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ABSTRACT 
Ocean scientists studying diverse organisms and phenomena in-
creasingly rely on imaging devices for their research. These sci-
entists have many tools to collect their data, but few resources 
for automated analysis. In this paper, we report on discussions 
with diverse stakeholders to identify community needs and develop 
a set of functional requirements for the ongoing development of 
ocean science-speci�c analysis tools. We conducted 36 in-depth 
interviews with individuals working in the Blue Economy space, 
revealing four central issues inhibiting the development of e�ective 
imaging analysis monitoring tools for marine science. We also iden-
ti�ed twelve user archetypes that will engage with these services. 
Additionally, we held a workshop with 246 participants from 35 
countries centered around FathomNet, a web-based open-source 
annotated image database for marine research. Findings from these 
discussions are being used to de�ne the feature set and interface 
design of Ocean Vision AI, a suite of tools and services to advance 
observational capabilities of life in the ocean. 
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1 INTRODUCTION 
Discovering what species exist in the ocean and their distribution 
across di�erent regions is a daunting challenge [23]. The ocean 
is �lled with life that we have yet to describe and is governed by 
numerous chemical and physical processes that ocean scientists 
are only beginning to understand. Studying organisms in the ocean 
with traditional, resource-intensive sampling methodologies limits 
the ability of researchers to resolve vitally important biological-
physical interactions and engage diverse communities [34]. How-
ever, with the use of modern robotics technology, low-cost obser-
vation platforms, and distributed sensing tools, ocean scientists are 
developing methods to �nd new animals and unravel the complex 
relationships that govern their lives [50, 69, 71]. Some scienti�c 
communities have made progress in scaling their observations us-
ing distributed platforms and open data structures. For example, 
the chemical and remote sensing communities gather data using 
satellite remote sensing of near-surface ocean conditions and via 
the Argo Program’s global �oat array. However, large-scale analy-
sis of marine biological communities and ecological processes has 
largely lagged behind [13, 40, 42]. 
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The ocean is a uniquely challenging environment in which to 
study and monitor the inhabitants that call it home. Scientists esti-
mate that there are on the order of 1 million marine species in the 
ocean and that as much as 60% of them are totally undescribed [3]. 
Even the degree to which marine organisms are understudied is 
likely itself an underestimate [36]. Marine professionals are now 
turning to digital imaging systems to discover, study, and monitor 
the denizens of our seas. In situ image- and video-based sampling of 
biological communities enables the identi�cation of animals to the 
species level, elucidates community structure and spatial relation-
ships in a variety of habitats, and reveals the �ne-scale behavior of 
organismal groups [17, 29, 33, 37, 68]. Underwater ecological sur-
veys with imaging technology have become increasingly tenable 
due to the ease with which digital systems can be deployed and the 
availability of remotely controlled and autonomous platforms to 
carry them [20, 22]. Imaging is also an e�ective engagement tool, 
giving broader communities access to marine life and insight into is-
sues facing the ocean [19, 38]. Unfortunately, processing visual data, 
particularly data with complex scenes and containing organisms 
that require expert classi�cations, remains a resource-intensive 
process that is not scalable in its current form [66]. 

Current estimates indicate that well over 300,000 hours of un-
derwater video footage have been collected globally to date and 
that less than 15% of it has been annotated by human experts [7]. 
The rate at which such data is being collected is increasing ev-
ery year, adding to an already extensive backlog. Moreover, these 
numbers do not include the enormous volume of still images and 
microscopy data that is regularly gathered. There is a clear need 
to develop e�ective automated strategies to assist human experts 
and enthusiasts in their e�orts to use this invaluable repository. 
Unsupervised learning methods have been used to identify regions 
or moments of interest in underwater video footage during vehicle 
deployments and post-processing annotation tasks [72]. Supervised 
learning methods, trained on visual data where all objects have 
been identi�ed (i.e., classi�ed and localized), have proven e�ective 
for automating tasks to the genus and species level [12, 37]. How-
ever, these machine-learning algorithms require access to large 
image-labeled training sets in order to achieve high accuracy across 
a diverse range of taxa. Given the potential of these algorithms, 
the underwater imaging community has called out the need for 
publicly available, comprehensive, large-scale image training sets, 
image and video analysis work�ows, large-scale community-based 
veri�cation, and rapid data analysis and export to data repositories 
and projects for subsequent scienti�c analysis. By creating such 
a pipeline, ocean scientists hope to enable accurate, accelerated 
processing of underwater visual data. Such a globally integrated 
network is critical for scienti�c inquiry, to inform all sectors of 
what is often referred to as the “Blue Economy”— ocean-related 
industries and resources that play a central role in climate miti-
gation strategies, renewable energy generation, and sustainable 
food harvesting and culturing— and to ensure e�ective marine 
stewardship [8]. 

In this paper, we investigate community needs around ocean 
visual data sharing, visualization, and human and automated an-
notation. The ocean science community has devoted a great deal 
of e�ort to developing annotation interfaces and training machine 
learning models [18, 21, 47, 72]. But such work has largely been 

conducted by marine researchers seeking to solve a speci�c data 
problem for a narrow set of applications. There has, to our knowl-
edge, never been a concerted e�ort to apply human-centered design 
principles to the marine imaging space to align stakeholder needs 
across a spectrum of use cases related to scienti�c exploration, bio-
diversity surveys for site management, and public engagement with 
marine organisms. 

In the following sections, we describe our process of engaging 
with a diverse group of stakeholders representing the activities 
of the many sectors that comprise the Blue Economy, including 
�sheries, scienti�c laboratories, government agencies, and non-
governmental organizations. Through a series of interviews and 
workshops with participants from around the world, we identi-
�ed twelve user “archetypes” who we expect to engage with ma-
chine learning-enabled imaging tools in various capacities. Our 
analysis of the data collected through these interviews enabled 
us to better understand the functional requirements of these ar-
chetypal users engaged in ocean conservation and con�rmed the 
importance of machine learning approaches for a range of ocean 
conservation tasks. At the same time, it also led us to identify is-
sues related to accessibility, data sharing, community engagement, 
and the unequal distribution of both expertise and resources that 
currently inhibit the development of imaging-based ocean science 
analysis tools. In addition to enabling the creation of more pow-
erful machine-learning enabled tools to support the activities of 
ocean conservation communities, we argue that the use of human-
centered design methods is essential for developing e�ective and 
equitable approaches that advance scienti�c research and promote 
sustainable ocean-based economies that create jobs and support 
livelihoods across the globe [5]. 

Figure 1: The FathomNet data portal contains features that include 
a simple search bar for terms in the concept tree, �ltered searches 
where images can be displayed based on geographic location or terms 
within the concept tree, image display pages where concepts, details, 
and contributors’ information is shown, and basic annotation and 
localization tool to allow users to augment or correct uploaded data 
in the database. 

The knowledge gained through understanding our user com-
munities has directly informed the creation of a suite of machine 
learning-enabled tools, resources, and techniques— collectively ti-
tled Ocean Vision AI, or OVAI— for imaging, labeling, analyzing, 
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and sharing ocean video and image data. These tools are centered 
around two interrelated e�orts: The FathomNet database [28], an 
open-source image database for understanding our ocean and its 
inhabitants, and the OVAI Portal, a suite of web-based tools lever-
aging FathomNet to conduct end-to-end analysis of visual data. 
FathomNet seeks to aggregate underwater image training data for 
all 202,063 accepted species in Animalia found in the WoRMS data-
base using community-based taxonomic standards (Fig. 1). While 
we use species in the biological kingdom Animalia as an initial goal, 
the FathomNet concept tree can eventually be expanded beyond 
biota to include underwater instances of equipment, geographic 
and habitat features (including via existing ontologies), marine de-
bris, as well as other taxonomic trees. The OVAI Portal enables 
the uploading and analysis of visual data by both researchers and 
enthusiast community members; the labeling and veri�cation of an-
notations of species, including both identi�cations and localizations; 
and a range of functionality to support searching, querying, and 
exporting data (Fig. 2). Responding to the needs of our interviewees 
and workshop participants, it provides users a straightforward in-
terface to select concepts of interest, acquire relevant training data 
from FathomNet, and train machine learning models. Deployment 
of automated algorithms will result in “annotation proposals” that 
can then be collaboratively veri�ed by other community science 
contributors. Once data veri�cation is complete, metadata (e.g., ani-
mal identi�cations, counts, timestamps) is provided to each project 
and exported to additional open data repositories that are used by 
speci�c communities. This direct connection with these recognized 
resources enables the broader ocean community to assess which 
animals are found where and when in the ocean, based on visual 
data alone. 

We intend this paper to make the following contributions: 1) 
We present a human-centered design approach to identifying and 
responding to the needs of diverse communities of ocean scientists, 
policymakers, and others engaged in ocean research and marine 
stewardship; 2) We synthesize a set of core �ndings from interviews 
and through feedback from workshop participants; 3) We identify 
a set of user archetypes participating in the Blue Economy and out-
line the ways in which they would make use of imaging-based data 
tools and data repositories. Broadly speaking, our contribution can 
be viewed as an instance of bridging the theory-practice gap as we 
develop a system that supports a spectrum of ocean stakeholders 
in their everyday practices [56, 59]. While this project centers on 
the creation of analysis tools for ocean science data, we believe our 
work can serve as a model for ethnographic HCI studies that seek 
to inform design decisions for other “big science” pipelines. Section 
2 surveys and summarizes previous and current citizen science 
projects, machine learning techniques that support conservation 
and sustainability, and open-source imaging-based ocean science 
tools. Section 3 describes our human-centered approach toward 
identifying community needs for ocean conservation, including 
through our interview process and through feedback from our tech-
nical workshops. Section 4 provides our detailed �ndings regarding 
the user archetypes that need to be supported and describes the 
core issues that developers of imaging-based tools need to resolve 
in order to be successful. Section 5 presents a discussion of our 
�ndings and articulates the ways in which our investigation of 

community needs has informed the development and design of the 
Ocean Vision AI collection of tools. 

2 RELATED WORK 
2.1 Crowdsourcing tools for citizen science 
A number of existing tools have been created to enable the partic-
ipation of citizen scientists in research endeavors, mainly in the 
area of data collection. For example, iNaturalist encourages users 
to snap photos of living creatures and upload them to a global data-
base, which can then be accessed by trained scientists to support 
research projects that can bene�t from these distributed observa-
tions [67]. The iNaturalist team also developed the SEEK mobile 
app that uses an ML model trained on the iNaturalist data set to 
identify organisms in images captured on the device’s camera. The 
user is encouraged to post images that the model cannot identify 
to iNaturalist itself [41]. Similarly, Cornell Lab of Ornithology’s 
eBird project provides an interface to capture observations of dif-
ferent bird species, along with tools to assist in labeling the bird 
species based on the location of the observation [66]. Zooniverse 
is another crowdsourcing platform that provides an infrastructure 
through which scientists can ask users to review and/or interpret 
data (mainly images) in order to assist in scienti�c analysis [14, 60]. 
For example, WildCam Gorongosa is an ongoing project hosted on 
the Zooniverse that asks users to monitor footage from trail cameras 
and identify animals that they may �nd [44]. Another Zooniverse-
hosted project called Galaxy Zoo invites users to classify images of 
galaxies according to their shapes, helping astronomers to better 
understand how galaxies formed [39]. In addition to answering 
questions to describe the shape of a galaxy, users can �ag unusual 
features within the image, potentially enabling the user to con-
tribute to new discoveries. 

