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ABSTRACT

Ocean scientists studying diverse organisms and phenomena in-
creasingly rely on imaging devices for their research. These sci-
entists have many tools to collect their data, but few resources
for automated analysis. In this paper, we report on discussions
with diverse stakeholders to identify community needs and develop
a set of functional requirements for the ongoing development of
ocean science-specific analysis tools. We conducted 36 in-depth
interviews with individuals working in the Blue Economy space,
revealing four central issues inhibiting the development of effective
imaging analysis monitoring tools for marine science. We also iden-
tified twelve user archetypes that will engage with these services.
Additionally, we held a workshop with 246 participants from 35
countries centered around FathomNet, a web-based open-source
annotated image database for marine research. Findings from these
discussions are being used to define the feature set and interface
design of Ocean Vision Al a suite of tools and services to advance
observational capabilities of life in the ocean.
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1 INTRODUCTION

Discovering what species exist in the ocean and their distribution
across different regions is a daunting challenge [23]. The ocean
is filled with life that we have yet to describe and is governed by
numerous chemical and physical processes that ocean scientists
are only beginning to understand. Studying organisms in the ocean
with traditional, resource-intensive sampling methodologies limits
the ability of researchers to resolve vitally important biological-
physical interactions and engage diverse communities [34]. How-
ever, with the use of modern robotics technology, low-cost obser-
vation platforms, and distributed sensing tools, ocean scientists are
developing methods to find new animals and unravel the complex
relationships that govern their lives [50, 69, 71]. Some scientific
communities have made progress in scaling their observations us-
ing distributed platforms and open data structures. For example,
the chemical and remote sensing communities gather data using
satellite remote sensing of near-surface ocean conditions and via
the Argo Program’s global float array. However, large-scale analy-
sis of marine biological communities and ecological processes has
largely lagged behind [13, 40, 42].
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The ocean is a uniquely challenging environment in which to
study and monitor the inhabitants that call it home. Scientists esti-
mate that there are on the order of 1 million marine species in the
ocean and that as much as 60% of them are totally undescribed [3].
Even the degree to which marine organisms are understudied is
likely itself an underestimate [36]. Marine professionals are now
turning to digital imaging systems to discover, study, and monitor
the denizens of our seas. In situ image- and video-based sampling of
biological communities enables the identification of animals to the
species level, elucidates community structure and spatial relation-
ships in a variety of habitats, and reveals the fine-scale behavior of
organismal groups [17, 29, 33, 37, 68]. Underwater ecological sur-
veys with imaging technology have become increasingly tenable
due to the ease with which digital systems can be deployed and the
availability of remotely controlled and autonomous platforms to
carry them [20, 22]. Imaging is also an effective engagement tool,
giving broader communities access to marine life and insight into is-
sues facing the ocean [19, 38]. Unfortunately, processing visual data,
particularly data with complex scenes and containing organisms
that require expert classifications, remains a resource-intensive
process that is not scalable in its current form [66].

Current estimates indicate that well over 300,000 hours of un-
derwater video footage have been collected globally to date and
that less than 15% of it has been annotated by human experts [7].
The rate at which such data is being collected is increasing ev-
ery year, adding to an already extensive backlog. Moreover, these
numbers do not include the enormous volume of still images and
microscopy data that is regularly gathered. There is a clear need
to develop effective automated strategies to assist human experts
and enthusiasts in their efforts to use this invaluable repository.
Unsupervised learning methods have been used to identify regions
or moments of interest in underwater video footage during vehicle
deployments and post-processing annotation tasks [72]. Supervised
learning methods, trained on visual data where all objects have
been identified (i.e., classified and localized), have proven effective
for automating tasks to the genus and species level [12, 37]. How-
ever, these machine-learning algorithms require access to large
image-labeled training sets in order to achieve high accuracy across
a diverse range of taxa. Given the potential of these algorithms,
the underwater imaging community has called out the need for
publicly available, comprehensive, large-scale image training sets,
image and video analysis workflows, large-scale community-based
verification, and rapid data analysis and export to data repositories
and projects for subsequent scientific analysis. By creating such
a pipeline, ocean scientists hope to enable accurate, accelerated
processing of underwater visual data. Such a globally integrated
network is critical for scientific inquiry, to inform all sectors of
what is often referred to as the “Blue Economy”— ocean-related
industries and resources that play a central role in climate miti-
gation strategies, renewable energy generation, and sustainable
food harvesting and culturing— and to ensure effective marine
stewardship [8].

In this paper, we investigate community needs around ocean
visual data sharing, visualization, and human and automated an-
notation. The ocean science community has devoted a great deal
of effort to developing annotation interfaces and training machine
learning models [18, 21, 47, 72]. But such work has largely been

Crosby et al.

conducted by marine researchers seeking to solve a specific data
problem for a narrow set of applications. There has, to our knowl-
edge, never been a concerted effort to apply human-centered design
principles to the marine imaging space to align stakeholder needs
across a spectrum of use cases related to scientific exploration, bio-
diversity surveys for site management, and public engagement with
marine organisms.

In the following sections, we describe our process of engaging
with a diverse group of stakeholders representing the activities
of the many sectors that comprise the Blue Economy, including
fisheries, scientific laboratories, government agencies, and non-
governmental organizations. Through a series of interviews and
workshops with participants from around the world, we identi-
fied twelve user “archetypes” who we expect to engage with ma-
chine learning-enabled imaging tools in various capacities. Our
analysis of the data collected through these interviews enabled
us to better understand the functional requirements of these ar-
chetypal users engaged in ocean conservation and confirmed the
importance of machine learning approaches for a range of ocean
conservation tasks. At the same time, it also led us to identify is-
sues related to accessibility, data sharing, community engagement,
and the unequal distribution of both expertise and resources that
currently inhibit the development of imaging-based ocean science
analysis tools. In addition to enabling the creation of more pow-
erful machine-learning enabled tools to support the activities of
ocean conservation communities, we argue that the use of human-
centered design methods is essential for developing effective and
equitable approaches that advance scientific research and promote
sustainable ocean-based economies that create jobs and support
livelihoods across the globe [5].

Explore our

Figure 1: The FathomNet data portal contains features that include
a simple search bar for terms in the concept tree, filtered searches
where images can be displayed based on geographic location or terms
within the concept tree, image display pages where concepts, details,
and contributors’ information is shown, and basic annotation and
localization tool to allow users to augment or correct uploaded data
in the database.

The knowledge gained through understanding our user com-
munities has directly informed the creation of a suite of machine
learning-enabled tools, resources, and techniques— collectively ti-
tled Ocean Vision Al, or OVAI— for imaging, labeling, analyzing,
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and sharing ocean video and image data. These tools are centered
around two interrelated efforts: The FathomNet database [28], an
open-source image database for understanding our ocean and its
inhabitants, and the OVAI Portal, a suite of web-based tools lever-
aging FathomNet to conduct end-to-end analysis of visual data.
FathomNet seeks to aggregate underwater image training data for
all 202,063 accepted species in Animalia found in the WoRMS data-
base using community-based taxonomic standards (Fig. 1). While
we use species in the biological kingdom Animalia as an initial goal,
the FathomNet concept tree can eventually be expanded beyond
biota to include underwater instances of equipment, geographic
and habitat features (including via existing ontologies), marine de-
bris, as well as other taxonomic trees. The OVAI Portal enables
the uploading and analysis of visual data by both researchers and
enthusiast community members; the labeling and verification of an-
notations of species, including both identifications and localizations;
and a range of functionality to support searching, querying, and
exporting data (Fig. 2). Responding to the needs of our interviewees
and workshop participants, it provides users a straightforward in-
terface to select concepts of interest, acquire relevant training data
from FathomNet, and train machine learning models. Deployment
of automated algorithms will result in “annotation proposals” that
can then be collaboratively verified by other community science
contributors. Once data verification is complete, metadata (e.g., ani-
mal identifications, counts, timestamps) is provided to each project
and exported to additional open data repositories that are used by
specific communities. This direct connection with these recognized
resources enables the broader ocean community to assess which
animals are found where and when in the ocean, based on visual
data alone.

