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Abstract—We present new ways of producing a channel chart
employing model-based approaches. We estimate the angle of
arrival θ and the distance between the base station and the user
equipment ρ by employing our algorithms, inverse of the root sum
squares of channel coefficients (ISQ) algorithm, linear regression
(LR) algorithm, and the MUSIC/MUSIC (MM) algorithm. We
compare these methods with the channel charting algorithms
principal component analysis (PCA), Sammon’s method (SM),
and autoencoder (AE) from [1]. We show that ISQ, LR, and
MM outperform all three in performance. ISQ and LR have
similar performance with ISQ having less complexity than LR.
The performance of MM is better than ISQ and LR but it is more
complex. Finally, we introduce the rotate-and-sum (RS) algorithm
which has about the same performance as the MM algorithm
but is less complex due to the avoidance of the eigenvector and
eigenvalue analysis and a potential register transfer logic (RTL)
implementation.

Index Terms—Channel charting, user equipment (UE), channel
state information (CSI), MUSIC, PCA, SM, AE.

I. INTRODUCTION

A channel chart is a chart created from channel state

information (CSI) that preserves the relative geometry of the

radio environment consisting of a base station (BS) and user

equipments (UEs) [1]. This chart helps the BS locate the

UEs (relatively), which can help in many applications such as

handover, cell search, user localization, and more. In this paper

we calculate the channel chart directly employing model-based

approaches.

A. Background

1) Channel Models: Throughout this paper, we employ

three channel models, namely Vanilla line-of-sight (LOS),

Quadriga LOS (QLOS), and Quadriga non-LOS (QNLOS) [2],

[3] as in the paper that introduced channel charting [1] so that

we can compare our results with the approaches it introduced.

We refer the reader to [4, Table 1] for system parameters used

in this paper.

2) Angle of Arrival and Steering Vector : Assuming θ is

the angle of arrival (AOA) to a BS array, we have the steering

vector

A(θ) = (1, ejπ cos(θ), ejπ2 cos(θ), . . . , ejπ(NR−1) cos(θ))T (1)

where NR is the number of receive antennas at the BS.

This vector is essential in beamforming applications and in

determining the AOA, as we will see later when we use the

MUSIC algorithm.

This work is partially supported by NSF grant 2030029.

3) Measures for Channel Charting: Continuity and Trust-

worthiness: As in [1], we use continuity (CT) and trustworthi-

ness (TW) as performance measures. CT measures if neighbors

in the original space are close in the representation space. TW

measures how well the feature mapping avoids introducing

new neighbor relations that were absent in the original space.

CT and TW are between 0 and 1, with larger values being

better, see [1] for their formal definitions.

II. ESTIMATING THE COORDINATES θ AND ρ

We will use the symbol θ for the AOA and ρ for the distance

between the BS and the UE. Estimating θ and ρ can happen

concurrently as they do not depend on each other. In this

section, we will first discuss how to estimate θ by using the

MUSIC algorithm and then we will discuss our first three

algorithms to estimate ρ.

A. Estimating θ Using MUSIC

To estimate the AOA, we employ the MUSIC algorithm [5].

The MUSIC algorithm is well-known and widely used for the

estimation of the AOA. We wish to emphasize that in addition

to the AOA, we need to estimate ρ, which we discuss next.

B. Estimating ρ

1) Estimating ρ Using ISQ: Our first proposal is a rather

direct and simple approach. We calculate the square root

inverse of the sum of CSI magnitudes for all antennas as

ρ =
1

√

∑N−1
n=0 abs(hn)

.

We refer to this algorithm as ISQ (inverse square root sum).

2) Estimating ρ Using LR: This is actually a learning-

based, supervised approach where we assume we know the

location of 256 (out of 2048) UEs and do a linear regression

with the logarithm of the sum of CSI magnitudes for all

antennas to find a and b in

ρ = aX + b , where X = log

N−1
∑

n=0

abs(hn).

