of the wide jobs that had correct queue

assignment.

Prediction SLearn 3Sigma

Technique

2STrace 89.09% 73.84%

GTrace11 86.45% 76.20%

GTrace19 73.96% 58.07%

SLearn improves the average JCT by 1.56× compared to using

3Sigma, 1.55× compared to using 3SigmaTL, 2.17× compared to

using Point-Est, and 1.65× compared to using the LAS policy.

Fig. 6(c) shows that scheduling under SLearn outperforms all

other schemes for GTrace19 too. In particular, using SLearn

improves the average JCT by 1.32×, 1.32×, 1.54×, and 1.72×
compared to using 3Sigma, 3SigmaTL, Point-Est and the LAS

policy, respectively.

In summary, our results above show that SLearn’s higher

estimation accuracy outweighs its runtime overhead from sam-

pling, and as a result achieves much lower average job comple-

tion time than history-based predictors and the LAS policy for

the three production workloads.

5.3.4 Testbed Experiments
We next perform end-to-end evaluation of SLearn and 3Sigma

on our 150-node Azure cluster. Fig. 7 shows the CDF of JCT

speedups using SLearn over 3Sigma using 2STrace, GTrace11

and GTrace19. SLearn’s performance on the testbed is similar to

that observed in the simulation. In particular, SLearn achieves

average JCT speedups of 1.33×, 1.46×, and 1.25× over 3Sigma

for the 2STrace, GTrace11, and GTrace19 traces, respectively.

5.3.5 Sensitivity to Thin Job Bypass
Finally, we evaluate SLearn’s sensitivity to thinLimt. Table 8

shows that for GTrace11 and GTrace19, the average JCT speedup

barely varies with thinLimit, but for 2STrace, there is a big dip

when increasing thinLimit to 4 or 5. This is because a significant

number of jobs in 2STrace have width 4, which causes the

10

10−1 100 101 102 103

JCT speedup over 3Sigma

0.0

0.2

0.4

0.6

0.8

1.0
CD

F

GTrace11
2STrace
GTrace19

Fig. 7: [Testbed] CDF of speedup: SLearn

vs 3Sigma.

Bin-1 Bin-2 Bin-3 Bin-4
Bins

100

101

JC
T

Sp
ee

du
p

ov
er

 3
Si

gm
a

10.54

1.86 0.80
1.38

P10-P90
P50
Average

Fig. 8: Performance breakdown into the

bins in Table 9.

3Sigma LAS Point FIFO Oracle
Other predictors and policies for DAGs

100

101

102

JC
T

Sp
ee

du
p

1.25
2.15 1.74

5.54

0.79

P10-P90
P50
Average

Fig. 9: JCT speedup using SLearn-DAG

over baselines for GTrace19-DAG.

TABLE 8: Sensitivity analysis for thinLimit. Table shows average

JCT speedup over 3Sigma.

thinLimit 2 3 4 5 6

2STrace 1.23x 1.28x 1.14x 0.97x 0.84x

GTrace11 1.54x 1.56x 1.55x 1.54x 1.53x

GTrace19 1.33x 1.32x 1.32x 1.30x 1.29x

number of thin jobs to increase from 18.84% to 58.50% when

increasing thinLimit from 4 to 5.

5.4 Intuitive Explanation
Recall that §4 positively answered the first questions we asked in

Intro: (1) Can learning in space be more accurate than learning

in time? And §5.3 positively answered the second question: (2) If

so, can delaying scheduling the remaining tasks of a job till the

completion of sampled tasks be more than compensated by the

improved accuracy and result in improved job performance, e.g.,

completion time?

In this section, we delve into detailed results in §5.3 to

provide intuitive explanations for the positive answers to the

above two questions.

First, §5.4.1 gives the intuition to the positive answer to

question 1. Then §5.4.2, 5.4.3 and 5.4.4 give the intuition to the

positive answer to Question 2.

5.4.1 Visualizing the difference in CoVs of runtime across
history (time) and tasks (space)
In this section, we show results to visualize the difference in

variation of runtimes across history (runtime of similar jobs over

time) and tasks (runtime of tasks of the same job i.e., space). For
clarity, we show the result for 70 jobs extracted at random from

the 2Sigma trace, plotted in the order of job arrival in Figure 10.

For each job, we plot the following two values on the y-axis: (1)

the CoV in average task runtime across history. and (2) the CoV

in task runtimes within the job. We use the exact same process

as described in §4.2. For the history window we have chosen a

30-day period (which was found to give the least variation across

history as shown in Figure1(a));

It is clearly seen that the variation across history (time)

is significantly higher than variation across tasks (space). For

the whole trace the variation across history is higher than the

variation across tasks for more than 85% of the jobs. We observe

similar behaviour for the other two traces.

5.4.2 Impact of Sampling on Job Waiting Time
To evaluate sampling overhead and gain insight into why

sampling pilot tasks first under SLearn does not hurt the overall

average JCT, we next compare the normalized waiting time of

jobs, calculated as the average waiting time of its tasks under the

respective scheme, divided by the mean task length of the job.

Fig. 11 shows the CDF of the normalized job waiting time

under SLearn and 3Sigma. Here, we focus on explaining the

CDF for GTrace11 in Fig. 11(b), but similar explanation can be

given for the other two traces. We see that the CDF curves in

Fig. 11(b) can be divided into three segments. (1) The first seg-

ment, where both SLearn and 3Sigma have normalized waiting

time (NWT) less than 0.04, covers 36.58% of the jobs, and 35.57%

of the jobs are common. These jobs have almost identical NWT,

much lower than 1 under both schemes. This happens because

during low system load periods, e.g., lower than 1, the scheduler,

under both schemes, will schedule all the tasks to run; under

SLearn it schedules non-sampled tasks of jobs to run before

their sampled tasks complete due to work conservation. (2) The

second segment, where both schemes have NWT between 0.04

and 1.90, covers 30.51% of the jobs, and 20.38% of the jobs are

common. Out of these 20.38% of the jobs, 29.81% have lower

NWT under SLearn and 70.19% have lower NWT under 3Sigma.

This happens because when the system load is moderate, the

jobs experience longer waiting time under SLearn (because of

the sampling delay) than under 3Sigma. (3) The third segment,

where both schemes have NWT above 1.90, cover 32.91% of the

jobs, and 24.68% of jobs are common. Out of these 24.68%, 83.08%

have lower waiting time under SLearn and 16.92% under 3Sigma.

This happens because when the system load is relatively high,

although jobs incur the sampling delay under SLearn, they also

experience queuing delay under 3Sigma. Thus, the impact of the

sampling delay is relatively less significant. Instead, the more

accurate prediction of SLearn allows them to be scheduled more

closely to under Shortest Job First than under 3Sigma.

Fig. 12 shows the task waiting dynamics (CDF of waiting

times of the tasks of that job) for a job that had the same JCT

under both SLearn and 3Sigma, and Fig. 13 shows a job that

experienced a significant speedup under SLearn over 3Sigma,

for all 3 traces. We see that for both types of jobs, both the

sampled tasks and most of the non-sampled tasks in SLearn

started much earlier compared to their starting moments under

3Sigma. The same observation holds true for most of the jobs.

These results suggest that sampling does not inflate the waiting

time of the jobs. A detailed analysis of how the system load

of the trace affects the relative job performance under the two

predictors can be found in §5.4.4.

5.4.3 Binning Analysis
Previous sections aim to visualize the role of prediction accuracy

and waiting time due to sampling. To gain further insight into

how jobs with different width and size are affected by SLearn

over 3Sigma, we divide the jobs into four bins in Table 9 for

2STrace and show the JCT speedups for each bin in Fig. 8. The

results for the other two traces are similar and are omitted due

11

0 10 20 30 40 50 60 70
Job id

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
tail

Co
Vs

 in
 ta

sk
 d

ur
at

io
n History cov

Task cov

Fig. 10: CoVs across time and space for 70 jobs selected randomly from the 2Sigma trace. The x-axis represents job ids in the order

of their arrival.

10−4 10−3 10−2 10−1 100 101 102 103

Normalized job waiting time

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

SLearn
3Sigma

(a) 2STrace

10−4 10−3 10−2 10−1 100 101 102

Normalized job waiting time

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

SLearn
3Sigma

(b) GTrace11

10−4 10−3 10−2 10−1 100 101 102 103 104

Normalized job waiting time

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

SLearn
3Sigma

(c) GTrace19

Fig. 11: CDF of waiting times for all wide jobs for the 3 traces.

10−2 10−1 100 101

Task waiting time (KSec)

0.0
0.2
0.4
0.6
0.8
1.0

CD
F

SLearn
3Sigma

(a) 2STrace - JCT Speedup - 1.00×

10−2 10−1 100

Task waiting time (KSec)

0.2
0.4
0.6
0.8
1.0

CD
F

SLearn
3Sigma

(b) GTrace11 - JCT Speedup - 1.01×

10−1 100 101 102

Task waiting time (KSec)
0.0
0.2
0.4
0.6
0.8
1.0

CD
F

SLearn
3Sigma

(c) GTrace19 - JCT Speedup - 1.01×

Fig. 12: Task waiting times for jobs having similar JCT under SLearn and 3Sigma.

10−1 100 101

Task waiting time (KSec)
0.0
0.2
0.4
0.6
0.8
1.0

CD
F

SLearn
3Sigma

(a) 2STrace - JCT Speedup - 6.40×

10−1 100 101

Task waiting time (KSec)

0.0
0.2
0.4
0.6
0.8
1.0

CD
F

SLearn
3Sigma

(b) GTrace11 - JCT Speedup - 4.23×

100 101 102

Task waiting time (KSec)
0.0
0.2
0.4
0.6
0.8
1.0

CD
F

SLearn
3Sigma

(c) GTrace19 - JCT Speedup - 3.80×

Fig. 13: Task waiting times for jobs that performed significantly better under SLearn compared to 3Sigma

TABLE 9: Breakdown of jobs based on total duration and width

(number of tasks) for 2STrace. Shown in brackets are a bin’s

fraction of all the jobs in the trace in terms of job count and total

job runtime.

width < 3 (thin) width ≥ 3 (wide)

size < 103s (sm) bin-1 (4.55%, 0.01%) bin-2 (28.73%, 0.06%)

size ≥ 103s (lg) bin-3 (14.29%, 5.41%) bin-4 (52.43%, 94.52%)

to page limit.

We make the following observations. (1) SLearn improves

the JCT for 82.46% of the jobs in Bin-1 and the average JCT

speedup for the bin is 10.54×. This happens because the jobs in

this bin are thin and hence SLearn assigns them high priorities,

which is also the right thing to do since these jobs are also small.

(2) For bin-2, SLearn achieves an average JCT speedup of 1.86×
from better prediction accuracy of SLearn. The speedups are

lower than for Bin-1 as the jobs have to undergo sampling.

However, Bin-1 and Bin-2 make up only 0.01% and 0.06% of

the total job runtime and thus have little impact on the overall

JCT. (3) Bin-3, which has 14.29% of the jobs and accounts for

5.41% of the total job size, has a slowdown of 20.00%. The

main reason is that SLearn treats thin jobs in the FIFO order,

whereas 3Sigma schedules them based on predicted sizes. (4) Bin-

4, which accounts for a majority of the job and total job size, has

an average speedup of 1.38×, which contributes to the overall

speedup of 1.28×. The job speedups come from more accurate

12

job runtime estimation of SLearn over 3Sigma. Finally, we note

that while for the 2Sigma trace, the majority of thin jobs are

large, for the Google 2011 (Google 2019) trace, only 1.90% (1.60%)

of the total number of jobs are thin and large and they make up

only 0.5% (0.5%) of the total job runtime..

5.4.4 How does the system load affect the speedups of
SLearn over 3Sigma?
In this section, we provide an intuitive explanation for SLearn’s

JCT speedup over 3Sigma in Section 5.2.4 for 2STrace in Figure

5(a). Figure 14 shows seven timeline values comparing SLearn

and 3Sigma for the 2STrace as follows:

• The top curve shows the total workload arrived in the past

1000 seconds, in terms of execution duration. The values are

plotted in steps of 1000 seconds along the x-axis. A unit

along the y-axis corresponds to the workload that needs

1000 seconds of the entire cluster’s compute capacity. Thus

a workload of 1 in steady state implies no queue build-up

under 100% utilization of the whole cluster.

• The next three curves show the resistance faced by newly

arrived jobs under Oracle, 3Sigma and SLearn, respec-

tively, where resistance for a job is defined as the amount

of higher priority workload existing at the time of its

arrival, including the remaining duration of the already

scheduled tasks. A unit along the y-axis for these curves

also corresponds to the workload that needs 1000 seconds

of the entire cluster’s compute capacity. For wide jobs (i.e.,
with 3 or more tasks), under SLearn we show the resistance
value corresponding to the moment when the job’s size

estimation is over and it has been placed in its estimated

priority queue. The resistance values are plotted along the

x-axis corresponding to each job’s arrival time.

• The next two curves correspond to the percentage predic-

tion error in 3Sigma and SLearn, respectively. They show

signed error which are capped at 1000, e.g., a value of -20 on
error curves means the job was estimated to be 20% smaller

and a value of 1000 means job was estimated at least 1000%

larger. The values are plotted along the x-axis corresponding

to each job’s arrival time.

• The bottom curve shows the job speedup (positive values)

or slowdown (negative values) of SLearn compared to

3Sigma, plotted along the x-axis corresponding to each job’s

arrival time. Thus all values are either above 1, showing the

speedups of jobs under SLearn over under 3Sigma, or below

-1, showing the speedups of jobs under 3Sigma over under

SLearn.

With the above definitions of the curves, we next discuss how

these curves in Fig. 14 provides insights to when and why

SLearn outperforms 3Sigma.

• The speedup curve (bottom) shows the speedup under

SLearn over under 3Sigma happens when the workload

is high, e.g., between 600s and 620s, and 800s to 840s.

