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Abstract—We present new ways of producing a channel chart
employing model-based approaches. We estimate the angle of
arrival 0 and the distance between the base station and the user
equipment p by employing our algorithms, inverse of the root sum
squares of channel coefficients (ISQ) algorithm, linear regression
(LR) algorithm, and the MUSIC/MUSIC (MM) algorithm. We
compare these methods with the channel charting algorithms
principal component analysis (PCA), Sammon’s method (SM),
and autoencoder (AE) from [1]. We show that ISQ, LR, and
MM outperform all three in performance. ISQ and LR have
similar performance with ISQ having less complexity than LR.
The performance of MM is better than ISQ and LR but it is more
complex. Finally, we introduce the rotate-and-sum (RS) algorithm
which has about the same performance as the MM algorithm
but is less complex due to the avoidance of the eigenvector and
eigenvalue analysis and a potential register transfer logic (RTL)
implementation.

Index Terms—Channel charting, user equipment (UE), channel
state information (CSI), MUSIC, PCA, SM, AE.

I. INTRODUCTION

A channel chart is a chart created from channel state
information (CSI) that preserves the relative geometry of the
radio environment consisting of a base station (BS) and user
equipments (UEs) [1]. This chart helps the BS locate the
UEs (relatively), which can help in many applications such as
handover, cell search, user localization, and more. In this paper
we calculate the channel chart directly employing model-based
approaches.

A. Background

1) Channel Models: Throughout this paper, we employ
three channel models, namely Vanilla line-of-sight (LOS),
Quadriga LOS (QLOS), and Quadriga non-LOS (QNLOS) [2],
[3] as in the paper that introduced channel charting [1] so that
we can compare our results with the approaches it introduced.
We refer the reader to [4, Table 1] for system parameters used
in this paper.

2) Angle of Arrival and Steering Vector : Assuming 6 is
the angle of arrival (AOA) to a BS array, we have the steering
vector

A(e) — (17€j7rcos(9)7ej71'200$(9)’ B .7ej7r(NR—1)cos(9))T 1)

where Npi is the number of receive antennas at the BS.
This vector is essential in beamforming applications and in
determining the AOA, as we will see later when we use the
MUSIC algorithm.
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3) Measures for Channel Charting: Continuity and Trust-
worthiness: As in [1], we use continuity (CT) and trustworthi-
ness (TW) as performance measures. CT measures if neighbors
in the original space are close in the representation space. TW
measures how well the feature mapping avoids introducing
new neighbor relations that were absent in the original space.
CT and TW are between 0 and 1, with larger values being
better, see [1] for their formal definitions.

II. ESTIMATING THE COORDINATES ) AND p

We will use the symbol 6 for the AOA and p for the distance
between the BS and the UE. Estimating 6 and p can happen
concurrently as they do not depend on each other. In this
section, we will first discuss how to estimate 6 by using the
MUSIC algorithm and then we will discuss our first three
algorithms to estimate p.

A. Estimating 6 Using MUSIC

To estimate the AOA, we employ the MUSIC algorithm [5].
The MUSIC algorithm is well-known and widely used for the
estimation of the AOA. We wish to emphasize that in addition
to the AOA, we need to estimate p, which we discuss next.

B. Estimating p

1) Estimating p Using 1SQ: Our first proposal is a rather
direct and simple approach. We calculate the square root
inverse of the sum of CSI magnitudes for all antennas as

1
>nso abs(hy)

We refer to this algorithm as ISQ (inverse square root sum).

2) Estimating p Using LR: This is actually a learning-
based, supervised approach where we assume we know the
location of 256 (out of 2048) UEs and do a linear regression
with the logarithm of the sum of CSI magnitudes for all
antennas to find a and b in

p:

N-1
p=aX+b, where X =log Z abs(hy,).

n=0

We call this algorithm the LR algorithm.
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Algorithm 1 MUSIC Procedure for Estimating p

Calculate the CSI across antennas and subcarriers covari-
ance matrix R = E[hh’]
Get the eigenvectors and eigenvalues of R
Separate system subspace S and noise subspace A by
defining a threshold
Calculate N by concatenating the eigenvectors of N
for p = 0: 1000 in increments of 1 do
Calculate vector B(p)
Calculate the PMF(p) =
end for
Search the PMF for a peak and find the corresponding p

Normso (I\IIHB(p))

