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Making Sense of Algebraic Expressions in Context 

 

Making sense of algebraic expressions in context is multi-faceted and extends 

beyond representing real-world situations using algebra. The Common Core State Mathematics 

Practice Standards (NGA Center and CCSSO 2010) speak to the importance of “attending to the 

meaning of quantities, not just how to compute them” (p. 6). We follow Smith and Thompson 

(2008) in defining a quantity as a person’s conception of measurable aspects of objects or events, 

such as the height of a building or the distance a car travels. Reasoning with quantities is 

important for being able to connect arithmetic with algebra.  

As part of Project MathTalk (www.mathtalk.org), we created videos that feature a pair of 

Grade 9 Algebra 1 students—Haleemah and Elijah (who goes by ET)—coming to understand 

algebraic expressions in context. The students found three aspects of making sense of algebraic 

expressions challenging: (a) having quantitative meaning for arithmetic operations in algebraic 

expressions; (b) being able to interpret algebraic expressions from multiple perspectives, and (c) 

demonstrating reversibility of thought. Correspondingly, this article is organized into three major 

sections—one for each aspect. In each section, we elaborate the mathematical idea, describe the 

task given to Haleemah and ET, and present video clips of the students encountering each 

challenge and making progress. Lastly, we reflect on teaching actions that support the 

development of each aspect of making sense of algebraic expressions in context.  

Quantitative Meaning for Arithmetic Operations in Algebraic Expressions 

Developing meaning for arithmetic operations is important for understanding algebraic 

expressions in context. When working with algebraic expressions, students may be able to define 

their variables and explain where certain numbers come from, but they may not have adequate 

meaning for the arithmetic operations involved in their expressions. Beyond being an action that 



one carries out to arrive at an answer, an arithmetic operation can have one or more quantitative 

meanings depending on the context. 

 According to Thompson and Saldanha (2003), quantitative meaning of an operation is 

“about what one sees, not what one does, and about reasoning that is grounded in meaning” (p. 

37). For instance, multiplication has meaning beyond the action one carries out to find a product. 

Thinking of multiplication as “groups of” is an example of one quantitative meaning of 

multiplication. In this section, we show how our two students, Haleemah and ET, initially 

struggled to make sense of multiplication in an algebraic equation but made progress when they 

developed a “groups of” conception.  

The Pool Task and Students’ Initial Work  

We presented Haleemah and ET with the Pool Task (figure 1), which shows a square 

swimming pool with a border that has 10 tiles on a side and asks students to determine the 

number of tiles in the border. This task is part of an instructional sequence where students use the 

visual representation of the pool to create an arithmetic method and then generalize the method 

using algebra. Haleemah and ET’s arithmetic method for finding the number of tiles in the 

border was (10•4)-4=36. They were also able to generalize this method and express it using the 

algebraic equation (x•4)-4=B, where x is the number of tiles on a side, and B is the total number 

of tiles in the border. 

Fig. 1  



 

The Pool Task  

Challenge 

ET and Haleemah were then asked to engage in quantitative reasoning, first with the 

arithmetic equation (10•4)-4=36. When asked about where 10•4 was in the pool drawing, they 

encountered a challenge. They expressed two instances where they were not reasoning with a 

meaning of multiplication as “groups of.” ET said, “it’s [10•4] referring to the whole border.” 

Haleemah responded, “I think it’s the number of tiles on the border and the corners being 

multiplied twice.” In the first instance, ET was thinking that 10•4 is represented by the whole 

border. In the second instance, Haleemah referred to multiplication, but in a way that was not 

appropriate. Even though they were able to apply and generalize their method using algebra, they 

found it hard to make sense of multiplication in the expression (10•4) in the pool context.  

Progress  

In response, the teacher asked Haleemah and ET to draw the 40 tiles separate from the 

pool. In creating a drawing, they were eventually able to represent 40 tiles as four groups of 10 

tiles (figure 2). Watch video 1 (link online) to see Haleemah and ET make meaning of the 

arithmetic operation of multiplication in a new way! Reflecting on the meaning of 10•4 in the 



pool context, Haleemah described it as “4 groups of 10” and ET explained, “If you add all of the 

4 groups of 10, you would get the 40 tiles.” 

Fig. 2  

 

Drawing of 40 tiles separate from the pool 

Video 1 Making Progress with a Drawing 

 

Once the students had quantitative meaning for multiplication, they were able to identify 

where parts of their algebra equation were represented in a new drawing (figure 3). As video 2 

shows (link online), Haleemah and ET drew on their meaning for multiplication as groups of to 

explain the meaning of x•4 as 4 groups of x. This meaning allowed for a richer quantitative 

meaning for their entire algebraic equation, (x•4)-4=B.  

