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Abstract

Decentralized multi-authority attribute-based encryption (MA-ABE) is a distributed general-
ization of standard (ciphertext-policy) attribute-based encryption where there is no trusted central
authority: any party can become an authority and issue private keys, and there is no requirement
for any global coordination other than the creation of an initial set of common reference parame-
ters.

We present the first multi-authority attribute-based encryption schemes that are provably fully-
adaptively secure. Namely, our construction is secure against an attacker that may corrupt some
of the authorities as well as perform key queries adaptively throughout the life-time of the system.
Our main construction relies on a prime order bilinear group where the k-linear assumption holds
as well as on a random oracle. Along the way, we present a conceptually simpler construction
relying on a composite order bilinear group with standard subgroup decision assumptions as well
as on a random oracle.

Prior to this work, there was no construction that could resist adaptive corruptions of au-
thorities, no matter the assumptions used. In fact, we point out that even standard complexity
leveraging style arguments do not work in the multi-authority setting.
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1 Introduction

Attribute-based encryption schemes [SW05, GPSWO06| allow fine-grained access control when ac-
cessing encrypted data: Such encryption schemes support decryption keys that allow users that
have certain credentials (or attributes) to decrypt certain messages without leaking any additional
information. Over the years, the challenge of designing ABE schemes has received tremendous
attention resulting in a long sequence of works achieving various trade-offs between expressive-
ness, efficiency, security, and underlying assumptions [BSW07, OSW07, Wat09, LOS™ 10, LW10,
OT10, AFV11, LW11b, Wat11, LW12, OT12, Wat12, Boy13, GGH 13, GVW13, Att14, BGGT 14,
Weeld, CGW15, Att16, BV16, ABGW17, GKW17, CGKW18a, Att19, AMY19, GWW19, KW20,
Tsal9, AY20,BV20, GW20, LL20].

Multi-Authority Attribute-Based Encryption: In ABE schemes, restricted decryption
keys can only be generated and issued by a central authority who possesses the master se-
cret key. Chase [Cha07| introduced the notion of multi-authority ABE (MA-ABE) which allows
multiple parties to play the role of an authority. More precisely, in an MA-ABE, there are multi-
ple authorities which control different attributes and each of them can issue secret keys to users
possessing attributes under their control without any interaction with the other authorities in
the system. Given a ciphertext generated with respect to some access policy, a user possessing a
set of attributes satisfying the access policy can decrypt the ciphertext by pulling the individual
secret keys it obtained from the various authorities controlling those attributes.

After few initial attempts [Cha07, LCLS08, MKEO08, CC09, MKEO09| that had various limi-
tations, Lewko and Waters [LW11la| were able to design the first truly decentralized MA-ABE
scheme in which any party can become an authority and there is no requirement for any global
coordination other than the creation of an initial trusted setup. In their scheme, a party can sim-
ply act as an authority by publishing a public key of its own and issuing private keys to different
users that reflect their attributes. Different authorities need not even be aware of each other and
they can join the system at any point of time. There is also no bound on the number of attribute
authorities that can ever come into play during the lifetime of the system. