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Supercritical ŕuids have a number of thermodynamic and chemical properties which

make them attractive for use in environmentally friendly technologies. However, though

the thermodynamic properties of supercritical ŕuids have been studied comprehensively, the

dynamics of supercritical and transcritical ŕuid ŕows are less well explored and understood.

Studying the behavior of such ŕuid ŕows through high-quality computational investigations

could provide crucial insights useful for designing and controlling ŕow systems operating in

supercritical and transcritical regimes. An accurate and robust computational framework is

a prerequisite to conducting high-quality computational investigations. This work extends a

high-ődelity computational framework for ideal gas ŕows by including complex thermodynamic

models and realistic transport models near the critical point of the ŕuid where abrupt changes

in density and transport properties occur with small temperature or pressure ŕuctuations. The

spatial discretization is based on compact őnite difference methods that achieve high-order grid

convergence and the high spectral resolution needed to resolve small scale ŕow structures. The

computational approach achieves robustness by reducing the aliasing error and improving the

spectral resolution of the viscous ŕuxes at high wavenumbers. No non-conservative correction

or őltering is needed to maintain robustness for shock-free ŕows if physical or physics-based

model dissipation is included. The framework is also compatible with applications of shock

capturing schemes and approximated Riemann solvers and supports simulations on curvilinear

meshes. Two problems involving compressible free-shear ŕows (temporal mixing layer) and

wall-bounded ŕows (zero-pressure gradient ŕat plate boundary layer with a cold isothermal

wall) are studied for dense gases to demonstrate the robustness and versatility of the proposed

numerical formulation.

I. Introduction

Supercritical ŕuids have recently drawn increasing attention in many industrial applications due to their superior
physical and chemical properties [1, 2]. As an example, supercritical CO2 power cycles offer key advantages in

energy conversion due to their compactness, high thermal efficiency, and longer life cycles due to corrosion resistance.
They can operate with a variety of heat sources, including sustainable sources, such as geothermal power, concentrated
solar power and high temperature fuel cells, nuclear reactors, and traditional fossil fuels [3]. A pure ŕuid reaches the
supercritical state when both its pressure and temperature are above the critical point. Transitioning between subcritical
and supercritical states, the ŕuid undergoes a pseudo phase change where the thermodynamic and transport properties,
e.g., density, viscosity, thermal conductivity, vary signiőcantly within a narrow range of temperature and pressure.
Unlike the ideal gas, a ŕuid near the critical point exhibits complex thermodynamic behavior. The pressure-speciőc
volume-temperature (𝑝-𝑣-𝑇) relation is highly nonlinear. Additionally, the speciőc internal energy is dependent on
both temperature and density (or speciőc volume) and accounts for the effects of intermolecular interactions. Due
to the complexities introduced by the behaviors of thermodynamic and transport properties, numerical solutions of
ŕows in this regime require special consideration. In many cases, when a ŕow of a transcritical or supercritical ŕuid is
turbulent, the signiőcant variations in thermodynamic and transport properties of the ŕuid are highly coupled with the
ŕuid motions which further increases the complexity of the turbulence dynamics.

Numerical computations have been utilized to investigate the ŕows of dense gases. However, for the fully compressible
system, abrupt changes in thermodynamic properties, especially density, associated with a small range of temperature
and pressure variation may cause severe and spurious oscillation [4, 5]. There are two common methods used to address
this problem in the simulations. The őrst approach is to rely on the extra numerical dissipation, especially around the
pseudo-phase change regions [4, 6], and the second approach is to introduce a total energy correction [7] or replace
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the energy equation by the pressure evolution equation [5]. However, both of these modiőcations achieve numerical
robustness at the cost of sacriőcing simulation accuracy to some degree. Excessive numerical dissipation tends to damp
the physically growing high wavenumber features. If numerical dissipation is applied as a dominant mechanism in
the computational approach, the local simulation results should be considered as physically under-resolved solutions.
Careful assessment of őne-scale features is required to establish physical realism of the simulated results.

In simulations of transcritical ŕows, the abrupt density changes are determined by the equation of state (EOS) and are
caused by physical density and pressure ŕuctuations in the ŕow. During the pseudo-phase change from the subcritical
state to the supercritical state, or vice versa, the density change associated with pressure and temperature is still smooth.
Therefore, in a shock-free ŕow, there is no discontinuity in the ŕow during pseudo-phase change. The simulation
quality thus primarily depends on the tolerance of the simulation framework to the dispersion and aliasing error without
excessive numerical dissipation. Pressure-based solvers can effectively reduce the spurious oscillations in the simulation
results. However, this robustness is at a cost of breaking the discrete conservation. For a fully compressible system,
this treatment is not favorable for simulations of ŕows with shock waves, especially with their complexity in non-ideal
thermodynamic ŕuids.

