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Quantum transduction refers to the coherent conversion between microwave and optical states, which
can be achieved by quantum teleportation if given high-fidelity microwave-optical entanglement, namely
entanglement-based quantum transduction. Reliable microwave-optical entanglement can be generated
using various platforms. In this paper we base the discussion on a piezo-optomechanical system and
make the teleportation induced conversion scheme more concrete in the framework of quantum chan-
nel theory. By comparing the quantum capacity between the entanglement-based conversion channel and
the traditional direct quantum transduction channel, we show that the entanglement-based scheme indeed
admits a positive transduction rate when the direct quantum transduction has zero quantum capacity. Given
two piezo-optomechanical systems, we also investigate the generation of microwave-microwave entan-
glement from entanglement swapping within continuous-variable and discrete-variable settings, showing
the potentials of directly connecting microwave quantum processors by microwave-microwave quantum

teleportation.
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L INTRODUCTION

Distant microwave quantum processors, connected by
efficient optical quantum channels, form an important
design of quantum networks [ 1,2]. This design is appealing
since it tries to combine two very different and impor-
tant fields: (1) the superconducting circuit known for its
advantages including efficient quantum control, hardware
scalability, etc [3]: (2) the optical quantum channels for
quantum information transmission with the feature of low
communication loss, room-temperature quantum coher-
ence preserving, etc [4,5]. Since optical and microwave
photons do not interact, to build up this quantum network,
a quantum transducer that coherently converts quantum
information between microwave and optical frequencies is
indispensable.

However, establishing such a quantum interface is
extremely challenging to the state-of-the-art technology
because the traditional direct guantum tfransduction
{(DQT), which linearly converts photons with beam-
splitter-type coupling, requires both high coupling effi-
ciency and small added noise [6—8]. Currently, DQT is
being actively studied with various physical platforms,
e.g., alkali atoms [9—11], rare-earth-doped crystals [12,13],
electro-optomechanics [6,14-27], electro-optics [28-31],
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quantum magnonics [32,33], Rydberg atoms [34], etc.
Although enormous progress has been made in the past
several years for each platform (see the review article
Ref. [35,36] and the cited references), all of them are still
below the level, only above which direct quantum state
conversion is possible.

(Quantum state conversion can altematively be real-
ized by enfanglemeni-based quantum transduction (EQT),
which first generates microwave-optical (MO) entan-
glement with paramefric down-conversion, then com-
pletes the state conversion through quantum teleportation
[37,38]. Since a classical communication channel is used,
EQT is expected to tolerate more noises and, thus, is less
demanding in technical design. In fact, a series of recent
studies already show the potential of high-fidelity MO
entanglement generation based on the hybrid quantum sys-
tems in an experimental feasible regime [37,39.40], which
paves the way for quantum transduction in the near term.

In this paper, based on the platform of piezo-
optomechanics, we compare the performances of the same
transducer working as EQT and DQT schemes. For DQT,
we map out the system parameters where any quantum
state conversion is impossible. While in the same param-
eter regime, we find the EQT still admits a finite quantum
conversion rate, which is consistent with the result in
quantum channel theory that a quantum channel with the
assistance of classical communication could tolerate more
noises [41.42]. It is noted that a recent work [43] shows
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a similar advantage based on a different electro-optic
transducer model and with a different approach.

In addition, we discuss the generation of microwave-
microwave (MM) entanglement by entanglement swap-
ping with the entangled MO sources generated from two
piezo-optomechanical systems [44.45]. The MM entangle-
ment can be used to fransmit microwave quantum informa-
tion through teleportation induced channels, thus, directly
connecting distant microwave circuits. Note this idea was
suggested in Refs. [46—49] and later analyzed technically
in the discrete-variable setting [50]. In this paper we further
study this induced MM transmission channel and com-
pare the corresponding MM entanglement generation rates
between discrete and continuous variables.

In the sections that follow, we first introduce the piezo-
optomechanical system, based on which the DQT and EQT
schemes are compared in the framework of quantum chan-
nel theory. The transduction scheme from entanglement
swapping is studied at the end. Throughout the paper, the
convention fi = 2 is used for numerical calculations unless
specified otherwise.

IL. PIEZO-OPTOMECHANICS

‘We base our discussion on a piezo-optomechanical sys-
tem, as shown schematically in Fig. 1. The thickness mode
of a mechanical resonator is on the one hand coupled to
the microwave mode through piezo-electricity, and on the
other hand coupled to the optical mode by scattering pres-
sure [51,52]. Denote a, b, and ¢ as the optical, mechanical,
and microwave mode operators, respectively, and w,, @y,
and . as the corresponding resonant frequencies. We use a
laser with frequency ey, to pump the optical mode and pop-
ulate it with on average n, photons. In the rotating frame
of the laser, we can write down the linearized Hamiltonian
of the system

AHih=—Ai'a+ wmh'h + w'8 — gum (B8 + BN
— Bomoy/Tia(@'+a) (B 4), (1
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FIG. 1. Schematic figure for piezo-optomechanical system,

used for (a) direct quantum transduction with a red detuned laser
pump and for (b) an entanglement generator with a blue detuned
laser pump.

where A, = w; — @y, Zan is the piezo-mechanical cou-
pling strength and gumgo is the single-photon scattering
pressure coupling, which can be enhanced by the cavity
photons. The enhanced coupling strength is denoted as
Eom = Eom ,n.ﬁ::. Generally, in the piezo-optomechanical
system, the mechanical resonator is intrinsically coupled
to a thermal bath with a temperature around 10 mil-
likelvin to 1 kelvin. For a several gigahertz mechanical
resonator, the thermal noise can be routinely maintained
around 1 [52,53]. Although this is already remarkable
progress experimentally, as shown later, it is still challeng-
ing to demonstrate the quantum state conversion at the
sub-photon level. In the following discussions we denote
the intrinsic loss rate as k, for the mechanical mode and
kg for the microwave mode. The microwave mode also
has a coupling port with loss rate k... On the optical side,
we denote the optical coupling and intrinsic loss rate as &,
and k,;. Note the optical mode typically has a frequency in
the terahertz regime, making the optical noise negligible
even at room temperature and, thus, is neglected in later
discussions.

