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Supercritical fluids have a number of thermodynamic and chemical properties which
make them attractive for use in environmentally friendly technologies. However, though
the thermodynamic properties of supercritical fluids have been studied comprehensively, the
dynamics of supercritical and transcritical fluid flows are less well explored and understood.
Studying the behavior of such fluid flows through high-quality computational investigations
could provide crucial insights useful for designing and controlling flow systems operating in
supercritical and transcritical regimes. An accurate and robust computational framework is
a prerequisite to conducting high-quality computational investigations. This work extends a
high-fidelity computational framework for ideal gas flows by including complex thermodynamic
models and realistic transport models near the critical point of the fluid where abrupt changes
in density and transport properties occur with small temperature or pressure fluctuations. The
spatial discretization is based on compact finite difference methods that achieve high-order grid
convergence and the high spectral resolution needed to resolve small scale flow structures. The
computational approach achieves robustness by reducing the aliasing error and improving the
spectral resolution of the viscous fluxes at high wavenumbers. No non-conservative correction
or filtering is needed to maintain robustness for shock-free flows if physical or physics-based
model dissipation is included. The framework is also compatible with applications of shock
capturing schemes and approximated Riemann solvers and supports simulations on curvilinear
meshes. Two problems involving compressible free-shear flows (temporal mixing layer) and
wall-bounded flows (zero-pressure gradient flat plate boundary layer with a cold isothermal
wall) are studied for dense gases to demonstrate the robustness and versatility of the proposed
numerical formulation.

I. Introduction

upercritical fluids have recently drawn increasing attention in many industrial applications due to their superior
Sphysical and chemical properties [1, 2]. As an example, supercritical CO, power cycles offer key advantages in
energy conversion due to their compactness, high thermal efficiency, and longer life cycles due to corrosion resistance.
They can operate with a variety of heat sources, including sustainable sources, such as geothermal power, concentrated
solar power and high temperature fuel cells, nuclear reactors, and traditional fossil fuels [3]. A pure fluid reaches the
supercritical state when both its pressure and temperature are above the critical point. Transitioning between subcritical
and supercritical states, the fluid undergoes a pseudo phase change where the thermodynamic and transport properties,
e.g., density, viscosity, thermal conductivity, vary significantly within a narrow range of temperature and pressure.
Unlike the ideal gas, a fluid near the critical point exhibits complex thermodynamic behavior. The pressure-specific
volume-temperature (p-v-T) relation is highly nonlinear. Additionally, the specific internal energy is dependent on
both temperature and density (or specific volume) and accounts for the effects of intermolecular interactions. Due
to the complexities introduced by the behaviors of thermodynamic and transport properties, numerical solutions of
flows in this regime require special consideration. In many cases, when a flow of a transcritical or supercritical fluid is
turbulent, the significant variations in thermodynamic and transport properties of the fluid are highly coupled with the
fluid motions which further increases the complexity of the turbulence dynamics.

Numerical computations have been utilized to investigate the flows of dense gases. However, for the fully compressible
system, abrupt changes in thermodynamic properties, especially density, associated with a small range of temperature
and pressure variation may cause severe and spurious oscillation [4, 5]. There are two common methods used to address
this problem in the simulations. The first approach is to rely on the extra numerical dissipation, especially around the
pseudo-phase change regions [4, 6], and the second approach is to introduce a total energy correction [7] or replace
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the energy equation by the pressure evolution equation [5]. However, both of these modifications achieve numerical
robustness at the cost of sacrificing simulation accuracy to some degree. Excessive numerical dissipation tends to damp
the physically growing high wavenumber features. If numerical dissipation is applied as a dominant mechanism in
the computational approach, the local simulation results should be considered as physically under-resolved solutions.
Careful assessment of fine-scale features is required to establish physical realism of the simulated results.