3) Estimating p Using MUSIC: Here we use the same
concept for estimating p as in estimating 6. The only difference
is that we use MUSIC to leverage the phase difference between
subsequent subcarriers. As the ray travels, the phases of the
subcarriers keep changing each with rate according to their
frequencies. If the subcarriers have a spacing of Af and we
have N, subcarriers, their phase relation with distance is given
as

B(p) =

(17 e—jQﬂpAf/c’ e—j27'rp2Af/c7 o ,e—jQﬂ'p(Ns—l)Af/c)T )

where p is the distance and c is the speed of light. The vector
B(p) will be used exactly as we used the steering vector A(6)
in estimating 6. The procedure is explained in Algorithm 1. We
call the combination of using MUSIC to estimate # and using
MUSIC to estimate p the MUSIC/MUSIC (MM) algorithm.
Note that in Algorithm 1, PMF(p) is a PMF within a scale of
constant. In Algorithm 1, the increments for p and their final
value can be altered.

III. SIMULATION ENVIRONMENT

In this paper we reused and integrated our algorithms into
the simulation environment in [1] so that we can compare the
performance improvement in a fair fashion. We adopted the
simulation parameters in [4, Table 1] at SNR = 0 dB. We
used a three-dimensional environment exactly as in paper [,
Fig. 1(a)], where the antenna is 8.5 meters above the plane of
the UEs. We call this three-dimensional scenario as 3D. The
simulation environment is 1000m x 500m. As in [1], the 2048
UEs are placed randomly except 234 of the UEs are selected
to make the word “VIP,” so we can see if in the channel chart
we preserve the shape.

IV. PERFORMANCE COMPARISON AND COMPLEXITY
ANALYSIS
We now compare the performance of our algorithms against
the results under the three channels used in [1].
A. LR and ISQ Performance Comparison

It can be observed from Table 2, Fig. 2, and Fig. 3 that our
algorithms LR and ISQ outperform PCA, SM, and AE from
[1] in terms of TW and CT, as well as channel charts. The

performance of the training-based LR and the model-based
ISQ are very close. We refer the reader to [4] for a discussion
of these results.

B. MM Performance Comparison

We will now discuss the performance of the MM algorithm
at 2, 8, 20, and 32 subcarriers. Table 3 presents the TW
and CT results for k-nearest neighbors equal to 102. Then,
Fig. 4 presents the channel charts. Finally, Fig. 5, presents
TW and CT performance against k-nearest neighbors. First,
we note that, in all cases, increasing the number of subcarriers
increases TW and CT performance as well as the visual
quality of the channel charts, which is to be expected as more
information is available with more subcarriers. One can also
carry out a comparison for the same column in Table 3, for all
columns, to note that the performance of the MM algorithm
with the same number of subcarriers is always the best for
the LOS channel, second best for the QLOS channel, and the
worst for the QNLOS channel. Note that comparisons with
algorithms PCA, SM, AE, LR, and AE are not present in
Table 3, Fig. 4, and Fig. 5. For that purpose, one needs to
compare Table 3, Fig. 4, and Fig. 5 one-by-one with Table 2,
Fig. 2 and Fig 3, respectively.

We will not provide a very detailed comparison. But, it
can be seen from the tables and figures above that the MM
algorithm provides significantly better TW and CT results, as
well as visually more appealing channel charts than those were
produced by the PCA, SM, AE, LR, and ISQ algorithms on
LOS, QLOS, and QNLOS channels.

C. Runtime and Complexity Comparison

When we compare the complexity of our algorithms ISQ
and MM against the three algorithms used in [1], i.e., PCA,
SM, and AE, the most important advantage is that our al-
gorithm does not require training or an abundant number of
CSI to be able to reduce dimensionality efficiently. We can
calculate the channel chart even for one UE data. This can
make us calculate the channel chart sequentially in real-time
as the data are received. The alternative in [1] is to store the
data of all UEs (2048 in our simulations as well as in [1]) and
use it all at once as in the case of PCA, SM, or AE, which
consumes a very large amount of memory and complexity.
Please note that our algorithm LR requires a modest amount
of training.

The other advantage is the latency. PCA, SM, and AE
algorithms need to collect the data of all UEs, which can take
some time. Furthermore, if the system is mobile, the geometry
might have already changed by the time the channel chart is
calculated. In our case, we can calculate each UE channel
chart as we receive it, which makes our algorithms much more
efficient.