L. DIRECT QUANTUM TRANSDUCTION

A. Piezo-optomechanical system for direct gquantum
transduction

Direct quantum transduction linearly converts quan-
tum states coherently between the microwave and optical
regime with the help of a beam-splitter-type interaction.
This interaction can be generally obtained in many hybrid
quantum systems [6,15,33]. For piezo-optomechanics, if
we pump the optical mode in the red side band with A, <
0, the Hamiltonian Eq. (1) can be further simplified with
rotating-wave approximation

Hih=—A,8'8 + omb'b + 0.8'¢ + gom(@'h + ab")
+ Eem(E’TE-' + E’ET) (2)

We see a beam splitter interaction is generated between the
optical and mechanical modes, enabling the state conver-
sion from optical to mechanical resonator and vice versa.
The mechanical resonator further piezo-mechanically cou-
ples to the microwave mode and swaps the state between
them, thus, indirectly realizing bidirectional microwave-
optical transduction. [Note that when the system is on
resonance —A, = @, = w,, the Hamiltonian can be fur-
ther simplified in the rotating frame of w, as H/h =
Zom(@'h + &b") + gum(B'E + BE1). In this frame, the res-
onant frequency « = 0, which can enormously simplify
the analytical expressions. This simplification will be used
in all later discussions.] To quantify this conversion pro-
cess in detail, we first write down the Heisenberg-Langevin
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equations for each mode and the input-output relations as

a = Aa + Bay,,
(3)

T
gt = B a — a,

where we label the vectors a = {4, &, b)7, a;, = [y, s i s
Eiu,c: Ei|1,r1. bin}rﬁ and apw = {anut,c: &uul,.n En‘ut.c: Euul,h bmlt]'r'
The lower indexes “in™ or “out” indicate the input and
output modes, while “c™ or “i”" represent the coupling and
intrinsic loss ports. Let matrices

iA, — % 0 —igm
A= 0 _ifﬂe - Ef' _igem (4}
_fgam _fgem _iwm - Eﬁ"
and
Koc Koa 0 0 0
B= 0 0 Kee Kex 0 (5)
0 0 0 0 N Km

The above equation group can be solved in the fre-
quency domain by taking the Fourer transform &[w] =
[dta(t)e"™, where & denotes an arbitrary operator.
Straightforwardly, the input and output modes are shown
to be connected by the scattering relation

agu[w] = S[] - an[w], (6)

where S[w] = BT(—iwl; — A)"'B — I;. Based on the
scattering matrix, we can identify the quantum transduc-
tion chamnel, e.g., with the on resonance condition (wy, =
w, = —A,), and the microwave to optical conversion
channel that can be written as

Goute = +/NCine + /1 — 7E, (7)

which is interpreted as a beam splitter mixing the input
signal and the thermal noise. The conversion efficiency
is

4CnCom
(14 Com + Cem

n 73 Sobe: (8)

Here & = Koo/kos and & = ke /k. are the extraction
ratios and the system cooperativities are given by Cpy =
4pl Kok and Cem = 422, [Kekm. Note this efficiency is
obtained for @ = 0 that is optimal for a weakly coupled

system [49]. The noise input operator & is defined as

1
l—n

s
Il

(S11dine + S12ding + S1aCing + S15bin). )]

If we ignore safely the optical noises, the average input
noise photon is obtained,

|
A = Tnﬂfﬁqllﬂc + 1815 ns), (10)

where IS’ = rE=Em o1 - L) and  |Sis =

U-;-_cj:fmﬂ”‘ In the piezo-optomechanical system, the
mechanical mode and the microwave mode are intrinsi-
cally coupled to the same thermal bath with temperature
T, indicating np, = n. = ng, = (=57 _ 1)~ Thus, for
a finite bath temperature, the microwave-optical conver-
sion is a Bosonic thermal loss channel with transmissiv-
ity n and thermal noise n,. We denote it as N (n,n.)
that maps an input state with covariance matrix V into
TVT? + N, where T = JMzand N = (1 — ) (2n. + DI,
(see the appendix for a brief review of the Bosonic channel
representation).

A channel is able to fransmit quantum information as
long as it has positive quantum channel capacity (see the
appendix for a brief review). For many quantum chan-
nels including a thermal loss channel, finding their exact
expressions of quantum capacity is hard. Instead, we resort
to the capacity lower bound to study the channel prop-
erties. The channel A(n,n.) admits a capacity lower
bound [41]

Q-E'é:max{ﬂ,lngz —g{m_.}}. an

I—n

where gix) = (x + 1) log;(x + 1) — x log; x. Interestingly,
this bound is tight for a so-called pure loss channel (n, =
0). For a pure loss channel, it is easy to get that p = 1 /2 is
the threshold to have a positive channel capacity. Thus, for
a thermal loss channel, it is necessary to have 5 = 1/2 in
order to get a positive quantum capacity, since the thermal
noise generally degrades the channel. Using this necessary
condition and the expression Eq. (8), we have (noting that

Lelo < 1)

2
1
—_— — 12
m;;;:—z) *oh-yp P

as the least requirement of the system to have a positive
channel capacity. It is worth noting that this condition
is not sufficient since the thermal noise as well as the
nonunit extraction ratios could further degrade the channel
behaviors. Currently, great effort is being put on designing
and improving the experimental devices. Although huge

ComCem = (
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progress has been made in the past decade [7,8,52,54], the
required parameter regime for positive capacity is still hard
to reach with state-of-the-art technology.