The tools provided by OVAI encourage enthusiasts to participate 
in the research process. Rather than asking users to collect data (as 
iNaturalist and eBird do), OVAI focuses on identi�cation, labeling, 
and taxonomizing tasks, similar to the crowdsourcing activities 
available through Zooniverse. A key di�erence in OVAI is the in-
terplay between the automated machine learning-powered labeling 
of images and the human interpretation of these images [63]. An 
important component of OVAI’s citizen science tools is that the user 
is encouraged to become educated in the process of labeling data ac-
cording to a rich but rather complicated taxonomy of ocean species. 
That is, the citizen scientists are helping to train the machine learn-
ing networks while they themselves are becoming trained to be-
come experts in understanding ocean data. Furthermore, the re-
alities of scienti�c activities require that research-derived visual 
data may need to be controlled in a more nuanced manner than 
simply making it completely available (for example, datasets are 
often required by their organizations to be made accessible only to 
particular users, or are embargoed for a period of time before being 
made publicly available). 

2.2 Image databases and machine learning tools 
for conservation research 

Tuia et al. [64] summarize challenges and opportunities in integrat-
ing machine learning algorithms in research pipelines, particularly 
those that leverage crowdsourced data platforms for conservation 
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Figure 2: OVAI Portal home page. The vertical webpage is displayed here in separate panels from left to right, top to bottom. The OVAI Portal 
serves a wide range of users, including both experts and enthusiasts across multiple areas of ocean conservation (see Section 4.2), and provides 
functionality to make data analysis more accessible, simplify the training of classi�cation models, encourage the uploading of new data, and to 
help users become familiar with taxonomic concepts. This functionality is integrated with the FathomNet database and is made available 
through games, data visualizations, tutorials, and search tools, among other modules. 

tasks. They note the mismatch between the drastic increase in 
data arising from advances in sensor technologies—remote sensors, 
camera traps, acoustic sensors, biologgers, and other monitoring 
devices—and our ability to analyze this data e�ectively. In particular, 
they note the possibilities enabled by machine learning: to detect 
and classify species; to identify (and re-identify) an individual mem-
ber of a species; to detect or reconstruct the shape and pose of an 
individual in order to understand meaningful characteristics related 
to health and/or behavior; to reconstruct the environment where 
the species lives and model the diversity of that environment, in-
cluding interactions within and between species. At the same time, 
they articulate ongoing challenges with integrating machine learn-
ing into conservation pipelines, including mitigating the inherent 
model biases that can arise in ecological datasets and the need for 
standards of quality control collaboratively established by model 
developers, researchers with domain expertise, and practitioners 
with local knowledge. 

There are many operational tools to assist image-based studies 
of terrestrial organisms both from a database and automated tools 

perspective. iNaturalist [67] is one of the largest repositories of an-
notated imagery of animals and plants. It contains annotations that 
are crowdsourced from users, and there is a robust community of 
knowledgeable and skillful enthusiasts supporting users. Wildbook 
is an open-source software platform that helps researchers leverage 
automated tools to facilitate population analyses [9]. It consists of a 
server-based, pre-trained object detection system and an interface 
to enable users to upload their images to Wildbook servers and 
interact with the output. The system cannot detect all organisms 
so the developers provide tools for manual annotations to create 
new models. For instance, Megadetector is a model that detects 
animals but does not label them, a work�ow that demonstrably 
boosts human annotation speeds [43]. 

These tools and e�orts provide valuable insight into the devel-
opment of marine-speci�c tools but do not necessarily provide 
an out-of-the-box solution. Many marine images are remarkably 
di�erent in appearance from terrestrial ones, both due to organis-
mal morphology and pixel level statistics of the images, stymieing 
direct application of many models [24, 55]. Much of the ocean is 
also extremely di�cult for many to access, limiting the number of 
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pre-existing enthusiasts and potential citizen scientists to assist in 
annotation e�orts. 

2.3 Ocean data management frameworks and 
annotation interfaces 

Despite the increasing number of large annotated ocean image 
datasets, to our knowledge, there are currently only two large-scale, 
extensible, publicly accessible data management frameworks. Eco-
Taxa is designed for segmented plankton images and is widely used 
by groups deploying the In Situ Icthyoplankton Imaging System 
and Underwater Vision Pro�ler instruments [48, 49]. CoralNet is 
a distributed coral database housing point-annotated images from 
around the world [4, 12]. These are excellent resources, but they 
are designed for a speci�c type of organism and thus have only 
been adopted by a subset of the ocean community due to their more 
narrow scope and engineering restraints related to image type. 

Many annotation interfaces have been developed for all manner 
of imagery, including visual data collected in the ocean [21]. The 
ocean science community has built many data annotation interfaces, 
including BIIGLE, CATAMI, VIAME, and VARS, among others [1, 
15, 45, 58]. These tools are open-source, typically supporting the 
use of contextual environmental metadata and often including some 
options for automated processing. Many of these tools are targeted 
toward a speci�c annotation project, and do not provide output 
annotations in a widely accepted format, and thus can be di�cult 
for users who are not experienced programmers to set up [46]. 

Several ocean-focused projects include public-facing commu-
nity science or gami�ed components, including the Plankton Portal, 
NeMO-Net, and Deep Sea Spy [57, 65]. These tools were designed to 
present non-expert “players” with imagery and guide them through 
annotation in an engaging way. The interfaces show players’ unan-
notated raw data and ask them to sort it based on instructional 
videos, sometimes with the assistance of semi-automated leading 
questions. Though these types of interfaces have existed for several 
years, none have reached a large community of enthusiast users in 
the ocean space. 

3 METHODS 
Our methods were informed by a human-centered design (HCD) 
approach. HCD incorporates users at every step of the development 
process as designers aim to meet their needs [54]. Before develop-
ing a system, it is crucial for researchers to understand the entire 
context of a problem. Otherwise, design mismatches will occur and 
user needs and expectations will not be met. Designers rely on ob-
servational studies to minimize this mismatch and incorporate user 
participation throughout the development process. This approach 
enables a holistic view of a problem that incentivizes designers and 
researchers to see a problem from various perspectives. 

For citizen science projects in particular, Yadav and Darling-
ton [70] emphasize the importance of having “a positive feedback 
loop between participation and learning and creativity” in order to 
motivate scientists and volunteers. Yadav and Darlington follow 
a user-centered design approach to further analyze the participa-
tion of these two user groups, presenting guidelines for successful 
citizen science projects that are cost-e�ective, easy to maintain, 
trustworthy, and promote e�ective interaction between scientists 

and volunteers. Tinati et al. [62] note that for citizen science plat-
forms to be successful, they need to both accomplish scienti�c 
objectives and to “attract and sustain the interest and support of a 
critical mass of volunteers over time”. They further note that, due to 
the scope of these two tasks, the process of creating e�ective tools 
can be unpredictable, even with the involvement of a competent 
team of design experts. Using Zooniverse as a case study for an 
analysis of citizen science platforms, Tinati et al. propose four focus 
areas that can help to mitigate this unpredictability, including com-
munity development and task design. Much of their analysis was 
supported by and built upon previous design analysis work done 
by Kraut and Resnick [32] on building online communities. These 
design considerations help to establish the bene�ts of engaging 
with and responding to the feedback of a platform’s users. 

Related research that investigates designing crowdsourced plat-
forms for the citizen science space further highlights the importance 
of incorporating users’ perspectives. For example, researchers de-
veloping a paleontology app called FOSSIL [10] �rst surveyed users’ 
viewpoints to assess their needs and goals. This initial needs assess-
ment informed the design and top priorities of the community. The 
authors additionally emphasize the importance of incorporating an 
iterative design process throughout the entirety of the application’s 
use to maintain engagement and alignment between the goals of 
users and scientists. 

Notably, for ocean science, there have been few HCD e�orts 
to inform larger user platforms. To our knowledge, only the re-
cent work by Bell et al. [6] has explicitly incorporated an HCD 
approach for ocean technology design. They identi�ed functional 
requirements for low-cost systems to facilitate deep-sea research 
worldwide via interviews with 20 marine professionals. Intervie-
wees were also asked about their image and video analysis needs, 
particularly around an online machine-learning platform. The re-
sults illuminated several general design preferences for many ocean 
science researchers and managers, highlighting the ease of use, the 
ability to combine di�erent data types, the utility of high accuracy 
at coarser taxonomic groupings, and the need for clear policies 
around data governance and ownership. 

3.1 Participants 
We conducted 36 semi-structured interviews with professionals 
and enthusiasts within or analogous to the �eld of marine science 
over the course of four months. Participants were recruited through 
personal and professional connections of the project’s collaborators, 
as well as references from the participants themselves. The intervie-
wees were drawn from a diverse pool, hailing from 13 countries on 
every continent except Antarctica, of academic researchers, ocean 
enthusiasts, industry analysts, nonpro�t advocates, government 
regulators, policymakers, and developers of analogous programs in 
di�erent domains. We interviewed 25 individuals from the United 
States, 4 from Great Britain, 2 from South Africa, and 1 each from 
Australia, Germany, Japan, and Portugal. Together, they represent 
an array of potential OVAI users, contributors, and partners. We 
coded each interviewee’s role in the Blue Economy, how they use 
ocean visual data, and how they relate to the OVAI program. An 
individual’s role was assigned based on their professional or per-
sonal a�liations into �ve types: Academic or Research; Industry 
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Figure 3: Interviewees were coded according to their a�liation, the type of use case they have for ocean visual data, and how they would use a 
system like Ocean Vision AI. Bar colors represent the di�erent classi�cations. Interviewees often had relevant descriptions in each grouping 
(the sum of the bar heights in each group does not add to the number of participants). 

or For-Pro�t; Government; Nonpro�t; or Enthusiast (Fig. 3, black 
bars). Uses cases and interests were classi�ed as: Observing; Data 
Coordination; Cyberinfrastructure; Education; and Engagement 
(Fig. 3, gray bars). Finally participants were grouped according to 
how they relate to the OVAI program: analogous users doing related 
work or research in a non-ocean science �eld; end-users who would 
potentially use OVAI tools in their own work; and stakeholders 
who may not interact with OVAI directly but have interest in see-
ing such an endeavor succeed and are supporting it speci�cally 
for their organization (Fig. 3, white bars). Interviewees were often 
classi�ed into several types within each grouping. For example, an 
interviewee could be a�liated with both research and government; 
interested in observing and data coordination; and interact with 
OVAI as both an end-user and stakeholder. 