Fig. 3 



 

Drawing for the equation (x•4)-4=B 

Video 2 Extending Meaning to Algebra 

 

Readers may worry about interpreting 10•4 as 4 groups of 10 or x•4 as 4 groups of x tiles. 

After all, some textbooks follow a pedagogical convention of interpreting 10•4 only as 10 groups 

of 4. However, this convention is cultural (e.g., in China and Japan the convention is to interpret 

10•4 as 4 groups of 10), the convention is not universal even within the U.S. (e.g., Cotter 2015), 

and there is no mathematical imperative for such, primarily because of the commutative property 

of multiplication. Consequently, we treated Haleemah and ET’s 4 groups of x as one correct 

interpretation of x•4.  

Teaching Reflection 

Reflecting on video 2 from a teaching perspective, we can see that Haleemah and ET 

made progress after the teacher asked them to draw a picture of what the multiplication of 10•4 

meant in the pool context. Such drawings are powerful because they require the arithmetic 



operation to be illustrated in some way. In turn, this prompts students to shift from thinking of 

arithmetic operations as only a means of computing to considering quantitative conceptions of 

the operations.  

In a classroom setting, students working with the Pool Task might encounter similar 

challenges in developing a quantitative meaning of multiplication. Consider another student-

generated method of finding the number of tiles in the border: (x-1)•4=B. A teacher could ask, 

“What does (x-1)•4 mean in the pool context?” A student might respond, as Haleemah and ET 

did, by saying that (x-1)•4 refers to the whole border. Another student might respond that (x-1)•4 

means (x-1) tiles and 4 sides. While both correct, neither response demonstrates a quantitative 

understanding of multiplication. In this situation, teachers can ask, “Would you draw a picture of 

a pool with x tiles on a side and label what (x-1)•4 means?” Employing these prompts may help 

students develop a groups of conception of multiplication and a richer understanding for the 

entire algebraic expression (x-1)•4, as 4 groups of (x-1) tiles (figure 4).   

Fig. 4  

 

Drawing of 4 groups of (x-1) tiles 

Multiple Perspectives  

A second aspect of making sense of algebraic expressions in context is being able to 

interpret expressions from multiple perspectives. Sfard and Linchevski (1994) identify both 



process and object perspectives as being important for algebraic reasoning. To characterize each 

perspective, consider Haleemah and ET’s equation: (x•4)-4=B. From a process perspective, this 

equation means that the number of tiles on one side of the border, multiplied by 4, minus the 4 

corner tiles, equals the total number of tiles in the border. From an object perspective, we 

consider the result of operating and look at the expression as an entity or whole. Here, (x•4) is 

the collection of tiles in four groups of the number of tiles on one side, and (x•4)-4 is the total 

number of tiles in the border. In this section, we present a challenge that Haleemah and ET 

encountered in shifting from a process to an object perspective for a new equation and how they 

made progress. 

The Pool Task Revisited and Students’ Initial Work  

Haleemah and ET were asked to find a second method for determining the number of 

tiles in the border of a pool with 10 tiles on a side (figure 1). Their new method was to add the 

number of tiles on the left and right sides and then add the number of tiles on the top and bottom 

of the border, expressed by their arithmetic equation (10•2)+(8•2)=36 (figure 5). They also 

successfully generalized their method and expressed it using the algebraic equation (x•2)+(x-

2)2=B. 

Fig. 5  



 

Haleemah and ET’s second method 

Challenge 

Haleemah and ET were asked to explain the meaning of their equation in context and 

draw a picture (figure 6). They were able to correctly interpret the meaning of x•2 from both 

process and object perspectives (i.e., as x tiles multiplied by 2, and as the number of tiles in the 

left and right sides together). However, they found interpreting x–2 from an object perspective to 

be challenging, as shown in video 3 (link online). Haleemah initially interpreted x–2 from a 

process perspective. She indicated that x–2 consists of two parts: the number of tiles on the top of 

the border and the corners which are being taken away. But to label x–2 on the drawing, 

Haleemah needed to interpret x–2 from an object perspective, as the number of tiles left. When 

the teacher asked, “what are you left with [after taking away the corner tiles]?”, Haleemah 

struggled with the general case and explained that she was “not sure how to explain it…without 

the numbers.”  

Fig. 6   



 

Visualization of Haleemah and ET’s equation in the pool context 

Video 3 Puzzling Over Where x–2 is in a Drawing  

 

Progress 

In response, the teacher asked Haleemah and ET to select a new value for the number of 

tiles on one side of the border for a new pool and then think about what x–2 means. They let x=8 

and created the drawing shown in figure 7. They interpreted 8–2 from a process perspective as 

starting with the number of tiles on top and then removing the 2 corner tiles. After some thought, 

Haleemah was able to also interpret 8–2 from an object perspective as the number of tiles left 



(which she labeled as “6” in her drawing; see figure 7). Then Haleemah and ET returned to the 

algebraic expression x–2.  