We intend this paper to make the following contributions: 1)
We present a human-centered design approach to identifying and
responding to the needs of diverse communities of ocean scientists,
policymakers, and others engaged in ocean research and marine
stewardship; 2) We synthesize a set of core findings from interviews
and through feedback from workshop participants; 3) We identify
a set of user archetypes participating in the Blue Economy and out-
line the ways in which they would make use of imaging-based data
tools and data repositories. Broadly speaking, our contribution can
be viewed as an instance of bridging the theory-practice gap as we
develop a system that supports a spectrum of ocean stakeholders
in their everyday practices [56, 59]. While this project centers on
the creation of analysis tools for ocean science data, we believe our
work can serve as a model for ethnographic HCI studies that seek
to inform design decisions for other “big science” pipelines. Section
2 surveys and summarizes previous and current citizen science
projects, machine learning techniques that support conservation
and sustainability, and open-source imaging-based ocean science
tools. Section 3 describes our human-centered approach toward
identifying community needs for ocean conservation, including
through our interview process and through feedback from our tech-
nical workshops. Section 4 provides our detailed findings regarding
the user archetypes that need to be supported and describes the
core issues that developers of imaging-based tools need to resolve
in order to be successful. Section 5 presents a discussion of our
findings and articulates the ways in which our investigation of
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community needs has informed the development and design of the
Ocean Vision Al collection of tools.

2 RELATED WORK

2.1 Crowdsourcing tools for citizen science

A number of existing tools have been created to enable the partic-
ipation of citizen scientists in research endeavors, mainly in the
area of data collection. For example, iNaturalist encourages users
to snap photos of living creatures and upload them to a global data-
base, which can then be accessed by trained scientists to support
research projects that can benefit from these distributed observa-
tions [67]. The iNaturalist team also developed the SEEK mobile
app that uses an ML model trained on the iNaturalist data set to
identify organisms in images captured on the device’s camera. The
user is encouraged to post images that the model cannot identify
to iNaturalist itself [41]. Similarly, Cornell Lab of Ornithology’s
eBird project provides an interface to capture observations of dif-
ferent bird species, along with tools to assist in labeling the bird
species based on the location of the observation [66]. Zooniverse
is another crowdsourcing platform that provides an infrastructure
through which scientists can ask users to review and/or interpret
data (mainly images) in order to assist in scientific analysis [14, 60].
For example, WildCam Gorongosa is an ongoing project hosted on
the Zooniverse that asks users to monitor footage from trail cameras
and identify animals that they may find [44]. Another Zooniverse-
hosted project called Galaxy Zoo invites users to classify images of
galaxies according to their shapes, helping astronomers to better
understand how galaxies formed [39]. In addition to answering
questions to describe the shape of a galaxy, users can flag unusual
features within the image, potentially enabling the user to con-
tribute to new discoveries.

The tools provided by OVAI encourage enthusiasts to participate
in the research process. Rather than asking users to collect data (as
iNaturalist and eBird do), OVAI focuses on identification, labeling,
and taxonomizing tasks, similar to the crowdsourcing activities
available through Zooniverse. A key difference in OVAI is the in-
terplay between the automated machine learning-powered labeling
of images and the human interpretation of these images [63]. An
important component of OVAI’s citizen science tools is that the user
is encouraged to become educated in the process of labeling data ac-
cording to a rich but rather complicated taxonomy of ocean species.
That is, the citizen scientists are helping to train the machine learn-
ing networks while they themselves are becoming trained to be-
come experts in understanding ocean data. Furthermore, the re-
alities of scientific activities require that research-derived visual
data may need to be controlled in a more nuanced manner than
simply making it completely available (for example, datasets are
often required by their organizations to be made accessible only to
particular users, or are embargoed for a period of time before being
made publicly available).

2.2 Image databases and machine learning tools
for conservation research

Tuia et al. [64] summarize challenges and opportunities in integrat-
ing machine learning algorithms in research pipelines, particularly
those that leverage crowdsourced data platforms for conservation
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Figure 2: OVAI Portal home page. The vertical webpage is displayed here in separate panels from left to right, top to bottom. The OVAI Portal
serves a wide range of users, including both experts and enthusiasts across multiple areas of ocean conservation (see Section 4.2), and provides
functionality to make data analysis more accessible, simplify the training of classification models, encourage the uploading of new data, and to
help users become familiar with taxonomic concepts. This functionality is integrated with the FathomNet database and is made available
through games, data visualizations, tutorials, and search tools, among other modules.

tasks. They note the mismatch between the drastic increase in
data arising from advances in sensor technologies—remote sensors,
camera traps, acoustic sensors, biologgers, and other monitoring
devices—and our ability to analyze this data effectively. In particular,
they note the possibilities enabled by machine learning: to detect
and classify species; to identify (and re-identify) an individual mem-
ber of a species; to detect or reconstruct the shape and pose of an
individual in order to understand meaningful characteristics related
to health and/or behavior; to reconstruct the environment where
the species lives and model the diversity of that environment, in-
cluding interactions within and between species. At the same time,
they articulate ongoing challenges with integrating machine learn-
ing into conservation pipelines, including mitigating the inherent
model biases that can arise in ecological datasets and the need for
standards of quality control collaboratively established by model
developers, researchers with domain expertise, and practitioners
with local knowledge.

There are many operational tools to assist image-based studies
of terrestrial organisms both from a database and automated tools

perspective. iNaturalist [67] is one of the largest repositories of an-
notated imagery of animals and plants. It contains annotations that
are crowdsourced from users, and there is a robust community of
knowledgeable and skillful enthusiasts supporting users. Wildbook
is an open-source software platform that helps researchers leverage
automated tools to facilitate population analyses [9]. It consists of a
server-based, pre-trained object detection system and an interface
to enable users to upload their images to Wildbook servers and
interact with the output. The system cannot detect all organisms
so the developers provide tools for manual annotations to create
new models. For instance, Megadetector is a model that detects
animals but does not label them, a workflow that demonstrably
boosts human annotation speeds [43].

These tools and efforts provide valuable insight into the devel-
opment of marine-specific tools but do not necessarily provide
an out-of-the-box solution. Many marine images are remarkably
different in appearance from terrestrial ones, both due to organis-
mal morphology and pixel level statistics of the images, stymieing
direct application of many models [24, 55]. Much of the ocean is
also extremely difficult for many to access, limiting the number of
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pre-existing enthusiasts and potential citizen scientists to assist in
annotation efforts.

2.3 Ocean data management frameworks and
annotation interfaces

Despite the increasing number of large annotated ocean image
datasets, to our knowledge, there are currently only two large-scale,
extensible, publicly accessible data management frameworks. Eco-
Taxa is designed for segmented plankton images and is widely used
by groups deploying the In Situ Icthyoplankton Imaging System
and Underwater Vision Profiler instruments [48, 49]. CoralNet is
a distributed coral database housing point-annotated images from
around the world [4, 12]. These are excellent resources, but they
are designed for a specific type of organism and thus have only
been adopted by a subset of the ocean community due to their more
narrow scope and engineering restraints related to image type.