We call this algorithm the LR algorithm.
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Algorithm 1 MUSIC Procedure for Estimating ρ

Calculate the CSI across antennas and subcarriers covari-

ance matrix R = E[hhH ]
Get the eigenvectors and eigenvalues of R

Separate system subspace S and noise subspace N by

defining a threshold

Calculate N by concatenating the eigenvectors of N

for ρ = 0 : 1000 in increments of 1 do

Calculate vector B(ρ)
Calculate the PMF(ρ) = 1

Norm2(NHB(ρ))
end for

Search the PMF for a peak and find the corresponding ρ

3) Estimating ρ Using MUSIC: Here we use the same

concept for estimating ρ as in estimating θ. The only difference

is that we use MUSIC to leverage the phase difference between

subsequent subcarriers. As the ray travels, the phases of the

subcarriers keep changing each with rate according to their

frequencies. If the subcarriers have a spacing of ∆f and we

have Ns subcarriers, their phase relation with distance is given

as

B(ρ) =

(1, e−j2πρ∆f/c, e−j2πρ2∆f/c, . . . , e−j2πρ(Ns−1)∆f/c)T (2)

where ρ is the distance and c is the speed of light. The vector

B(ρ) will be used exactly as we used the steering vector A(θ)
in estimating θ. The procedure is explained in Algorithm 1. We

call the combination of using MUSIC to estimate θ and using

MUSIC to estimate ρ the MUSIC/MUSIC (MM) algorithm.

Note that in Algorithm 1, PMF(ρ) is a PMF within a scale of

constant. In Algorithm 1, the increments for ρ and their final

value can be altered.

III. SIMULATION ENVIRONMENT

In this paper we reused and integrated our algorithms into

the simulation environment in [1] so that we can compare the

performance improvement in a fair fashion. We adopted the

simulation parameters in [4, Table 1] at SNR = 0 dB. We

used a three-dimensional environment exactly as in paper [1,

Fig. 1(a)], where the antenna is 8.5 meters above the plane of

the UEs. We call this three-dimensional scenario as 3D. The

simulation environment is 1000m × 500m. As in [1], the 2048

UEs are placed randomly except 234 of the UEs are selected

to make the word “VIP,” so we can see if in the channel chart

we preserve the shape.

IV. PERFORMANCE COMPARISON AND COMPLEXITY

ANALYSIS

We now compare the performance of our algorithms against

the results under the three channels used in [1].

A. LR and ISQ Performance Comparison

It can be observed from Table 2, Fig. 2, and Fig. 3 that our

algorithms LR and ISQ outperform PCA, SM, and AE from

[1] in terms of TW and CT, as well as channel charts. The

performance of the training-based LR and the model-based

ISQ are very close. We refer the reader to [4] for a discussion

of these results.

B. MM Performance Comparison

We will now discuss the performance of the MM algorithm

at 2, 8, 20, and 32 subcarriers. Table 3 presents the TW

and CT results for k-nearest neighbors equal to 102. Then,

Fig. 4 presents the channel charts. Finally, Fig. 5, presents

TW and CT performance against k-nearest neighbors. First,

we note that, in all cases, increasing the number of subcarriers

increases TW and CT performance as well as the visual

quality of the channel charts, which is to be expected as more

information is available with more subcarriers. One can also

carry out a comparison for the same column in Table 3, for all

columns, to note that the performance of the MM algorithm

with the same number of subcarriers is always the best for

the LOS channel, second best for the QLOS channel, and the

worst for the QNLOS channel. Note that comparisons with

algorithms PCA, SM, AE, LR, and AE are not present in

Table 3, Fig. 4, and Fig. 5. For that purpose, one needs to

compare Table 3, Fig. 4, and Fig. 5 one-by-one with Table 2,

Fig. 2 and Fig 3, respectively.

We will not provide a very detailed comparison. But, it

can be seen from the tables and figures above that the MM

algorithm provides significantly better TW and CT results, as

well as visually more appealing channel charts than those were

produced by the PCA, SM, AE, LR, and ISQ algorithms on

LOS, QLOS, and QNLOS channels.

C. Runtime and Complexity Comparison

When we compare the complexity of our algorithms ISQ

and MM against the three algorithms used in [1], i.e., PCA,

SM, and AE, the most important advantage is that our al-

gorithm does not require training or an abundant number of

CSI to be able to reduce dimensionality efficiently. We can

calculate the channel chart even for one UE data. This can

make us calculate the channel chart sequentially in real-time

as the data are received. The alternative in [1] is to store the

data of all UEs (2048 in our simulations as well as in [1]) and

use it all at once as in the case of PCA, SM, or AE, which

consumes a very large amount of memory and complexity.

Please note that our algorithm LR requires a modest amount

of training.

The other advantage is the latency. PCA, SM, and AE

algorithms need to collect the data of all UEs, which can take

some time. Furthermore, if the system is mobile, the geometry

might have already changed by the time the channel chart is

calculated. In our case, we can calculate each UE channel

chart as we receive it, which makes our algorithms much more

efficient.

As an indication of the complexity, we will compare the

runtime (simulation time) for producing channel chart for 2048

UEs using different algorithms. This is provided in Table 1.