As an indication of the complexity, we will compare the
runtime (simulation time) for producing channel chart for 2048
UEs using different algorithms. This is provided in Table 1.
The simulation time is not dependent on the channel, the scale,
or the geometry of the environment. The simulation time only
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H Algorithm | Simulation time (seconds) H
PCA 0.817
SM 12.2
AE 53.9
LR 7.15
SQ 7.00
MM 20.4

Table 1: Simulation times.

relies on the number of UEs, the number of antennas, and
the number of subcarriers. In Table 1, the number of UEs is
2048, the number of BS antennas is 32, and the number of
subcarriers is 32.

We note that PCA has very small simulation time, much
lower than all of the other five algorithms. However, we know
from earlier sections that LR, ISQ, and especially MM beats
it in terms of performance. SM and AE not only are beaten
by LR and ISQ in terms of performance, but also, in terms of
simulation time. MM has the best performance by far but its
simulation time is about 2.5 times those of LR and ISQ and
about 1.5 times that of SM. It has less simulation time than AE.
Although its simulation time is at a disadvantage as compared
to PCA, SM, LR, and ISQ, the performance gains with it are
substantial. We note that the simulation time for PCA is very
small but this is due to the fact that PCA is an optimized
routine in Matlab. An Internet search would show that PCA
is actually considered to be computationally complicated.

The complexity of the MUSIC algorithm is given as
O(M?P + M?N) where M is the number of antennas, N
is the number of snapshots or multiple measurement vectors,
and P is the number of potential AOAs searched [6]. In the
case of ISQ, we have M = Ny, N =1, and P is the number
of potential AOAs for the MUSIC algorithm to determine 6,
with P > 1. As a result, we have O(N%P) to determine
6. With ISQ, to determine p, we need Np instantiations of
two squares, a sum, and a square root. These need to be
summed, a square root and a reciprocal operation needs to take
place. As a result, there are 2Ny multiplies, N + 1 square
roots, 2Nr — 1 adds, and a reciprocal needed to determine
p. We note that it is stated that a square root operation can
be performed with the same complexity as a multiplication
[7]. In any case, the complexity of the ISQ algorithm will
be dominated by the MUSIC algorithm for #, which has
O(N3P), where we ignore a second term N3 -1 since P > 1.
The LR algorithm employs MUSIC to determine 6, thus it has
the same complexity as ISQ for 6. After LR parameters a and b
are determined, it needs 2Ny + 1 multiplies, Ny square roots,
Np adds, and a log operation, similar to ISQ. In addition,
there is the computational complexity of calculating the linear
regression, based on real p values of a number of UEs (in our
case 256), shared by all UEs (in our case, 2048). As a result,
LR is more complicated than ISQ, but with only a small gain
over it. We consider its complexity to be dominated by the
MUSIC algorithm for estimating 6, or O(N3P), as in the ISQ
algorithm. For the MM algorithm, we use MUSIC to estimate
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Fig. 1: Ideal CSI matrix (Ns x Ng) in the absence of fading and
noise.

both 6 and p. For 6, the number of snapshots is equal to Ng,
unlike 1 in the case of ISQ and LR. Therefore, the complexity
of MUSIC for 6 in the MM algorithm is O(N3P + N2 Ng).
For p, the roles of Ny and Ng are reversed and P is replaced
by @@ where () is the number of potential distances for the
MUSIC algorithm to determine p. Thus the complexity of the
MUSIC algorithm for p is O(N2Q + N2Ng) .

As aresult, we can state that the ISQ and LR algorithms are
dominated by the MUSIC algorithm for 6, at O(N%P). On the
other hand, MM employs two MUSIC algorithms, for § and
p, and has complexity O(NEP + N3iNg + N2Q + N2Ng).

D. RS Algorithm

In order to reduce complexity substantially, we propose a
new model-based algorithm we call rotate and sum (RS). As
shown in Fig. 1, the CSI matrix has Np column vectors where
Npg corresponds to the number of receive antennas at the BS,
and Ng row vectors where Ng corresponds to the number
of subcarriers. In the absence of fading and noise, for each
column, we have a rotation factor Ay. This factor is the phase
shift between two vertical neighboring elements or antenna
elements. It is equal to Ay = edmeos(6) gee (1). For each row,
we have a rotation factor A,. This factor is the phase shift
between two horizontal neighboring elements or subcarriers.
It is equal to A, = e 727Af/¢ where Af is the difference in
frequency between the subcarriers and c is the speed of light,
see (2).