Many annotation interfaces have been developed for all manner
of imagery, including visual data collected in the ocean [21]. The
ocean science community has built many data annotation interfaces,
including BIIGLE, CATAMI, VIAME, and VARS, among others [1,
15, 45, 58]. These tools are open-source, typically supporting the
use of contextual environmental metadata and often including some
options for automated processing. Many of these tools are targeted
toward a specific annotation project, and do not provide output
annotations in a widely accepted format, and thus can be difficult
for users who are not experienced programmers to set up [46].

Several ocean-focused projects include public-facing commu-
nity science or gamified components, including the Plankton Portal,
NeMO-Net, and Deep Sea Spy [57, 65]. These tools were designed to
present non-expert “players” with imagery and guide them through
annotation in an engaging way. The interfaces show players’ unan-
notated raw data and ask them to sort it based on instructional
videos, sometimes with the assistance of semi-automated leading
questions. Though these types of interfaces have existed for several
years, none have reached a large community of enthusiast users in
the ocean space.

3 METHODS

Our methods were informed by a human-centered design (HCD)
approach. HCD incorporates users at every step of the development
process as designers aim to meet their needs [54]. Before develop-
ing a system, it is crucial for researchers to understand the entire
context of a problem. Otherwise, design mismatches will occur and
user needs and expectations will not be met. Designers rely on ob-
servational studies to minimize this mismatch and incorporate user
participation throughout the development process. This approach
enables a holistic view of a problem that incentivizes designers and
researchers to see a problem from various perspectives.

For citizen science projects in particular, Yadav and Darling-
ton [70] emphasize the importance of having “a positive feedback
loop between participation and learning and creativity” in order to
motivate scientists and volunteers. Yadav and Darlington follow
a user-centered design approach to further analyze the participa-
tion of these two user groups, presenting guidelines for successful
citizen science projects that are cost-effective, easy to maintain,
trustworthy, and promote effective interaction between scientists
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and volunteers. Tinati et al. [62] note that for citizen science plat-
forms to be successful, they need to both accomplish scientific
objectives and to “attract and sustain the interest and support of a
critical mass of volunteers over time”. They further note that, due to
the scope of these two tasks, the process of creating effective tools
can be unpredictable, even with the involvement of a competent
team of design experts. Using Zooniverse as a case study for an
analysis of citizen science platforms, Tinati et al. propose four focus
areas that can help to mitigate this unpredictability, including com-
munity development and task design. Much of their analysis was
supported by and built upon previous design analysis work done
by Kraut and Resnick [32] on building online communities. These
design considerations help to establish the benefits of engaging
with and responding to the feedback of a platform’s users.

Related research that investigates designing crowdsourced plat-
forms for the citizen science space further highlights the importance
of incorporating users’ perspectives. For example, researchers de-
veloping a paleontology app called FOSSIL [10] first surveyed users’
viewpoints to assess their needs and goals. This initial needs assess-
ment informed the design and top priorities of the community. The
authors additionally emphasize the importance of incorporating an
iterative design process throughout the entirety of the application’s
use to maintain engagement and alignment between the goals of
users and scientists.

Notably, for ocean science, there have been few HCD efforts
to inform larger user platforms. To our knowledge, only the re-
cent work by Bell et al. [6] has explicitly incorporated an HCD
approach for ocean technology design. They identified functional
requirements for low-cost systems to facilitate deep-sea research
worldwide via interviews with 20 marine professionals. Intervie-
wees were also asked about their image and video analysis needs,
particularly around an online machine-learning platform. The re-
sults illuminated several general design preferences for many ocean
science researchers and managers, highlighting the ease of use, the
ability to combine different data types, the utility of high accuracy
at coarser taxonomic groupings, and the need for clear policies
around data governance and ownership.

3.1 Participants

We conducted 36 semi-structured interviews with professionals
and enthusiasts within or analogous to the field of marine science
over the course of four months. Participants were recruited through
personal and professional connections of the project’s collaborators,
as well as references from the participants themselves. The intervie-
wees were drawn from a diverse pool, hailing from 13 countries on
every continent except Antarctica, of academic researchers, ocean
enthusiasts, industry analysts, nonprofit advocates, government
regulators, policymakers, and developers of analogous programs in
different domains. We interviewed 25 individuals from the United
States, 4 from Great Britain, 2 from South Africa, and 1 each from
Australia, Germany, Japan, and Portugal. Together, they represent
an array of potential OVAI users, contributors, and partners. We
coded each interviewee’s role in the Blue Economy, how they use
ocean visual data, and how they relate to the OVAI program. An
individual’s role was assigned based on their professional or per-
sonal affiliations into five types: Academic or Research; Industry
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Figure 3: Interviewees were coded according to their affiliation, the type of use case they have for ocean visual data, and how they would use a
system like Ocean Vision Al Bar colors represent the different classifications. Interviewees often had relevant descriptions in each grouping
(the sum of the bar heights in each group does not add to the number of participants).

or For-Profit; Government; Nonprofit; or Enthusiast (Fig. 3, black
bars). Uses cases and interests were classified as: Observing; Data
Coordination; Cyberinfrastructure; Education; and Engagement
(Fig. 3, gray bars). Finally participants were grouped according to
how they relate to the OVAI program: analogous users doing related
work or research in a non-ocean science field; end-users who would
potentially use OVAI tools in their own work; and stakeholders
who may not interact with OVAI directly but have interest in see-
ing such an endeavor succeed and are supporting it specifically
for their organization (Fig. 3, white bars). Interviewees were often
classified into several types within each grouping. For example, an
interviewee could be affiliated with both research and government;
interested in observing and data coordination; and interact with
OVAI as both an end-user and stakeholder.

3.2 Procedure

Interviews typically lasted one hour and took place over Zoom
with two interviewers present, one taking on the role of facilitator
and one acting as a notetaker. Before each interview, we asked for
consent to record and informed them they could pause recording
at any point. Zoom’s auto-transcription feature was also enabled
for all interviews when applicable. The interviews were conducted
in a semi-structured format with a prepared list of questions to
ask each participant, but some of the questions varied slightly or
were skipped entirely depending on the participant’s professional
background and experience. The template used for the interviews
can be found below in the Appendix to this paper.

In each interview, we introduced ourselves and asked the in-
terviewee to tell us about themselves and their motivations for
speaking with us. Next, we discussed key topics related to their

interests and goals in ocean conservation and their use of technol-
ogy in addressing those interests and meeting those goals. Example
questions include: What topics related to your field do you care
most about? What methods and techniques do you use to answer
questions related to these topics? What hardware and software do
you use? What are your needs for processing and generating under-
water visual data? What observations would you like to achieve?
How would you like to interact with and contribute to processing
and generating underwater visual data? Does your group have any
limitations in contributing to underwater visual data? Addition-
ally, we solicited information regarding the interviewees’ working
community and their collaborator network, their communication
practices, and how they were funded.

Finally, we provided details about the OVAI tools and asked a
series of directed questions regarding the overall activities and goals
of the OVAl initiative: How could a project such as this address your
needs? Do you have any concerns about using artificial intelligence
data in their applications (e.g., regarding regulatory requirements
or intellectual property)? Would you or your organization have any
concerns or hurdles using OVAI tools for their data (e.g., related to
research embargoes)? We also asked the interviewee to envision
their potential role in OVAI or a similar initiative.

3.3 Data analysis

The analysis used in our HCD approach derives from a use-inspired
research curriculum developed in coordination with the design com-
pany IDEO [27]. This design process is organized into three phases:
Inspiration, Ideation, and Implementation. The Inspiration phase
involves framing your design challenge, creating a plan, building
an interdisciplinary team, and then interviewing and observing
the people you are designing for. The Ideation phase consists of
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reviewing the interviews, sharing memorable interviews with your
team, isolating the top themes and ideas, synthesizing findings into
statements, and exploring possible solutions through brainstorm-
ing, storyboarding, and/ or prototyping. The Implementation phase
consists of piloting ideas with live prototyping, creating a timeline,
assessing resources, and generally getting the project off the ground
with funding and staffing. In our review of the interviews described
in Section 4, we also followed a similar three-phase process, though
we used a modified terminology (Information, Illustration, and In-
spiration) as our focus here was more on collecting information to
both illustrate the need for our proposed tool and to inspire the
tool design.