This work proposes a uniőed simulation framework for simulations of transcritical ŕuid ŕows. The conservative
formulation of the computational systems for ideal gas ŕows is preserved. Additionally, the spatial discretization is
based on compact őnite difference schemes and compact interpolations to achieve both high-order grid convergence
and highly improved spectral resolution [8]. The EOS and transport properties are calculated using physics-based
models that resolve the abrupt changes in properties during pseudo phase changes. In this manuscript, the mathematical
formulation of the problem and the associated physical closure models are described in Sec. II, the numerical solution
methods are summarized in Sec. III, and some demonstrative computational results for simulations of a compressible
planar shear layer and turbulent boundary layer are presented and discussed in Sec. IV.

II. Mathematical formulation and physical models
In this section, the mathematical model used for numerical simulations is described. The computations can be

conducted in either dimensional or dimensionless form. A consistent non-dimensionalization is provided here for the
governing equations and closure physical models for the thermodynamic and transport properties.

A. Governing equations

The simulation solves the compressible Navier-Stokes equations including conservation of mass, momentum, and
total energy:

𝜕𝜌

𝜕𝑡
+
𝜕𝜌𝑢 𝑗

𝜕𝑥 𝑗

= 0 (1)

𝜕𝜌𝑢𝑖

𝜕𝑡
+ 𝜕

𝜕𝑥 𝑗

(
𝜌𝑢𝑖𝑢 𝑗 + 𝑝𝛿𝑖 𝑗

)
=

𝜕𝜎𝑖 𝑗

𝜕𝑥 𝑗

(2)

𝜕𝜌𝑒tot

𝜕𝑡
+ 𝜕

𝜕𝑥 𝑗

[
(𝜌𝑒tot + 𝑝) 𝑢 𝑗

]
=

𝜕

𝜕𝑥 𝑗

(
𝑢𝑖𝜎𝑖 𝑗 − 𝑞 𝑗

)
(3)

Here, index notation is applied: 𝜌 is the density, 𝑢𝑖 is the velocity vector, 𝑝 is the pressure, 𝛿𝑖 𝑗 is the identity tensor, 𝜎𝑖 𝑗

is the viscous stress tensor, and 𝑒tot is the speciőc total energy which includes the speciőc internal energy, 𝑒, and the
speciőc kinetic energy. 𝑒tot is given as follows:

𝑒tot = 𝑒 + 𝑢 𝑗𝑢 𝑗/2

𝑞 𝑗 is the heat ŕux due to the thermal conduction deőned as

𝑞 𝑗 = −𝜆 𝜕𝑇

𝜕𝑥 𝑗

where 𝜆 is the thermal conductivity, and 𝑇 is the temperature őeld. The viscous stress is calculated as

𝜎𝑖 𝑗 = 2𝜇𝑆𝑖 𝑗 +
(
𝛽 − 2

3
𝜇

)
𝑆𝑘𝑘𝛿𝑖 𝑗 (4)
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where 𝜇 and 𝛽 are the dynamic shear and bulk viscosities respectively, and 𝑆𝑖 𝑗 =
1
2

(
𝑢𝑖, 𝑗 + 𝑢 𝑗 ,𝑖

)
is the rate of strain

tensor. The computational system is closed by the EOS and calculation of the transport properties. For a dense gas, the
EOS includes the 𝑝-𝑣-𝑇 relation, i.e., 𝑝 = 𝑝(𝜌, 𝑇), and the formulation of the internal energy is determined by both
density and temperature, or 𝑒 = 𝑒(𝜌, 𝑇). The transport properties are calculated using the temperature and pressure.
The detailed formulations of the EOS and transport models are discussed in the following sub-sections.

B. Thermodynamic models
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Fig. 1 𝑝-𝑣-𝑇 relation calculated from the Peng-Robinson EOS.

For a pure gas near critical conditions, the Peng-Robinson EOS [9] is used for the 𝑝-𝑣-𝑇 relation. The mathematical
expression is provided as follows:

𝑝 =
𝑅𝑇

𝑣 − 𝑏
− 𝑎𝛼(𝑇𝑟 )
𝑣2 + 2𝑣𝑏 − 𝑏2

(5)

where 𝑝 is the pressure, 𝑇 is the temperature, 𝑅 is the speciőc gas constant, and 𝑎 and 𝑏 are model constants deőned as

𝑎 = 0.45723553
𝑅2𝑇2

𝑐

𝑝𝑐
and 𝑏 = 0.07779607

𝑅𝑇𝑐

𝑝𝑐
(6, 7)

where 𝑇𝑐 and 𝑝𝑐 are the critical temperature and pressure respectively. 𝑇𝑟 in Eq. (5) is the reduced temperature, which
is dimensionless, deőned as 𝑇𝑟 = 𝑇/𝑇𝑐. The expression of 𝛼(𝑇𝑟 ) in Eq. (5) is given as

𝛼(𝑇𝑟 ) =
[
1 + 𝜅

(
1 −

√︁
𝑇𝑟

)]2

(8)

where 𝜅 is a quadratic őtting of the acentric factor 𝜔 and is given as

𝜅 = 0.37464 + 1.54226𝜔 − 0.26992𝜔2 (9)