Conversely, when the workload is below 1, e.g., between
400 and 600s, the two scheme perform similarly and there is

no speedup of either scheme. In such cases, task sampling

SLearn did not hurt jobs because non-sampled tasks did not

have to wait for completion of sampled tasks due to work

conservation (§5.1.2).

• Intuitively, under any scheme, a job’s completion time is

roughly proportional to its own total runtime (which is

independent of the scheduling) plus the resistance it sees

upon arrival, because the resistance value indicates the

amount of workload that needs to be scheduled before the

arriving job gets to run.

• The resistance value, in turn, depends on the recently arrived

workload and the prediction error and hence the scheduling

decision for them.

• First, if more workload has arrived in the recent past, it is

likely that a newly arrived job will face higher resistance.
This is shown by the strong correlation between the load

curve and the Oracle resistance curve.

• Second, high runtime prediction error can lead to high re-
sistance. When the job runtime is estimated by the predictor

to be larger than its actual size, it may be misplaced in a

lower priority queue. If the error is more than 1000% then

the job will definitely be placed in a lower priority queue.

In such cases, the job will likely face higher resistance than
it would have with accurate estimation. Conversely, when

the job runtime is underestimated, it may be placed in a

higher priority queue. Though such a job will finish faster

than otherwise, it will create more resistance for other jobs
that are actually smaller than it and thus slow them down.

• The above impact of prediction error on resistance can be

seen in Fig. 14. Since the prediction accuracy of SLearn is

high, it has less impact on the resistance and as a result its

resistance (fourth curve) is very similar to that of Oracle

(second curve)
4
. In contrast, the resistance curve for 3Sigma

(third curve) has many spikes, e.g., between 800s and 1050s,

which happen when the workload (top curve) is high and it

has high positive prediction error (fifth curve).

• Finally, we can see that where ever there is higher resistance
under 3Sigma (third curve) compared to under SLearn

(fourth curve), e.g., between 800s and 1000s, jobs experience

speedups under SLearn over under 3Sigma.

While the above explanation using Fig. 14 is based on the

performance of SLearn and 3Sigma relative to that of Oracle,

Table 10 gives a direct comparison of the scheduling behavior

of the jobs under the two schemes in terms of runtime over-

estimation/underestimation, prediction error, and the resulting

misplacement to the priority queues. We see that a larger number

jobs are misplaced under 3Sigma compared to SLearn which led

to the overall lower performance under 3Sigma.

In summary, whether a job finishes faster under SLearn

compared to 3Sigma depends on two factors: the recent workload

and the runtime prediction error. Due to higher prediction error

of 3Sigma compared to SLearn, during high workload, jobs are

more likely to be misplaced to the priorty queues and hence

face higher resistance, which results in longer average completion

time under 3Sigma.

6 Scheduling for DAG Jobs
In earlier sections, we have focused on the benefits of sampling-

based prediction. On the other hand, we envision that there are

situations where it would be beneficial to combine sampling-

based and history-based predictions. Below, we present our

preliminary work applying such a hybrid strategy for scheduling

DAG jobs. We will discuss several other use cases of a hybrid

4. We note that there can be some exceptions where jobs face lower

resistance under SLearn compared to under Oracle, e.g., between time 200 -

400 KSec in Fig. 14. This happens because of mis-prediction in SLearn, e.g.,
when it underestimates the runtime of some jobs and places them in lower

priority queues than otherwise, the subsequently arriving job will experience

lower resistance.

13

0
15

35
50

L
o
a
d

0

50
90

140

O
ra

c
le

R
e
s
is

ta
n
c
e

0

50
90

140

3
S
ig

m
a

R
e
s
is

ta
n
c
e

0

50
90

140

S
L
e
a
rn

R
e
s
is

ta
n
c
e

0
3

7
10

3
S
ig

m
a

E
rr

o
r

0
3

7
10

S
L
e
a
rn

E
rr

o
r

0 200 400 600 800 1000 1200

time (KSec)

0
70

140
210

S
p
e
e
d
u
p

Load
Oracle
Resistance

3Sigma
Resistance

SLearn
Resistance

3Sigma
Error

SLearn
Error Speedup

Fig. 14: Correlation between load, resistance, estimation error and speedup for 2STrace.

TABLE 10: Fraction of overestimated jobs and incorrect queue placement for 2STrace. Job performance in the third and seventh

column is relative to the Oracle.