IV. ENTANGLEMENT-BASED QUANTUM
TRANSDUCTION

A. MO entanglement from piezo-optomechanical
system

In Ref. [38] we proposed an entanglement-based quan-
tum transduction scheme that first generates high-fidelity
MO entanglement and then completes the quantum trans-
duction by teleportation. The idea behind this is based on a
well-known result in quantum channel theory: a very noisy
channel can have positive quantum capacity with the assis-
tance of a classical communication channel. In this section
we make this idea more concrete based on the piezo-
optomechanical system. We show the system is able to
generate MO entanglement that induces an entanglement-
based transduction channel with positive quantum capacity
even when the system has zero capacity to perform any
direct quantum transduction. Instead of using a red detuned
laser, we pump the optical mode on the blue side band
with A, = 0. Adopting the rotating-wave approximation,
the Hamiltonian reads

Hih = —A,d'd + omb' b + 0,88 + gom(@'h' +ab)
+Eem(E'TE-'+E’ETL (13)

where the optical and mechanical modes are driven in
the parametric down-conversion regime and a two-mode
squeezed state can be generated (similarly, the Hamilto-
nian can be further simplified with the system on resonant
A, = wy, = w,). Meanwhile the mechanical excitation can
swap to the microwave mode through the piezo-electrical
coupling, leading to an entangled MO output state. Ideally,
the output entangled state is a two-mode squeezed vacuum,
while in reality, the thermal noise and dissipation degrade
it to a mixed two-mode squeezed Gaussian state. The out-
put state can be obtained in a scattering picture, where the
input Gaussian state (vacuum or thermal) is transformed
into a Gaussian state under a Gaussian unitary. A Gaussian
unitary is equivalently described by a symplectic transfor-
mation on the state quadrature [55]. Again, to obtain this
transform, we first write down the Heisenberg-Langevin
equation for each mode and combine the input-output
relations

a=Ma+ Ha'i.lh
(14)

Aout = N'a — ay,,
where we group the operators into the vectors (similar
to the previous section) am = {&L‘E,&;‘J, bin, Eines Eing) T,

At T oa a1t 1 = - -
a= {HT‘.¢ E‘: c)rﬁ and Agyt = {acm_g,m HUI-IU’ E‘1:II.1l| Cl:H.lT,J:'! CU'I.ILI'}T'

The resonance condition is taken (A, = wy = w,). Let
matrices

-2 —igem 0
M= |igum —’%" iZem | (15)
0 Zem —5F

Kor Kox 0 0 0
N=| © 0 Jkn 0O 0 |. (16)
ﬂ I] ﬂ K-e,c K-E‘,I'

Taking the mode operators into the frequency domain, we
find that agy = S - aj,, where § = N'(—iwl; — M)~'N —
Is. Using the relation

)-( 6 o

we can convert the scattering matrix into the corresponding
quadrature representation

Yout = S - Xin, (18)

where S is the desired symplectic transform matrix. The
vectors Xjpy collect all the input and cutput mode quadra-
tures. If we label the two-mode (microwave and optical)
output state quadratures as x = {§,., fio, §e, Pe}’, a corre-
sponding covariance matrix V22 with the elements defined
by ¥y = 1/2{{% — (&) .% — (&)}) can be obtained, and it
can be expressed in the standard form

Vi V¢
V.= il I 19
= ¥) 4

where Vi =uwlw)l., Ve =w(w)Z;, Vg = v{w)l;. This
matrix fully characterizes the output MO Gaussian state
(ignoring the first moment of each mode since we only
care about the state entanglement), where the diagonal
elements wu(w), viw) represent the corresponding output
power spectrum densities and the element w(w) indicates
the quadrature correlations. Again, picking the resonant
frequency (w = 0), the matrix elements can be simplified
as

BCom[1 + Nin + Com(1 4+ Ny — NinZe)1to
(1 — Com + Cem)* !
- 8[Com(Com + Nig) — (Co — 12 (&e — 1)N]
(1 — Com + Com)?ze!
. 4[1 + Cem + Com + 2NnCom(1 — &) + 2Nme]
(1 — Com + Cem)?//ComCemtelo ‘

u=1+

(20)

We shall show this state is indeed entangled in the follow-
ing sections.
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B. Teleportation induced transduction channel

With the MO entanglement generated from the piezo-
optomechanics, bidirectional quantum transduction can be
achieved using teleportation. In this section we show this
entanglement-based conversion induces a Gaussian chan-
nel that can reach none zero quantum capacity in a large
parameter space. Assume that we want to convert an input
microwave state with covariance matrix V;, to the opti-
cal regime. According to the standard protocol [45,56,57],
we first send the input mode and the microwave mode
of the entangled source V,. through a 50:50 beam split-
ter and perform a homodyne measurement to obtain p and
g quadratures from the two outputs, respectively. Upon a
conditional displacement, the input state can be recovered
on the optical side.

The output state can be conveniently derived in the
Wigner representation (see appendix for a brief review of
the representation). Initially, we have a three-mode Wigner
function up to normalization

Wix)oce %‘Tw“@v"’j_lle. (21)
where x = (x;, X;, Xj;). After the beam splitter, the homo-
dyne measurement and the feed forward correction, the
final Wigner function of the optical mode is given by

Wy (x,) o f dxindx e T F Ups(VactVial 'UssFix - (9)

where Ugs denotes the beam splitter unitary. The matrix
F corresponds to the displacement operation that takes the
form

L V2t V2t
F = I] Iz ﬂ *
0 0 I:

(23)

where t; = k(I; + Z2)/2 and t; = k(¥ — 12)/2, Z; is the
Pauli-z matrix and x is an arbitrary gain factor. To identify
the teleportation induced quantum channel, one can con-
tinue evaluating the integral. Instead, to avoid this tedious
integral, we go to the characteristic function by Fourier
transforming the Wigner function. Remembering a general
Gaussian integral formula

T T, 1pTy—1
fdxe_l Vitx'k o E]-E v €1. (24}

the output characteristic function can be shown to be
specified by the first sub-block of the inverted matrix