In simulations of transcritical flows, the abrupt density changes are determined by the equation of state (EOS) and are
caused by physical density and pressure fluctuations in the flow. During the pseudo-phase change from the subcritical
state to the supercritical state, or vice versa, the density change associated with pressure and temperature is still smooth.
Therefore, in a shock-free flow, there is no discontinuity in the flow during pseudo-phase change. The simulation
quality thus primarily depends on the tolerance of the simulation framework to the dispersion and aliasing error without
excessive numerical dissipation. Pressure-based solvers can effectively reduce the spurious oscillations in the simulation
results. However, this robustness is at a cost of breaking the discrete conservation. For a fully compressible system,
this treatment is not favorable for simulations of flows with shock waves, especially with their complexity in non-ideal
thermodynamic fluids.

This work proposes a unified simulation framework for simulations of transcritical fluid flows. The conservative
formulation of the computational systems for ideal gas flows is preserved. Additionally, the spatial discretization is
based on compact finite difference schemes and compact interpolations to achieve both high-order grid convergence
and highly improved spectral resolution [8]. The EOS and transport properties are calculated using physics-based
models that resolve the abrupt changes in properties during pseudo phase changes. In this manuscript, the mathematical
formulation of the problem and the associated physical closure models are described in Sec. II, the numerical solution
methods are summarized in Sec. III, and some demonstrative computational results for simulations of a compressible
planar shear layer and turbulent boundary layer are presented and discussed in Sec. I'V.

I1. Mathematical formulation and physical models
In this section, the mathematical model used for numerical simulations is described. The computations can be
conducted in either dimensional or dimensionless form. A consistent non-dimensionalization is provided here for the
governing equations and closure physical models for the thermodynamic and transport properties.

A. Governing equations
The simulation solves the compressible Navier-Stokes equations including conservation of mass, momentum, and
total energy:

dp  Opuj
ot ox, 0 )
dpu; 0 doij
—— (puiu; ij) = F 2
ar gy, Pt Poi) = G @
dpe 0 0
TH + ox [(pewoi+p)uj] = ax, (wicij - q;) 3)

Here, index notation is applied: p is the density, u; is the velocity vector, p is the pressure, ¢;; is the identity tensor, o7
is the viscous stress tensor, and e, is the specific total energy which includes the specific internal energy, e, and the
specific kinetic energy. ey is given as follows:

et =e+ujuj/2
q; is the heat flux due to the thermal conduction defined as

_ 0T
qj_ 0xj

where A is the thermal conductivity, and 7 is the temperature field. The viscous stress is calculated as

2
oij = 2uSij + (ﬁ - 5#) Skbij “)
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where y and 3 are the dynamic shear and bulk viscosities respectively, and S;; = 3 (u;,; +u;,;) is the rate of strain
tensor. The computational system is closed by the EOS and calculation of the transport properties. For a dense gas, the
EOS includes the p-v-T relation, i.e., p = p(p,T), and the formulation of the internal energy is determined by both
density and temperature, or e = e(p, T). The transport properties are calculated using the temperature and pressure.

The detailed formulations of the EOS and transport models are discussed in the following sub-sections.

B. Thermodynamic models
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Fig.1 p-v-T relation calculated from the Peng-Robinson EOS.

For a pure gas near critical conditions, the Peng-Robinson EOS [9] is used for the p-v-T relation. The mathematical

expression is provided as follows:
RT aa(T,)

- 5
v—>b v2+2vb- b2 ©)
where p is the pressure, T is the temperature, R is the specific gas constant, and a and b are model constants defined as

p:

272 RT.

a =0.45723553 and b =0.07779607

Pc Pc

6,7

where T, and p, are the critical temperature and pressure respectively. 7, in Eq. (5) is the reduced temperature, which
is dimensionless, defined as 7, = T/T,. The expression of «(7}) in Eq. (5) is given as

a(T,) = [1+K(]—\/77)]2 (®)

where « is a quadratic fitting of the acentric factor w and is given as
Kk = 0.37464 + 1.54226w — 0.26992w> C)]