3.2 Procedure 
Interviews typically lasted one hour and took place over Zoom 
with two interviewers present, one taking on the role of facilitator 
and one acting as a notetaker. Before each interview, we asked for 
consent to record and informed them they could pause recording 
at any point. Zoom’s auto-transcription feature was also enabled 
for all interviews when applicable. The interviews were conducted 
in a semi-structured format with a prepared list of questions to 
ask each participant, but some of the questions varied slightly or 
were skipped entirely depending on the participant’s professional 
background and experience. The template used for the interviews 
can be found below in the Appendix to this paper. 

In each interview, we introduced ourselves and asked the in-
terviewee to tell us about themselves and their motivations for 
speaking with us. Next, we discussed key topics related to their 

interests and goals in ocean conservation and their use of technol-
ogy in addressing those interests and meeting those goals. Example 
questions include: What topics related to your �eld do you care 
most about? What methods and techniques do you use to answer 
questions related to these topics? What hardware and software do 
you use? What are your needs for processing and generating under-
water visual data? What observations would you like to achieve? 
How would you like to interact with and contribute to processing 
and generating underwater visual data? Does your group have any 
limitations in contributing to underwater visual data? Addition-
ally, we solicited information regarding the interviewees’ working 
community and their collaborator network, their communication 
practices, and how they were funded. 

Finally, we provided details about the OVAI tools and asked a 
series of directed questions regarding the overall activities and goals 
of the OVAI initiative: How could a project such as this address your 
needs? Do you have any concerns about using arti�cial intelligence 
data in their applications (e.g., regarding regulatory requirements 
or intellectual property)? Would you or your organization have any 
concerns or hurdles using OVAI tools for their data (e.g., related to 
research embargoes)? We also asked the interviewee to envision 
their potential role in OVAI or a similar initiative. 

3.3 Data analysis 
The analysis used in our HCD approach derives from a use-inspired 
research curriculum developed in coordination with the design com-
pany IDEO [27]. This design process is organized into three phases: 
Inspiration, Ideation, and Implementation. The Inspiration phase 
involves framing your design challenge, creating a plan, building 
an interdisciplinary team, and then interviewing and observing 
the people you are designing for. The Ideation phase consists of 
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reviewing the interviews, sharing memorable interviews with your 
team, isolating the top themes and ideas, synthesizing �ndings into 
statements, and exploring possible solutions through brainstorm-
ing, storyboarding, and/ or prototyping. The Implementation phase 
consists of piloting ideas with live prototyping, creating a timeline, 
assessing resources, and generally getting the project o� the ground 
with funding and sta�ng. In our review of the interviews described 
in Section 4, we also followed a similar three-phase process, though 
we used a modi�ed terminology (Information, Illustration, and In-
spiration) as our focus here was more on collecting information to 
both illustrate the need for our proposed tool and to inspire the 
tool design. 

The data analysis used for our research consisted of a multi-
step thematic analysis. At least two researchers �rst reviewed the 
transcripts and recordings of all interviews and de�ned each inter-
viewer as either being an end-user, stakeholder, or analogous, so as 
to better identify needs based on the use cases of di�erent types of 
participants. Members of our team then synthesized each interview 
by organizing key �ndings and quotes into groups related to the 
three phases of Information, Illustration, and Inspiration. This step 
allowed us to categorize discoveries and snippets into more acces-
sible chunks of text, streamlining the review of the transcripts. For 
the Information section, we noted the background information of 
the participant and any other facts or details that helped us further 
our understanding (e.g., personal motivations). For the Illustration 
section, we noted any key anecdotes or quotes that either stood 
out or that helped to illustrate concepts related to OVAIs objectives. 
In particular, we also indicated whether there were any details or 
stories that depicted any current unmet needs of the participants. 
And lastly, for the Inspiration section, we noted new ideas or ques-
tions that could potentially be explored in future project phases. 
The Inspiration section was especially relevant for the analogous 
participants and for participants from underrepresented areas of the 
ocean science community as their perspectives provide previously 
unrealized or overlooked concepts. 

After this initial synthesis phase, our team singled out key take-
aways from each interview with post-it notes on a digital white-
board using the Mural app. This occurred in a larger team setting 
where each interview was reviewed collaboratively by at least three 
researchers. The main takeaways (labeled on virtual post-it notes 
in Mural) of each participant were then grouped together based on 
the themes that emerged through this review process. Using these 
emergent themes (see Sec. 4.1) we noted the impact each had on 
the project and labeled the interview types that led to each theme. 

3.4 Workshop 
In addition to interviews, our research team hosted a virtual work-
shop focused speci�cally on FathomNet, the web-based open-source 
image database for ocean research. FathomNet is a platform that 
enables users to train, test, and validate AI algorithms with curated 
datasets [28]. The 2-half-day workshop attracted 246 participants 
from 35 countries, representing stakeholders from every continent 
who are interested in using FathomNet for both their work and 
personal interest (Fig. 4). The �rst day of the workshop consisted of 
presentations and walkthroughs of di�erent aspects of FathomNet. 
Participants learned how to �lter annotations based on metadata, 
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Figure 4: Attendees of the 2-day FathomNet workshop in April 2022 
represented a variety of geographic locations and backgrounds. (A) 
Global and (B) national (mostly coastal) distributions of attendees. (C) 
Attendees came from a variety of backgrounds, including educators, 
programmers, ocean enthusiasts, and marine taxonomists. 

download existing annotated images, and upload new images and 
annotations. 

During the second day, attendees split into user-speci�c breakout 
groups: Educators, Programmers, Enthusiasts, and Marine Scien-
tists. The group names were established by analysis of our interview 
�ndings, and each registered workshop participant was asked to 
self-assign themselves to one of the four groups. To ensure all voices 
and opinions were heard, the programmer, enthusiast, and marine 
scientists sections were broken into multiple sessions to limit the 
number of attendees to 10-20 per meeting. Across the two days, we 
had 21 participants who identi�ed as Educators, 44 as Programmers, 
52 as Enthusiasts, and 108 as Marine Scientists. Each breakout group 
participated in hands-on demonstrations of the existing FathomNet 
tools, via either a graphical or programmatic interface depending 
on interest. We then led brainstorming discussions for attendees to 
�eld suggestions regarding desired outcomes and needs from this 
type of platform. 

The FathomNet workshop helped generate interest and name 
recognition among people interested in working with ocean visual 
data. These users were trained in how to use the tools and many 
volunteered to join quarterly working groups to stay involved. 
Participant feedback has informed ongoing development e�orts of 
features targeting the di�erent categories of users. 

4 FINDINGS 
4.1 Core themes 
Through the iterative analysis process described above, we estab-
lished 4 core themes: 1) There are several challenges with data 
sharing and community engagement in ocean science, 2) The ocean 
community has broad use cases for machine learning, 3) Over-
all there is very little machine learning and arti�cial intelligence 
knowledge within the ocean science community, and 4) There are 
no accessible tools for the ocean science community to process 
visual data using machine learning. Below we provide additional 
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details and present excerpts from our conversations with partici-
pants that illustrate each of these themes. 

4.1.1 Challenges with Data Sharing. We discovered that a primary 
barrier to realizing OVAIs goals is the long-standing cultural norms 
against data sharing and community collaboration in the ocean 
space. This custom of keeping imagery “in-house” limits progress. 
One particular aspect of keeping data in-house is that researchers 
fear that someone else will make a new discovery using their data 
before they can fully analyze it. This concern is more consequential 
for countries and organizations that lack the resources and people 
to complete the necessary analysis of their own data in a timely 
manner. For example, Participant 10 (end-user) reports on their fear 
of sharing data as a trust issue: 

“I think there is also a trust issue. As an emerging researcher, I 
need to publish, I want to understand my data [...] There’s also a trust 
issue with me, like okay I can get it there, but I also just really want 
to apply myself, my knowledge, my head and see what I get out of 
[the data]. And then everyone else can have it. Which is a mean thing 
to say, but that’s the reality. There’s a lot of trust dynamics within 
that. If I could store it and give it to a data manager that reassures 
me that no one is going to touch it, then maybe.” 

Participant 21 (end-user) additionally points out an interoper-
ability issue between their national marine research infrastructure 
and other organizations in their country as a data-sharing barrier: 

“The overarching problem that we are having with all these dif-
ferent data sets it’s actually interoperability [...] Although we are the 
national marine information management system, we also have other 
departments and universities who collect data [...] Our system cannot 
communicate seamlessly with their system.” 

Even beyond research groups, organizations that collect and 
share data publicly (as part of live streams) make it di�cult for 
enthusiasts to locate both past and present video data. One mem-
ber of an ocean science enthusiast group, Participant 5 (end-user), 
describes their di�culties: 

“The footage is either unknown and also just not publicly accessible 
[...] NOAA for example has pretty good metadata and annotations 
associated with pretty much most of their dives, it’s just incredibly 
hard to �nd on their site though.” 

Any given set of visual data can support di�erent projects, but 
few institutions have all the expertise and resources available needed 
to realize the full value of a dataset. In analyzing the interviews, 
we found that over half the interviewees consistently raised four 
problems: 

(1) No standardization of the imagery and associated metadata 
(2) Inconsistent or in�exible taxonomy and concept trees 
(3) No recognized metric for communicating inter- and intra-

annotator quality 
(4) Concern about attribution of data sources and recognition 

of taxonomic expertise 

4.1.2 The ocean community has broad data use cases for machine 
learning. There are numerous challenging use cases inherent in 
marine imagery that would appeal to machine learning research 
communities: biodiversity surveys require precise population esti-
mates that must be robust to distribution shifts; species discovery 
needs automated systems that operate in an open world capacity; 

�ne-grained taxonomic identi�cations could bene�t from hierarchi-
cal model design. Participant 20 (end-user and stakeholder) shares 
an example of how ML could help with requests they get from 
researchers: 

“We get requests from people studying octopuses, can you send 
me all of your video footage of octopuses? And it’s impossible to do 
because the data is all over the world. We get very speci�c requests for 
footage. So we want to try to break through that issue where people 
can just go on a website and download it for themselves.” 

In this case, ML tools could make data more accessible to all and 
has great potential to increase the turnover of new research and 
discoveries. 

Another anticipated use case for ML is its potential ability to 
inform ROV (remotely operated vehicle) dive routes while scientists 
are at sea. Participant 22 (end-user and stakeholder) shares how 
they currently capture data at sea and how ML could improve their 
dives: 

“If we don’t capture something in real-time, we’re probably going 
to miss it [...] If you’re doing that [annotating] in real-time, that can 
help inform what you’re doing in the moment, right? And so I think 
it could help inform an ROV dive that can last days potentially. That 
could help us make decisions on what we’re sampling, where we are 
going next.” 

Additionally, 3 interviewees (2 end-user and 1 analogous) com-
mented on the bene�ts of using machine learning for things like 
monitoring construction sites of o�shore wind farms, surveillance 
data for �sheries, and ambient ocean knowledge for ocean farmers. 
Another interviewee (end-user) commented that AI is needed for 
observing and imaging the deep sea to help establish quantitative 
metrics to assess the vulnerability of certain areas. This use case is 
especially necessary to inform policymakers. 

The associated machine-learning solutions to these problems are 
all active areas of research that could bene�t from access to data 
provided by sea-going imaging systems. The 6 computer scientists 
we spoke with recognize that utilizing this data would be bene�cial 
but noted that it has not been made accessible to their community. 
These issues related to access lead to researchers feeling like it is 
more e�cient to annotate their data by hand. 