[FTUE(Voe @ Vin) ™' UnsFT 7', (25)

which cormresponds to the output covariance matrix.
Straightforwardly, by picking out the first sub-block, we

find the input covariance matrix is transformed as Vi, —
TVi TT + N with

T = xlz,
N=V, - V2T — (VZ TV + T'Z,V, 7, T

= (vk* 4+ u — 2wi) L. (26)
Obviously, this defines a single-mode Bosonic chan-
nel, e.g., when ¥ < 1, it mimics a thermal loss channel
N7(n',n.) with an effective transmissivity n’ and effective
thermal noise

=kt =1, 27
n (27)

, wkrdu—2we 1 28
T -7 2 %)
Moting that the gain factor x is arbitrary, the effective n’
thus can be larger than 0.5, making a positive quantum
capacity possible, as detailed in the next section. When the
gain factor is chosen k¥ = 1, it mimics a thermal amplifica-
tion channel 4'(n’,n.) with 5" = 1 and the thermal noise
given by the same expression. Finally, when the modi-
fication constant ¥ = 1, it gives a random displacement
channel with noise variance

o' =v+u—2w

(29)
We denote this channel as D'(1,o?). Interestingly, the
noise variance expression coincides with the term in the
Duan criterion v + u — 2w < 1 [58], which sufficiently
identifies the entanglement of a given continuous-variable
quantum state. Intuitively, the smaller the term u + v —
2w is, the more entangled the MO state is, and, thus,
the smaller the noise variance is in the output of the
teleportation induced conversion channel.

Similar to the thermal loss channel, the exact capaci-
ties of the thermal amplification channel and the random
displacement channel are still not known. To quantify
these channels, we use their lower bounds. For the ther-
mal amplification channel, its lower bound has a similar
form to the thermal loss channel and so can be put in the
combined form

2
oA — max {0, 1ng2(|

x r
]——KI|} —E{"e}} . (30)

For the random displacement channel, a transmission rate
can be achieved by Gottesman-Kitaev-Preskill (GKP) code
[59], which gives the quantum capacity lower bound

2
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FIG. 2. (a) Direct quantum transduction behavior for a piezo-
optomechanical system, where the red line separates the param-
eter regime between the guantum capacity is sure to be zero
and the quantum capacity can possibly be positive. For the
ideal case (zero thermal noise, unit extraction ratio), the red line
becomes the exact quantum capacity threshold. (b) The capacity
lower bound of the entanglement-based transduction channel in
the ideal case (zero thermal noise, unit extraction ratio), show-
ing a positive transduction rate in the regime where the direct
transduction can only have zero capacity.

C. Entanglement-based conversion admits positive
capacity with larger parameter space

In order to show the sharp contrast between DQT and
EQT schemes, we first delineate the parameter regime
for DOQT capacity being zero and potentially nonzero in
Fig. 2(a), then plot the quantum capacity of the EQT
with ideal parameters (unit extraction ratio and zero bath
noise; note that the effective noise is not zero) in Fig. 2(b).
It shows EQT indeed has a positive quantum capacity
in larger parameter regimes, even at the regime DQT is
useless.

In Fig. 3 we plot the quantum capacity lower bound
for more practical parameters, where the extraction ratios
are fixed at ¢, =0.9,¢, = | and the thermal bath noise
is slightly tuned. In Fig. 3(a) we take the cooperativities

(@) (®) 0.,
05 /T ag=0 . ] .
/ ".II i Unstable
504 o) ! 0.8
8 g =001 E
£03 [~ 1.8
= 0.2 I Yool 0.4
| g =02 |
0.1 ||_- AN \ 0.2
Ill_.:,. ".. . 1.
T4 e T2 05 10 15 20 25 30
k

Com = Cem = 1 (DQT useless regime even with no noise),
where we see the EQT capacity lower bound could still be
positive by tuning the gain constant ¥ and the channel can
also tolerate certain bath noises. In Figs. 3(b) and 3{c) we
scan the cooperativities C,, and C,,, and get the optimized
lower bound (picking the optimal &) for bath noises ny =
0,0.1. Positive capacity is seen across the red curve to the
lower left, where it is impossible for the DQT to transmit
any quantum information. The fact that EQT has a larger
parameter space for positive capacity will make the exper-
imental design less demanding than DQT, which is quite
appealing especially at this early stage of demonstrating
quantum transduction.

The EQT channel consumes entanglement of the state
generated from the piezo-optomechanical system. To show
this state is indeed entangled, we calculate the two-mode
(Gaussian state entanglement of formation (Ey) [60] (see
the appendix for the definition of entanglement of for-
mation). As shown in Fig. 3(d), the Ey is positive at a
large parameter regime, providing a good MO entangle-
ment resource for teleportation. We see that the finite £
indicates a positive capacity of the EQT channel, and E- is
generally larger than the capacity lower bound. The intu-
ition is that the capacity lower bound is usually obtained
from one-shot coherent information [61], which gives
the one-shot distillable entanglement. £y upper bounds
the distillable entanglement, respecting the no-cloning
theorem [62].

Lastly, it is worth mentioning that the system working in
the parametric down-conversion regime could be unstable.
The intuition is that when the blue detuned pump becomes
too strong, the optomechanical parametric gain will be
too large and cause instability. By checking the stability
condition [39,63,64], we numerically identity the white
dashed line separating the stable regime (lower right) from
the unstable regime (upper-left comer), as shown both in
Figs. 2 and 3.

Unstable iz 25

05 1.0 1.5 2.0 25 30 05 10 1.5 20 25 30

Com

FIG. 3. (a) The quantum capacity lower bound of the teleportation induced conversion channel in terms of different gain constants,
where the blue, orange, and green correspond to the piezo-optomechanical system with thermal bath ng, = 0, 0.1, and 0.2, respectively;
(b).(c) are the capacity lower bound of the induced conversion channel in terms of system cooperativities for my = 0, 0.1, with each
data optimized over the gain constant & ; (d) the Er of the entangled MO state. In (b).(c).(d), the white dashed line divides the system
from a stable (lower right) to unstable regime (up left). The red curves separate the parameter regime where direct transduction has
zero capacity (lower left) or potentially positive capacity (upper right). In all plots, the extraction ratio [, = 0.9,, = 1.
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V. MICROWAVE-MICROWAVE ENTANGLEMENT
FROM SWAPPING

A. Gaussian dynamics for entanglement swapping

The goal of quantum transduction is to connect dis-
tant microwave quantum processors. The above schemes
achieve this goal by converting the signal to the optical
regime, transmitting the optical photons through space and
converting them back to microwaves. Altematively, this
same goal can be simplified if we have faithful MM entan-
glement, with which we can perform direct microwave
signal transmission. Distant MM entanglement can be real-
ized using two piezo-optomechanical systems, as shown
in Fig. 4. The idea is to do homodyne-based enfangle-
ment swapping—projecting the optical modes onto an EPR
state—where MM entanglement can be generated. In our
setup, we can write down the two MO states as a four-
mode Gaussian state V!, & V2,, where V! are given by
the output covariance matrix Eq. (19). The optical modes
are then sent out for homodyne measurement and the ini-
tial entanglement is then expected to be swapped to the
microwave modes.

To obtain the expression of the microwave entangled
state, we briefly review the conditional Gaussian dynamics
upon a general-dyne measurement on a portion of a given
Gaussian state [44]. Suppose we have an initial Gaussian
state with n + m modes partitioned into 4 and B, respec-
tively. The first moments for each mode are set to be zero
and the covariance matrix is

Iy Tus
V= .
(rIﬂ' FB)
Then we perform a general-dyne measurement on the m
modes of the system B. Depending on the measurement,
one can get the conditional state of system 4 with n modes.

A peneral-dyne measurement on the m modes is a set of
positive operator-valued measurements, given by

. I ony s
Fri = { @ D’f‘“‘”"'} ‘

(32)

(33)

Entangled Mic

Microwree
FIG. 4. Schematic figure for homodyne-based entanglement
swapping scheme to generate microwave-microwave entangle-
ment from two piezo-optomechanical systems. The photon click-
based scheme can similarly be implemented by replacing the
homodyne measurements in the middle by single-photon detec-
tions.

satisfying f pim dr;ﬁ"rl. =1 , where r, € R*™ is the measure-
ment outcome and p, is a Gaussian state with zero first
moment and second moment V,. The probability of getting
result r; is given by

exp(rf—ﬁr;)
plr) = —,
amJdet(Ty + V)

The state of the n modes of the subsystem 4 is mapped
to [44]

(34)

V=T, —Typ—=Tg,
r \Y
| B+ ¥y (35)

I'g+V,

I'Ig =5 Iy,

where we see a remarkable feature of the general-dyne
conditioning: the conditional covariance matrix, which
determines all correlations, does not depend on the mea-
surement outcome.

We now apply this Gaussian conditioning to the entan-
glement swapping scheme, where we partition the four-
mode state V}x + Vi__ into the optical (B) and microwave
(A) part. With Eq. (19), we have I' y = vly, T'y = uly, and
I,z = diag(w, —w, w, —w). The matrix V, is first chosen
to be a two-mode squeezed state

V. — cosh(2r)l;  sinh(2r)Z; 36
= \sinh2Z; cosh(2rl )* (36)

then we take the limit r — o0 to simulate an ideal mea-
surement. Finally, we obtain a covariance matrix

_w»
il

2
2 ) G7)
-0

which determines the entanplement of the two-mode
microwave state.

B. Entanglement for microwave information
transmission

After the peneral-dyne measurement, we obtain a
microwave two-mode Gaussian state given by Eq. (37),
which is indeed entangled. It can be seen by evaluat-
ing the entanglement of formation, as shown in Fig. 5(a).
This entanglement can be further used as a resource for
teleportating quantum information encoded in microwave
frequencies, inducing a direct microwave transmission
channel. As we did in the previous section, we can sim-
ilarly evaluate its quantum capacity lower bound, which
is shown in Fig. 5(b). We pick the ideal case with extrac-
tion ratio £, = £, = 1 and the noise from the thermal bath
By = 0.
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FIG. 5. (a) The entanglement of formation for the microwave-
microwave state after the entanglement swap. (b) The quan-
tum capacity lower bound of the teleportation induced trans-
mission channel using the microwave-microwave entangle-
ment. The white dashed line in each plot separates the piezo-
optomechanical system between stable and unstable phases. The
red solid line in (b) marks the boundary of the parameter regime
where direct transduction has zero (lower left) or positive (upper
right) capacity in the ideal case. In each plot, weset {, =, = |
and the thermal bath ng = 0.

First, Fig. 5 shows that the teleportation induced MM
transmission channel has a positive capacity lower bound
only in the upper-right parameter regime, but not in the
regime where DQT has zero capacity. Since the plot only
shows the capacity lower bound, it is inconclusive whether
the MM transmission channel outperforms the DQT chan-
nel or not, which requires further studies. Second, we see
interestingly the quantum capacity lower bound is much
smaller than the entanglement of formation. Since there
is no bound entanglement in the two-mode Gaussian state
[65], the capacity lower bound is very loose in this case. It
would be interesting to better understand the structure of
the entanglement in this entanglement swapping scheme
and we shall leave this to future investigations.

VL. COMPARISON OF MM ENTANGLEMENT
SWAPPING SCHEMES

The entanglement swapping can also be discussed in
discrete variables similar to the well-known Duan-Lukin-
Cirac-Zoller (DLCZ) scheme [50,66], where the system
typically works at a very different parameter regime, e.g.,
entangled photon pairs can be generated by the weak para-
meiric down-conversion. Also, we need the optical single-
photon clicks to herald successful MM entanglement; thus,
this click-based entanglement swapping scheme is gen-
erally probabilistic. While in the continuous variables,
the continuous MM entanglement generation favors the
strong parametric down-conversion regime and is usually
nonprobabilistic due to the deterministic property of the
homodyne measurement [44]. At the same time, we expect
the MM entanglement from homodyne-based entangle-
ment swapping to be more sensitive to optical photon loss
error than that from the photon click-based protocol.