For CO,, w ~ 0.239. Eq. (5) implies a non-dimensionalization using p., T, and R, where p. and T, provide a pressure
and temperature scale respectively. The density scale is defined as pg = p./(RT,). Furthermore, drawing a parallel to
kinematic motion, a velocity scale is derived as Uy = VRT,. As a side note, pg and Uy are results from dimensional
analysis that may not be equal to the density or speed of sound at critical conditions. The dimensionless form of Eq. (5)

can be written as T (T
a a
Pr=——"7 —— (10)
v¥=>b*  y¥2 4 2y%p* — b*
where p, = p/p. is known as the reduced pressure. The superscript “«” denotes the non-dimensionalized quantity, and
the parameters a*, b*, and v* are given as:

a* = 0.45723553 b* =0.07779607 v = pov
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Fig. 2 Evaluation of the internal energy calculation. (a) Evaluation of specific heat at a constant volume in
the ideal gas limit where 7 is the exponent of the power law fitting defined in Eq. (12) and T is chosen to be
T.. The reference solution is obtained from the NIST database [10]. (b) Evaluation of internal energy ¢ in
isobaric conditions with P chosen to be P. and comparison of ¢ against reference values obtained from NIST
database [10].

The p-v-T behavior is plotted in Fig. 1. The model parameters are set for CO,. For reference, the results obtained from
the Peng-Robinson EOS are compared with data from the National Institute of Standards and Technology (NIST) Web
Book [10]. As shown in Fig. 1, the pseudo phase change behavior is well-captured by the model p-v-T relation near the
critical temperature at supercritical pressures.

The internal energy can be calculated using the following equation:

T v o p
e =€ref+/ (T, veer)dT + [T(—) —p] dv (11)
Trer Vref or v

where c,, is the specific heat at constant volume, and the subscript “ref” indicates a reference state. Eq. (11) indicates a
two-step integration along an isochoric path followed by an isothermal path. On the right-hand side of Eq. (11), the
second integral can be evaluated by the p-v-T relation from Eq. (5). The first integral, however, requires an additional
model for the temperature dependent ¢, at a reference specific volume. Taking vy — oo, the reference state is in the
ideal gas regime. For certain gases, ¢, (T, ) can be evaluated based on the following power law for simplicity:

T n
cy(T, 00) = ¢y (Tref, o) (_) (12)
Tret
Using CO; as an example, the accuracy of the fitted power law for temperature-dependent c,, in the ideal gas limit is
shown in Fig. 2a, and the results are compared to data from the NIST database [10]. The integrated results of the internal
energy using Eq. (11) are shown in Fig. 2b, and the results are compared with data from the NIST database as well.
In a compressible flow, the speed of sound, c, is associated with the isentropic pressure change with respect to the

density as follows:
0
&= (—P) (13)
S

During simulation, to determine the Courant—Friedrichs—Lewy (CFL)-based adaptive time step [11] as well as the
characteristic decomposition and approximate Riemann solver for shock capturing, the speed of sound must be evaluated
consistently with the thermodynamic models. Based on the thermodynamic relations, the speed of sound can be

calculated as
T (dp 2 ap
= — =] - = 14
¢ v\/cv (aT)v (8\/ T ( )

where c, is calculated from the expression for the specific internal energy and the right-hand side of Eq. (14) is
determined based on the p-v-T relation. Alternatively, if the expression for pressure, or p = p(p, e), is known, the
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speed of sound can be calculated equivalently as

e=J(22) + £ (%2 (15)
apl, p*\de],
C. Transport models

The calculations of a fluid’s viscosity and thermal conductivity in the transcritical and supercritical regimes are
based on the approach proposed in Chung et al. [12]. The model accounts for the effects of both temperature and
pressure. The original version of the model, particularly for the calculation of thermal conductivity, is formulated in a
dimensional form for engineering applications. Its utilization requires that quantities be provided in particular physical
units. In this work, all the dimensional parameters in the model formulation have been consistently scaled so that the
model can be directly used for both dimensional and dimensionless computations.