Fig. 7  

 

Haleemah labeled 8–2 as 6 tiles left. 

As shown in video 4 (link online), Haleemah was able to successfully interpret x–2 from 

an object perspective, as “what is left,” and label it on her drawing (figure 8). Now that 

Haleemah and ET can interpret x–2 from both process and object perspectives, they can make a 

richer set of connections between their algebraic equation and the pool context. 

Video 4 Seeing x–2 as the Number of Tiles Left 

 

Fig. 8   



 

Haleemah labeled x–2 in the drawing.  

Teaching Reflection 

To help Haleemah and ET develop both process and object perspectives for making 

meaning of algebraic expressions in context, the teacher asked them to mark where they saw x–2 

from their equation, (x•2)+(x–2)2=B on the pool (figure 7). This question is important because 

being able to circle the amount of tiles represented by x–2 requires an object perspective. When 

Haleemah struggled, the teacher shifted to an easier arithmetic expression, 8–2. To prompt the 

process perspective for interpreting 8–2, the teacher asked, “What does the 8 mean in the pool 

context? the 2? the minus 2?” To prompt an object perspective, the teacher asked, “Once you’re 

done subtracting and you’ve gotten 6, what does the 6 mean in the pool context?”  

Once Haleemah and ET had conceived of 8–2 as the number of tiles left, the teacher 

returned to the algebraic expression and asked them to circle x–2 on the drawing. If students 

struggle, teachers can scaffold by providing a choice of quantities in context. For example, after 

asking students to circle the x–2, they can ask, “Is x–2 the number of tiles along one side, the 

corner tiles, some of the tiles on a side, or something else?” A scaffolding question provides 

different quantities for the student to consider without giving away the answer. Such a question 

also helps illuminate why using contextual tasks is important to the development of process and 

object perspectives. An interpretation of x–2 from a process perspective refers to different 



quantities in context than the object perspective. This can help students differentiate between the 

two perspectives and can ground each perspective in quantitative meaning. 

Reversibility 

The final aspect of making sense of algebraic expressions in context is reversibility of 

thought. Reversibility refers to one’s ability to take the results from an action as input and use the 

results to determine the actions that produced them (Steffe and Olive 2010). For example, 

consider the Pool Task (figure 1). Students were asked to create an arithmetic method for finding 

the number of tiles in the border, generalize their method, and express it using algebra. 

Reversibility would be demonstrated by a student who can take a given algebraic expression, for 

example, x2–(x–2)2=B, and show by labeling a drawing of the pool with 10 tiles on a side, the 

corresponding method for finding the tiles in the border. If students are successful in reversing 

the direction, then they are demonstrating an understanding of the relationship between algebraic 

expressions and their meaning in context. 

The Cobblestone Tasks and Students’ Initial Work  

Haleemah and ET were asked to work on the Cobblestone Task (figure 9) and then the 

Reverse Cobblestone Task (figure 10). Both tasks are set in the context of making cobblestone 

patterns for sidewalks from white and gray stones. The Cobblestone Task provides students with 

the arithmetic method used by another student, Amir, to find the number of gray stones in a 

cobblestone pattern of Size 3. It asks students to apply Amir’s method to a cobblestone pattern of 

Size 5 and then write an algebraic equation that generalizes Amir’s method for an unknown Size 

Number.   



Fig. 9 

 

The Cobblestone Task  

Haleemah and ET noticed that the Size Number matches the number of columns, as well 

as the number of gray stones in each column, for each section (e.g., there are 3 columns of 3 gray 

stones circled in red in each section of the Size 3 cobblestone pattern). Seeing this relationship 

allowed them to use their “groups of” meaning for multiplication in a rectangular array 

representation and correctly apply Amir’s method to a pattern of Size 5. They also generalized 

Amir’s method as (x•x)+(x•x)+x+(x•x)=T, where each x•x in their equation represented x columns 

of x stones.  

They were then asked to work on the Reverse Cobblestone Task (figure 10). Instead of 

working towards an algebraic equation, this reversibility task begins with an algebraic equation 

from a new student, Nicole: x2+x•(x+1)+x2=T. Haleemah and ET were asked to circle and label 

the Size 3 drawing to show how Nicole saw the pattern and found the number of gray stones.  

Fig. 10 



 

The Reverse Cobblestone Task  

Challenge 

We expected that Haleemah and ET would illustrate Nicole’s method by using Amir’s 

method of circling columns of stones in the Size 3 drawing. Instead, they circled rows as well as 

columns of stones (figure 11). Watch video 5 (link online) to see the issue they encountered 

when probed to describe what the multiplication would mean. ET described the multiplication in 

3•3 as related to “the equation that they’re going to use to find the total number of tiles [stones] 

in that one section.”  