4.1.3 Li�le machine learning/artificial intelligence knowledge within 
the ocean science community. Ocean scientists, despite their wealth 
of visual data that might appeal to ML researchers, expressed frus-
tration with the lack of available computational expertise. The 
�rst-order issue at the interface between these communities is a 
simple matter of money; ocean scientists and government managers 
typically cannot pay ML experts and engineers competitive salaries 
relative to those o�ered by the industry. This is especially true 
for marine scientists and policymakers from non-OECD countries. 
Participant 17 (end-user and stakeholder) highlighted the issue of 
competitive tech salaries causing institutions to train ocean scien-
tists to be data scientists and programmers even though they are 
often not the best equipped and knowledgeable: 

“We either don’t hire the right people, the data scientists, or we 
aren’t training the people we do have. There are a lot of people like 
me that are �shery biologists that are then taking courses on how 
to develop an algorithm. And it’s like, well, that’s di�cult. You’re 
probably not setting yourself up for the most successful program if 
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you’re training �sh biologists to run programs. We have that issue 
even with just data architects, database managers, software developers 
[...] We struggle to hire those modern types of positions into an agency 
full of �shery biologists.” 

Participant 2 (stakeholder) discussed this lack of cross-domain 
within the ocean science �eld with the additive problem of having 
an AI position open for most of the past year with little hope of 
�lling it: “If you think about costs, what do you need to be able to 
develop an AI algorithm and apply it? You need Python, Python is free. 
You need a computer, most of these scientists already have a computer. 
It’s not about these physical costs, it’s your understanding of how to 
approach it [...] How to develop a training data set, how to train your 
algorithm, how to see whether your training has been su�cient or 
not. As soon as we start talking about these things, we’re losing 80% 
of our scientists. These are all new concepts to them. It’s really hard 
for them to comprehend. [...] We’ve had an AI position open for the 
last 8 months and have not been able to attract anyone so far. This 
shortage of understanding AI principles, this shortage of AI expertise 
is what’s hurting us most.” 

Without the �nancial ability to directly contract ML know-how, 
ocean scientists are left to either develop the expertise in-house or 
attempt to entice potential collaborators from academia or industry. 
Both paths are challenging especially when many ocean scientists 
are under the misconception that ML is a “solved problem,” often 
leaning on students or trainees to implement work�ows with little 
technical guidance, leading to poor results and disillusionment. 

4.1.4 No accessible tools for the ocean community to process visual 
data. Ocean-aligned researchers have a strong desire to integrate 
ML into their visual data pipelines as noted in key takeaways from 
15 interviews. Indeed, all interviewees recognized that there is little 
hope of e�ectively using their data without ML assistance. Yet the 
prevailing perception is that there is no cohesive approach to do 
so in the ocean space. Many groups have portions of the work�ow 
in place but have self-identi�ed big gaps or de�ciencies that seem 
insurmountable. Participant 1 (end-user and stakeholder) detailed 
aspects such as the lack of consistent image datasets and code bases 
to train systems on as being a major issue within the community: 

“For every new use case, for every new dataset, we always have to 
tune systems again. So the system for nodule detection that I trained 
on this one dataset acquired with this one speci�c camera will proba-
bly not work right out of the box with the next nodule set acquired 
with a di�erent camera. So changing the light, changing the camera, 
changing the deployment type, these all a�ect the image signal and 
this will a�ect the quality of any trained machine learning or just 
image analysis system. So if we can create something like ImageNet 
for the ocean where we can train systems that are agnostic of all these 
e�ects, that would be amazing. [...] We also don’t really have a code 
base for everything. So we do a lot of stu� in C++ using OpenCV, we 
built some tools around that for some publications. But some PhDs pre-
fer Python, of course there’s also OpenCV Python [...] We as scientists 
usually aim for the next paper and then afterwards we don’t really 
care about that thing anymore. That’s also a reason why we don’t 
have a super large code base that we can share with the community. 
Everything is essentially separated and not integrated into one bigger 
system.” 

Participant 12 also noted that the lack of standardized data prac-
tices requires additional work from researchers when trying to 
share their data: 

“Data isn’t standardized. It’s not following data standards like 
Darwin Core and so there’s an extra step to get it standardized so 
that it can be shared and you know, I think that’s really the limiting 
factor.” 

Three of the interviewees also identi�ed the lack of data hosting 
solutions as a large hurdle they face. Most organizations, including 
government and industry players, do not have e�ective ways of 
making their imagery easy to share or work with internally. For 
Participant 16 (end-user), they described the frustration of working 
as a freelancer and not having access to a server to store all their 
data: 

“One thing I �nd quite frustrating [with existing annotation ser-
vices] is that you need to have a server for all of the data to be put on. 
And so for instance, because I spent the last 2 years as a freelancer, 
it’s like well, I don’t have, for instance, an academic server.” 

People and groups that generate data use all manner of storage, 
from external hard drives to personal computers to institutional 
servers, that are not public-facing. This makes it di�cult to im-
plement collaborative annotation frameworks, entrain community 
scientists, and entice computer vision researchers. The lack of con-
sistent tools and data practices particularly hurts the accessibility 
of ocean science research at under-funded and less-established or-
ganizations around the world. Tools need to meet users at their 
level. Participant 10 (end-user) shares their challenges of having to 
perform in several di�erent roles as being the root problem when 
discussing processing visual data: 

“Me as a researcher, as a taxonomist in South Africa, my love, my 
absolute joy is sitting in a basement looking at specimens. But I do 
not have that sort of privilege because I have to be the taxonomist, 
the AI reporter, policy developer, technician at sea, chief scientist. I 
have to be so many things [. . . ] It’s important to understand those 
challenges when you start thinking: Where are we in terms of visual 
imagery? Why are we at this point when technology has developed 
over x-amount of years? Why are other places, other countries lagging 
along? And until we have that conversation it becomes quite di�cult 
and very insensitive, to some degree, to talk about an output. Who is 
this output for?” 

4.2 User archetypes 
Through the interviews, we were able to collect opinions and better 
understand the needs of users across di�erent communities who 
will interact with ocean data using OVAI tools. As such, the four 
themes described above additionally helped inform our process 
of creating 12 user archetypes of potential OVAI users. Below we 
describe our user archetypes and how each may use this system. 
We believe that this process is particularly important as it allows 
the creators of OVAI to address issues and support a variety of 
functionality that users require. Moreover, by understanding these 
needs, we can incorporate tools to enable members of di�erent 
communities to better collaborate with each other. 

4.2.1 Ocean enthusiast. Passionate about marine organisms and 
eager to engage in a community of like-minded ocean lovers while 
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learning about new animals. Wants to use their acquired knowl-
edge to help scientists work with visual data either through direct 
annotation or via a video game interface. Ideally, there will be a 
mechanism for interaction with recognized experts both to validate 
individual annotations and help the enthusiast improve their work 
while making them more con�dent. 

4.2.2 Academic biologist/ecologist. Has a range of desires and use 
cases for their collection of images and videos. This could include 
creating learning experiences for students, building capacity in 
parataxonomy, or using ML/AI for biodiversity surveys, ecological 
studies, or tracking species expansion. This user might not have all 
the vocabulary or computational resources necessary to make it 
happen. They want access to ML expertise, help with data storage 
and sharing, and easy-to-use interfaces for working with annota-
tions and algorithms. The user or their organization might already 
have portions of an annotation work�ow already in place. 

4.2.3 Academic computer scientist. Has no expertise nor particular 
a�nity for ocean science though is happy to �nd ways to contribute 
to environmental causes. They want to access datasets to perform 
bleeding-edge ML experiments and publish the results in high-
impact journals or conference proceedings. The datasets need to be 
packaged for easy access with explicit benchmarks for comparing 
algorithm performance. This user might respond to “challenges” 
or leaderboards. They might also be intrigued by video data for 
robotics experiments. 

4.2.4 Professional taxonomist. Wants an easier way to �lter visual 
data to �nd rare or undescribed species. They largely want to re-
move “whitespace” with no interesting organisms so they can focus 
on creatures of interest. Ultimately, this user does not care about 
the particulars of the system nor whether or not it is automated; 
they just want something that works and has a �exible way of 
altering or tracking taxonomic designations. Public outreach and 
interaction with enthusiasts is a perk but not a prerequisite. 

4.2.5 Non-profit scientist. Often has interests that align with aca-
demic researchers but typically with an eye toward informing and 
in�uencing decision-makers. They want to produce visualizations 
based on their biodiversity or ecological studies that can illustrate 
the e�ect of a policy change or the impact of a project. Sharing their 
visual data is both an e�ective way of using it for their surveys 
and engaging the public, perhaps garnering more support for their 
cause. 

4.2.6 For-profit scientist. Often has interests that align with aca-
demic researchers but ultimately needs to use the data to inform 
company decisions or satisfy regulatory requirements. This user 
might need to adhere to company-imposed embargoes on sharing 
data but would perhaps be willing to pay more to use an e�ective 
service. Like their counterparts in the non-pro�t sector, they will 
place a premium on e�ective visualization tools. 

4.2.7 Government scientist. Wants to leverage their visual data 
for stock assessments or management surveys. This user needs to 
be able to communicate their results to political appointees and 
the public. Their mission has lots of potential scienti�c output 
but is often more oriented to developing actionable metrics for 

policymakers. The use cases typically dovetail with other research 
communities. 

4.2.8 Government program. Has a vast backlog of videos and im-
ages that they want to make easier for the public and other re-
searchers to access. This user wants a central location so interested 
parties can access the government’s data without having to hunt 
for it. They value interoperability and ease of use to facilitate the 
work of others. The hope is that work�ows developed with their 
data will pay dividends in terms of increasing the analysis speed 
of future data collections. Certain government programs are also 
interested in developing the capacity to help with live annotation 
during data collection campaigns. 

4.2.9 Non-profit organization. Has lots of visual data and nowhere 
to put it. This user might be attempting to make their data more 
public or to store it in a comprehensive but embargoed fashion. In 
either case, they need consistent data formatting requirements and 
one central location for their imagery to live. Like some govern-
ment players, these organizations might want to implement live 
annotation interfaces for public use while their assets are in the 
water. 

4.2.10 For-profit organization. Has lots of visual data that they 
want to store in a secure location that only they and their a�liates 
can access. This user wants employees to be able to easily share 
and collaborate on the same datasets. They will also want to rapidly 
produce and distribute reports among their ranks. Eventually, they 
might need to distribute the data to regulators or other stakeholders. 

4.2.11 Journalist. Wants to �nd striking videos and images to ac-
company engaging stories. They primarily need an intuitive front-
end interface to browse available data and perhaps be able to make 
inquiries of registered users, especially domain experts. 

4.2.12 Media organization. Wants to �nd content for use in pro-
duction. This user will need to easily communicate with individuals 
and organizations that generated the original visual data to secure 
consent for reuse. They may also want to connect with researchers 
with expertise in speci�c animals. 