For CO2, 𝜔 ≈ 0.239. Eq. (5) implies a non-dimensionalization using 𝑝𝑐, 𝑇𝑐 and 𝑅, where 𝑝𝑐 and 𝑇𝑐 provide a pressure
and temperature scale respectively. The density scale is deőned as 𝜌0 = 𝑝𝑐/(𝑅𝑇𝑐). Furthermore, drawing a parallel to
kinematic motion, a velocity scale is derived as 𝑈0 =

√
𝑅𝑇𝑐. As a side note, 𝜌0 and 𝑈0 are results from dimensional

analysis that may not be equal to the density or speed of sound at critical conditions. The dimensionless form of Eq. (5)
can be written as

𝑝𝑟 =
𝑇𝑟

𝑣∗ − 𝑏∗
− 𝑎∗𝛼(𝑇𝑟 )
𝑣∗2 + 2𝑣∗𝑏∗ − 𝑏∗2

(10)

where 𝑝𝑟 = 𝑝/𝑝𝑐 is known as the reduced pressure. The superscript ł∗” denotes the non-dimensionalized quantity, and
the parameters 𝑎∗, 𝑏∗, and 𝑣∗ are given as:

𝑎∗ = 0.45723553 𝑏∗ = 0.07779607 𝑣∗ = 𝜌0𝑣
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Fig. 2 Evaluation of the internal energy calculation. (a) Evaluation of speciőc heat at a constant volume in

the ideal gas limit where 𝑛 is the exponent of the power law őtting deőned in Eq. (12) and 𝑇ref is chosen to be

𝑇𝑐. The reference solution is obtained from the NIST database [10]. (b) Evaluation of internal energy 𝑒 in

isobaric conditions with 𝑃 chosen to be 𝑃𝑐 and comparison of 𝑒 against reference values obtained from NIST

database [10].

The 𝑝-𝑣-𝑇 behavior is plotted in Fig. 1. The model parameters are set for CO2. For reference, the results obtained from
the Peng-Robinson EOS are compared with data from the National Institute of Standards and Technology (NIST) Web
Book [10]. As shown in Fig. 1, the pseudo phase change behavior is well-captured by the model 𝑝-𝑣-𝑇 relation near the
critical temperature at supercritical pressures.

The internal energy can be calculated using the following equation:

𝑒 = 𝑒ref +
∫ 𝑇

𝑇ref

𝑐𝑣 (𝑇, 𝑣ref)𝑑𝑇 +
∫ 𝑣

𝑣ref

[
𝑇

(
𝜕𝑝

𝜕𝑇

)

𝑣

− 𝑝

]
𝑑𝑣 (11)

where 𝑐𝑣 is the speciőc heat at constant volume, and the subscript łref” indicates a reference state. Eq. (11) indicates a
two-step integration along an isochoric path followed by an isothermal path. On the right-hand side of Eq. (11), the
second integral can be evaluated by the 𝑝-𝑣-𝑇 relation from Eq. (5). The őrst integral, however, requires an additional
model for the temperature dependent 𝑐𝑣 at a reference speciőc volume. Taking 𝑣ref → ∞, the reference state is in the
ideal gas regime. For certain gases, 𝑐𝑣 (𝑇,∞) can be evaluated based on the following power law for simplicity:

𝑐𝑣 (𝑇,∞) = 𝑐𝑣 (𝑇ref ,∞)
(
𝑇

𝑇ref

)𝑛
(12)

Using CO2 as an example, the accuracy of the őtted power law for temperature-dependent 𝑐𝑣 in the ideal gas limit is
shown in Fig. 2a, and the results are compared to data from the NIST database [10]. The integrated results of the internal
energy using Eq. (11) are shown in Fig. 2b, and the results are compared with data from the NIST database as well.

In a compressible ŕow, the speed of sound, 𝑐, is associated with the isentropic pressure change with respect to the
density as follows:

𝑐2
=

(
𝜕𝑝

𝜕𝜌

)

𝑠

(13)

During simulation, to determine the CourantśFriedrichsśLewy (CFL)-based adaptive time step [11] as well as the
characteristic decomposition and approximate Riemann solver for shock capturing, the speed of sound must be evaluated
consistently with the thermodynamic models. Based on the thermodynamic relations, the speed of sound can be
calculated as

𝑐 = 𝑣

√︄
𝑇

𝑐𝑣

(
𝜕𝑝

𝜕𝑇

)2

𝑣

−
(
𝜕𝑝

𝜕𝑣

)

𝑇

(14)

where 𝑐𝑣 is calculated from the expression for the speciőc internal energy and the right-hand side of Eq. (14) is
determined based on the 𝑝-𝑣-𝑇 relation. Alternatively, if the expression for pressure, or 𝑝 = 𝑝(𝜌, 𝑒), is known, the
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speed of sound can be calculated equivalently as

𝑐 =

√︄(
𝜕𝑝

𝜕𝜌

)

𝑒

+ 𝑝

𝜌2

(
𝜕𝑝

𝜕𝑒

)

𝜌

(15)

C. Transport models

The calculations of a ŕuid’s viscosity and thermal conductivity in the transcritical and supercritical regimes are
based on the approach proposed in Chung et al. [12]. The model accounts for the effects of both temperature and
pressure. The original version of the model, particularly for the calculation of thermal conductivity, is formulated in a
dimensional form for engineering applications. Its utilization requires that quantities be provided in particular physical
units. In this work, all the dimensional parameters in the model formulation have been consistently scaled so that the
model can be directly used for both dimensional and dimensionless computations.