According to the model from Chung et al., the dynamic shear viscosity of a pure gas is evaluated as

L (16)
He  He

Here, u. is the dynamic shear viscosity at the critical condition defined as u. = u(7,, p.). u* is a dimensionless
function of temperature and density, and p. is u* evaluated at the critical condition, or u: = u* (7., pc). The calculation
of u* requires a p-v-T relation, and to maintain consistency, the Peng-Robinson model as described in Sec. II.B is used.
The expression for u* calculated using the Peng-Robinson model is given as

. _ WIF(I
— QT “\Galp?)

where the dimensionless temperature 7" is calculated as T* = 1.25937,., and the dimensionless density is evaluated
as p* = pv./6 with v, representing the specific volume at the critical condition. The parameters involved in Eq. (17)
are determined based on the properties of the gas molecules and detailed in Ref [12] and Ref [13]. In this work, the
dynamic bulk viscosity is not included.

Based on the model from Chung et al., the thermal conductivity, A, can be calculated as

H +Eaf)+f7Tipﬂ a7

/l 1 * * *
= 3.75256p7 ¥ (T;., p,) (0_2 + Egp ) +q"E7G2p" T, (18)

He

where u® = u®/u. is the relative low-pressure dynamic shear viscosity, and the superscript “©” denotes that the
quantity is evaluated at the same temperature but in the low-pressure regime. The detailed calculations of the model
parameters are provided in Ref [12] and Ref [13]. The left-hand side of Eq. (18) implies that the thermal conductivity is
consistently scaled by Ry, and all calculations involved on the right-hand side of Eq. (18) can be conducted using the
non-dimensionalized quantitites.

III. Numerical Scheme (Summary)

All numerical schemes used for collocated-to-edge interpolation and derivative operations are sixth-order compact
schemes [14, 15]. The high-order formulation will provide rapid grid convergence. Moreover, compared to explicit
schemes, the compact scheme has significantly improved spectral resolution especially in the high wavenumber regime.
However, for high-order and high-resolution schemes, numerical stability becomes a major concern [15].

The spatial discretization used in this work is based on the framework proposed by Song et al. [8]. During the
solution process, all conservative variables are evolved at the collocated grid points while the fluxes are assembled
at the edge-staggered points in each direction respectively. A minimum set of primitive variables, u;, T, and p, are
interpolated from the collocated grid points calculated from the conservative variables to assemble the inviscid fluxes.
For the viscous fluxes, the gradient components which are aligned with the flux direction are calculated using staggered
first derivative schemes, and the components that are not aligned with fluxes directions are first calculated using the
collocated differential schemes and then interpolated from the collocated grid points to the corresponding edge-staggered
points. Eventually, the divergence operators are evaluated using staggered first derivative schemes in each direction, and
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the results are taken back from the edge-staggered grid points to the collocated grid points. The discretization has been
proven to work on both uniform Cartesian meshes and curvilinear wavy meshes.

The discretization method significantly contributes to reducing the aliasing error in the nonlinear inviscid fluxes and
resolving the viscous dissipation in the high wavenumber regime including a non-trivial response of the Nyquist viscous
dissipation. A more quantitative analysis and mathematical proofs are provided in Song et al. [8]. In simulations of
flows in the transcritical regime, the pseudo phase change of the fluid amplifies the aliasing error originating from the
calculation of temperature and pressure. The small spurious oscillations in the pressure and temperature fields may lead
to noticeable fluctuations in the mass flux that cause the numerical error to grow. The proposed simulation framework
addresses this issue by providing sufficient dealiasing during the assembly of the nonlinear fluxes. Additionally, the high
spectral resolution of the compact schemes used in the simulation framework significantly reduces the dispersion error.
Furthermore, the non-trivial response of the viscous dissipation at the Nyquist wavenumber damps the grid-to-grid
oscillations which makes the computational system more stable. The numerical filtering operations, claimed to be
necessary in many compact scheme based framework, can be avoided.

In addition, for flows at transcritial conditions, the pseudo phase change behavior is physically regularized by the
EOS model on the macro scale. Therefore, the rapid density change associated with a relatively small temperature
fluctuation during the pseudo phase change should be a numerically well-resolved feature. This requires numerical
framework to have high spectral resolution and low numerical dispersion to resolve the solution profile with a large local
gradient and curvature.