The data analysis used for our research consisted of a multi-
step thematic analysis. At least two researchers first reviewed the
transcripts and recordings of all interviews and defined each inter-
viewer as either being an end-user, stakeholder, or analogous, so as
to better identify needs based on the use cases of different types of
participants. Members of our team then synthesized each interview
by organizing key findings and quotes into groups related to the
three phases of Information, Illustration, and Inspiration. This step
allowed us to categorize discoveries and snippets into more acces-
sible chunks of text, streamlining the review of the transcripts. For
the Information section, we noted the background information of
the participant and any other facts or details that helped us further
our understanding (e.g., personal motivations). For the Illustration
section, we noted any key anecdotes or quotes that either stood
out or that helped to illustrate concepts related to OVAIs objectives.
In particular, we also indicated whether there were any details or
stories that depicted any current unmet needs of the participants.
And lastly, for the Inspiration section, we noted new ideas or ques-
tions that could potentially be explored in future project phases.
The Inspiration section was especially relevant for the analogous
participants and for participants from underrepresented areas of the
ocean science community as their perspectives provide previously
unrealized or overlooked concepts.

After this initial synthesis phase, our team singled out key take-
aways from each interview with post-it notes on a digital white-
board using the Mural app. This occurred in a larger team setting
where each interview was reviewed collaboratively by at least three
researchers. The main takeaways (labeled on virtual post-it notes
in Mural) of each participant were then grouped together based on
the themes that emerged through this review process. Using these
emergent themes (see Sec. 4.1) we noted the impact each had on
the project and labeled the interview types that led to each theme.

3.4 Workshop

In addition to interviews, our research team hosted a virtual work-
shop focused specifically on FathomNet, the web-based open-source
image database for ocean research. FathomNet is a platform that
enables users to train, test, and validate Al algorithms with curated
datasets [28]. The 2-half-day workshop attracted 246 participants
from 35 countries, representing stakeholders from every continent
who are interested in using FathomNet for both their work and
personal interest (Fig. 4). The first day of the workshop consisted of
presentations and walkthroughs of different aspects of FathomNet.
Participants learned how to filter annotations based on metadata,
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Figure 4: Attendees of the 2-day FathomNet workshop in April 2022
represented a variety of geographic locations and backgrounds. (A)
Global and (B) national (mostly coastal) distributions of attendees. (C)
Attendees came from a variety of backgrounds, including educators,
programmers, ocean enthusiasts, and marine taxonomists.

download existing annotated images, and upload new images and
annotations.

During the second day, attendees split into user-specific breakout
groups: Educators, Programmers, Enthusiasts, and Marine Scien-
tists. The group names were established by analysis of our interview
findings, and each registered workshop participant was asked to
self-assign themselves to one of the four groups. To ensure all voices
and opinions were heard, the programmer, enthusiast, and marine
scientists sections were broken into multiple sessions to limit the
number of attendees to 10-20 per meeting. Across the two days, we
had 21 participants who identified as Educators, 44 as Programmers,
52 as Enthusiasts, and 108 as Marine Scientists. Each breakout group
participated in hands-on demonstrations of the existing FathomNet
tools, via either a graphical or programmatic interface depending
on interest. We then led brainstorming discussions for attendees to
field suggestions regarding desired outcomes and needs from this
type of platform.

The FathomNet workshop helped generate interest and name
recognition among people interested in working with ocean visual
data. These users were trained in how to use the tools and many
volunteered to join quarterly working groups to stay involved.
Participant feedback has informed ongoing development efforts of
features targeting the different categories of users.

4 FINDINGS
4.1 Core themes

Through the iterative analysis process described above, we estab-
lished 4 core themes: 1) There are several challenges with data
sharing and community engagement in ocean science, 2) The ocean
community has broad use cases for machine learning, 3) Over-
all there is very little machine learning and artificial intelligence
knowledge within the ocean science community, and 4) There are
no accessible tools for the ocean science community to process
visual data using machine learning. Below we provide additional
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details and present excerpts from our conversations with partici-
pants that illustrate each of these themes.

4.1.1 Challenges with Data Sharing. We discovered that a primary
barrier to realizing OVAISs goals is the long-standing cultural norms
against data sharing and community collaboration in the ocean
space. This custom of keeping imagery “in-house” limits progress.
One particular aspect of keeping data in-house is that researchers
fear that someone else will make a new discovery using their data
before they can fully analyze it. This concern is more consequential
for countries and organizations that lack the resources and people
to complete the necessary analysis of their own data in a timely
manner. For example, Participant 10 (end-user) reports on their fear
of sharing data as a trust issue:

“T think there is also a trust issue. As an emerging researcher, I
need to publish, I want to understand my data [...] There’s also a trust
issue with me, like okay I can get it there, but I also just really want
to apply myself, my knowledge, my head and see what I get out of
[the data]. And then everyone else can have it. Which is a mean thing
to say, but that’s the reality. There’s a lot of trust dynamics within
that. If I could store it and give it to a data manager that reassures
me that no one is going to touch it, then maybe.”

Participant 21 (end-user) additionally points out an interoper-
ability issue between their national marine research infrastructure
and other organizations in their country as a data-sharing barrier:

“The overarching problem that we are having with all these dif-
ferent data sets it’s actually interoperability [...] Although we are the
national marine information management system, we also have other
departments and universities who collect data [...] Our system cannot
communicate seamlessly with their system.”

Even beyond research groups, organizations that collect and
share data publicly (as part of live streams) make it difficult for
enthusiasts to locate both past and present video data. One mem-
ber of an ocean science enthusiast group, Participant 5 (end-user),
describes their difficulties:

“The footage is either unknown and also just not publicly accessible
[...] NOAA for example has pretty good metadata and annotations
associated with pretty much most of their dives, it’s just incredibly
hard to find on their site though.”

Any given set of visual data can support different projects, but
few institutions have all the expertise and resources available needed
to realize the full value of a dataset. In analyzing the interviews,
we found that over half the interviewees consistently raised four
problems:

(1) No standardization of the imagery and associated metadata

(2) Inconsistent or inflexible taxonomy and concept trees

(3) No recognized metric for communicating inter- and intra-
annotator quality

(4) Concern about attribution of data sources and recognition
of taxonomic expertise

4.1.2  The ocean community has broad data use cases for machine
learning. There are numerous challenging use cases inherent in
marine imagery that would appeal to machine learning research
communities: biodiversity surveys require precise population esti-
mates that must be robust to distribution shifts; species discovery
needs automated systems that operate in an open world capacity;
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fine-grained taxonomic identifications could benefit from hierarchi-
cal model design. Participant 20 (end-user and stakeholder) shares
an example of how ML could help with requests they get from
researchers:

“We get requests from people studying octopuses, can you send
me all of your video footage of octopuses? And it’s impossible to do
because the data is all over the world. We get very specific requests for
footage. So we want to try to break through that issue where people
can just go on a website and download it for themselves.”

In this case, ML tools could make data more accessible to all and
has great potential to increase the turnover of new research and
discoveries.

Another anticipated use case for ML is its potential ability to
inform ROV (remotely operated vehicle) dive routes while scientists
are at sea. Participant 22 (end-user and stakeholder) shares how
they currently capture data at sea and how ML could improve their
dives:

“If we don’t capture something in real-time, we’re probably going
to miss it [...] If you’re doing that [annotating] in real-time, that can
help inform what you’re doing in the moment, right? And so I think
it could help inform an ROV dive that can last days potentially. That
could help us make decisions on what we’re sampling, where we are
going next.”