According to the model from Chung et al., the dynamic shear viscosity of a pure gas is evaluated as

𝜇

𝜇𝑐
=

𝜇∗

𝜇∗𝑐
(16)

Here, 𝜇𝑐 is the dynamic shear viscosity at the critical condition deőned as 𝜇𝑐 = 𝜇(𝑇𝑐, 𝑝𝑐). 𝜇∗ is a dimensionless
function of temperature and density, and 𝜇∗𝑐 is 𝜇∗ evaluated at the critical condition, or 𝜇∗𝑐 = 𝜇∗ (𝑇𝑐, 𝜌𝑐). The calculation
of 𝜇∗ requires a 𝑝-𝑣-𝑇 relation, and to maintain consistency, the Peng-Robinson model as described in Sec. II.B is used.
The expression for 𝜇∗ calculated using the Peng-Robinson model is given as

𝜇∗ =

√
𝑇∗

Ω𝑣 (𝑇∗) 𝐹𝑐

(
1

𝐺2 (𝜌∗)
+ 𝐸6𝜌

∗
)
+ 𝜂∗∗ (𝑇∗, 𝜌∗) (17)

where the dimensionless temperature 𝑇∗ is calculated as 𝑇∗
= 1.2593𝑇𝑟 , and the dimensionless density is evaluated

as 𝜌∗ = 𝜌𝑣𝑐/6 with 𝑣𝑐 representing the speciőc volume at the critical condition. The parameters involved in Eq. (17)
are determined based on the properties of the gas molecules and detailed in Ref [12] and Ref [13]. In this work, the
dynamic bulk viscosity is not included.

Based on the model from Chung et al., the thermal conductivity, 𝜆, can be calculated as

𝜆

𝑅𝜇𝑐
= 3.75256𝜇⊖

𝑟 Ψ(𝑇𝑟 , 𝑝𝑟 )
(

1

𝐺2

+ 𝐸6𝜌
∗
)
+ 𝑞∗𝐸7𝐺2𝜌

∗2
√︁
𝑇𝑟 (18)

where 𝜇⊖
𝑟 = 𝜇⊖/𝜇𝑐 is the relative low-pressure dynamic shear viscosity, and the superscript ł⊖” denotes that the

quantity is evaluated at the same temperature but in the low-pressure regime. The detailed calculations of the model
parameters are provided in Ref [12] and Ref [13]. The left-hand side of Eq. (18) implies that the thermal conductivity is
consistently scaled by 𝑅𝜇𝑐, and all calculations involved on the right-hand side of Eq. (18) can be conducted using the
non-dimensionalized quantitites.

III. Numerical Scheme (Summary)
All numerical schemes used for collocated-to-edge interpolation and derivative operations are sixth-order compact

schemes [14, 15]. The high-order formulation will provide rapid grid convergence. Moreover, compared to explicit
schemes, the compact scheme has signiőcantly improved spectral resolution especially in the high wavenumber regime.
However, for high-order and high-resolution schemes, numerical stability becomes a major concern [15].

The spatial discretization used in this work is based on the framework proposed by Song et al. [8]. During the
solution process, all conservative variables are evolved at the collocated grid points while the ŕuxes are assembled
at the edge-staggered points in each direction respectively. A minimum set of primitive variables, 𝑢𝑖 , 𝑇 , and 𝑝, are
interpolated from the collocated grid points calculated from the conservative variables to assemble the inviscid ŕuxes.
For the viscous ŕuxes, the gradient components which are aligned with the ŕux direction are calculated using staggered
őrst derivative schemes, and the components that are not aligned with ŕuxes directions are őrst calculated using the
collocated differential schemes and then interpolated from the collocated grid points to the corresponding edge-staggered
points. Eventually, the divergence operators are evaluated using staggered őrst derivative schemes in each direction, and
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the results are taken back from the edge-staggered grid points to the collocated grid points. The discretization has been
proven to work on both uniform Cartesian meshes and curvilinear wavy meshes.

The discretization method signiőcantly contributes to reducing the aliasing error in the nonlinear inviscid ŕuxes and
resolving the viscous dissipation in the high wavenumber regime including a non-trivial response of the Nyquist viscous
dissipation. A more quantitative analysis and mathematical proofs are provided in Song et al. [8]. In simulations of
ŕows in the transcritical regime, the pseudo phase change of the ŕuid ampliőes the aliasing error originating from the
calculation of temperature and pressure. The small spurious oscillations in the pressure and temperature őelds may lead
to noticeable ŕuctuations in the mass ŕux that cause the numerical error to grow. The proposed simulation framework
addresses this issue by providing sufficient dealiasing during the assembly of the nonlinear ŕuxes. Additionally, the high
spectral resolution of the compact schemes used in the simulation framework signiőcantly reduces the dispersion error.
Furthermore, the non-trivial response of the viscous dissipation at the Nyquist wavenumber damps the grid-to-grid
oscillations which makes the computational system more stable. The numerical őltering operations, claimed to be
necessary in many compact scheme based framework, can be avoided.