Overestim- Misplaced Slowed Average (P50) Underesti- Misplaced Speedup Average (P50)

ated jobs overestimated misplaced Positive error mated jobs underestimated misplaced Negative error

jobs jobs jobs jobs

3Sigma 59.78% 17.50% 12.19% 898.5% (48.00)% 40.22% 8.65% 6.88% -37.0% (-28.57)%

SLearn 43.75% 3.54 % 2.85% 30.65% (18.19)% 55.45% 7.37% 3.64% -26.79% (-20.69)%

strategy in §7. Note that for multi-phase DAG jobs, simply

applying sampling-based prediction to each phase in turn cannot

estimate the whole DAG runtime ahead of time. Instead, our

hybrid design below aims to learn the runtime properties and

optimize the performance of a multi-phase DAG job as a whole
(e.g., [29], [32]).
Hybrid learning for DAGs (SLearn-DAG). The key idea of

SLearn-DAG is to adjust history-based prediction of the runtime

of DAG jobs using sampling-based learning of its first stage.

Upon arrival of a new DAG job, we estimate the runtime of its

first stage using sampling-based prediction as described in §5.1.2,

denoted as ds. We also estimate the duration of this stage using

history-base 3Sigma, denoted as dh, and compute the adjustment

ratio of
ds

dh
. For each of the remaining stages of the DAG, we

predict their runtime using 3Sigma and then multiply it with the

adjustment ratio. In a nutshell, this hybrid design reduces the

error of history-based prediction due to staleness of the learning

data, while avoiding the delay of sampling across all other stages.

History-based learning for DAGs (3Sigma-DAG). This is a

straight-forward extension of 3Sigma. Upon arrival of a DAG

job, it predicts independently the runtime for each stage using

the 3Sigma and sums up the estimated runtime of all stages as

the estimated runtime of the entire DAG.

We similarly extended other baselines described in §5.1.3 for

DAG job.

Experimental setup. We evaluated SLearn-DAG against

3Sigma-DAG by replaying cluster trace in simulation exper-

iments based on GS (§5.1.1). We kept the simulation setup

and parameters the same as used in the other experiments. In

particular, a DAG is placed in the corresponding priority queue

based on its estimated total runtime.

DAG Traces. The only publically available DAG trace we could

find is a trace from Alibaba[3], which could not be used as it

does not contain features required for history-based prediction

using 3Sigma. Instead, we followed the ideas in previous work,

14

e.g., Branch Scheduling [33], to generate a synthetic DAG trace

of about 900 jobs using the Google 2019 trace [11], denoted as

GTrace19-DAG. The number of stages in DAGs in the GTrace19-

DAG was randomly choosen to be between 2-5 and each stage is

a complete job from the Google 2019 trace. The jobs that are part

of the same DAG have the same jobname and the same username.
Results. The results in Fig. 9 show that SLearn-DAG achieves

significant speedup over other designs. The speedup is 1.26×
over 3Sigma-DAG, 2.15× over LAS-DAG, and 1.74× over Point-

Est-DAG. Looking deeper, we find that our sampling-based pre-

diction still yields higher prediction accuracy: the P50 prediction

error is 33.90% for SLearn-DAG, compared to 47.21% for 3Sigma-

DAG. On the other hand, for DAG jobs the relative overhead of

sampling (e.g, the delay) is lower since only the first stage is

sampled. Together, they produce speedup comparable to earlier

sections.

7 Discussions and Future Work
Combining history and sampling. In addition to improving

the scheduling of DAG jobs (§6), we discuss several additional

motivations for combining history- and sampling-based learn-

ing. (1) For workloads with both recurring and first-time jobs,

sampling-based learning can be used to estimate properties

for first-time jobs, while history-based learning can be used

for recurring jobs. (2) When the workload has both thin and

wide jobs, history-based learning can be used for estimating

the runtime for thin jobs, while sampling-based learning is

used for wide jobs. (3) History-based learning can be used to

establish a prior distribution, and sampling-based approach can

be used to refine the posterior distribution. Such a combination

is potentially more accurate than using either approach alone.

For example, knowing the prior distribution of task lengths can

help to develop better max task-length predictors, which can

be useful for jobs with deadlines. (4) Though not seen in the

production traces used in our study, in cases when task-wise

variation and job-wise variation fluctuate, adaptively switching

between the two prediction schemes may also help. (5) When

the cluster is heterogeneous, an error adjustment using history,

similar to what we did in §6, can be applied.

Dynamic adjustment of ThinLimit. ThinLimit is a subjective

threshold. It helps in segregating jobs for which waiting time

due to sampling overshadows the improvement in prediction

accuracy. The optimal choice of this limit will depend on the

cluster load at the moment and hence can be adaptively chosen

like the sampling percentage (Fig. 4 on page 8).

Using other functions for estimations. In this paper we have

used mean for estimating job runtime from runtime of sampled

tasks. Another interesting direction of work could be exploring

the use of other statistical functions for estimating job runtime

or other job execution metrics.

We could also explore integrating sampling-based learning

with other scheduling goals like deadline or as in Aladdin [?].
Heterogeneous clusters. Extending sampling-based learning

to heterogeneous clusters requires adjusting the task sampling

process. One idea is to schedule pilot tasks on homogeneous

servers and then scale their runtime to different types of servers

using the ratio of machine speeds.