Additionally, 3 interviewees (2 end-user and 1 analogous) com-
mented on the benefits of using machine learning for things like
monitoring construction sites of offshore wind farms, surveillance
data for fisheries, and ambient ocean knowledge for ocean farmers.
Another interviewee (end-user) commented that Al is needed for
observing and imaging the deep sea to help establish quantitative
metrics to assess the vulnerability of certain areas. This use case is
especially necessary to inform policymakers.

The associated machine-learning solutions to these problems are
all active areas of research that could benefit from access to data
provided by sea-going imaging systems. The 6 computer scientists
we spoke with recognize that utilizing this data would be beneficial
but noted that it has not been made accessible to their community.
These issues related to access lead to researchers feeling like it is
more efficient to annotate their data by hand.

4.1.3  Little machine learning/artificial intelligence knowledge within
the ocean science community. Ocean scientists, despite their wealth
of visual data that might appeal to ML researchers, expressed frus-
tration with the lack of available computational expertise. The
first-order issue at the interface between these communities is a
simple matter of money; ocean scientists and government managers
typically cannot pay ML experts and engineers competitive salaries
relative to those offered by the industry. This is especially true
for marine scientists and policymakers from non-OECD countries.
Participant 17 (end-user and stakeholder) highlighted the issue of
competitive tech salaries causing institutions to train ocean scien-
tists to be data scientists and programmers even though they are
often not the best equipped and knowledgeable:

“We either don’t hire the right people, the data scientists, or we
aren’t training the people we do have. There are a lot of people like
me that are fishery biologists that are then taking courses on how
to develop an algorithm. And it’s like, well, that’s difficult. You're
probably not setting yourself up for the most successful program if
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you’re training fish biologists to run programs. We have that issue
even with just data architects, database managers, software developers
[...] We struggle to hire those modern types of positions into an agency
full of fishery biologists.”

Participant 2 (stakeholder) discussed this lack of cross-domain
within the ocean science field with the additive problem of having
an Al position open for most of the past year with little hope of
filling it: “If you think about costs, what do you need to be able to
develop an Al algorithm and apply it? You need Python, Python is free.
You need a computer, most of these scientists already have a computer.
It’s not about these physical costs, it’s your understanding of how to
approach it [...] How to develop a training data set, how to train your
algorithm, how to see whether your training has been sufficient or
not. As soon as we start talking about these things, we’re losing 80%
of our scientists. These are all new concepts to them. It’s really hard
for them to comprehend. [...] We’ve had an Al position open for the
last 8 months and have not been able to attract anyone so far. This
shortage of understanding Al principles, this shortage of Al expertise
is what’s hurting us most.”

Without the financial ability to directly contract ML know-how,
ocean scientists are left to either develop the expertise in-house or
attempt to entice potential collaborators from academia or industry.
Both paths are challenging especially when many ocean scientists
are under the misconception that ML is a “solved problem,” often
leaning on students or trainees to implement workflows with little
technical guidance, leading to poor results and disillusionment.

4.1.4  No accessible tools for the ocean community to process visual
data. Ocean-aligned researchers have a strong desire to integrate
ML into their visual data pipelines as noted in key takeaways from
15 interviews. Indeed, all interviewees recognized that there is little
hope of effectively using their data without ML assistance. Yet the
prevailing perception is that there is no cohesive approach to do
so in the ocean space. Many groups have portions of the workflow
in place but have self-identified big gaps or deficiencies that seem
insurmountable. Participant 1 (end-user and stakeholder) detailed
aspects such as the lack of consistent image datasets and code bases
to train systems on as being a major issue within the community:

“For every new use case, for every new dataset, we always have to
tune systems again. So the system for nodule detection that I trained
on this one dataset acquired with this one specific camera will proba-
bly not work right out of the box with the next nodule set acquired
with a different camera. So changing the light, changing the camera,
changing the deployment type, these all affect the image signal and
this will affect the quality of any trained machine learning or just
image analysis system. So if we can create something like ImageNet
for the ocean where we can train systems that are agnostic of all these
effects, that would be amazing. [...] We also don’t really have a code
base for everything. So we do a lot of stuff in C++ using OpenCV, we
built some tools around that for some publications. But some PhDs pre-
fer Python, of course there’s also OpenCV Python [...] We as scientists
usually aim for the next paper and then afterwards we don’t really
care about that thing anymore. That’s also a reason why we don’t
have a super large code base that we can share with the community.
Everything is essentially separated and not integrated into one bigger
system.”
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Participant 12 also noted that the lack of standardized data prac-
tices requires additional work from researchers when trying to
share their data:

“Data isn’t standardized. It’s not following data standards like
Darwin Core and so there’s an extra step to get it standardized so
that it can be shared and you know, I think that’s really the limiting
factor”

Three of the interviewees also identified the lack of data hosting
solutions as a large hurdle they face. Most organizations, including
government and industry players, do not have effective ways of
making their imagery easy to share or work with internally. For
Participant 16 (end-user), they described the frustration of working
as a freelancer and not having access to a server to store all their
data:

“One thing I find quite frustrating [with existing annotation ser-
vices] is that you need to have a server for all of the data to be put on.
And so for instance, because I spent the last 2 years as a freelancer,
it’s like well, I don’t have, for instance, an academic server.”

People and groups that generate data use all manner of storage,
from external hard drives to personal computers to institutional
servers, that are not public-facing. This makes it difficult to im-
plement collaborative annotation frameworks, entrain community
scientists, and entice computer vision researchers. The lack of con-
sistent tools and data practices particularly hurts the accessibility
of ocean science research at under-funded and less-established or-
ganizations around the world. Tools need to meet users at their
level. Participant 10 (end-user) shares their challenges of having to
perform in several different roles as being the root problem when
discussing processing visual data:

“Me as a researcher, as a taxonomist in South Africa, my love, my
absolute joy is sitting in a basement looking at specimens. But I do
not have that sort of privilege because I have to be the taxonomist,
the Al reporter, policy developer, technician at sea, chief scientist.
have to be so many things [... ] It’s important to understand those
challenges when you start thinking: Where are we in terms of visual
imagery? Why are we at this point when technology has developed
over x-amount of years? Why are other places, other countries lagging
along? And until we have that conversation it becomes quite difficult
and very insensitive, to some degree, to talk about an output. Who is
this output for?”

4.2 User archetypes

Through the interviews, we were able to collect opinions and better
understand the needs of users across different communities who
will interact with ocean data using OVAI tools. As such, the four
themes described above additionally helped inform our process
of creating 12 user archetypes of potential OVAI users. Below we
describe our user archetypes and how each may use this system.
We believe that this process is particularly important as it allows
the creators of OVAI to address issues and support a variety of
functionality that users require. Moreover, by understanding these
needs, we can incorporate tools to enable members of different
communities to better collaborate with each other.

4.2.1 Ocean enthusiast. Passionate about marine organisms and
eager to engage in a community of like-minded ocean lovers while
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learning about new animals. Wants to use their acquired knowl-
edge to help scientists work with visual data either through direct
annotation or via a video game interface. Ideally, there will be a
mechanism for interaction with recognized experts both to validate
individual annotations and help the enthusiast improve their work
while making them more confident.

4.2.2  Academic biologist/ecologist. Has a range of desires and use
cases for their collection of images and videos. This could include
creating learning experiences for students, building capacity in
parataxonomy, or using ML/AI for biodiversity surveys, ecological
studies, or tracking species expansion. This user might not have all
the vocabulary or computational resources necessary to make it
happen. They want access to ML expertise, help with data storage
and sharing, and easy-to-use interfaces for working with annota-
tions and algorithms. The user or their organization might already
have portions of an annotation workflow already in place.