For highly compressible flows, shocks may develop. In the proposed simulation framework, all the fluxes are
assembled at the edge-staggered grid points. The solution approach is naturally compatible with the non-linear
shock-capturing scheme combined with an approximate Riemann solver. As a result, a hybrid central-Riemann flux is
assembled. In simulations of compressible turbulent flows, the numerical dissipation is desired to highly locate at the
shock structures to artificially capture the under-resolved features. In the shock-free region, the turbulent flow behavior
should only rely on the physical or physics-based model dissipation.

In this work, the flux blending is controlled by a physics-based shock sensor that is modified from the Ducros sensor.
The mathematical formulation of the modified Ducros sensor, ¢, is given in the following equation:

—10] 6 + &2
¢_

=" " 19
02+ w-w+ g2 (19

Here, 6 = V - u is the velocity dilatation, w = V X u is the vorticity vector, and € = 1 X 1071 is used for round-off
regularization. According to the equation, in a non-uniform flow, ¢ < 0 indicates local expansion, and ¢ > 0 indicates
local compression. During simulation, a threshold sensor value, ¢y, is specified. If ¢ > ¢y, Riemann fluxes will be
used. Otherwise, only central fluxes will be used.

IV. Demonstrative computations
Results from idealized unit test problems are not shown in this paper. Instead, results from high-resolution,
three-dimensional turbulent flow simulations in two illustrative problems are shown. These problems are intended as a
numerical demonstration of the success of the proposed method in simulating realistic turbulent flows.

A. Planar shear layer
The basic configuration of the compressible shear layer simulation is shown in Fig. 3. The computational domain
sizeis Ly X Ly X L; = 12 X 20 X 67, and the mesh size is Ny X Ny, X N, = 1024 x 512 x 512. The computational
domain is periodic in the x— and z— directions, and the computational mesh is uniform along these two dimensions. The
computational mesh is stretched in y-direction to use majority of the grid points to resolve the growth of the shear layer.
Near the upper and lower domain boundaries in the y-direction, numerical sponge layers are applied to enforce the
far-field flow condition on each side. The base flow velocity is parallel to the x-direction with variation in y-direction.
The initial base flow velocity profile, Uy, is regularized with a finite shear layer thickness using the following hyperbolic
tangent profile:
Uiow+U_o Usio = U
> +

where U, and U_, are constants representing the far-field velocities on the upper and lower sides of the domain
respectively. The dimensionless constant Cy is a scaling factor that defines the characteristic velocity based on the shear

Uo(y) = ~ tanh (céél) (20)

0
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Fig. 3 Simulation configuration of compressible planar shear layer: (a) configuration of computational domain;
(b) computational mesh. The computational domain is periodic in z-direction, and the computational mesh is
uniform in x and z.

(C)) ©) ()

Fig. 4 Numerical Schlieren imaging of the planar shear layers: (a), (b), and (c) are the visualizations of
the supercritial CO, flow at the normalized time, 7, 500, 600, and 700 respectively; (d), (e), and (f) are the
visualizations of the calorically perfect gas at the same corresponding normalized times.

Fig. 5 Visualization of the modified Ducros sensor in the dense gas shear layer at 7 = 700. The modified Ducros
sensor is defined in Eq. (19). The flow is at same state as shown in Fig. 4c.
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layer thickness 6. In this simulation, Cs = 2tanh™'(0.99), and &, represents the shear layer thickness such that the
edge velocity matches 99% of the far-field velocity. The momentum thickness, 6**, for an instantaneous velocity profile
is defined as
1 0 1 oo
5 = [ AU Dy [ e -Da e
p—ooU—oo —co p+00U+00 0

where p_o and p.. are the far-field densities in the lower and upper sides of the domain respectively. The operator 6
denotes the Reynolds averaging within the x-z plane at each y location, and the operator () denotes the Favre averaging,
such that 6 = m/ﬁ. The convective Mach number M, is defined as