To make these comparison clear, we estimate their abil-
ity of entanglement generation from both schemes. For
simplicity, we assume zero intrinsic thermal noises from
all modes and the measurement devices are perfect for both
protocols.

For the homodyne-based entanglement swapping
scheme, the MM entanglement can be quantified by two-
mode Gaussian entanglement of formation Ep(w), which
measures the amount of entanglement in the output state
for a given frequency. In practice, it is important to check
the entanglement within a certain bandwidth. Because of
energy conservation, the overall output state is approxi-
mately in a tensor product of all frequency contributions,
which indicates that the entanglement is additive. Thus,
we define a quantity called entanglement of formation rate
(Er) as [49]

1

Intuitively, Ep tells how efficient a system is in generat-
ing entanglement. Since the entanglement of formation in
general upper bounds is the distillable entanglement, the
rate Ep actually gives an upper bound of the system’s
distillable entanglement rate [67]. For no optical photon
loss, Ep depends on the MM state as given in Eq. (37).
If we model an extra optical photon loss as a beam split-
ter with transmissivity t, the MM state can be obtained by
the replacement ¥ — t{u — 1) 4+ 1 and w — /Tw, which
generally results in a reduced entanglement rate.

In the click-based entanglement swapping protocol,
optical single-photon detection is used to herald the entan-
gled MM Bell pair (we assume photon-number resolving
detectors). Since the optical mode is in a thermal state
before it reaches the detector, the single-photon click statis-
tics should follow the thermal distribution with probability
rAf(1 + r,Af)?. Here Af is the detection time window,
which is typically chosen to be the transducer bandwidth
of several microseconds, and r, is the optical photon rate

1
re = (@0 Cllow.C) = = f (@} g clolaoun clo]) do. (39)

Considering there are two piezo-optomechanical devices
contributing to the optical heralding event, the single-
photon click rate can be calculated by

= Ut ran (40)
which usually gives the heralded MM Bell state generation
rate. Similarly, we can also model the optical photon loss
by a beam splitter with transmissivity 7. As stated in the
appendix, when this transmission loss is included, the her-
alded state is no longer a perfect Bell state. To estimate the
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FIG. 6.

(a) The entanglement of formation rate for the homodyne-based scheme and (b) the upper bound of entanglement of for-

mation rate for the click-based scheme in terms of C,, and the optical transmissivity T (both in same color scale). (c) Entanglement
of formation upper bound of the photon click heralded MM state, which is strictly less than | ebit. The white dashed line separates
the regimes, above (below) which the upper bound is smaller (larger) than 0.95 ebit. (d) The logarithm of the ratio Eg/ER, where the
black dashed line traces the points where the ratio Eg/Ep = 1. Above the line, the ratio is larger than one, indicating the continuous

variable (CV) scheme is better. In each plot, we set C,

= 10, &, = {. = 1, and the thermal bath ng = 0. It is worth mentioning that

the nonunit extraction ratios and thermal noise will degrade the entanglement rate for both schemes.

entanglement generation rate, one can calculate the her-
alded state’s entanglement and then multiply that by the
photon click rate. As detailed in the appendix, we obtain
the upper bound of the heralded state’s entanglement of
formation (Ey), which enables us to estimate the upper
bound of the entanglement generation rate, denoted as Eg.

As shown in Fig. 6, we calculate the entanglement
generation rate for both the homodyne-based protocol
and click-based scheme. Figures 6(a) and 6(b) are in
the same color scale. We see that the homodyne-based
swapping scheme usually has a larger entanglement rate
than the click-based protocol. Meanwhile, as expected, the
homodyne-based swapping scheme favors the strong para-
metric down-conversion regime [the upper-right corner in
Fig. 6(a) where C,y approaches Cgy] and it is very sensi-
tive to photon loss. In contrast, as shown in Fig. 6(b), the
photon click-based scheme is much more robust to photon
loss in generating entanglement. Also, it is preferred for the
click-based scheme to work in the weak down-conversion
regime (smaller C,,) since the single-photon pair gener-
ation is more probable. Figure 6(c) numerically plots the
upper bound of entanglement of formation for the heralded
MM state, where the white dashed line divides the param-
eter regimes into the upper (lower) part where the bound
is smaller (larger) than 0.95 ebit. Obviously, higher optical
transmission and weaker parametric down-conversion are
favorable in generating pure entanglement. Note that Eyp
is still around 0.9 when the cooperativity and the trans-
mission loss are large since higher photon excitation can
contribute to the entanglement of formation, as indicated in
Appendix E. Figure 6(d) plots the ratio Ep /Ep in log scale.
The black dashed line traces the parameter regimes where
log,, Er/Er = 0, above which the CV scheme is better at
generating entanglement. Below the line, the discrete vari-
able (DV) scheme could potentially be advantageous over
the CV scheme. In summary, the MM entanglement gener-
ation can be done in both discrete and continuous variables

and we should properly choose the right protocol accord-
ing to the practical requirements in the mission of quantum
information transduction. For convenience, we summarize
their difference in Table L.

VIL DISCUSSION

As discussed, EQ)JT is in general more feasible for quan-
tum state conversion that places much less demanding
requirements on the physical implementations. To achieve
the EQT, an important step is to successfully demon-
strate the MO entanglement. As experimental technol-
ogy develops, various physical systems, including piezo-
optomechanics, electro-optics, etc., are reported to reach
the EQT compatible regime, where high-fidelity entan-
glement could in principle be generated and quantified.
In practice, e.g., for discrete-variable entanglement, the
entanglement verification also requires efficient photon
detection. Although an optical photon detector can already
work with extremely high efficiency, microwave detection

TABLE I. Comparison of the photon click-based and the
homodyne-based entanglement swapping schemes.