In addition, for ŕows at transcritial conditions, the pseudo phase change behavior is physically regularized by the
EOS model on the macro scale. Therefore, the rapid density change associated with a relatively small temperature
ŕuctuation during the pseudo phase change should be a numerically well-resolved feature. This requires numerical
framework to have high spectral resolution and low numerical dispersion to resolve the solution proőle with a large local
gradient and curvature.

For highly compressible ŕows, shocks may develop. In the proposed simulation framework, all the ŕuxes are
assembled at the edge-staggered grid points. The solution approach is naturally compatible with the non-linear
shock-capturing scheme combined with an approximate Riemann solver. As a result, a hybrid central-Riemann ŕux is
assembled. In simulations of compressible turbulent ŕows, the numerical dissipation is desired to highly locate at the
shock structures to artiőcially capture the under-resolved features. In the shock-free region, the turbulent ŕow behavior
should only rely on the physical or physics-based model dissipation.

In this work, the ŕux blending is controlled by a physics-based shock sensor that is modiőed from the Ducros sensor.
The mathematical formulation of the modiőed Ducros sensor, 𝜙, is given in the following equation:

𝜙 =
− |𝜃 | 𝜃 + 𝜀2

𝜃2 + 𝝎 · 𝝎 + 𝜀2
(19)

Here, 𝜃 = ∇ · 𝒖 is the velocity dilatation, 𝝎 = ∇ × 𝒖 is the vorticity vector, and 𝜀 = 1 × 10−16 is used for round-off
regularization. According to the equation, in a non-uniform ŕow, 𝜙 < 0 indicates local expansion, and 𝜙 > 0 indicates
local compression. During simulation, a threshold sensor value, 𝜙TH, is speciőed. If 𝜙 > 𝜙TH, Riemann ŕuxes will be
used. Otherwise, only central ŕuxes will be used.

IV. Demonstrative computations
Results from idealized unit test problems are not shown in this paper. Instead, results from high-resolution,

three-dimensional turbulent ŕow simulations in two illustrative problems are shown. These problems are intended as a
numerical demonstration of the success of the proposed method in simulating realistic turbulent ŕows.

A. Planar shear layer

The basic conőguration of the compressible shear layer simulation is shown in Fig. 3. The computational domain
size is 𝐿𝑥 × 𝐿𝑦 × 𝐿𝑧 = 12𝜋 × 20 × 6𝜋, and the mesh size is 𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧 = 1024 × 512 × 512. The computational
domain is periodic in the 𝑥− and 𝑧− directions, and the computational mesh is uniform along these two dimensions. The
computational mesh is stretched in 𝑦-direction to use majority of the grid points to resolve the growth of the shear layer.
Near the upper and lower domain boundaries in the 𝑦-direction, numerical sponge layers are applied to enforce the
far-őeld ŕow condition on each side. The base ŕow velocity is parallel to the 𝑥-direction with variation in 𝑦-direction.
The initial base ŕow velocity proőle, 𝑈0, is regularized with a őnite shear layer thickness using the following hyperbolic
tangent proőle:

𝑈0 (𝑦) =
𝑈+∞ +𝑈−∞

2
+ 𝑈+∞ −𝑈−∞

2
tanh

(
𝐶𝛿

𝑦

𝛿0

)
(20)

where 𝑈+∞ and 𝑈−∞ are constants representing the far-őeld velocities on the upper and lower sides of the domain
respectively. The dimensionless constant 𝐶𝛿 is a scaling factor that deőnes the characteristic velocity based on the shear
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base ŕow condition (+)
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𝑦

(a) (b)

Fig. 3 Simulation conőguration of compressible planar shear layer: (a) conőguration of computational domain;

(b) computational mesh. The computational domain is periodic in 𝑧-direction, and the computational mesh is

uniform in 𝑥 and 𝑧.
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Fig. 4 Numerical Schlieren imaging of the planar shear layers: (a), (b), and (c) are the visualizations of

the supercritial CO2 ŕow at the normalized time, 𝜏, 500, 600, and 700 respectively; (d), (e), and (f) are the

visualizations of the calorically perfect gas at the same corresponding normalized times.
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Fig. 5 Visualization of the modiőed Ducros sensor in the dense gas shear layer at 𝜏 = 700. The modiőed Ducros

sensor is deőned in Eq. (19). The ŕow is at same state as shown in Fig. 4c.
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layer thickness 𝛿0. In this simulation, 𝐶𝛿 = 2 tanh−1 (0.99), and 𝛿0 represents the shear layer thickness such that the
edge velocity matches 99% of the far-őeld velocity. The momentum thickness, 𝛿∗∗, for an instantaneous velocity proőle
is deőned as