_ |U+oo - U—ool

M. = (22)

C+Oo + C—oo
where ci0 and c_. are the far-field speeds of sound on the upper and lower sides of the domain respectively. The
Reynolds numbers are defined as
|U+oo - U—0<>| 6

Uiow —U_s| 6
,ooQ and  Regw = ppr—o——=21° (23, 24)
Ho Ho

R65 =

where pg and p are the characteristic density and dynamic shear viscosity respectively. In this demonstrative simulation,
the initial temperature and pressure are uniform. The initial reduced pressure is p,o = 1.8, and the initial reduced
temperature is 7,9 = 1.4. Accordingly, pg and yg in (23) and Eq. (24) are the initial density and viscosity respectively.
Based on the symmetry of the problem, the far-field velocities are set as Uyoo = —U_o = Uy for U, > 0. As an
initial condition, a wide-band velocity perturbation is prescribed within the shear layer. The simulation is configured
with M, = 1. The initial Reynolds numbers are Res ~ 2232 and Re s~ =~ 243 respectively. The time advancement is
conducted using the third-order strong stability preserving Runge-Kutta method (SSP-RK3) [16] with CFL = 0.6.
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Fig. 6 One-dimensional streamwise velocity energy spectra at the center plane y = 0: (a) and (d): 7 = 500; (b)
and (e): 7 = 600; (c) and (f): 7 = 700.

As a comparison, a calorically perfect gas flow is also simulated with identical configurations. In the simulation of the
calorically perfect gas flow, the dynamic shear viscosity is calculated as u = o (7} /T0)%7°. The thermal conductivity
is calculated as A = ¢, u/Pr, where ¢, is the specific heat at constant pressure evaluated as ¢, = yR/(y — 1), and the
Prandtl number, Pr is assumed to be constant Pr = 0.7. The ratio of the specific heats, v, is a constant, and y = 1.4 here.
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A convective nondimensional time, T, is introduced as
T =tUw/6y (25)

Visualizations of the simulation results are shown in Fig. 4 using numerical Schlieren imaging, |Vp|, at T = 500, 600,
and 700 respectively. For comparison, the visualizations of the dense gas flow and perfect gas flow are shown at the
same normalized convective time. The numerical Schlieren imaging visualizations show that in both simulations, the
turbulent shear layer structures generate significant Mach waves and shock waves. In these simulations, the hybrid
central-Riemann flux is used as described in Sec. III. The threshold sensor value is set to be ¢ty = 0.4. The Riemann
flux is assembled in the Rusanov form [17] with the fifth-order weighted essentially non-oscillatory interpolation scheme
(WENOS5-JS) [18] for finite difference methods. An instantaneous visualization of the modified Ducros sensor for the
dense gas flow at 7 = 700 is shown in Fig. 5. The visualization corresponds to the flow structure shown in Fig. 4c. By
comparison, it can be seen that the shock capturing scheme is highly localized to the shock structures, and no artificial
dissipation is imposed in the simulation of turbulent flow structures within the shear layer.

The one-dimensional streamwise velocity energy spectra along the streamwise (x) and spanwise (z) directions at
different times are shown in Fig. 6. As the turbulent shear layer growth, approximately one decade of turbulent cascade
has formed in both the dense gas and perfect gas flows, and there is no significant difference shown in the energy
spectra between the two types of flows. At 7 = 700, the two-point correlation of the stream-wise velocity at the center
plane (y = 0) is shown in Fig. 7. The results indicate that the turbulent structure has sufficient decorrelation in both
stream-wise and span-wise directions, and the confinement from the domain periodicity has no noticeable effects on the
growth of the turbulent shear layer in both cases.
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Fig.7 Two-point correlation of the stream-wise velocity at the center plane (y = 0): (a) the two-point correlation
in x-direction and (b) the two-point correlation in z-direction.