The simulation time is not dependent on the channel, the scale,

or the geometry of the environment. The simulation time only
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Algorithm Simulation time (seconds)

PCA 0.817

SM 12.2

AE 53.9

LR 7.15

ISQ 7.09

MM 20.4

Table 1: Simulation times.

relies on the number of UEs, the number of antennas, and

the number of subcarriers. In Table 1, the number of UEs is

2048, the number of BS antennas is 32, and the number of

subcarriers is 32.

We note that PCA has very small simulation time, much

lower than all of the other five algorithms. However, we know

from earlier sections that LR, ISQ, and especially MM beats

it in terms of performance. SM and AE not only are beaten

by LR and ISQ in terms of performance, but also, in terms of

simulation time. MM has the best performance by far but its

simulation time is about 2.5 times those of LR and ISQ and

about 1.5 times that of SM. It has less simulation time than AE.

Although its simulation time is at a disadvantage as compared

to PCA, SM, LR, and ISQ, the performance gains with it are

substantial. We note that the simulation time for PCA is very

small but this is due to the fact that PCA is an optimized

routine in Matlab. An Internet search would show that PCA

is actually considered to be computationally complicated.

The complexity of the MUSIC algorithm is given as

O(M2P + M2N) where M is the number of antennas, N
is the number of snapshots or multiple measurement vectors,

and P is the number of potential AOAs searched [6]. In the

case of ISQ, we have M = NR, N = 1, and P is the number

of potential AOAs for the MUSIC algorithm to determine θ,

with P ≫ 1. As a result, we have O(N2
RP ) to determine

θ. With ISQ, to determine ρ, we need NR instantiations of

two squares, a sum, and a square root. These need to be

summed, a square root and a reciprocal operation needs to take

place. As a result, there are 2NR multiplies, NR + 1 square

roots, 2NR − 1 adds, and a reciprocal needed to determine

ρ. We note that it is stated that a square root operation can

be performed with the same complexity as a multiplication

[7]. In any case, the complexity of the ISQ algorithm will

be dominated by the MUSIC algorithm for θ, which has

O(N2
RP ), where we ignore a second term N2

R ·1 since P ≫ 1.

The LR algorithm employs MUSIC to determine θ, thus it has

the same complexity as ISQ for θ. After LR parameters a and b
are determined, it needs 2NR+1 multiplies, NR square roots,

NR adds, and a log operation, similar to ISQ. In addition,

there is the computational complexity of calculating the linear

regression, based on real ρ values of a number of UEs (in our

case 256), shared by all UEs (in our case, 2048). As a result,

LR is more complicated than ISQ, but with only a small gain

over it. We consider its complexity to be dominated by the

MUSIC algorithm for estimating θ, or O(N2
RP ), as in the ISQ

algorithm. For the MM algorithm, we use MUSIC to estimate

Antenna Elements

Subcarriers

1 Aθ A2
θ A

(NR−1)
θ

Aρ AρAθ AρA
2
θ AρA

(NR−1)
θ

A2
ρ A2

ρAθ A2
ρA

2
θ A2

ρA
(NR−1)
θ

A
(NS−1)
ρ A

(NS−1)
ρ Aθ A

(NS−1)
ρ A

(NR−1)
θA

(NS−1)
ρ A2

θ

Fig. 1: Ideal CSI matrix (NS × NR) in the absence of fading and
noise.

both θ and ρ. For θ, the number of snapshots is equal to NS ,

unlike 1 in the case of ISQ and LR. Therefore, the complexity

of MUSIC for θ in the MM algorithm is O(N2
RP +N2

RNS).
For ρ, the roles of NR and NS are reversed and P is replaced

by Q where Q is the number of potential distances for the

MUSIC algorithm to determine ρ. Thus the complexity of the

MUSIC algorithm for ρ is O(N2
SQ+N2

SNR) .

As a result, we can state that the ISQ and LR algorithms are

dominated by the MUSIC algorithm for θ, at O(N2
RP ). On the

other hand, MM employs two MUSIC algorithms, for θ and

ρ, and has complexity O(N2
RP +N2

RNS +N2
SQ+N2

SNR).

D. RS Algorithm

In order to reduce complexity substantially, we propose a

new model-based algorithm we call rotate and sum (RS). As

shown in Fig. 1, the CSI matrix has NR column vectors where

NR corresponds to the number of receive antennas at the BS,

and NS row vectors where NS corresponds to the number

of subcarriers. In the absence of fading and noise, for each

column, we have a rotation factor Aθ. This factor is the phase

shift between two vertical neighboring elements or antenna

elements. It is equal to Aθ = ejπ cos(θ), see (1). For each row,

we have a rotation factor Aρ. This factor is the phase shift

between two horizontal neighboring elements or subcarriers.