8 Conclusions
In this paper, we performed a comparative study of task-

sampling-based prediction and history-based prediction com-

monly used in the current cluster job schedulers. Our study

answers two key questions: (1) Via quantitative, trace and ex-

perimental analysis, we showed that the task-sampling-based

approach can predict job runtime properties with much higher

accuracy than history-based schemes. (2) Via extensive simula-

tions and testbed experiments of a generic cluster job scheduler,

we showed that although sampling-based learning delays non-

sampled tasks till completion of sampled tasks, such delay can be

more than compensated by the improved accuracy over the prior-

art history-based predictor, and as a result reduces the average

JCT by 1.28×, 1.56×, and 1.32× for three production cluster

traces. These results suggest task-sampling-based prediction of-

fers a promising alternative to the history-based prediction in

facilitating cluster job scheduling.

Acknowledgement We thank the journal editor-in-chief, the

associate-editor, and the anonymous reviewers for their helpful

comments. This work was supported in part by NSF grant

2113893.

Authors

Akshay Jajoo is currently a research scientist at Bell
Labs. He received his Ph.D. from Purdue in 2020.
He received his B.Tech from IIT Guwahati, India,
in 2015 with President Shankar Dayal Sharma gold
medal. Hewas a finalist in the prestigious Honda Yes
award. Dr. Jajoo is also DAAD WISE and Charpak
Scholar. His research interests include cloud com-
puting, computer networks, distributed systems and
decentralized systems. He also has experience work-
ing in computer vision and RAM error correction.

Y. Charlie Hu is Michael and Katherine Birck Pro-
fessor of ECE at Purdue University. He received his
Ph.D. degree in Computer Science from Harvard
University in 1997. From 1997 to 2001, he was a
research scientist at Rice University. His research
interests include mobile computing, operating sys-
tems, distributed systems, and wireless networking.
He has published over 180 papers in these areas. Dr.
Hu received the NSF CAREER Award in 2003. He is
an IEEE Fellow and an ACM distinguished scientist.

Xiaojun Lin (S’02 M’05 SM’12 F’17) received his
B.S. fromZhongshanUniversity, Guangzhou, China,
in 1994, and his M.S. and Ph.D. degrees from Purdue
University in 2000 and 2005, respectively. He is cur-
rently a Professor of ECE at Purdue University. Dr.
Lin’s research interests are in the analysis, control
and optimization of large and complex networked
systems, including both communication networks
and power grid. He received the NSF CAREER award
in 2007.

15

References

[1] 2sigma hedge fund. www.twosigma.com.

[2] 2sigma’s proprietary job scheduler.

https://www.twosigma.com/insights/article/cook-a-fair-preemptive-

resource-scheduler-for-compute-clusters/.

[3] Alibaba cluster trace. https://github.com/alibaba/clusterdata.

[4] Apache hadoop. http://hadoop.apache.org.

[5] Apache hadoop yarn. https://hadoop.apache.org/docs/current/hadoop-

yarn/hadoop-yarn-site/YARN.html.

[6] Apache hive. http://hive.apache.org.

[7] Apache spark. http://spark.apache.org.

[8] Cluster trace from google - 2011. https://github.com/google/cluster-

data/blob/master/ClusterData2011 2.md.

[9] A document released by google containing schema

and details of the cluster trace released by

google. https://drive.google.com/open?id=0B5g07T

gRDg9Z0lsSTEtTWtpOW8.

[10] Dss scheduler. https://github.com/epfl-labos/DSS.

[11] Google cluster-usage traces, retrieved 21st july 2020.

https://research.google/tools/datasets/google-cluster-workload-traces-

2019/.

[12] Google cluster-usage traces, retrieved 21st

july 2020. https://drive.google.com/file/d/

10r6cnJ5cJ89fPWCgj7j4LtLBqYN9RiI9/view.

[13] Hadoop patch for numeric histogram.

https://issues.apache.org/jira/browse/YARN-2672.

[14] Microsoft azure. http://azure.microsoft.com.

[15] A patch for gridmix. https://issues.apache.org/jira/browse/YARN-2672.

[16] Personal communication with a 2sigma engineer regarding properties

of the 2sigma trace used.

[17] A private trace collected by 2sigma engineers from their clusters.

www.twosigma.com.

[18] Resutls on the posteriro distribution with gaussian pri-

ors. https://people.eecs.berkeley.edu/ jordan/courses/260-

spring10/lectures/lecture5.pdf.

[19] F. Ahmad, S. T. Chakradhar, A. Raghunathan, and T. N. Vijaykumar.

Shufflewatcher: Shuffle-aware scheduling in multi-tenant mapreduce

clusters. In 2014 USENIX Annual Technical Conference (USENIX ATC
14), pages 1–13, Philadelphia, PA, 2014. USENIX Association.