4.3 Workshop �ndings 
The FathomNet workshop helped identify themes speci�c to each 
distinct user group. The discussions and feedback have been used 
to further understand speci�c use cases and user needs. The key 
�ndings from the workshop are separated into 4 individual sec-
tions: 1) Educators, 2) Programmers, 3) Enthusiasts, and 4) Marine 
Scientists. 

4.3.1 Educators. Educators were the smallest group in the work-
shop, with 21 people identifying themselves as ocean science ed-
ucators. Attendees in this section were interested in connecting 
students with educational materials and meaningfully contributing 
to FathomNet. The educators identi�ed speci�c learning goals for 
their classes— such as exposing students to new concepts and pro-
viding an introduction to the deep sea— that could be facilitated 
by using FathomNet’s real-world data in novel pedagogical ways. 
The educators hoped that using FathomNet data could yield ed-
ucational outcomes like: increased interest in ocean biodiversity; 
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greater awareness of marine science-related career paths; building 
enthusiasm and continuity within the community; and more gen-
eral awareness of the marine environment and the many issues it 
faces. However, there are a number of limitations when it comes 
to onboarding new students and classrooms. For example, there is 
a lack of coordination and organized resources to assist with inte-
grating something like FathomNet into curricula, and, in general, 
teachers are often stretched too thin to take on the additional e�ort 
this may require. 

Educators desire “plug-and-play” resources, such as websites that 
contain teaching modules and clear instructions for using them. 
Additionally, there is a need for clearly identifying helpful start-
ing points and presenting how-to guides that reduce some of the 
barriers of entry for teachers. To enhance uptake, module writers 
should include comprehensive evaluation criteria. To integrate real 
data annotation into lesson plans, there must be an e�ective way to 
assess the quality of the annotations the students are making. This 
procedure would need to happen before uploading new annotations 
to the central repository for educators to feel comfortable using 
such a resource. 

4.3.2 Programmers. Programmers were the second smallest sec-
tion with 44 participants, made up mainly of computationally-
inclined ocean scientists interested in �nding new ways to train and 
deploy models on their own data. Some attendees were software 
developers seeking to build tools on top of the existing Application 
Programming Interface (API) to service their organization’s need 
for hosting, sharing, and annotating ocean image data. General 
interests and discussions focused on quality control for both hu-
man and machine annotations. Additionally, there was a desire for 
enabling di�erent annotation techniques (segmentation, points) 
and imaging types (microscopic, stereo) within FathomNet. 

Programmers were interested in building a forum around Fath-
omNet to share automated models trained for di�erent organisms, 
camera types, and environments. ML model databases like Hugging 
Face make model sharing easy, but typically do not have easy-to-
search metadata relevant to the ocean. A FathomNet “model zoo”— 
a community-maintained collection of supervised machine learning 
models trained on ocean image data— could contain such codi�ed 
metadata that would enable practitioners in the marine space to ef-
fectively bridge the gap to ocean scientists. More speci�cally, users 
suggested codifying existing metadata and adding new �elds to 
specify performance on an internal validation dataset in an ecolog-
ically consistent manner. This extra information would improve a 
user’s ability to di�erentiate between models and improve repro-
ducibility. Formal requirements on �le formats and descriptions 
will improve the interoperability of uploaded models in the long 
term. 

4.3.3 Enthusiasts. Enthusiasts made up the second largest section 
of the workshop with 52 attendants. The enthusiast section was a 
very diverse group of non-professional ocean scientists. They are 
individuals who do not work in ocean science-related �elds but 
nonetheless have developed deep expertise speci�cally in marine 
biology and ocean taxonomies. Enthusiast groups have largely or-
ganically developed around live streams of ROV dives from ocean 
research vessels, such as the Schmidt Ocean Institute’s R/V Falkor 

and Ocean Exploration Trust’s Nautilus Live. The interactions be-
tween enthusiasts generally take place in the YouTube comment 
section during a live stream, or on Twitter. Outside of live streams, 
discussions and interactions between enthusiasts occur on Discord 
servers and Facebook groups. Discussion revolves around taxo-
nomic identi�cation between members, though this identi�cation 
process has not directly contributed to any scienti�c e�orts. Re-
cently, e�orts have been made to use annotation platforms that 
allow enthusiasts to collaborate on annotations for both historic 
and real-time ocean video data. Overall, enthusiasts desired a way 
to meaningfully contribute to the visual data processing pipeline to 
more e�ectively support ocean science and discovery. They were 
also interested in connecting with other ocean enthusiast groups 
to leverage each of their strengths and skills. 

Community engagement was a critical theme discussed during 
the breakout sessions. Because enthusiasts would be contributing 
to annotations during their own time, it is important to understand 
their needs, desires, and limitations. Suggestions included: creating 
a reward system with points or other forms of recognition; allow-
ing for anonymity for users who prefer not to be identi�ed; and 
establishing a mentorship program and/or workshops to connect 
enthusiasts with domain experts. 

Some discussions focused on gamifying the annotation experi-
ence, for example, by allocating points based on the number and 
quality of contributions. This would enable users to both quantify 
their contribution and improve their expertise via direct feedback 
on their annotations. Points could lead to badges that show what 
level of expertise a user is in speci�c animal groups (e.g., level 6 
in cephalopods but level 2 in geology). Other participants placed 
an emphasis on anonymity as they are often not comfortable with 
their level of con�dence in identifying species and annotations. To 
better support enthusiasts, there is potential to establish a formal 
mentorship program. For example, an expert could mentor several 
enthusiasts contributing to their data analysis. Quick training work-
shops can also be set at speci�c intervals throughout the year to 
aid in the growth of enthusiast users. Enthusiasts have the ability 
to greatly help the ocean science community in getting through 
their backlog of data, as such, it is important to build a system that 
welcomes these users and that acknowledges their importance. 

4.3.4 Marine Scientists. The marine scientists’ section was the 
largest with 108 attendees, which largely consisted of biologists, 
ecologists, and taxonomists who were interested in contributing 
their expertise to FathomNet. Scientists discussed improvements 
and additions to the platform, such as: how to verify a user’s taxo-
nomic expertise, how to manage and track disagreements in species 
identi�cation, how contributors would receive credit for their identi-
�cations, and types of collaboration tools for users. They envisioned 
a platform like FathomNet as having many use cases: training stu-
dents in marine organisms, collaborating across borders and around 
animals of interest, �nding images for outreach and education pur-
poses, and processing video data faster by using AI as a �rst pass. 
The themes within these session discussions included: communica-
tion between users, resources to ease contributions, ways to enable 
attribution, and quality control of annotations. 
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Alleviating any hurdles to working on FathomNet is important to 
ensure the usability and longevity of the platform itself. The scien-
tists expressed a desire for a searchable mapping between common 
names to the organism’s Latin name. Additional discussion points 
focused on ways of easing the uploading of data and simplifying 
the annotation process, such as by providing a template for CSV 
uploads to FathomNet, enabling storage of other localization types 
within metadata for annotations, allowing two-way contributions 
between FathomNet and other annotation tools (e.g., Tator, VIAME, 
BIIGLE, Squidle), and enabling high-level detections/localizations 
in an automated fashion. 

Ensuring users are credited for their work is a critically impor-
tant feature to develop. Taxonomists in particular felt their expertise 
was undervalued and that they were often asked to undertake such 
labeling tasks with minimal incentive. FathomNet could facilitate 
this in several ways, primarily by generating digital object iden-
ti�ers (DOI) for submitted collections of annotations. This would 
allow future users, scientists, and programmers alike, the ability 
to properly attribute the annotations to the correct expert. Contri-
butions could also potentially be tracked at all stages (submitter, 
annotator, localizer, veri�er, etc) if linked to a user’s account and 
the collection DOI. ORCID numbers could serve as a useful spring-
board for this sort of functionality since many marine scientists 
already use the system. Attendees also mentioned that their home 
institutions would look favorably on a “certi�cate of recognition” 
that would indicate participation in the FathomNet. 

Overall, for FathomNet to be used reliably, there needs to be 
stringent quality control of the annotations. Attendees suggested 
that building a �eld for annotators to express their con�dence level 
in their labels would be useful for sorting purposes. Enabling multi-
tiered veri�cation levels or con�dence tiers would yield similar 
results. For example, if there is a sample that exists for that particular 
specimen, indicate whether the specimen was examined, has a 
sequence, or any open nomenclature tags. Another important aspect 
is verifying each user’s level of taxonomic expertise. Users could 
submit relevant biosketches that indicate research focus and level 
of expertise, length of time in the �eld, and their ORCID number. 
Veri�ed experts could then nominate other users to be experts for 
di�erent organisms or serve as mentors to less experienced users. 

Largely, marine scientist users are hopeful that FathomNet could 
be a platform for a global marine taxonomy network. The commu-
nity features the attendees suggested could be leveraged to create 
regional hubs of expertise, provide platform-speci�c training, and 
distribute resources for taxonomy workshops and events. There is 
additional interest in collaborative e�orts that could be made by 
integrating FathomNet with other labeled datasets, like CoralNet 
and iNaturalist, as well as integrating pre-existing annotation tools. 

5 DISCUSSION 
Our interviewees and workshop participants come from di�erent 
places, educational backgrounds, and professions. While they rep-
resent diverse ocean visual data use cases, their responses largely 
highlighted the parallel challenges they face. The themes we iden-
ti�ed from our conversations and workshop survey are broadly 
consistent across the user groups. Opposing viewpoints and end 
goals between groups appear to be a function of nomenclature and 

terminology; discrepancies are more a matter of language rather 
than fundamental di�erences. The themes— lack of data sharing, a 
desire for ML expertise in a domain science, a need for accessible 
digital tools, and data hosting— are not unique to the ocean space. 
While these are common concerns found in data-intensive scienti�c 
research, they are worth bearing in mind and contextualizing for 
any large, public-facing initiative seeking to maximize utility for 
a speci�c domain challenge. To that end, our analysis of the user 
interviews and feedback from the workshop participants have led 
us to prioritize a set of functional requirements for the suite of 
Ocean Vision AI tools. 

We discovered that data sharing among individuals and insti-
tutions collecting in situ data is limited due in large part to a lack 
of standardization, inconsistent taxonomic concepts, and concerns 
about data quality and provenance. Meaningful standards must 
therefore be clearly implemented and communicated in every part 
of the system to enable consistent access and ensure data longevity. 
Taxonomic designations will need to be easily adaptable and will re-
quire a speci�c API. OVAI will need to deploy a coherent method for 
evaluating label quality and measuring variability among human 
annotators. Given OVAI’s community-oriented mission, a mecha-
nism for awarding contributions must be in place to build a broad 
user base that entrains everyone from leading experts to lay enthu-
siasts. This could entail creating Digital Object Identi�ers for data 
and identi�cation e�orts for academics or building membership 
lists and web pages to highlight achievements. These formal and 
informal methods would allow academics to track and cite their 
contributions while enabling enthusiasts to share and engage with 
ocean media. Allaying concerns surrounding the attribution of im-
ages, labels, and expertise will help curate a contributor network 
while also creating a collaborative space for users to work toward 
a common goal. 