Click-based entanglement Homodyne-based
swapping entanglement
swapping
- in photon-number basis - in continuous-variable
basis
- use single-photon detection - use homodyne
measurement
- probabilistic scheme with - deterministic scheme
heralding
- working in low squeezing - working in high
regime squeezing regime

- with detection of loss errors
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still suffers from limited sensitivity, thus hindering an effi-
cient MO Bell measurement. Interestingly, with the help of
circuit quantum electrodynamics for capturing microwave
photons, it is shown that high-fidelity single microwave
detection is possible [68]. We expect that as the experi-
mental technique improves the MO entanglement should
become more controllable, and the EQT would be the
first quantum conversion scheme that coherently brings
the two important fields—the optical communication chan-
nel and microwave quantum processor—together. In the
mean time, distant MM entanglement from entanglement
swapping would become more practical in coherently con-
necting quantum circuits. In short, these protocols together
would bring the ambitious theoretical proposal of a quan-
tum network more down to earth.
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APPENDIX A: CHARACTERISTIC AND WIGNER
FUNCTION OF GAUSSIAN STATE

Given any linear operator & € £(H) acting on the
Hilbert space H, one can define the p-norm of the operator
as |||, = [tr«/6'0 ]'7. When p =2, it is called the

Hilbert-Schmidt norm, based on which one can define the
Hilbert-Schmidt inner product for two operators

(8,16,) = tr(8]8,). (A1)
If we confine the linear operator to the Heisenberg-Weyl
group elements Dy = exp[—i& Tﬂi] defined on n Bosonic

modes, where £ € R™, % = {§1,1.....dn, Pn)’, and the
£2 is the symplectic form

0 N

o= (% o)

we have the orthogonality condition in terms of the
Hilbert-Schmidt inner product

(A2)

(Dg|Dy) = (2m)"8*"(§ — A). (A3)
Thus, we can view the Weyl operator as defining a set of
operator basis elements, with which any other operator can
be expanded. For instance, given a density operator p, it
can be expanded according to

1 a
= o5 |, 6 x®Dy,

where the expansion coefficient y(£) is typically named
the characteristic function and ¥ (£) = {ﬁﬂﬂ} = tl‘(f.l;p}.
Obviously, knowing the characteristic function is equiva-
lent to knowing the state. The Wigner function is defined
as the Fourier transform of the characteristic function

P (A4)

W{I} =

—r:Tﬁ[
o [ EEx©e )

For a Gaussian state with covariance matrix V and first
moment X, one can show the characteristic function and
the Wigner function take the form

X(§) = o738 E@vaNE-@DTE (A6)
and
eV a9

(2m )"/ detV

APPENDIX B: QUANTUM CAPACITY AND
GAUSSIAN CHANNEL

Wix) = (A7)

1. Coherent information

As capacity for the classical channel, quantum capac-
ity is a quantity for measuring the channel’s ability to
transmit quantum information. In general, for many quan-
tum channels, exactly knowing the quantum capacity is
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hard. Instead, the lower or upper bound is used to par-
tially describe the channels. In this appendix we discuss the
lower bound—the coherent information—which defines an
achievable rate of a channel to transmit quantum informa-
tion.

In general, a quantum channel is defined by a completely
positive and trace preserving (CPTP) map (the requirement
of a quantum channel to be CPTP is nothing but keeping
the quantum process physical)

N :ps— pa, (BI)
where the system input is py € H,4 and the output pg
‘Hg. Theoretically, any quantum channel has a unitary
dilation defined as

Nipa) = tre[lae(pa @ |0) (0])]. (B2)
The subscript E is usually to denote the environment input
(here we identify it with the output for simplicity). The
above dilation naturally defines a complement channel

Ne(pa) = try[Uae(ps @ 10) (0])]. (B3)
Since unitary evolution usually correlates the system and
the environment, the system output will not contain all the
information of the input. The coherent information of a
quantum channel is defined as

IN) = sup[SINV (pa)) — SIN“(pa))], (B4
P4

where S§(p) = —tr(plog p) is the von Neumann entropy.
The coherent information has a close connection with con-
ditional entropy, which can be seen by adding an identity
channel that acts on the purification of the system input. If
we denote |1}, as a purification of p4, we have a unitary
chamnel Iy & Id4r acting on the input |}z, & [0},

pree = Ip @ Use (1Y) gy @ [0) ). (B3)
Obviously, the output ppgy is a pure state and the coherent
information (maximized over the input p,) can be written
as

1) = S(pg) — S(par), (B6)

which is the negative conditional entropy of the state
Per. Quantum conditional entropy being negative is a sur-
prising quantum fact compared with classical probability
theory, and we see interestingly it defines a lower bound
of quantum capacity through the relation with coherent
information.

Quantum capacity is defined as the optimal average
coherent information when using the channel n times 0 =
sup, %I,,(.N' @my which is generally difficult to calculate

analytically. Since coherent information can be super-
additive I.(N, ® N2) = L.(NY) + I.(N2), the single-shot
evaluation of coherent information usually provides a
lower bound of the channel capacity.

2. Gaussian quantum channel

A Gaussian quantum channel can be specified by its
action on the statistical first and second moments of an
arbitrary Gaussian state 5(X, V). In general, we have [69]

x—Tx+d,

(B7)
V — TVTT +N,

where T, N are real matrices satisfying the channel com-
pletely positive condition

N +iQ2 —iTQT" = 0. (B8)
Here d is usually set to zero since it can be compensated
by local displacement and is not affecting the state entan-
glement. Specifically, when N =0 and T is a symplectic
matrix, it then defines a Gaussian unitary channel.

As stated in the main text, the thermal loss channel is
modeled as a beam splitter mixing the input mode and the
thermal noise

X — M+ /1 — g,

For a single-mode loss channel Af(n, n.), it is easy to verify
that

(B9)

T = ﬁlz, N = {1 - ]T}{E-ne + ”12»..

where n < | is the transmissivity and n, denotes the
thermal noise.