We will discuss two rotate-and-sum procedures in Algo-
rithm 2 and Algorithm 3, corresponding to the estimation of
0 and p respectively. The algorithms can be understood with
the help of Fig. 1. In the case of Algorithm 2, consider the
ideal CSI matrix shown in Fig. 1. Recall that this matrix does
not include the effects of fading and noise. Let ¢ be any row
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Algorithm 2 Rotate-and-Sum Procedure for Estimating 6

Algorithm 3 Rotate-and-Sum Procedure for Estimating p

Calculate the CSI matrix across antennas and subcarriers
with size Ng x Ng
Set all entries of Nr X Nr matrix S equal to 0
for subcarrier_num = 1: Ng do

Let c be the row vector with index subcarrier_num
of the CSI matrix

Calculate S =S + cflc
end for
Divide all entries of S by Ng
for = 0: 180 in increments of 1 do

Let A, = €9™ % where ¢ is in degrees

Form matrix B as follows

for do i =1: Ng in increments of 1

for do j =i : Npg in increments of 1

Bi7j = A‘Zz)_z
end for
for doj=1: @ — 1 in increments of 1
Bi; = [A3]"
end for
end for
Let C(¢) = N2 rowH (S)row;(B)

end for
Set § = arg max,C(¢)

Calculate the CSI matrix across antennas and subcarriers
with size Ng x Ng
Set all entries of Ng x Ng matrix S equal to 0
for antenna_num = 1: N do

Let ¢ be the column vector with index antenna_num
of the CSI matrix

Calculate S = S + cc
end for
Divide all entries of S by Ny
for o = 0: 1000 in increments of 1 do

Let A, = e 92774f/¢ where o, Af /c are in m.

Form matrix B as follows

for do i = 1: Ng in increments of 1

for do j =i : Ng in increments of 1

B, =[A7F~
end for
for do j =1:4—1 in increments of 1
Bi; = [A,]"7
end for
end for
Ns H
Let C(o) = >, row;" (S)row;(B)

end for
Set p = arg max,C(0)

vector of this matrix and consider

1 Ag A2 s ANRTL
A} 1 Ag AgR?
ccl = | A;? A; 1 Ayt
_A;NR_I AZNR_Q A;NR_B 1 |
3)

which is independent of the row index. In the case of a real
CSI matrix, the elements will deviate from the values of this
matrix due to fading and noise. We form an average of cc
for all row vectors ¢ in the real CSI matrix expecting that
the effects of fading and noise will be reduced. We call this
average cc’’ matrix S. Due to this averaging, we expect S to
be close to the ideal cc’ matrix in (3) even when fading and
noise are present.

Our next task is to figure out what 6 is. To that effect, we
generate matrices in the same form as (3) but 6 is replaced
by ¢. We generate a number of such matrices for values of ¢
in [0, ] radians. Suppressing ¢, each such matrix is called B
in Algorithm 2. For each p we compare B and S, assigning
a number representing how close they are. That value of ¢
for which the B matrix associated with it is closest to B is
deemed to be the best estimate of 6.

Algorithm 3 is based on the same technique, but using
column vectors of the CSI matrix, instead of row vectors.
It then provides an estimate of p. We would like to note
that, in both algorithms, the numbers 180 and 1000 are just

examples. Instead of uniformly spacing the search numbers ¢
and o, nonuniform search techniques can be developed. Also,
the closeness of the matrices S and B can be measured by
other techniques, such as a norm of the difference of S and
B.

We have carried out extensive simulations on the perfor-
mance of the RS algorithm as compared to the MM algorithm.
We will state that the performance of the two algorithms is
very close, almost the same. In order not to be very repetitive,
we only provide Table 4 for comparison with Table 3. Clearly,
the results are very close. On the other hand, there is a very
important advantage of the RS algorithm against the MM
algorithm in terms of complexity. The MM algorithm employs
the MUSIC algorithm which is based on an eigenvector and
eigenvalue decomposition of an autocorrelation matrix. The
computational complexity of this operation is very high. The
RS algorithm avoids this operation. If implemented in a
general purpose processor, the many multiplications in the RS
algorithm would result in high computational complexity. But,
it can be implemented in register transfer logic (RTL) which
results in a highly simplified implementation.