We found that machine learning solutions were widely believed 
to be necessary for analyzing ocean visual data, but that these solu-
tions were often not readily available to ocean science communities. 
Even when an individual or organization had access to resources, 
they were sometimes hard to access and di�cult to use. Moreover, 
there was a perceived lack of computational expertise within ocean 
science communities. The costs of contracting a data science engi-
neer are outside the budget for many organizations. Even when a 
marine expert learns how to run ML resources, they do not have 
time to familiarize themselves with the nuances of such processing 
pipelines. This can result in suboptimal results, frustration, and dis-
illusionment with the value of automated processing. OVAI’s tools 
for ocean scientists will thus need to be easy to operate and maxi-
mally transparent. OVAI can provide ML education that will help 
ocean scientists better understand ML and communicate with their 
computationally-oriented peers. This can be achieved both with 
direct teaching materials (e.g., workshops, seminars, bootcamps, 
etc.) and with human-computer interactions that provide better 
insight into how a system functions. These e�orts will provide 
domain scientists with the language and tools to constructively 
use metrics that describe the model performance and data qual-
ity, ultimately yielding more constructive collaborations and more 
e�ective automated pipelines. 

OVAI can help bring ML expertise into the ocean space by provid-
ing evolving, curated benchmark data sets. There is a demonstrable 
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need in the computer science community for dynamic ML bench-
marks to enable bleeding-edge experiments and avoid issues with 
over�tting. These resources could exploit standardized metadata 
to build repositories that target diverse problems for ML develop-
ers. Several systems exist in the ML space that could be used as 
models for this element of OVAI such as Dynabench, iNaturalist, or 
WILDS [30, 31, 67]. Providing OVAI benchmark resources both as 
static downloads and with an interactive API will increase interest 
among computer scientists. 

OVAI will need to support data hosting for users that do not 
have the means to support public-facing, consistently accessible 
data servers. This could involve instituting a comprehensive ser-
vice agreement and implementing a scaled pay model based on 
processing volume. The rates could be prorated based on open data 
contributions and annotation veri�cation e�orts. Such rates should 
also be scaled based on the institution in order to support the work 
of organizations without access to vast �nancial resources. In the 
short term, OVAI has begun a partnership with the US National 
Oceanographic and Atmospheric Administration (NOAA) to pro-
vide hosting for annotated visual data, with a 75-year life cycle, 
for individuals and organizations that cannot maintain consistent 
public-facing access. 

Ocean science community members pointed to many constraints 
on their ability to process their visual data, and issues with public-
facing storage were a common theme. OVAI should thus be careful 
to make its tools modular with multiple entry points for users with 
di�erent needs. Each component must also be scalable and allow 
for changes in scope depending on the speci�c project. 

Our one-on-one interview participants came from many corners 
of the Blue Economy: academic, industrial, government, non-pro�t, 
and enthusiasts. However, the interviewees were largely based in 
the Global North, and mainly in the United States. This is partially 
a re�ection of the authors’ professional networks. It also re�ects 
the state of ocean sciences in general: working at sea is expensive 
and is typically the purview of wealthy nations [2, 61]. Projects 
like OVAI seeking to enhance access to ocean data will need to 
continue e�orts to engage these groups and make e�orts to ensure 
their tools are accessible to everyone. The OVAI Portal is intended 
to be a gateway tool to enable new analysis e�orts for many in 
these underserved regions [6]. 

The interviews and workshop revealed a real desire from a ded-
icated group of ocean enthusiasts to participate in scienti�c en-
deavors. This represents an opportunity to harness their e�orts 
for science initiatives while building a knowledge base for ocean 
researchers to draw on in the future. We are designing a number of 
entry points for enthusiasts of all levels, from dedicated deep-sea ex-
ploration a�cionados to grade school students just getting their feet 
wet. Part of this might entail developing speci�c, gami�ed interfaces 
for these users [35, 52]. The interfaces will ideally simultaneously 
educate and inspire players while generating useful information. 
Designing such systems will be an HCD e�ort unto itself, taking 
care to build interfaces that go beyond an annotation wrapper [11]. 
Moreover, the OVAI team will need to carefully consider the role 
of the players to avoid exploitation; an issue in both domain sci-
ence and HCI circles [26, 51]. Critically, any OVAI-related game 
development will necessarily treat players as a pool of talent worth 

teaching; many of our enthusiast participants expressed a desire to 
learn more and directly engage with professional researchers. 

While the insights gleaned in our work will speci�cally inform 
the development of OVAI, we believe that our �ndings and process 
can be instructive for other projects seeking to assist big science 
e�orts. There is a universe of stakeholders outside of one individual 
lab and �nding solutions to their problems will inevitably make 
for a stronger, more useful product. In the case of OVAI, this will 
yield a more accessible tool that streamlines data interactions and 
enables learning experiences across a spectrum of users. 

From the outset, OVAI has sought to build systems that address 
needs across a spectrum of users united by an interest in the ocean. 
To make OVAI maximally e�ective, HCD principles will be critical 
as the OVAI tools are further developed and distributed; the work 
presented in this paper is just a starting point. We are implementing 
a �exible and iterative community co-design process that seeks 
user input via actual interaction with OVAI tools [16, 25]. This 
will come in the form of surveys, advisory groups, and technical 
working groups all comprised of people using OVAI. The process 
will be guided by a disintermediation design rubric to avoid the 
creation of unnecessary elements and barriers both within and 
between components of the OVAI suite [53]. The rubric will help 
our team build a system that can promote sustainable practices both 
from individuals, by connecting their habits to downstream impacts 
in the ocean, and organizations, by providing easily interpretable 
data products to inform decision and policy making. Data will 
be collected about user interaction with OVAI, with the user’s 
permission, to quantify engagement and e�cacy to inform design 
decisions. Our team is currently codifying the rubric and a set of best 
practices for data collection. These can be used as a general-purpose 
template for applied HCI projects in scienti�c data pipelines and 
for management tools. 

Insights gleaned from our work can be broadly informative to 
HCI-based development e�orts for interdisciplinary science and en-
vironmental policy applications. Such design programs are increas-
ingly necessary for science-based decision-making, particularly in 
the context of the climate crisis, which leverages multiple types 
of expertise and requires collaboration across traditional academic 
boundaries. As the volume of data increases, carefully considered 
systems like OVAI will be critical to e�ectively use machine learn-
ing systems, despite the potential for bias, to address seemingly 
insurmountable problems involving data collection, annotation, 
and analysis to inform global policy. 

6 CONCLUSION 
In this paper, we presented a human-centered design study that 
details community needs for systems to assess the processing of 
ocean image data. Our process of interviewing and discussing with 
participants invested in ocean sustainability and exploration high-
lights the many needs and use cases for an initiative such as Ocean 
Vision AI. Collectively these conversations suggest a path forward 
for OVAI: develop collaborative workspaces that enhance access 
to ocean expertise, machine learning know-how, and visual data 
throughout the depth and breadth of the ocean. The infrastructure 
will need to support and engage each user archetype with: intuitive 
AI-assisted interfaces; mechanisms to upload, search, and retrieve 
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data based on diverse parameters; resources to facilitate scienti�c 
analysis and data storytelling; and visualizations to inform policy 
decisions. The challenge moving forward lies in ensuring that these 
tools are easily accessible to all and �exible enough to support 
di�erent use cases and users. 

ACKNOWLEDGMENTS 
Ocean Vision AI is supported by the National Science Founda-
tion Convergence Accelerator Track E Phase I and II (ITE-2137977 
and ITE-2230776). Additional support comes from the Monterey 
Bay Aquarium Research Institute through generous support from 
the David and Lucile Packard Foundation. The authors gratefully 
acknowledge the interviewees and workshop participants. Their 
insights form the backbone of this paper and had a tangible impact 
on the design of Ocean Vision AI. 

REFERENCES 
[1] Franziska Althaus, Nicole Hill, Renata Ferrari, Luke Edwards, Rachel Przeslawski, 

Christine H.L. Schönberg, Rick Stuart-Smith, Neville Barrett, Graham Edgar, 
Colquhoun, et al. 2015. A standardised vocabulary for identifying benthic biota 
and substrata from underwater imagery: The CATAMI classi�cation scheme. 
PLOS ONE 10, 10 (2015), 1–18. 

[2] Diva J. Amon, Randi D. Rotjan, Brian R.C. Kennedy, Gerard Alleng, Rafael Anta, 
Eriatera Aram, Thera Edwards, Marcia Creary-Ford, Kristina M. Gjerde, Judith 
Gobin, et al. 2022. My Deep Sea, My Backyard: A pilot study study to build ca-
pacity for global deep-ocean exploration and research. Philosophical Transactions 
of the Royal Society B 377, 1854 (2022), 20210121. 

[3] Ward Appeltans, Shane T. Ahyong, Gary Anderson, Martin V. Angel, Tom Artois, 
Nicolas Bailly, Roger Bamber, Anthony Barber, Ilse Bartsch, Annalisa Berta, et al. 
2012. The magnitude of global marine species diversity. Current Biology 22, 23 
(2012), 2189–2202. 

[4] Oscar Beijbom, Peter J. Edmunds, David I. Kline, B. Greg Mitchell, and David 
Kriegman. 2012. Automated annotation of coral reef survey images. In Proceedings 
of the IEEE Conference on Computer Vision and Pattern Recognition. 1170–1177. 

[5] Katherine L.C. Bell and Diva J. Amon. 2022. Toward an equitable deep sea 
future. In The 2022 Global Deep-Sea Capacity Assessment. Ocean Discovery League. 
https://deepseacapacity.oceandiscoveryleague.org/pub/2022-equitable-future. 

[6] Katherine L.C. Bell, Jennifer S. Chow, Alexis Hope, Maud C. Quinzin, Kat A. 
Cantner, Diva J. Amon, Jessica E. Cramp, Randi D. Rotjan, Lehua Kamalu, Asha 
de Vos, et al. 2022. Low-cost, deep-sea imaging and analysis tools for deep-sea 
exploration: A collaborative design study. Frontiers in Marine Science 9 (2022), 
873700. 

[7] Katherine L.C. Bell, Maud C. Quinzin, Susan Poulton, Alexis Hope, and Diva 
Amon (Eds.). 2022. The 2022 Global Deep-Sea Capacity Assessment. Ocean Dis-
covery League. https://deepseacapacity.oceandiscoveryleague.org. 

[8] Nathan J. Bennett, Andrés M. Cisneros-Montemayor, Jessica Blythe, Jennifer J. 
Silver, Gerald Singh, Nathan Andrews, Antonio Calò, Patrick Christie, Antonio 
Di Franco, Elena M. Finkbeiner, et al. 2019. Towards a sustainable and equitable 
blue economy. Nature Sustainability 2, 11 (2019), 991–993. 

[9] Tanya Y. Berger-Wolf, Daniel I. Rubenstein, Charles V. Stewart, Jason A. Holm-
berg, Jason Parham, and Sreejith Menon. 2017. Wildbook: Crowdsourcing, com-
puter vision, and data science for conservation. arXiv preprint arXiv:1710.08880 
(2017). 