𝛿∗∗ =
1

𝜌−∞𝑈−∞

∫ 0

−∞
𝜌𝑢̃ (𝑈−∞ − 𝑢̃) 𝑑𝑦 + 1

𝜌+∞𝑈+∞

∫ +∞

0

𝜌𝑢̃ (𝑈+∞ − 𝑢̃) 𝑑𝑦 (21)

where 𝜌−∞ and 𝜌+∞ are the far-őeld densities in the lower and upper sides of the domain respectively. The operator (·)
denotes the Reynolds averaging within the 𝑥-𝑧 plane at each 𝑦 location, and the operator (̃·) denotes the Favre averaging,
such that (̃·) = 𝜌(·)/𝜌. The convective Mach number 𝑀𝑐 is deőned as

𝑀𝑐 =
|𝑈+∞ −𝑈−∞ |
𝑐+∞ + 𝑐−∞

(22)

where 𝑐+∞ and 𝑐−∞ are the far-őeld speeds of sound on the upper and lower sides of the domain respectively. The
Reynolds numbers are deőned as

Re𝛿 = 𝜌0

|𝑈+∞ −𝑈−∞ | 𝛿
𝜇0

and Re𝛿∗∗ = 𝜌0

|𝑈+∞ −𝑈−∞ | 𝛿∗∗
𝜇0

(23, 24)

where 𝜌0 and 𝜇0 are the characteristic density and dynamic shear viscosity respectively. In this demonstrative simulation,
the initial temperature and pressure are uniform. The initial reduced pressure is 𝑝𝑟0 = 1.8, and the initial reduced
temperature is 𝑇𝑟0 = 1.4. Accordingly, 𝜌0 and 𝜇0 in (23) and Eq. (24) are the initial density and viscosity respectively.
Based on the symmetry of the problem, the far-őeld velocities are set as 𝑈+∞ = −𝑈−∞ = 𝑈∞ for 𝑈∞ > 0. As an
initial condition, a wide-band velocity perturbation is prescribed within the shear layer. The simulation is conőgured
with 𝑀𝑐 = 1. The initial Reynolds numbers are Re𝛿 ≈ 2232 and Re𝛿∗∗ ≈ 243 respectively. The time advancement is
conducted using the third-order strong stability preserving Runge-Kutta method (SSP-RK3) [16] with CFL = 0.6.
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Fig. 6 One-dimensional streamwise velocity energy spectra at the center plane 𝑦 = 0: (a) and (d): 𝜏 = 500; (b)

and (e): 𝜏 = 600; (c) and (f): 𝜏 = 700.

As a comparison, a calorically perfect gas ŕow is also simulated with identical conőgurations. In the simulation of the
calorically perfect gas ŕow, the dynamic shear viscosity is calculated as 𝜇 = 𝜇0 (𝑇𝑟/𝑇𝑟0)0.76. The thermal conductivity
is calculated as 𝜆 = 𝑐𝑝𝜇/Pr, where 𝑐𝑝 is the speciőc heat at constant pressure evaluated as 𝑐𝑝 = 𝛾𝑅/(𝛾 − 1), and the
Prandtl number, Pr is assumed to be constant Pr = 0.7. The ratio of the speciőc heats, 𝛾, is a constant, and 𝛾 = 1.4 here.
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A convective nondimensional time, 𝜏, is introduced as

𝜏 = 𝑡𝑈∞/𝛿∗∗0
(25)

Visualizations of the simulation results are shown in Fig. 4 using numerical Schlieren imaging, |∇𝜌 |, at 𝜏 = 500, 600,
and 700 respectively. For comparison, the visualizations of the dense gas ŕow and perfect gas ŕow are shown at the
same normalized convective time. The numerical Schlieren imaging visualizations show that in both simulations, the
turbulent shear layer structures generate signiőcant Mach waves and shock waves. In these simulations, the hybrid
central-Riemann ŕux is used as described in Sec. III. The threshold sensor value is set to be 𝜙TH = 0.4. The Riemann
ŕux is assembled in the Rusanov form [17] with the őfth-order weighted essentially non-oscillatory interpolation scheme
(WENO5-JS) [18] for őnite difference methods. An instantaneous visualization of the modiőed Ducros sensor for the
dense gas ŕow at 𝜏 = 700 is shown in Fig. 5. The visualization corresponds to the ŕow structure shown in Fig. 4c. By
comparison, it can be seen that the shock capturing scheme is highly localized to the shock structures, and no artiőcial
dissipation is imposed in the simulation of turbulent ŕow structures within the shear layer.

The one-dimensional streamwise velocity energy spectra along the streamwise (𝑥) and spanwise (𝑧) directions at
different times are shown in Fig. 6. As the turbulent shear layer growth, approximately one decade of turbulent cascade
has formed in both the dense gas and perfect gas ŕows, and there is no signiőcant difference shown in the energy
spectra between the two types of ŕows. At 𝜏 = 700, the two-point correlation of the stream-wise velocity at the center
plane (𝑦 = 0) is shown in Fig. 7. The results indicate that the turbulent structure has sufficient decorrelation in both
stream-wise and span-wise directions, and the conőnement from the domain periodicity has no noticeable effects on the
growth of the turbulent shear layer in both cases.
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Fig. 7 Two-point correlation of the stream-wise velocity at the center plane (𝑦 = 0): (a) the two-point correlation

in 𝑥-direction and (b) the two-point correlation in 𝑧-direction.