Similarly, for a single-mode thermal amplification chan-
nel A(n,ne): X = /MXin + /0 — 1xa, with 5 > 1, we
have

(B10)

T = ﬁlz,]\- =(n—1){2n. 4+ 1)1,.

The random displacement channel T(1,o?) can be con-
sidered as the limiting case of the above Bosonic chan-
nels, where the input signal is contaminated with random
Gaussian noise with noise variance o2. We have

(B11)

T=I,N=oc"l. (B12)

By investigating the coherent information of these Gaus-
sian channels, we can lower bound their quantum capaci-
ties. For the single-mode thermal loss channel A/ (1, n,) [or
Aln.ng)], the lower bound is given by [41]

I.(N(n,n.)) = log,

—g(n,), (B13)

U
l—n
where g(x) = (x 4 1) loga(x + 1) — x log; x. For the ran-
dom displacement channel, a transmission rate can be
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achieved using the GKP code [59], which gives the lower
bound of quantum capacity, i.e.,

2
QJEB = max |I]._,]Dgll[m]l : (B14)

APPENDIX C: ENTANGLEMENT OF
FORMATION

Entanglement of formation (Ef) of a general mixed
bipartite state is defined as the infimum of the average
von Neumann entropy taken over all its possible pure state
decompositions

Ep= inf Zr:.v;E(hff}r}- (C1)

It has been proven to be an effective entanglement measure
for Gaussian states [6(]. For a general two-mode Gaussian
state, e.g., the output V. as specified in the text, a lower
bound is given by the formula

Er = cosh’r lt:n»gz(t:aclsh1 r} — sinh? r log, (sinh2 r] )
(C2)

where r is the minimum amount of antisqueezing needed
to disentangle the state

r=iln(“’" y;_—mﬁ-)’

(C3)

with

¥ =2 (detVye + 1) — (u(@) — viw))?,
fi=detV,y+ detVy — 2det Vi + 2ulw)v(w)

+ 2w () £ dw(w) (u(@) + v(w)). (C4)
The lower bound is saturated for a two-mode Gaussian
state in the standard form encountered in this paper. In the
main text, we used the above formula to plot Ey with the
on resonance frequency (taking o = 0).

APPENDIX D: BANDWIDTH LIMITED CHANNEL
CAPACITY

In classical Shannon theory it is well known that the
finite bandwidth of a transmission line gives a finite rate
in data sampling [70], which places a constraint on the
capacity rate. Similarly, any practical quantum transducer
will have finite bandwidth, limiting the information trans-
mission rate. In the expression Eq. (8) for the conversion
efficiency, the on resonance frequency (w = 0) is chosen,

while in general the conversion efficiency is given by

ACm Cem
| Comtt + Comf + Ilfﬂ}v'|2

H{m‘} = ':a ‘:31' (Dl }

where o =1 — 2iw/fke, B =1—2iwfk,, and yp =1—
2iew (k. Note that this efficiency is defined according to
N(@) = |Gouc(@)]*/|Einc(w) |, where the ratio is between
two power spectrum densities. Thus, the corresponding
capacity Eq. (11) has a unit [Q-,'}E[m}] =(ebit/s)/Hz. For
a transducer with limited bandwidth, one can define a
capacity rate that integrates all frequency contributions

Oip = f dw@N ().

This quantity has a unit [Q,'}';] = ebit/s, and it is also a
lower bound. Since different quantum transducers gen-
erally have quite different transmission bandwidths, the
capacity rate ;g defined above will be useful in compar-
ing their different transduction abilities.

(D2)

APPENDIX E: THE UPPER BOUND OF THE
HERALDED ENTANGLEMENT OF FORMATION
RATE FOR DV SCHEME

Even when one has a perfect single-photon detector,
the single-photon click in the heralding scheme does not
always herald a perfect Bell state if there is optical trans-
mission loss. Instead, the state would be a mixed state.
Intuitively, we might guess that the entanglement of the
mixed state would be less than 1 ebit. Here, we show this
intuition is correct.

Suppose the two transducers generate the product of a
two-mode squeezed state (TMSS) [r) & |yr), where i) =
3, &(n)|n), In), with g.(n) = tanh” r/ cosh r. Note that if
there is no transmission loss, the detector will get a thermal
state with an average photon number sinh® r. The single-
photon click probability is given by ng{l}._, which is also
the probability of Bell state heralding.

The optical mode loss can be modeled as a beam splitter
with transmissivity t, which mixes an extra environment
vacuum mode £. After the beam splitter, each TMSS
together with the environment state becomes |Y¥') =
EM ,,";* |k}, |} |m — k) g, where the coefficient _j';;* =
g,{n},/f‘:r” 2(1 — )82 {q are binomial coefficients).
With |v") & [1"), clicking on one of the two detectors will
herald the state |{'} = ZM, tow @ |0} |n') o, where

G =L VLT I+ 1) ) + LT m) 0 4 1).
(ET)

(MNote that if the detector is not single-photon-number
resolving, there will be an extra term in the above equation
,:;+'=1;;§+'=1 |m+ 1) |n’ 4+ 1}, which will further degrade
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the heralded state entanglement.) The final heralded MM
state is obtained by tracing out the environment degree of
freedom, which gives an ensemble of the above state

U = Z Py ) (@l s

na'

(E2)

where ¢, o 15 the normalized pure state. Since for a fixed
pair n and o', ¢, o+ cannot have an entanglement larger
than 1 ebit, the ensemble of them obviously can neither.
Obviously, |Vypq) must be less entangled than a Bell
state, matching our intuition. Thus, it is straightforward
to see that the click rate should upper bound the heralded
entanglement generation rate.

Because the heralded MM state Wy is in a specific
decomposition of pure states, the corresponding entan-
glement should upper bound the state’s entanglement of
formation (note that entanglement of formation is obtained
by minimizing all possible pure state decompositions),
which in principle can be easily calculated. Multiply-
ing this entanglement of formation upper bound by the
single-photon click rate, we obtain the upper bound of
the entanglement of formation rate, which is numerically
shown in the main text.
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