[10] Richard T. Bex, Lisa Lundgren, Kent J. Crippen, and Bruce J. MacFadden. 2018. 
Designing for public participation in paleontology through the development of 
an app. In Proceedings of the 5th European Conference on Social Media (ECSM). 
Academic Conferences and publishing limited, 462. 

[11] Federico Bonetti and Sara Tonelli. 2021. Measuring orthogonal mechanics in lin-
guistic annotation games. Proceedings of the ACM on Human-Computer Interaction 
5 (2021), 265–1–16. 

[12] Qimin Chen, Oscar Beijbom, Stephen Chan, Jessica Bouwmeester, and David 
Kriegman. 2021. A new deep learning engine for CoralNet. In Proceedings of the 
IEEE/CVF International Conference on Computer Vision. 3693–3702. 

[13] Hervé Claustre, Kenneth S. Johnson, and Yuichiro Takeshita. 2020. Observing 
the global ocean with Biogeochemical-Argo. Annual Review of Marine Science 12 
(2020), 23–48. 

[14] Joe Cox, Eun Young Oh, Brooke Simmons, Chris Lintott, Karen Masters, Anita 
Greenhill, Gary Graham, and Kate Holmes. 2015. De�ning and measuring success 
in online citizen science: A case study of Zooniverse projects. Computing in 
Science & Engineering 17, 4 (2015), 28–41. 

[15] Matthew Dawkins, Linus Sherrill, Keith Fieldhouse, Anthony Hoogs, Benjamin 
Richards, David Zhang, Lakshman Prasad, Kresimir Williams, Nathan Lau�en-
burger, and Gaoang Wang. 2017. An open-source platform for underwater image 
and video analytics. In Proceedings of the IEEE Winter Conference on Applications 
of Computer Vision (WACV). 898–906. 

[16] Carl DiSalvo, Marti Louw, Julina Coupland, and MaryAnn Steiner. 2009. Local 
issues, local uses: Tools for robotics and sensing in community contexts. In 
Proceedings of the ACM Conference on Creativity and Cognition. 245–254. 

[17] Jennifer M. Durden, Timm Schoening, Franziska Althaus, Ariell Friedman, Rafael 
Garcia, Adrian G. Glover, Jens Greinert, Nancy Jacobsen Stout, Daniel O.B. Jones, 
and Anne Jordt. 2016. Perspectives in visual imaging for marine biology and 
ecology: From acquisition to understanding. Oceanography and Marine Biology: 
An Annual Review 54 (2016), 1–72. 

[18] Je�rey S. Ellen, Casey A. Gra�, and Mark D. Ohman. 2019. Improving plankton 
image classi�cation using context metadata. Limnology and Oceanography: 
Methods 17, 8 (2019), 439–461. 

[19] Geraldine Fauville, Anna Carolina Muller Queiroz, and Jeremy N. Bailenson. 
2020. Virtual reality as a promising tool to promote climate change awareness. 
Technology and Health (2020), 91–108. 

[20] Sarah Lou Carolin Giering, Emma Louise Cavan, Sünnje Linnéa Basedow, Nathan 
Briggs, Adrian B. Burd, Louise J. Darroch, Lionel Guidi, Jean-Olivier Irisson, 
Morten H. Iversen, Rainer Kiko, et al. 2020. Sinking organic particles in the 
ocean—Flux estimates from in situ optical devices. Frontiers in Marine Science 6 
(2020), 834. 

[21] Jose Nuno Gomes-Pereira, Vincent Auger, Kolja Beisiegel, Robert Benjamin, 
Melanie Bergmann, David Bowden, Pal Buhl-Mortensen, Fabio C. De Leo, Gisela 
Dionísio, Jennifer M. Durden, et al. 2016. Current and future trends in marine 
image annotation software. Progress in Oceanography 149 (2016), 106–120. 

[22] Adam T. Greer, John C. Lehrter, Benjamin M. Binder, Aditya R. Nayak, Ranjoy 
Barua, Ana E. Rice, Jonathan H. Cohen, Malcolm N. McFarland, Alexis Hagemeyer, 
Nicole D. Stockley, et al. 2020. High-resolution sampling of a broad marine life 
size spectrum reveals di�ering size- and composition-based associations with 
physical oceanographic structure. Frontiers in Marine Science 7 (2020). 

[23] Steven H. D. Haddock, Lynne M. Christianson, Warren R. Francis, Séverine 
Martini, Casey W. Dunn, Philip R. Pugh, Claudia E. Mills, Karen J. Osborn, Brad A. 
Seibel, C. Anela Choy, et al. 2017. Insights into the biodiversity, behavior, and 
bioluminescence of deep-sea organisms using molecular and maritime technology. 
Oceanography 30, 4 (2017), 38–47. 

[24] Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan 
Dorundo, Rahul Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, et al. 2021. The 
many faces of robustness: A critical analysis of out-of-distribution generalization. 
In Proceedings of the IEEE/CVF International Conference on Computer Vision. 8340– 
8349. 

[25] Yen-Chia Hsu, Paul Dille, Jennifer Cross, Beatrice Dias, Randy Sargent, and 
Illah Nourbakhsh. 2017. Community-empowered air quality monitoring system. 
In Proceedings of the CHI Conference on Human Factors in Computing Systems. 
1607–1619. 

[26] Yen-Chia Hsu and Illah Nourbakhsh. 2020. When human-computer interaction 
meets community citizen science. Commun. ACM 63, 2 (2020), 31–34. 

[27] IDEO.org. 2016. The Field Guide to Human-Centered Design. https://www. 
designkit.org/resources/1. 

[28] Kakani Katija, Eric Orenstein, Brian Schlining, Lonny Lundsten, Kevin Barnard, 
Giovanna Sainz, Oceane Boulais, Megan Cromwell, Erin Butler, Benjamin Wood-
ward, and Katherine L.C. Bell. 2022. FathomNet: A global image database for 
enabling arti�cial intelligence in the ocean. Scienti�c reports 12, 1 (2022), 15914. 

[29] Kakani Katija, Giancarlo Troni, Joost Daniels, Kelly Lance, Rob E. Sherlock, 
Alana D. Sherman, and Bruce H. Robison. 2020. Revealing enigmatic mucus 
structures in the deep sea using DeepPIV. Nature 583 (2020), 78–82. 

[30] Douwe Kiela, Max Bartolo, Yixin Nie, Divyansh Kaushik, Atticus Geiger, Zhengx-
uan Wu, Bertie Vidgen, Grusha Prasad, Amanpreet Singh, Pratik Ringshia, 
et al. 2021. Dynabench: Rethinking benchmarking in NLP. arXiv preprint 
arXiv:2104.14337 (2021). 

[31] Pang Wei Koh, Shiori Sagawa, Henrik Marklund, Sang Michael Xie, Marvin 
Zhang, Akshay Balsubramani, Weihua Hu, Michihiro Yasunaga, Richard Lanas 
Phillips, Irena Gao, et al. 2021. Wilds: A benchmark of in-the-wild distribution 
shifts. In Proceedings of the 38th International Conference on Machine Learning. 
5637–5664. 

[32] Robert E. Kraut and Paul Resnick. 2012. Building Successful Online Communities: 
Evidence-Based Social Design. MIT Press. 

[33] Tim Langlois, Jordan Goetze, Todd Bond, Jacquomo Monk, Rene A. Abesamis, 
Jacob Asher, Neville Barrett, Anthony T.F. Bernard, Phil J. Bouchet, Matthew J. 
Birt, et al. 2020. A �eld and video annotation guide for baited remote underwater 
stereo-video surveys of demersal �sh assemblages. Methods in Ecology and 
Evolution 11, 11 (2020), 1401–1409. 

[34] Jessica Lehman. 2018. From ships to robots: The social relations of sensing the 
world ocean. Social Studies of Science 48, 1 (2018), 57–79. 

[35] Ming-Chaun Li and Chin-Chung Tsai. 2013. Game-based learning in science 
education: A review of relevant research. Journal of Science Education and 

https://deepseacapacity.oceandiscoveryleague.org/pub/2022-equitable-future
https://deepseacapacity.oceandiscoveryleague.org
https://www.designkit.org/resources/1
https://www.designkit.org/resources/1
https://IDEO.org


Designing Ocean Vision AI CHI ’23, April 23–28, 2023, Hamburg, Germany 

Technology 22, 6 (2013), 877–898. 
[36] Huan Lin, Michael Julian Caley, and Scott A. Sisson. 2022. Estimating global 

species richness using symbolic data meta-analysis. Ecography 2022, 3 (2022), 
e05617. 

[37] Fabien Lombard, Emmanuel Boss, Anya M. Waite, Meike Vogt, Julia Uitz, Lars 
Stemmann, Heidi M. Sosik, Jan Schulz, Jean-Baptiste Romagnan, Marc Picheral, 
et al. 2019. Globally consistent quantitative observations of planktonic ecosys-
tems. Frontiers in Marine Science 6 (2019), 196. 

[38] David M. Markowitz, Rob Laha, Brian P. Perone, Roy D. Pea, and Jeremy N. 
Bailenson. 2018. Immersive virtual reality �eld trips facilitate learning about 
climate change. Frontiers in Psychology 9 (2018), 2364. 

[39] Karen L. Masters, Coleman Krawczyk, Shoaib Shamsi, Alexander Todd, Daniel 
Finnegan, Matthew Bershady, Kevin Bundy, Brian Cherinka, Amelia Fraser-
McKelvie, Dhanesh Krishnarao, et al. 2021. Galaxy Zoo: 3D — Crowdsourced bar, 
spiral, and foreground star masks for MaNGA target galaxies. Monthly Notices of 
the Royal Astronomical Society 507, 3 (2021), 3923–3935. 

[40] Lachlan I.W. McKinna. 2015. Three decades of ocean-color remote-sensing 
Trichodesmium spp. in the World’s oceans: A review. Progress in Oceanography 
131 (2015), 177–199. 

[41] Abhas Misraraj, Amanda Bullington, Alex Shepard, Scott Loarie, Ken-ichi Ueda, 
Carrie Seltzer, Tony Iwane, Patrick Leary, and Yaron Budowski. 2020. Seek by 
iNaturalist: User guide. http://static.inaturalist.org/wiki_page_attachments/ 
SeekUserGuide2020.pdf 

[42] Frank E. Muller-Karger, Erin Hestir, Christiana Ade, Kevin Turpie, Dar A. Roberts, 
David Siegel, Robert J. Miller, David Humm, Noam Izenberg, Mary Keller, et al. 
2018. Satellite sensor requirements for monitoring essential biodiversity variables 
of coastal ecosystems. Ecological Applications 28, 3 (2018), 749–760. 

[43] Mohammad Sadegh Norouzzadeh, Dan Morris, Sara Beery, Neel Joshi, Nebojsa 
Jojic, and Je� Clune. 2021. A deep active learning system for species identi�cation 
and counting in camera trap images. Methods in Ecology and Evolution 12, 1 
(2021), 150–161. 

[44] Jill Nugent. 2017. It all adds up: WildCam Gorongosa citizen science and conser-
vation in the classroom. Science Scope 40, 8 (2017), 12–15. 