Lastly, the time histories of several ŕow proőles are provided in Fig. 8 for reference. The ŕuctuating component
corresponding to the Reynolds decomposition is deőned as (·)′ = (·) − (·), and the ŕuctuating component corresponding
to the Favre decomposition is deőned as (·)′′ = (·) − (̃·). The operator ł⟨(·)⟩” denotes the domain average deőned as

⟨(·)⟩ = 1

𝛿∗∗

∫ +∞

−∞
(·)𝑑𝑦

The results show that the turbulent shear layers for the dense gas and perfect gas have similar growth rates measured
from momentum thickness and turbulent velocity ŕuctuations. More noticeable differences are present in the proőles of
ŕuctuating thermodynamic quantities. The dense gas shear layer has a larger ŕuctuation in density and pressure during
the entire history of shear layer growth. However, as the shear layer becomes fully turbulent, the perfect gas ŕow shows
higher temperature ŕuctuation and the őnal temperature ŕuctuations. This phenomenon implies that under the ŕow
conditions, the density ŕuctuation is primarily due to the turbulent dilatational motion. Comparing the EOS of the
dense gas and perfect gas near the critical temperature, the dense gas temperature is signiőcantly less sensitive to the
density change. For similar turbulence intensity (Fig. 6), the temperature ŕuctuation of the dense gas is less affected by
the turbulent dilatational motion.
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Fig. 8 Time histories of ŕow properties in growing planar shear layer: (a) momentum thickness; (b) streamwise

velocity ŕuctuation; (c) transverse velocity ŕuctuation; (d) density ŕuctuation; (e) pressure ŕuctuation; and (f)

temperature ŕuctuation.

B. Turbulent boundary layer

𝑥

𝑦

inlet buffer outlet buffertest region for boundary layer development

far-őeld buffer (free-stream condition)

slip & adiabatic no-slip & isothermal (𝑇𝑤) slip & adiabatic

blowing and suction region (imposed as B.C.)

Fig. 9 Simulation conőguration of turbulent boundary layer ŕow.

The basic simulation conőguration is shown in Fig. 9. The span-wise direction is homogeneous and periodic (not
shown in the schematics). The computational domain in the 𝑥-𝑦 plane is divided into four sub-regions: the top far-őeld
buffer, inlet buffer, outlet buffer, and the test region where the boundary layer develops. The numerical sponge method is
applied to the top far-őeld region to preserve the free-stream ŕow conditions. The inlet buffer also contains a numerical
sponge to enforce a prescribed inlet ŕow proőle given as a function of 𝑦 coordinate. The prescribed velocity and
temperature proőles are numerically regularized close to the bottom boundary to mimic an inőnitesimally thin but
numerically resolved boundary layer. The thickness of the numerically regularized inlet boundary layer is denoted as 𝛿in.
Beyond the thickness, 𝑦 > 𝛿in, the ŕow is forced to reach the free-stream condition in the inlet buffer region. The density
proőle in the inlet buffer is calculated using the Peng-Robinson 𝑝-𝑣-𝑇 relation to preserve the uniform free-stream
pressure. The ŕow in the outlet buffer is damped using the Riemann-ŕux with the WENO5-JS interpolation scheme,
and the homogeneous Neumann boundary condition is applied to the whole ŕow őeld at the streamwise boundary. The
bottom boundary in the test region is conőgured as a no-slip adiabatic wall, and the wall temperature is denoted as 𝑇𝑤 .
The bottom boundary in the inlet and outlet buffer regions are both slip and adiabatic.
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Fig. 10 Visualization of the Q-criterion isosurface of the turbulent boundary layer colored by the non-dimensional

density, 𝜌𝑅𝑇𝑐/𝑝𝑐.

In order to trigger a transition to turbulence, a narrow region of blowing and suction is introduced in the boundary
condition. Within the blowing and suction region, the wall-normal velocity is prescribed as

𝑣𝑏 (𝑥, 𝑧, 𝑡) = 𝑊 (𝑥; 𝑥 𝑓 0, 𝑥 𝑓 1)
𝑁 𝑓∑︁

𝑚=−𝑁 𝑓

𝐴𝑚 sin(𝜔𝑚𝑡 − 𝑘𝑚𝑧 − 𝜑𝑚) (26)

where 𝑊 (𝑥; 𝑥 𝑓 0, 𝑥 𝑓 1) is the Hanning windowing function corresponding to the forcing region 𝑥 ∈ (𝑥 𝑓 0, 𝑥 𝑓 1)

𝑊 (𝑥; 𝑥 𝑓 0, 𝑥 𝑓 1) =
1

2
− 1

2
cos

(
2𝜋

𝑥 − 𝑥 𝑓 0

𝑥 𝑓 1 − 𝑥 𝑓 0

)
(27)

The rest of terms on the right-hand side of Eq. (26) are a linear combination of 2𝑁 𝑓 + 1 selected temporal-spatial
modes, where for each model 𝑚, 𝐴𝑚 is the mode amplitude, 𝜔𝑚 is the mode frequency, 𝑘𝑧 is the wavenumber in the
𝑧-direction, and 𝜑𝑚 ∼ N(0, 𝜋) is a Gaussian random number serving as the initial phase shift. In this simulation,
𝑁 𝑓 = 4, 𝜔𝑚 = −𝜔−𝑚, 𝑘𝑚 = 𝑘−𝑚. Consequently, 𝑣𝑏 contains four pairs of symmetric oblique modes and a stationary
mode.
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Fig. 11 Scaled stream-wise velocity proőle in the wall-normal direction.