[20] G. Amvrosiadis, J. W. Park, G. R. Ganger, G. A. Gibson, E. Baseman, and

N. DeBardeleben. On the diversity of cluster workloads and its impact

on research results. In USENIX ATC’ 18).
[21] E. Boutin, J. Ekanayake, W. Lin, B. Shi, J. Zhou, Z. Qian, M. Wu, and

L. Zhou. Apollo: Scalable and coordinated scheduling for cloud-scale

computing. In USENIX OSDI’14), pages 285–300, Broomfield, CO.

[22] R. Chaiken, B. Jenkins, P.-A. Larson, B. Ramsey, D. Shakib, S. Weaver,

and J. Zhou. Scope: Easy and efficient parallel processing of massive

data sets. Proc. VLDB Endow., 1(2):1265–1276, Aug. 2008.
[23] M. Chowdhury, Y. Zhong, and I. Stoica. Efficient coflow scheduling with

varys. SIGCOMM ’14. ACM.

[24] A. Chung, J. W. Park, and G. R. Ganger. Stratus: Cost-aware container

scheduling in the public cloud. SoCC ’18. ACM.

[25] E. G. Coffman and L. Kleinrock. Feedback queueing models for time-

shared systems. Journal of the ACM (JACM), 15(4):549–576, 1968.
[26] C. Curino, D. E. Difallah, C. Douglas, S. Krishnan, R. Ramakrishnan,

and S. Rao. Reservation-based scheduling: If you’re late don’t blame us!

SOCC ’14. ACM.

[27] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on

large clusters. In USENIX OSDI’04.
[28] P. Delgado, D. Didona, F. Dinu, and W. Zwaenepoel. Kairos: Preemptive

data center scheduling without runtime estimates. SoCC ’18. ACM.

[29] A. D. Ferguson, P. Bodik, S. Kandula, E. Boutin, and R. Fonseca. Jockey:

Guaranteed job latency in data parallel clusters. EuroSys ’12. ACM.

[30] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and

I. Stoica. Dominant resource fairness: Fair allocation of multiple

resource types. NSDI’11. USENIX.

[31] R. Grandl, G. Ananthanarayanan, S. Kandula, S. Rao, and A. Akella.

Multi-resource packing for cluster schedulers. SIGCOMM ’14. ACM.

[32] R. Grandl, M. Chowdhury, A. Akella, and G. Ananthanarayanan. Altru-

istic scheduling in multi-resource clusters. In USENIX OSDI’16).
[33] Z. Hu, D. Li, Y. Zhang, D. Guo, and Z. Li. Branch scheduling: Dag-aware

scheduling for speeding up data-parallel jobs. IWQoS’19. ACM.

[34] Z. Huang, B. Balasubramanian, M. Wang, T. Lan, M. Chiang, and D. H.

Tsang. Need for speed: Cora scheduler for optimizing completion-times

in the cloud. In IEEE INFOCOM’15.

[35] C. Iorgulescu, F. Dinu, A. Raza, W. U. Hassan, and W. Zwaenepoel. Don’t

cry over spilled records: Memory elasticity of data-parallel applications

and its application to cluster scheduling. In USENIX ATC’17).
[36] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad: Distributed

data-parallel programs from sequential building blocks. EuroSys ’07.

[37] A. Jajoo. EXPLOITING THE SPATIAL DIMENSION OF BIG DATA JOBS
FOR EFFICIENT CLUSTER JOB SCHEDULING. PhD thesis, Purdue

University Graduate School, 2020.

[38] A. Jajoo, R. Gandhi, and Y. C. Hu. Graviton: Twisting space and time

to speed-up coflows. In 8th USENIX Workshop on Hot Topics in Cloud
Computing (HotCloud 16), Denver, CO, 2016. USENIX Association.

[39] A. Jajoo, R. Gandhi, Y. C. Hu, and C.-K. Koh. Saath: Speeding up

coflows by exploiting the spatial dimension. In Proceedings of the
13th International Conference on Emerging Networking EXperiments and
Technologies, CoNEXT ’17, New York, NY, USA, 2017. ACM.

[40] A. Jajoo, Y. C. Hu, and X. Lin. Your coflow has many flows: Sampling

them for fun and speed. In 2019 USENIX Annual Technical Conference
(USENIX ATC 19), pages 833–848, Renton, WA, 2019.

[41] A. Jajoo, Y. C. Hu, and X. Lin. A case for sampling based learning

techniques in coflow scheduling. CoRR, abs/2108.11255, 2021. http:

//arxiv.org/abs/2108.11255.