[45] Jorg Ontrup, Nils Ehnert, Melanie Bergmann, and Tim W. Nattkemper. 2009. 
Biigle – Web 2.0 enabled labelling and exploring of images from the Arctic 
deep-sea observatory HAUSGARTEN. In Proceedings of OCEANS. 1–7. 

[46] Eric C. Orenstein, Sakina-Dorothée Ayata, Frédéric Maps, Érica C. Becker, Fabio 
Benedetti, Tristan Biard, Thibault de Garidel-Thoron, Je�rey S. Ellen, Filippo Fer-
rario, Sarah L.C. Giering, et al. 2022. Machine learning techniques to characterize 
functional traits of plankton from image data. Limnology and Oceanography 67, 
8 (2022), 1647–1669. 

[47] Malte Pedersen, Joakim Bruslund Haurum, Rikke Gade, and Thomas B. Moeslund. 
2019. Detection of marine animals in a new underwater dataset with varying 
visibility. In Proceedings of the IEEE/CVF Conference on Computer Vision and 
Pattern Recognition Workshops. 18–26. 

[48] Marc Picheral, Sébastien Colin, and Jean-Olivier Irisson. 2017. EcoTaxa, a tool 
for the taxonomic classi�cation of images. https://ecotaxa.obs-vlfr.fr/ 

[49] Marc Picheral, Lionel Guidi, Lars Stemmann, David M. Karl, Ghizlaine Iddaoud, 
and Gabriel Gorsky. 2010. The Underwater Vision Pro�ler 5: An advanced instru-
ment for high spatial resolution studies of particle size spectra and zooplankton. 
Limnology and Oceanography: Methods 8, 9 (2010), 462–473. 

[50] Viviana Piermattei, Alice Madonia, Simone Bonamano, Riccardo Martellucci, 
Gabriele Bruzzone, Roberta Ferretti, Angelo Odetti, Maurizio Azzaro, Giuseppe 
Zappalà, and Marco Marcelli. 2018. Cost-e�ective technologies to study the arctic 
ocean environment. Sensors 18, 7 (2018), 2257. 

[51] Jennifer Preece. 2016. Citizen science: New research challenges for human– 
computer interaction. International Journal of Human-Computer Interaction 32, 8 
(2016), 585–612. 

[52] Meihua Qian and Karen R. Clark. 2016. Game-based Learning and 21st century 
skills: A review of recent research. Computers in Human Behavior 63 (2016), 
50–58. 

[53] Barath Raghavan and Daniel Pargman. 2017. Means and ends in human-computer 
interaction: Sustainability through disintermediation. In Proceedings of the CHI 
Conference on Human Factors in Computing Systems. 786–796. 

[54] David Randall, Richard Harper, and Mark Rounce�eld. 2007. Fieldwork for Design: 
Theory and Practice. Springer. 

[55] Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. 2019. 
Do ImageNet classi�ers generalize to ImageNet?. In Proceedings of the 36th Inter-
national Conference on Machine Learning. 5389–5400. 

[56] Christian Remy, Silke Gegenbauer, and Elaine M. Huang. 2015. Bridging the 
theory-practice gap: Lessons and challenges of applying the attachment frame-
work for sustainable HCI design. In Proceedings of the CHI Conference on Human 
Factors in Computing Systems. 1305–1314. 

[57] Kelly L. Robinson, Jessica Y. Luo, Su Sponaugle, Cedric Guigand, and Robert K. 
Cowen. 2017. A tale of two crowds: Public engagement in plankton classi�cation. 
Frontiers in Marine Science 4 (2017), 82. 

[58] Brian M. Schlining and Nancy Jacobsen Stout. 2006. MBARI’s Video Annotation 
and Reference System. In Proceedings of OCEANS. 1–5. 

[59] M. Six Silberman, Lisa Nathan, Bran Knowles, Roy Bendor, Adrian Clear, Maria 
Håkansson, Tawanna Dillahunt, and Jennifer Manko�. 2014. Next steps for 
sustainable HCI. Interactions 21, 5 (2014), 66–69. 

[60] Robert Simpson, Kevin R. Page, and David De Roure. 2014. Zooniverse: Observing 
the world’s largest citizen science platform. In Proceedings of the 23rd International 
Conference on World Wide Web. 1049–1054. 

[61] Leslie M. Smith, Laura Cimoli, Diana LaScala-Gruenewald, Maria Pachiadaki, 
Brennan Phillips, Helen Pillar, Justin E. Stopa, Simone Baumann-Pickering, 
Stace E. Beaulieu, Katherine L.C. Bell, et al. 2022. The deep ocean observing 
strategy: Addressing global challenges in the deep sea through collaboration. 
Marine Technology Society Journal 56, 3 (2022), 50–66. 

[62] Ramine Tinati, Max Van Kleek, Elena Simperl, Markus Luczak-Rösch, Robert 
Simpson, and Nigel Shadbolt. 2015. Designing for citizen data analysis: A cross-
sectional case study of a multi-domain citizen science platform. In Proceedings of 
the CHI Conference on Human Factors in Computing Systems. 4069–4078. 

[63] Colin J. Torney, David J. Lloyd-Jones, Mark Chevallier, David C. Moyer, Honori T. 
Maliti, Machoke Mwita, Edward M. Kohi, and Grant C. Hopcraft. 2019. A com-
parison of deep learning and citizen science techniques for counting wildlife in 
aerial survey images. Methods in Ecology and Evolution 10, 6 (2019), 779–787. 

[64] Devis Tuia, Benjamin Kellenberger, Sara Beery, Blair R. Costelloe, Silvia Zu�, 
Benjamin Risse, Alexander Mathis, Mackenzie W. Mathis, Frank van Langevelde, 
Tilo Burghardt, et al. 2022. Perspectives in machine learning for wildlife conser-
vation. Nature Communications 13, 1 (2022), 1–15. 

[65] Jarrett Van den Bergh, Ved Chirayath, Alan Li, Juan L Torres-Pérez, and Michal 
Segal-Rozenhaimer. 2021. NeMO-Net — Gamifying 3D labeling of multi-modal 
reference datasets to support automated marine habitat mapping. Frontiers in 
Marine Science 8 (2021), 645408. 

[66] Grant Van Horn, Steve Branson, Ryan Farrell, Scott Haber, Jessie Barry, Panos 
Ipeirotis, Pietro Perona, and Serge Belongie. 2015. Building a bird recognition 
app and large scale dataset with citizen scientists: The �ne print in �ne-grained 
dataset collection. In Proceedings of the IEEE Conference on Computer Vision and 
Pattern Recognition. 595–604. 

[67] Grant Van Horn, Oisin Mac Aodha, Yang Song, Yin Cui, Chen Sun, Alex Shepard, 
Hartwig Adam, Pietro Perona, and Serge Belongie. 2018. The iNaturalist species 
classi�cation and detection dataset. In Proceedings of the IEEE Conference on 
Computer Vision and Pattern Recognition. 8769–8778. 

[68] Noah L. Walcutt, Benjamin Knörlein, Ivona Cetinić, Zrinka Ljubesic, Suncica 
Bosak, Tom Sgouros, Amanda L. Montalbano, Aimee Neeley, Susanne Menden-
Deuer, and Melissa M. Omand. 2020. Assessment of holographic microscopy for 
quantifying marine particle size and concentration. Limnology and Oceanography: 
Methods 18, 9 (2020), 516–530. 

[69] Zhaohui Aleck Wang, Hassan Moustah�d, Amy V. Mueller, Anna P.M. Michel, 
Matthew Mowlem, Brian T. Glazer, T. Aran Mooney, William Michaels, Jonathan S. 
McQuillan, Julie C. Robidart, et al. 2019. Advancing observation of ocean biogeo-
chemistry, biology, and ecosystems with cost-e�ective in situ sensing technolo-
gies. Frontiers in Marine Science 6 (2019), 519. 

[70] Poonam Yadav and John Darlington. 2016. Design guidelines for the user-centred 
collaborative citizen science platforms. Human Computation 3, 1 (2016), 213– 
2223. 

[71] Fumin Zhang, Giacomo Marani, Ryan N. Smith, and Hyun Taek Choi. 2015. 
Future trends in marine robotics. IEEE Robotics & Automation Magazine 22, 1 
(2015), 14–122. 

[72] Martin Zurowietz, Daniel Langenkämper, Brett Hosking, Henry A. Ruhl, and 
Tim W. Nattkemper. 2018. MAIA—A machine learning assisted image annotation 
method for environmental monitoring and exploration. PLOS ONE 13, 11 (2018), 
e0207498. 

APPENDIX: INTERVIEW TEMPLATE 
Warm-Up (⇠5 minutes) 

(1) Can you tell us a little about yourself? Please introduce 
yourself. 

(2) What are your motivations for speaking with us today? 

Your Interests & Goals (⇠15 minutes) 

(1) What are some of the major scienti�c / research / conserva-
tion / management questions you care about? OR, What is 
your organization working on in the ocean space? OR, Why 
are you enthusiastic about the ocean or passionate about 
ocean science? 

http://static.inaturalist.org/wiki_page_attachments/SeekUserGuide2020.pdf
http://static.inaturalist.org/wiki_page_attachments/SeekUserGuide2020.pdf
https://ecotaxa.obs-vlfr.fr/
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(2) What methods and techniques do you currently use to an-
swer these questions? OR, What does your organization do? 
OR, How do you engage with the ocean or ocean science? 

(3) What hardware and software do you use in your activities? 
Do you use sensors or imaging technology? If so, which 
ones? 

(4) What are your groups’ needs in processing / generating un-
derwater visual data? What observations and/or data prod-
ucts would you like to achieve from your visual data? OR, 
How would you like to interact and contribute to processing 
/ generating underwater visual data? 

(5) What are your groups’ limitations in processing / generating 
/ contributing to underwater visual data? 

Your Community (⇠10 minutes) 
(1) Tell me about your collaborator network. Who do you usually 

work with? (e.g. other researchers, students, community 
groups)? 

(2) How do you generally communicate about your work? (e.g. 
academic papers, Twitter, community conversations, etc.) 

(3) Where does the funding / support / resources for your work 
typically come from? [if you are able to share] 

Ocean Vision AI (⇠15 minutes) 

Crosby et al. 

(1) The Interviewer describes Ocean Vision AI. 
(2) How could an initiative such as Ocean Vision AI address 

your needs? 
(3) Do you have any concerns about using AI data in your appli-

cations with regards to regulatory requirements, intellectual 
property, etc? 

(4) Do you or your organization have any concerns or hurdles 
to using a framework like Ocean Vision AI for your data (IP, 
research embargos)? 

(5) How do you envision your role in an initiative like Ocean 
Vision AI? 

Close (⇠5 minutes) 
(1) As the interview comes to a close, thank the participant for 

their time and thoughts and acknowledge how valuable their 
time and e�ort is. Make space for the rest of the team to ask 
any remaining questions, and ask the participant if they have 
any questions for you, or if there is anything you didn’t cover 
that they think is important. 

(2) Anything else you’d like to share? 
(3) Is there anyone else we should talk to? 
(4) Do you have any questions for us? 
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