4.2.3  Academic computer scientist. Has no expertise nor particular
affinity for ocean science though is happy to find ways to contribute
to environmental causes. They want to access datasets to perform
bleeding-edge ML experiments and publish the results in high-
impact journals or conference proceedings. The datasets need to be
packaged for easy access with explicit benchmarks for comparing
algorithm performance. This user might respond to “challenges”
or leaderboards. They might also be intrigued by video data for
robotics experiments.

4.24  Professional taxonomist. Wants an easier way to filter visual
data to find rare or undescribed species. They largely want to re-
move “whitespace” with no interesting organisms so they can focus
on creatures of interest. Ultimately, this user does not care about
the particulars of the system nor whether or not it is automated,;
they just want something that works and has a flexible way of
altering or tracking taxonomic designations. Public outreach and
interaction with enthusiasts is a perk but not a prerequisite.

4.2.5 Non-profit scientist. Often has interests that align with aca-
demic researchers but typically with an eye toward informing and
influencing decision-makers. They want to produce visualizations
based on their biodiversity or ecological studies that can illustrate
the effect of a policy change or the impact of a project. Sharing their
visual data is both an effective way of using it for their surveys
and engaging the public, perhaps garnering more support for their
cause.

4.2.6  For-profit scientist. Often has interests that align with aca-
demic researchers but ultimately needs to use the data to inform
company decisions or satisfy regulatory requirements. This user
might need to adhere to company-imposed embargoes on sharing
data but would perhaps be willing to pay more to use an effective
service. Like their counterparts in the non-profit sector, they will
place a premium on effective visualization tools.

4.2.7 Government scientist. Wants to leverage their visual data
for stock assessments or management surveys. This user needs to
be able to communicate their results to political appointees and
the public. Their mission has lots of potential scientific output
but is often more oriented to developing actionable metrics for
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policymakers. The use cases typically dovetail with other research
communities.

4.2.8 Government program. Has a vast backlog of videos and im-
ages that they want to make easier for the public and other re-
searchers to access. This user wants a central location so interested
parties can access the government’s data without having to hunt
for it. They value interoperability and ease of use to facilitate the
work of others. The hope is that workflows developed with their
data will pay dividends in terms of increasing the analysis speed
of future data collections. Certain government programs are also
interested in developing the capacity to help with live annotation
during data collection campaigns.

4.2.9 Non-profit organization. Has lots of visual data and nowhere
to put it. This user might be attempting to make their data more
public or to store it in a comprehensive but embargoed fashion. In
either case, they need consistent data formatting requirements and
one central location for their imagery to live. Like some govern-
ment players, these organizations might want to implement live
annotation interfaces for public use while their assets are in the
water.

4.2.10 For-profit organization. Has lots of visual data that they
want to store in a secure location that only they and their affiliates
can access. This user wants employees to be able to easily share
and collaborate on the same datasets. They will also want to rapidly
produce and distribute reports among their ranks. Eventually, they
might need to distribute the data to regulators or other stakeholders.

4.2.11 Journalist. Wants to find striking videos and images to ac-
company engaging stories. They primarily need an intuitive front-
end interface to browse available data and perhaps be able to make
inquiries of registered users, especially domain experts.

4.2.12  Media organization. Wants to find content for use in pro-
duction. This user will need to easily communicate with individuals
and organizations that generated the original visual data to secure
consent for reuse. They may also want to connect with researchers
with expertise in specific animals.

4.3 Workshop findings

The FathomNet workshop helped identify themes specific to each
distinct user group. The discussions and feedback have been used
to further understand specific use cases and user needs. The key
findings from the workshop are separated into 4 individual sec-
tions: 1) Educators, 2) Programmers, 3) Enthusiasts, and 4) Marine
Scientists.

4.3.1 Educators. Educators were the smallest group in the work-
shop, with 21 people identifying themselves as ocean science ed-
ucators. Attendees in this section were interested in connecting
students with educational materials and meaningfully contributing
to FathomNet. The educators identified specific learning goals for
their classes— such as exposing students to new concepts and pro-
viding an introduction to the deep sea— that could be facilitated
by using FathomNet’s real-world data in novel pedagogical ways.
The educators hoped that using FathomNet data could yield ed-
ucational outcomes like: increased interest in ocean biodiversity;
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greater awareness of marine science-related career paths; building
enthusiasm and continuity within the community; and more gen-
eral awareness of the marine environment and the many issues it
faces. However, there are a number of limitations when it comes
to onboarding new students and classrooms. For example, there is
a lack of coordination and organized resources to assist with inte-
grating something like FathomNet into curricula, and, in general,
teachers are often stretched too thin to take on the additional effort
this may require.

Educators desire “plug-and-play” resources, such as websites that
contain teaching modules and clear instructions for using them.
Additionally, there is a need for clearly identifying helpful start-
ing points and presenting how-to guides that reduce some of the
barriers of entry for teachers. To enhance uptake, module writers
should include comprehensive evaluation criteria. To integrate real
data annotation into lesson plans, there must be an effective way to
assess the quality of the annotations the students are making. This
procedure would need to happen before uploading new annotations
to the central repository for educators to feel comfortable using
such a resource.

4.3.2  Programmers. Programmers were the second smallest sec-
tion with 44 participants, made up mainly of computationally-
inclined ocean scientists interested in finding new ways to train and
deploy models on their own data. Some attendees were software
developers seeking to build tools on top of the existing Application
Programming Interface (API) to service their organization’s need
for hosting, sharing, and annotating ocean image data. General
interests and discussions focused on quality control for both hu-
man and machine annotations. Additionally, there was a desire for
enabling different annotation techniques (segmentation, points)
and imaging types (microscopic, stereo) within FathomNet.

Programmers were interested in building a forum around Fath-
omNet to share automated models trained for different organisms,
camera types, and environments. ML model databases like Hugging
Face make model sharing easy, but typically do not have easy-to-
search metadata relevant to the ocean. A FathomNet “model zoo”™—
a community-maintained collection of supervised machine learning
models trained on ocean image data— could contain such codified
metadata that would enable practitioners in the marine space to ef-
fectively bridge the gap to ocean scientists. More specifically, users
suggested codifying existing metadata and adding new fields to
specify performance on an internal validation dataset in an ecolog-
ically consistent manner. This extra information would improve a
user’s ability to differentiate between models and improve repro-
ducibility. Formal requirements on file formats and descriptions
will improve the interoperability of uploaded models in the long
term.

4.3.3 Enthusiasts. Enthusiasts made up the second largest section
of the workshop with 52 attendants. The enthusiast section was a
very diverse group of non-professional ocean scientists. They are
individuals who do not work in ocean science-related fields but
nonetheless have developed deep expertise specifically in marine
biology and ocean taxonomies. Enthusiast groups have largely or-
ganically developed around live streams of ROV dives from ocean
research vessels, such as the Schmidt Ocean Institute’s R/V Falkor
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and Ocean Exploration Trust’s Nautilus Live. The interactions be-
tween enthusiasts generally take place in the YouTube comment
section during a live stream, or on Twitter. Outside of live streams,
discussions and interactions between enthusiasts occur on Discord
servers and Facebook groups. Discussion revolves around taxo-
nomic identification between members, though this identification
process has not directly contributed to any scientific efforts. Re-
cently, efforts have been made to use annotation platforms that
allow enthusiasts to collaborate on annotations for both historic
and real-time ocean video data. Overall, enthusiasts desired a way
to meaningfully contribute to the visual data processing pipeline to
more effectively support ocean science and discovery. They were
also interested in connecting with other ocean enthusiast groups
to leverage each of their strengths and skills.