Fig. 11 

 

Seeing rows and columns in the Reverse Cobblestone Task 

Video 5 Using Rows and Columns to Illustrate Nicole’s Method 

 



 

Calculationally, ET is correct. Unfortunately, he is missing quantitative meaning for the 

multiplication. He nicely described his thinking in terms of rows and columns of stones but 

carrying through this line of thinking to the operation can produce issues. What would a number 

of stones times a number of stones be—stones squared? Haleemah encountered a similar 

difficulty when she was asked to describe the middle section. She stated, “…for 3 times 4, I 

know, I think about it kinda like base times height.” Here, Haleemah’s meaning for 

multiplication is removed from the context. Previously, Haleemah and ET were able to reason 

quantitatively with multiplication by seeing “groups of” stones, but they seem to be approaching 

Nicole’s equation differently.  

Progress 

The students made progress after being prompted to think about their reasoning with 

Amir’s method. When asked how Amir was thinking about multiplication for a Size 11 

cobblestone pattern, ET stated, “11 times 11 represents the 11 tiles [stones] in one column and 11 

columns in one section.” Watch video 6 (link online) to see them realize that their “groups of” 

way of reasoning with Amir’s method could be applied to Nicole’s method. ET explained that 

“Amir’s method of using columns [could] still be used in Nicole’s equation.” He went on to say 



that he could now see 3•3 as representing 3 columns with 3 stones in each column. This 

realization was key to applying the “groups of” meaning of multiplication. 

Video 6 Reversing Their Thinking 

 

Later this idea was extended to algebraic expressions. When asked to describe Nicole’s 

algebraic expression, ET said, “[the x+1 is] the number of columns,” and added that “x is gonna 

be the Size Number” which represents the number of “stones in one column.” This breakthrough 

allowed them to reverse their thinking on the Reverse Cobblestone Task and show a conceptual 

understanding of the meaning of multiplication rooted in the context.  

Teaching Reflection  

The most important action teachers can take to help students develop reversible thinking 

is to regularly pose reversibility tasks. To create the Reverse Cobblestone Task, we simply 

flipped what was given and what students were asked to find from the Cobblestone Task. As a 

second example, reconsider the Pool Task (figure 1). The forward direction started with creating 

a method for finding the total number of tiles in the border by illustrating the method in the 

drawing of a pool and ended with representing the method using an algebra equation. To create a 

reversibility task, teachers can pose the Pool Task in the reverse direction. Begin with a new 



algebraic equation, such as (x-2)•4+4=B, and ask students to illustrate the pool to show a method 

for finding the number of tiles in the border that could be represented by the algebraic equation. 

There are several steps that teachers can take to facilitate their students’ progress toward 

reversible thinking. It is important that students are familiar with and comfortable working on a 

task in the forward direction. This was achieved for the Pool Task by having Haleemah and ET 

repeat the forward direction multiple times, each time creating a new method for finding the 

number of tiles in the pool and eventually representing that method by using algebra. Another 

way to scaffold students struggling with reversibility tasks is to remind students of their thinking 

during the forward direction. This was achieved on the Reverse Cobblestone Task by reminding 

Haleemah and ET of their work with Amir’s method.  

Conclusion  

Teachers may find that their students experience similar challenges to Haleemah and ET 

in having quantitative meaning for arithmetic operations, developing multiple perspectives, and 

demonstrating reversible thinking. Project Mathtalk (www.mathtalk.org) has additional videos of 

Haleemah and ET deepening their quantitative reasoning, as well as other students making sense 

of algebraic expressions in context for exponential, logarithmic, and quadratic functions. 

References 

Cotter, Joan (2015). RightStart Mathematics, Level D. Activities for Learning, Inc.  

National Governors Association Center for Best Practices (NGA Center) and Council of Chief 

State School Officers (CCSSO). 2010. Common Core State Standards for Mathematics 

(CCSSM). NGA Center and CCSSO. http://www.corestandards.org.  

Sfard, Anna, and Liora Linchevski. 1994. “The Gains and the Pitfalls of Reification: The Case of 

 Algebra.” Educational Studies in Mathematics 26, no. 2/3 (March): 191–228. 

http://www.corestandards.org/


Smith III, John, and Patrick Thompson. 2008. “Quantitative reasoning and the development of 

algebraic reasoning.” In Algebra in the Early Grades, edited by James Kaput, David 

Carraher, and Maria Blanton, pp. 95-132. Routledge. 

Steffe, Leslie, and John Olive. 2010. Children’s Fractional Knowledge. Springer.  

Thompson, Patrick, and Luis Saldanha. 2003. “Fractions and Multiplicative Reasoning.” In 

Research Companion to the Principles and Standards for School Mathematics, edited by 

Jeremy Kilpatrick, Gary Martin, and Deborah Schifter, pp. 95-114. National Teachers of 

Mathematics.   

 

 