[42] A. Jajoo, Y. C. H. Hu, X. Lin, and N. Deng. A case for task sampling

based learning for cluster job scheduling. In Proceedings of the 19th
USENIX Conference on Networked Systems Design and Implementation,
NSDI’22, Berkeley, CA, USA, 2022. USENIX Association.

[43] V. Jalaparti, P. Bodik, I. Menache, S. Rao, K. Makarychev, and M. Caesar.

Network-aware scheduling for data-parallel jobs: Plan when you can.

SIGCOMM ’15. ACM.

[44] S. A. Jyothi, C. Curino, I. Menache, S. M. Narayanamurthy, A. Tumanov,

J. Yaniv, R. Mavlyutov, I. Goiri, S. Krishnan, J. Kulkarni, and S. Rao.

Morpheus: Towards automated slos for enterprise clusters. In USENIX
OSDI’16, pages 117–134, Savannah, GA.

[45] S. Krishnaswamy, S. Loke, and A. Zaslavsky. Estimating computation

times of data-intensive applications. IEEE Distributed Systems Online,
5(4):1 – 12, 2004.

[46] M. Nuyens and A. Wierman. The foreground–background queue: a

survey. Performance evaluation, 65(3-4):286–307, 2008.
[47] J. W. Park, A. Tumanov, A. Jiang, M. A. Kozuch, and G. R. Ganger.

3sigma: Distribution-based cluster scheduling for runtime uncertainty.

EuroSys ’18, pages 2:1–2:17. ACM.

[48] I. A. Rai, G. Urvoy-Keller, and E. W. Biersack. Analysis of las scheduling

for job size distributions with high variance. SIGMETRICS ’03. ACM.

[49] K. Rajan, D. Kakadia, C. Curino, and S. Krishnan. Perforator: Eloquent

performance models for resource optimization. SoCC ’16. ACM.

[50] W. Smith, I. Foster, and V. Taylor. Predicting application run times

using historical information. In D. G. Feitelson and L. Rudolph, editors,

Job Scheduling Strategies for Parallel Processing, pages 122–142. Springer
Berlin Heidelberg, 1998.

[51] A. Tumanov, A. Jiang, J. W. Park, M. A. Kozuch, and G. R. Ganger.

Jamaisvu: Robust scheduling with auto-estimated job runtimes. In

Technical Report CMU-PDL-16-104. Carnegie Mellon University, 2016.

[52] A. Tumanov, T. Zhu, J. W. Park, M. A. Kozuch, M. Harchol-Balter, and

G. R. Ganger. Tetrisched: Global rescheduling with adaptive plan-ahead

in dynamic heterogeneous clusters. EuroSys ’16. ACM.

[53] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and

J. Wilkes. Large-scale cluster management at google with borg. ESys’15.

[54] W. Xiao, R. Bhardwaj, R. Ramjee, M. Sivathanu, N. Kwatra, Z. Han,

P. Patel, X. Peng, H. Zhao, Q. Zhang, F. Yang, and L. Zhou. Gandiva:

Introspective cluster scheduling for deep learning. In USENIX OSDI’18).
[55] Y. Xu, K. Sui, R. Yao, H. Zhang, Q. Lin, Y. Dang, P. Li, K. Jiang, W. Zhang,

J.-G. Lou, M. Chintalapati, and D. Zhang. Improving service availability

of cloud systems by predicting disk error. In USENIX ATC’18, 2018.
[56] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S. Shenker, and

I. Stoica. Delay scheduling: A simple technique for achieving locality

and fairness in cluster scheduling. EuroSys ’10. ACM.

http://arxiv.org/abs/2108.11255
http://arxiv.org/abs/2108.11255

	Introduction
	Background and Related Work
	Cluster Scheduling Problem
	Job Model
	Existing Learning-based Schedulers
	Learning from History: Assumptions and Reality

	SLearn – Learning in Space
	Accuracy Analysis
	Analytical Comparison
	History-based Schemes
	Sampling-based Schemes

	Trace-based Variability Analysis
	Experimental Prediction Error Analysis

	Integrating Sampling-based Learning with Job Scheduling: A Case Study
	Scheduler and Predictor Design
	Generic Scheduler GS
	SLearn
	Baseline Predictors and Policies

	Experimental Setup
	Experimental Results
	Effectiveness of Adaptive Sampling
	Prediction Accuracy
	Average JCT Improvement
	Testbed Experiments
	Sensitivity to Thin Job Bypass

	Intuitive Explanation
	Visualizing the difference in CoVs of runtime across history (time) and tasks (space)
	Impact of Sampling on Job Waiting Time
	Binning Analysis
	How does the system load affect the speedups of SLearn over 3Sigma?

	Scheduling for DAG Jobs
	Discussions and Future Work
	Conclusions
	Biographies
	Akshay Jajoo
	Y. Charlie Hu
	Xiaojun Lin

	References