Community engagement was a critical theme discussed during
the breakout sessions. Because enthusiasts would be contributing
to annotations during their own time, it is important to understand
their needs, desires, and limitations. Suggestions included: creating
a reward system with points or other forms of recognition; allow-
ing for anonymity for users who prefer not to be identified; and
establishing a mentorship program and/or workshops to connect
enthusiasts with domain experts.

Some discussions focused on gamifying the annotation experi-
ence, for example, by allocating points based on the number and
quality of contributions. This would enable users to both quantify
their contribution and improve their expertise via direct feedback
on their annotations. Points could lead to badges that show what
level of expertise a user is in specific animal groups (e.g., level 6
in cephalopods but level 2 in geology). Other participants placed
an emphasis on anonymity as they are often not comfortable with
their level of confidence in identifying species and annotations. To
better support enthusiasts, there is potential to establish a formal
mentorship program. For example, an expert could mentor several
enthusiasts contributing to their data analysis. Quick training work-
shops can also be set at specific intervals throughout the year to
aid in the growth of enthusiast users. Enthusiasts have the ability
to greatly help the ocean science community in getting through
their backlog of data, as such, it is important to build a system that
welcomes these users and that acknowledges their importance.

4.3.4 Marine Scientists. The marine scientists’ section was the
largest with 108 attendees, which largely consisted of biologists,
ecologists, and taxonomists who were interested in contributing
their expertise to FathomNet. Scientists discussed improvements
and additions to the platform, such as: how to verify a user’s taxo-
nomic expertise, how to manage and track disagreements in species
identification, how contributors would receive credit for their identi-
fications, and types of collaboration tools for users. They envisioned
a platform like FathomNet as having many use cases: training stu-
dents in marine organisms, collaborating across borders and around
animals of interest, finding images for outreach and education pur-
poses, and processing video data faster by using Al as a first pass.
The themes within these session discussions included: communica-
tion between users, resources to ease contributions, ways to enable
attribution, and quality control of annotations.
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Alleviating any hurdles to working on FathomNet is important to
ensure the usability and longevity of the platform itself. The scien-
tists expressed a desire for a searchable mapping between common
names to the organism’s Latin name. Additional discussion points
focused on ways of easing the uploading of data and simplifying
the annotation process, such as by providing a template for CSV
uploads to FathomNet, enabling storage of other localization types
within metadata for annotations, allowing two-way contributions
between FathomNet and other annotation tools (e.g., Tator, VIAME,
BIIGLE, Squidle), and enabling high-level detections/localizations
in an automated fashion.

Ensuring users are credited for their work is a critically impor-
tant feature to develop. Taxonomists in particular felt their expertise
was undervalued and that they were often asked to undertake such
labeling tasks with minimal incentive. FathomNet could facilitate
this in several ways, primarily by generating digital object iden-
tifiers (DOI) for submitted collections of annotations. This would
allow future users, scientists, and programmers alike, the ability
to properly attribute the annotations to the correct expert. Contri-
butions could also potentially be tracked at all stages (submitter,
annotator, localizer, verifier, etc) if linked to a user’s account and
the collection DOI ORCID numbers could serve as a useful spring-
board for this sort of functionality since many marine scientists
already use the system. Attendees also mentioned that their home
institutions would look favorably on a “certificate of recognition”
that would indicate participation in the FathomNet.

Overall, for FathomNet to be used reliably, there needs to be
stringent quality control of the annotations. Attendees suggested
that building a field for annotators to express their confidence level
in their labels would be useful for sorting purposes. Enabling multi-
tiered verification levels or confidence tiers would yield similar
results. For example, if there is a sample that exists for that particular
specimen, indicate whether the specimen was examined, has a
sequence, or any open nomenclature tags. Another important aspect
is verifying each user’s level of taxonomic expertise. Users could
submit relevant biosketches that indicate research focus and level
of expertise, length of time in the field, and their ORCID number.
Verified experts could then nominate other users to be experts for
different organisms or serve as mentors to less experienced users.

Largely, marine scientist users are hopeful that FathomNet could
be a platform for a global marine taxonomy network. The commu-
nity features the attendees suggested could be leveraged to create
regional hubs of expertise, provide platform-specific training, and
distribute resources for taxonomy workshops and events. There is
additional interest in collaborative efforts that could be made by
integrating FathomNet with other labeled datasets, like CoralNet
and iNaturalist, as well as integrating pre-existing annotation tools.

5 DISCUSSION

Our interviewees and workshop participants come from different
places, educational backgrounds, and professions. While they rep-
resent diverse ocean visual data use cases, their responses largely
highlighted the parallel challenges they face. The themes we iden-
tified from our conversations and workshop survey are broadly
consistent across the user groups. Opposing viewpoints and end
goals between groups appear to be a function of nomenclature and
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terminology; discrepancies are more a matter of language rather
than fundamental differences. The themes— lack of data sharing, a
desire for ML expertise in a domain science, a need for accessible
digital tools, and data hosting— are not unique to the ocean space.
While these are common concerns found in data-intensive scientific
research, they are worth bearing in mind and contextualizing for
any large, public-facing initiative seeking to maximize utility for
a specific domain challenge. To that end, our analysis of the user
interviews and feedback from the workshop participants have led
us to prioritize a set of functional requirements for the suite of
Ocean Vision Al tools.

We discovered that data sharing among individuals and insti-
tutions collecting in situ data is limited due in large part to a lack
of standardization, inconsistent taxonomic concepts, and concerns
about data quality and provenance. Meaningful standards must
therefore be clearly implemented and communicated in every part
of the system to enable consistent access and ensure data longevity.
Taxonomic designations will need to be easily adaptable and will re-
quire a specific API. OVAI will need to deploy a coherent method for
evaluating label quality and measuring variability among human
annotators. Given OVAI's community-oriented mission, a mecha-
nism for awarding contributions must be in place to build a broad
user base that entrains everyone from leading experts to lay enthu-
siasts. This could entail creating Digital Object Identifiers for data
and identification efforts for academics or building membership
lists and web pages to highlight achievements. These formal and
informal methods would allow academics to track and cite their
contributions while enabling enthusiasts to share and engage with
ocean media. Allaying concerns surrounding the attribution of im-
ages, labels, and expertise will help curate a contributor network
while also creating a collaborative space for users to work toward
a common goal.

We found that machine learning solutions were widely believed
to be necessary for analyzing ocean visual data, but that these solu-
tions were often not readily available to ocean science communities.
Even when an individual or organization had access to resources,
they were sometimes hard to access and difficult to use. Moreover,
there was a perceived lack of computational expertise within ocean
science communities. The costs of contracting a data science engi-
neer are outside the budget for many organizations. Even when a
marine expert learns how to run ML resources, they do not have
time to familiarize themselves with the nuances of such processing
pipelines. This can result in suboptimal results, frustration, and dis-
illusionment with the value of automated processing. OVATI’s tools
for ocean scientists will thus need to be easy to operate and maxi-
mally transparent. OVAI can provide ML education that will help
ocean scientists better understand ML and communicate with their
computationally-oriented peers. This can be achieved both with
direct teaching materials (e.g., workshops, seminars, bootcamps,
etc.) and with human-computer interactions that provide better
insight into how a system functions. These efforts will provide
domain scientists with the language and tools to constructively
use metrics that describe the model performance and data qual-
ity, ultimately yielding more constructive collaborations and more
effective automated pipelines.

OVAI can help bring ML expertise into the ocean space by provid-
ing evolving, curated benchmark data sets. There is a demonstrable
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need in the computer science community for dynamic ML bench-
marks to enable bleeding-edge experiments and avoid issues with
overfitting. These resources could exploit standardized metadata
to build repositories that target diverse problems for ML develop-
ers. Several systems exist in the ML space that could be used as
models for this element of OVAI such as Dynabench, iNaturalist, or
WILDS [30, 31, 67]. Providing OVAI benchmark resources both as
static downloads and with an interactive API will increase interest
among computer scientists.