Lastly, the time histories of several flow profiles are provided in Fig. 8 for reference. The fluctuating component
corresponding to the Reynolds decomposition is defined as (-)” = () — (-), and the fluctuating component corresponding
to the Favre decomposition is defined as (-)"” = (-) — (+). The operator “{(-))”” denotes the domain average defined as

() = - / Ody

J** o

The results show that the turbulent shear layers for the dense gas and perfect gas have similar growth rates measured
from momentum thickness and turbulent velocity fluctuations. More noticeable differences are present in the profiles of
fluctuating thermodynamic quantities. The dense gas shear layer has a larger fluctuation in density and pressure during
the entire history of shear layer growth. However, as the shear layer becomes fully turbulent, the perfect gas flow shows
higher temperature fluctuation and the final temperature fluctuations. This phenomenon implies that under the flow
conditions, the density fluctuation is primarily due to the turbulent dilatational motion. Comparing the EOS of the
dense gas and perfect gas near the critical temperature, the dense gas temperature is significantly less sensitive to the
density change. For similar turbulence intensity (Fig. 6), the temperature fluctuation of the dense gas is less affected by
the turbulent dilatational motion.
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Fig. 8 Time histories of flow properties in growing planar shear layer: (a) momentum thickness; (b) streamwise
velocity fluctuation; (c) transverse velocity fluctuation; (d) density fluctuation; (e) pressure fluctuation; and (f)
temperature fluctuation.

B. Turbulent boundary layer

T)’

far-field buffer (free-stream condition)

inlet buffer test region for boundary layer development outlet buffer

.~ blowing and suction region (imposed as B.C.)

slip & adiabatic no-slip & isothermal (7y,) slip & adiabatic
Fig. 9 Simulation configuration of turbulent boundary layer flow.

The basic simulation configuration is shown in Fig. 9. The span-wise direction is homogeneous and periodic (not
shown in the schematics). The computational domain in the x-y plane is divided into four sub-regions: the top far-field
buffer, inlet buffer, outlet buffer, and the test region where the boundary layer develops. The numerical sponge method is
applied to the top far-field region to preserve the free-stream flow conditions. The inlet buffer also contains a numerical
sponge to enforce a prescribed inlet flow profile given as a function of y coordinate. The prescribed velocity and
temperature profiles are numerically regularized close to the bottom boundary to mimic an infinitesimally thin but
numerically resolved boundary layer. The thickness of the numerically regularized inlet boundary layer is denoted as djy,.
Beyond the thickness, y > di,, the flow is forced to reach the free-stream condition in the inlet buffer region. The density
profile in the inlet buffer is calculated using the Peng-Robinson p-v-T relation to preserve the uniform free-stream
pressure. The flow in the outlet buffer is damped using the Riemann-flux with the WENQOS5-JS interpolation scheme,
and the homogeneous Neumann boundary condition is applied to the whole flow field at the streamwise boundary. The
bottom boundary in the test region is configured as a no-slip adiabatic wall, and the wall temperature is denoted as T,,,.
The bottom boundary in the inlet and outlet buffer regions are both slip and adiabatic.
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Fig.10 Visualization of the Q-criterion isosurface of the turbulent boundary layer colored by the non-dimensional
density, pRT. /p..

In order to trigger a transition to turbulence, a narrow region of blowing and suction is introduced in the boundary
condition. Within the blowing and suction region, the wall-normal velocity is prescribed as

Ny

Vb (X, 2,0) = W(Kix0,571) D AmSin(@mt = ki = @) (26)
m=—Ny¢

where W (x; x s9, x r1) is the Hanning windowing function corresponding to the forcing region x € (x o, X 1)
X—-x
_fO) @7)

1 1
W(xsxr0,x71) = 3~ 5c08 27rxf1 ——

The rest of terms on the right-hand side of Eq. (26) are a linear combination of 2N ¢ + 1 selected temporal-spatial
modes, where for each model m, A,, is the mode amplitude, w,, is the mode frequency, k, is the wavenumber in the
z-direction, and ¢,, ~ N (0, 7) is a Gaussian random number serving as the initial phase shift. In this simulation,
Ny =4, wy = —w_pm, ki = k_p,. Consequently, v;, contains four pairs of symmetric oblique modes and a stationary
mode.