It is equal to Aρ = e−j2πρ∆f/c where ∆f is the difference in

frequency between the subcarriers and c is the speed of light,

see (2).

We will discuss two rotate-and-sum procedures in Algo-

rithm 2 and Algorithm 3, corresponding to the estimation of

θ and ρ respectively. The algorithms can be understood with

the help of Fig. 1. In the case of Algorithm 2, consider the

ideal CSI matrix shown in Fig. 1. Recall that this matrix does

not include the effects of fading and noise. Let c be any row
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Algorithm 2 Rotate-and-Sum Procedure for Estimating θ

Calculate the CSI matrix across antennas and subcarriers

with size NS ×NR

Set all entries of NR ×NR matrix S equal to 0

for subcarrier num = 1 : NS do

Let c be the row vector with index subcarrier_num

of the CSI matrix

Calculate S = S+ c
H
c

end for

Divide all entries of S by NS

for ϕ = 0 : 180 in increments of 1 do

Let Aφ = ejπ cosφ where ϕ is in degrees

Form matrix B as follows

for do i = 1 : NR in increments of 1

for do j = i : NR in increments of 1

Bi,j = Aj−i
φ

end for

for do j = 1 : i− 1 in increments of 1

Bi,j = [A∗

φ]
i−j

end for

end for

Let C(ϕ) =
∑NR

i=1 row
H
i (S)rowi(B)

end for

Set θ = arg maxφC(ϕ)

vector of this matrix and consider

cc
H =



















1 Aθ A2
θ · · · ANR−1

θ

A∗

θ 1 Aθ · · · ANR−2
θ

A∗ 2
θ A∗

θ 1
. . . ANR−1

θ
...

...
...

. . .
...

A∗NR−1
θ A∗NR−2

θ A∗NR−3
θ · · · 1



















(3)

which is independent of the row index. In the case of a real

CSI matrix, the elements will deviate from the values of this

matrix due to fading and noise. We form an average of cc
H

for all row vectors c in the real CSI matrix expecting that

the effects of fading and noise will be reduced. We call this

average cc
H matrix S. Due to this averaging, we expect S to

be close to the ideal ccH matrix in (3) even when fading and

noise are present.

Our next task is to figure out what θ is. To that effect, we

generate matrices in the same form as (3) but θ is replaced

by ϕ. We generate a number of such matrices for values of ϕ
in [0, π] radians. Suppressing ϕ, each such matrix is called B

in Algorithm 2. For each ρ we compare B and S, assigning

a number representing how close they are. That value of ϕ
for which the B matrix associated with it is closest to B is

deemed to be the best estimate of θ.

Algorithm 3 is based on the same technique, but using

column vectors of the CSI matrix, instead of row vectors.

It then provides an estimate of ρ. We would like to note

that, in both algorithms, the numbers 180 and 1000 are just

Algorithm 3 Rotate-and-Sum Procedure for Estimating ρ

Calculate the CSI matrix across antennas and subcarriers

with size NS ×NR

Set all entries of NS ×NS matrix S equal to 0

for antenna num = 1 : NR do

Let c be the column vector with index antenna_num

of the CSI matrix

Calculate S = S+ cc
H

end for

Divide all entries of S by NR

for σ = 0 : 1000 in increments of 1 do

Let Aσ = e−j2πσ∆f/c where σ, ∆f/c are in m.

Form matrix B as follows

for do i = 1 : NS in increments of 1

for do j = i : NS in increments of 1

Bi,j = [A∗

σ]
j−i

end for

for do j = 1 : i− 1 in increments of 1

Bi,j = [Aσ]
i−j

end for

end for

Let C(σ) =
∑NS

i=1 row
H
i (S)rowi(B)

end for

Set ρ = arg maxσC(σ)

examples. Instead of uniformly spacing the search numbers ϕ
and σ, nonuniform search techniques can be developed. Also,

the closeness of the matrices S and B can be measured by

other techniques, such as a norm of the difference of S and

B.

We have carried out extensive simulations on the perfor-

mance of the RS algorithm as compared to the MM algorithm.