V. CONCLUSION

The LR, ISQ, and MM algorithms presented in this paper
significantly outperform the three algorithms in [1], PCA, SM,
and AE, in terms of performance. As in [1], we measure the
performance in terms of connectivity (CT) and trustworthiness
(TW). An important advantage of ISQ and MM over the three
algorithms from [1] is that we can calculate each UE data
independently as it comes, so it is much faster and simpler. In
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the case of LR, a similar advantage exists, however a number
of UE data is first needed in order to perform the regression.
The MM algorithm has more complexity than LR and ISQ but
the advantage it provides in terms of TW and CT measures
is significantly better than those of ISQ and LR. In addition,
the MM algorithm results in channel charts with significantly
better visual outcome. Finally, we introduced the RS algorithm
whose performance is about the same as the MM algorithm.
The advantage of this algorithm is that it does not need the
eigenvector and eigenvalue decomposition needed by the MM
algorithm, and furthermore, it has an RTL implementation
which reduces complexity substantially.

We assumed a 3D environment, the same as [1]. We also
used static channels and, in the case of ISQ and LR, single
subcarrier CSI as in [1].

Note that the MUSIC algorithm for 6 is model based. In
addition, the ISQ algorithm for p is also model based. Finally,
the MM and RS algorithms are completely model based for
both 8 and p. Their performance is better than the PCA and
SM [1], and the training-based algorithms AE and LR. As a
result, we can say that the model-based algorithms ISQ, MM,
and RS outperform the algorithms PCA, SM, and AE of [1].
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Measure | Channel PCA SM AE LR 1SQ
LOS 0.8603 | 0.8272 | 0.8286 | 0.9930 | 0.9885
™ QLOS 0.8474 | 0.8512 | 0.8574 | 0.9089 | 0.9092
QNLOS | 0.8502 | 0.8456 | 0.8496 | 0.9029 | 0.9041
LOS 0.9288 | 0.9051 | 0.8932 | 0.9968 | 0.9940
CT QLOS 0.9223 | 0.9278 | 0.9055 | 0.9416 | 0.9304
QNLOS | 0.9237 | 0.9217 | 0.9057 | 0.9246 | 0.9220

Table 2: Performance comparison for TW and CT at k-nearest = 102 for PCA, SM, AE, LR, and ISQ algorithms in 3D channels.

PCA LoS with U=2048 and B=32

SM LoS with U=2048 and B=32

AE LoS with U=2048 and B=32

1SQ LoS with U=2048 and B=32

LR LoS with U=2048 and B=32
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Fig. 3: TW and CT performance against k-nearest neighbors for LR and ISQ algorithms in 3D.
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Fig. 2: Channel charts with PCA, SM, AE, LR, and ISQ algorithms for the 3D LOS, QLOS, and QNLOS channels.
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Measure | Channel 2sc 8sc 20sc 32sc
LOS 0.9975 | 0.9986 | 0.9997 | 0.9998

™ QLOS 0.9817 | 0.9958 | 0.9973 | 0.9976
QNLOS | 0.9622 [ 0.9802 | 0.9825 [ 0.9856

LOS 0.9992 | 0.9999 | 0.9999 | 1.0000

CT QLOS 0.9816 | 0.9972 | 0.9990 | 0.9992
QNLOS | 0.9626 | 0.9803 | 0.9833 | 0.9865

Table 3: Performance comparison for TW and CT at k-nearest
= 102 for MM algorithm in 3D channel at 2, 8, 20, and 32

subcarriers.

MM LoS with U=2048 and B=32

MM LoS with U=2048 and B=32

Measure | Channel 2sc 8sc 20sc 32sc
LOS 0.9939 | 0.9954 | 0.9962 | 0.9966

™ QLOS 0.9751 | 0.9901 | 0.9932 | 0.9941
QNLOS | 0.9551 | 0.9732 | 0.9797 | 0.9827

LOS 0.9934 | 0.9942 | 0.9942 | 0.9943

CT QLOS 0.9763 | 0.9906 | 0.9928 | 0.9934
QNLOS | 0.9573 | 0.9750 | 0.9805 | 0.9832

Table 4: Performance comparison for TW and CT at k-nearest
= 102 for RS algorithm in 3D channel at 2, 8, 20, and 32

subcarriers.
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Fig. 4: Channel charts with the MM algorithm for the 3D LOS, QLOS, and QNLOS channels at 2, 8, 20, and 32 subcarriers.
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Fig. 5: TW and CT performance against k-nearest neighbors for MM algorithm in 3D channel. Left: LOS, middle: QLOS, right: QNLOS.
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