OVAI will need to support data hosting for users that do not
have the means to support public-facing, consistently accessible
data servers. This could involve instituting a comprehensive ser-
vice agreement and implementing a scaled pay model based on
processing volume. The rates could be prorated based on open data
contributions and annotation verification efforts. Such rates should
also be scaled based on the institution in order to support the work
of organizations without access to vast financial resources. In the
short term, OVAI has begun a partnership with the US National
Oceanographic and Atmospheric Administration (NOAA) to pro-
vide hosting for annotated visual data, with a 75-year life cycle,
for individuals and organizations that cannot maintain consistent
public-facing access.

Ocean science community members pointed to many constraints
on their ability to process their visual data, and issues with public-
facing storage were a common theme. OVAI should thus be careful
to make its tools modular with multiple entry points for users with
different needs. Each component must also be scalable and allow
for changes in scope depending on the specific project.

Our one-on-one interview participants came from many corners
of the Blue Economy: academic, industrial, government, non-profit,
and enthusiasts. However, the interviewees were largely based in
the Global North, and mainly in the United States. This is partially
a reflection of the authors’ professional networks. It also reflects
the state of ocean sciences in general: working at sea is expensive
and is typically the purview of wealthy nations [2, 61]. Projects
like OVALI seeking to enhance access to ocean data will need to
continue efforts to engage these groups and make efforts to ensure
their tools are accessible to everyone. The OVAI Portal is intended
to be a gateway tool to enable new analysis efforts for many in
these underserved regions [6].

The interviews and workshop revealed a real desire from a ded-
icated group of ocean enthusiasts to participate in scientific en-
deavors. This represents an opportunity to harness their efforts
for science initiatives while building a knowledge base for ocean
researchers to draw on in the future. We are designing a number of
entry points for enthusiasts of all levels, from dedicated deep-sea ex-
ploration aficionados to grade school students just getting their feet
wet. Part of this might entail developing specific, gamified interfaces
for these users [35, 52]. The interfaces will ideally simultaneously
educate and inspire players while generating useful information.
Designing such systems will be an HCD effort unto itself, taking
care to build interfaces that go beyond an annotation wrapper [11].
Moreover, the OVAI team will need to carefully consider the role
of the players to avoid exploitation; an issue in both domain sci-
ence and HCI circles [26, 51]. Critically, any OVAI-related game
development will necessarily treat players as a pool of talent worth
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teaching; many of our enthusiast participants expressed a desire to
learn more and directly engage with professional researchers.

While the insights gleaned in our work will specifically inform
the development of OVAL we believe that our findings and process
can be instructive for other projects seeking to assist big science
efforts. There is a universe of stakeholders outside of one individual
lab and finding solutions to their problems will inevitably make
for a stronger, more useful product. In the case of OVAI, this will
yield a more accessible tool that streamlines data interactions and
enables learning experiences across a spectrum of users.

From the outset, OVAI has sought to build systems that address
needs across a spectrum of users united by an interest in the ocean.
To make OVAI maximally effective, HCD principles will be critical
as the OVAI tools are further developed and distributed; the work
presented in this paper is just a starting point. We are implementing
a flexible and iterative community co-design process that seeks
user input via actual interaction with OVAI tools [16, 25]. This
will come in the form of surveys, advisory groups, and technical
working groups all comprised of people using OVAI The process
will be guided by a disintermediation design rubric to avoid the
creation of unnecessary elements and barriers both within and
between components of the OVAI suite [53]. The rubric will help
our team build a system that can promote sustainable practices both
from individuals, by connecting their habits to downstream impacts
in the ocean, and organizations, by providing easily interpretable
data products to inform decision and policy making. Data will
be collected about user interaction with OVAI, with the user’s
permission, to quantify engagement and efficacy to inform design
decisions. Our team is currently codifying the rubric and a set of best
practices for data collection. These can be used as a general-purpose
template for applied HCI projects in scientific data pipelines and
for management tools.

Insights gleaned from our work can be broadly informative to
HCI-based development efforts for interdisciplinary science and en-
vironmental policy applications. Such design programs are increas-
ingly necessary for science-based decision-making, particularly in
the context of the climate crisis, which leverages multiple types
of expertise and requires collaboration across traditional academic
boundaries. As the volume of data increases, carefully considered
systems like OVAI will be critical to effectively use machine learn-
ing systems, despite the potential for bias, to address seemingly
insurmountable problems involving data collection, annotation,
and analysis to inform global policy.

6 CONCLUSION

In this paper, we presented a human-centered design study that
details community needs for systems to assess the processing of
ocean image data. Our process of interviewing and discussing with
participants invested in ocean sustainability and exploration high-
lights the many needs and use cases for an initiative such as Ocean
Vision Al Collectively these conversations suggest a path forward
for OVAL develop collaborative workspaces that enhance access
to ocean expertise, machine learning know-how, and visual data
throughout the depth and breadth of the ocean. The infrastructure
will need to support and engage each user archetype with: intuitive
Al-assisted interfaces; mechanisms to upload, search, and retrieve
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data based on diverse parameters; resources to facilitate scientific
analysis and data storytelling; and visualizations to inform policy
decisions. The challenge moving forward lies in ensuring that these
tools are easily accessible to all and flexible enough to support
different use cases and users.
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APPENDIX: INTERVIEW TEMPLATE
Warm-Up (~5 minutes)

(1) Can you tell us a little about yourself? Please introduce
yourself.
(2) What are your motivations for speaking with us today?

Your Interests & Goals (~15 minutes)

(1) What are some of the major scientific / research / conserva-
tion / management questions you care about? OR, What is
your organization working on in the ocean space? OR, Why
are you enthusiastic about the ocean or passionate about
ocean science?
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(2) What methods and techniques do you currently use to an-
swer these questions? OR, What does your organization do?
OR, How do you engage with the ocean or ocean science?

(3) What hardware and software do you use in your activities?
Do you use sensors or imaging technology? If so, which
ones?

(4) What are your groups’ needs in processing / generating un-
derwater visual data? What observations and/or data prod-
ucts would you like to achieve from your visual data? OR,
How would you like to interact and contribute to processing
/ generating underwater visual data?

(5) What are your groups’ limitations in processing / generating
/ contributing to underwater visual data?

Your Community (~10 minutes)

(1) Tell me about your collaborator network. Who do you usually
work with? (e.g. other researchers, students, community
groups)?

(2) How do you generally communicate about your work? (e.g.
academic papers, Twitter, community conversations, etc.)

(3) Where does the funding / support / resources for your work
typically come from? [if you are able to share]

Ocean Vision Al (~15 minutes)

Crosby et al.

(1) The Interviewer describes Ocean Vision AL

(2) How could an initiative such as Ocean Vision Al address
your needs?

(3) Do you have any concerns about using Al data in your appli-
cations with regards to regulatory requirements, intellectual
property, etc?

(4) Do you or your organization have any concerns or hurdles
to using a framework like Ocean Vision Al for your data (IP,
research embargos)?

(5) How do you envision your role in an initiative like Ocean
Vision AI?

Close (~5 minutes)

(1) As the interview comes to a close, thank the participant for
their time and thoughts and acknowledge how valuable their
time and effort is. Make space for the rest of the team to ask
any remaining questions, and ask the participant if they have
any questions for you, or if there is anything you didn’t cover
that they think is important.

(2) Anything else you’d like to share?

(3) Is there anyone else we should talk to?

(4) Do you have any questions for us?
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