We will state that the performance of the two algorithms is

very close, almost the same. In order not to be very repetitive,

we only provide Table 4 for comparison with Table 3. Clearly,

the results are very close. On the other hand, there is a very

important advantage of the RS algorithm against the MM

algorithm in terms of complexity. The MM algorithm employs

the MUSIC algorithm which is based on an eigenvector and

eigenvalue decomposition of an autocorrelation matrix. The

computational complexity of this operation is very high. The

RS algorithm avoids this operation. If implemented in a

general purpose processor, the many multiplications in the RS

algorithm would result in high computational complexity. But,

it can be implemented in register transfer logic (RTL) which

results in a highly simplified implementation.

V. CONCLUSION

The LR, ISQ, and MM algorithms presented in this paper

significantly outperform the three algorithms in [1], PCA, SM,

and AE, in terms of performance. As in [1], we measure the

performance in terms of connectivity (CT) and trustworthiness

(TW). An important advantage of ISQ and MM over the three

algorithms from [1] is that we can calculate each UE data

independently as it comes, so it is much faster and simpler. In
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the case of LR, a similar advantage exists, however a number

of UE data is first needed in order to perform the regression.

The MM algorithm has more complexity than LR and ISQ but

the advantage it provides in terms of TW and CT measures

is significantly better than those of ISQ and LR. In addition,

the MM algorithm results in channel charts with significantly

better visual outcome. Finally, we introduced the RS algorithm

whose performance is about the same as the MM algorithm.

The advantage of this algorithm is that it does not need the

eigenvector and eigenvalue decomposition needed by the MM

algorithm, and furthermore, it has an RTL implementation

which reduces complexity substantially.

We assumed a 3D environment, the same as [1]. We also

used static channels and, in the case of ISQ and LR, single

subcarrier CSI as in [1].

Note that the MUSIC algorithm for θ is model based. In

addition, the ISQ algorithm for ρ is also model based. Finally,

the MM and RS algorithms are completely model based for

both θ and ρ. Their performance is better than the PCA and

SM [1], and the training-based algorithms AE and LR. As a

result, we can say that the model-based algorithms ISQ, MM,

and RS outperform the algorithms PCA, SM, and AE of [1].
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Measure Channel PCA SM AE LR ISQ

LOS 0.8603 0.8272 0.8286 0.9930 0.9885
TW QLOS 0.8474 0.8512 0.8574 0.9089 0.9092

QNLOS 0.8502 0.8456 0.8496 0.9029 0.9041

LOS 0.9288 0.9051 0.8932 0.9968 0.9940
CT QLOS 0.9223 0.9278 0.9055 0.9416 0.9304

QNLOS 0.9237 0.9217 0.9057 0.9246 0.9220

Table 2: Performance comparison for TW and CT at k-nearest = 102 for PCA, SM, AE, LR, and ISQ algorithms in 3D channels.
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Fig. 2: Channel charts with PCA, SM, AE, LR, and ISQ algorithms for the 3D LOS, QLOS, and QNLOS channels.
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Fig. 3: TW and CT performance against k-nearest neighbors for LR and ISQ algorithms in 3D. Left: LOS, middle: QLOS, right: QNLOS.
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Measure Channel 2sc 8sc 20sc 32sc

LOS 0.9975 0.9986 0.9997 0.9998
TW QLOS 0.9817 0.9958 0.9973 0.9976

QNLOS 0.9622 0.9802 0.9825 0.9856

LOS 0.9992 0.9999 0.9999 1.0000
CT QLOS 0.9816 0.9972 0.9990 0.9992

QNLOS 0.9626 0.9803 0.9833 0.9865

Table 3: Performance comparison for TW and CT at k-nearest
= 102 for MM algorithm in 3D channel at 2, 8, 20, and 32
subcarriers.

Measure Channel 2sc 8sc 20sc 32sc

LOS 0.9939 0.9954 0.9962 0.9966
TW QLOS 0.9751 0.9901 0.9932 0.9941

QNLOS 0.9551 0.9732 0.9797 0.9827

LOS 0.9934 0.9942 0.9942 0.9943
CT QLOS 0.9763 0.9906 0.9928 0.9934

QNLOS 0.9573 0.9750 0.9805 0.9832

Table 4: Performance comparison for TW and CT at k-nearest
= 102 for RS algorithm in 3D channel at 2, 8, 20, and 32
subcarriers.
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Fig. 4: Channel charts with the MM algorithm for the 3D LOS, QLOS, and QNLOS channels at 2, 8, 20, and 32 subcarriers.
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Fig. 5: TW and CT performance against k-nearest neighbors for MM algorithm in 3D channel. Left: LOS, middle: QLOS, right: QNLOS.
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