35

301

251

201

151

Fig. 11 Scaled stream-wise velocity profile in the wall-normal direction.

The test region size is 2000i, X 400;, X 10m6j,. The total computational mesh size is 2048 x 384 x 512. The
computational mesh in the test region is uniform in the x-direction and slightly stretched in the y-direction. The
computational mesh in the buffer regions is highly coarsened away from the test region with a large mesh stretch rate in
both the x- and y- directions. The computational mesh in z-direction is uniform in the entire computational domain.
The free-stream Mach number is M, = 0.3, and the freestream reduced temperature and pressure are 7o, /T, = 1.5 and
Poo/Pc = 2 respectively. The reduced temperature at the isothermal wall is 7,,, /T, = 0.95. The temperature specification
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Fig. 12 Averaged flow properties within the turbulent boundary layer: (a) and (b) temperature, (c) and (d)
density, (e) and (f) kinematic shear viscosity, and (g) and (h) thermal conductivity.
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implies that the simulated boundary layer flow develops in the transcritical regime with pseudo phase change occurring
when the widom line is crossed. The time advancement is conducted using the SSP-RK3 with the adaptive time step
limited by CFL = 0.9. The shock capturing scheme is deactivated in the computational domain other than at the outlet
buffer region, and no other types of artificial dissipation are imposed within the test region.

After reaching the statistically stationary stage, the flow quantities are analyzed over a time span of AtUs, /din = 16
and in the z-direction. Mean velocity profile is shown in Fig. 11, where the y coordinate and u are scaled by the “law of
the wall” quantities as y* = yu,/v,, and u* = u/u.. v,, is the kinematic viscosity at the wall, and u . is calculated as
u2 = [vdu/dy],,. The observed behavior indicates that the simulation has achieved a realistic turbulent boundary layer
state. Profiles of other flow properties within the boundary layer are shown in Fig. 12. The y-coordinate is scaled by
the boundary layer thickness that corresponds to the 99% of the streamwise velocity, and the properties are scaled by
those in the freestream. Due to the pseudo phase change, the density ratio is approximately 4.7 (Fig. 12d), and the
density changes by more than a factor of two within 5% of the boundary layer thickness (associated with a temperature
change that is less than 20% of freestream temperature). Additionally, the kinematic viscosity drops by more than 30%
of the freestream viscosity within less than 2.5% of the boundary layer thickness, and a significant increase in thermal
conductivity occurs as the fluid becomes subcritical. Further investigation of the turbulence behaviour in transcritical
regime is the subject of on-going analysis. Additionally, grid-sensitivity study of the results are also being conducted.

V. Conclusions

A high-order compact finite difference based simulation framework has been applied to simulations of compressible
dense gas flows near the critical condition. The solution system is fully conservative and closed by the Peng-Robinson
p-v-T relation and the Chung et al. transport models. According to the staggered flux assembly using interpolated
primitive variables, the computational results for nonlinear problems have significantly lower aliasing error than
traditional collocated flux assembly. The divergence operation conducted by the edge-to-node staggered differencing
scheme dramatically improves the accuracy of the viscous fluxes at small scales. Combined with the compact
finite difference methods, high-order convergence, high spectral resolution, and robustness can be achieved without
non-conservative correction or solution filtering. For highly compressible flow simulations, the central-Riemann hybrid
fluxes can be used. The flux blending is controlled by physics-based shock sensor so that the numerical dissipation is
highly localized at the shock structures without contaminating the simulation of the turbulent regions. The numerical
performance of the simulation framework has been demonstrated in the simulation of a compressible supercritical shear
layer flow at unity convective Mach number and a zero-pressure-gradient transcritical turbulent boundary layer flow
with an isothermal wall. The results of the shear layer simulation are compared with those of the calorically perfect
gas flow under the same flow conditions. Different solution behaviors are observed in the thermodynamic quantities
associated with the shear layer growth. The boundary layer flow simulation results imply that a rapid change in the fluid
properties occurs due to the pseudo phase change within a small portion of the turbulent boundary layer. Further grid
refinement is needed for direct numerical simulations.
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