The test region size is 200𝛿in × 40𝛿in × 10𝜋𝛿in. The total computational mesh size is 2048 × 384 × 512. The
computational mesh in the test region is uniform in the 𝑥-direction and slightly stretched in the 𝑦-direction. The
computational mesh in the buffer regions is highly coarsened away from the test region with a large mesh stretch rate in
both the 𝑥- and 𝑦- directions. The computational mesh in 𝑧-direction is uniform in the entire computational domain.
The free-stream Mach number is 𝑀∞ = 0.3, and the freestream reduced temperature and pressure are 𝑇∞/𝑇𝑐 = 1.5 and
𝑝∞/𝑝𝑐 = 2 respectively. The reduced temperature at the isothermal wall is 𝑇𝑤/𝑇𝑐 = 0.95. The temperature speciőcation
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Fig. 12 Averaged ŕow properties within the turbulent boundary layer: (a) and (b) temperature, (c) and (d)

density, (e) and (f) kinematic shear viscosity, and (g) and (h) thermal conductivity.
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implies that the simulated boundary layer ŕow develops in the transcritical regime with pseudo phase change occurring
when the widom line is crossed. The time advancement is conducted using the SSP-RK3 with the adaptive time step
limited by CFL = 0.9. The shock capturing scheme is deactivated in the computational domain other than at the outlet
buffer region, and no other types of artiőcial dissipation are imposed within the test region.

After reaching the statistically stationary stage, the ŕow quantities are analyzed over a time span of Δ𝑡𝑈∞/𝛿in ≈ 16

and in the 𝑧-direction. Mean velocity proőle is shown in Fig. 11, where the 𝑦 coordinate and 𝑢 are scaled by the łlaw of
the wall” quantities as 𝑦+ = 𝑦𝑢𝜏/𝜈𝑤 and 𝑢+ = 𝑢/𝑢𝜏 . 𝜈𝑤 is the kinematic viscosity at the wall, and 𝑢𝜏 is calculated as
𝑢2
𝜏 = [𝜈𝜕𝑢/𝜕𝑦]𝑤 . The observed behavior indicates that the simulation has achieved a realistic turbulent boundary layer

state. Proőles of other ŕow properties within the boundary layer are shown in Fig. 12. The 𝑦-coordinate is scaled by
the boundary layer thickness that corresponds to the 99% of the streamwise velocity, and the properties are scaled by
those in the freestream. Due to the pseudo phase change, the density ratio is approximately 4.7 (Fig. 12d), and the
density changes by more than a factor of two within 5% of the boundary layer thickness (associated with a temperature
change that is less than 20% of freestream temperature). Additionally, the kinematic viscosity drops by more than 30%

of the freestream viscosity within less than 2.5% of the boundary layer thickness, and a signiőcant increase in thermal
conductivity occurs as the ŕuid becomes subcritical. Further investigation of the turbulence behaviour in transcritical
regime is the subject of on-going analysis. Additionally, grid-sensitivity study of the results are also being conducted.

V. Conclusions
A high-order compact őnite difference based simulation framework has been applied to simulations of compressible

dense gas ŕows near the critical condition. The solution system is fully conservative and closed by the Peng-Robinson
𝑝-𝑣-𝑇 relation and the Chung et al. transport models. According to the staggered ŕux assembly using interpolated
primitive variables, the computational results for nonlinear problems have signiőcantly lower aliasing error than
traditional collocated ŕux assembly. The divergence operation conducted by the edge-to-node staggered differencing
scheme dramatically improves the accuracy of the viscous ŕuxes at small scales. Combined with the compact
őnite difference methods, high-order convergence, high spectral resolution, and robustness can be achieved without
non-conservative correction or solution őltering. For highly compressible ŕow simulations, the central-Riemann hybrid
ŕuxes can be used. The ŕux blending is controlled by physics-based shock sensor so that the numerical dissipation is
highly localized at the shock structures without contaminating the simulation of the turbulent regions. The numerical
performance of the simulation framework has been demonstrated in the simulation of a compressible supercritical shear
layer ŕow at unity convective Mach number and a zero-pressure-gradient transcritical turbulent boundary layer ŕow
with an isothermal wall. The results of the shear layer simulation are compared with those of the calorically perfect
gas ŕow under the same ŕow conditions. Different solution behaviors are observed in the thermodynamic quantities
associated with the shear layer growth. The boundary layer ŕow simulation results imply that a rapid change in the ŕuid
properties occurs due to the pseudo phase change within a small portion of the turbulent boundary layer. Further grid
reőnement is needed for direct numerical simulations.
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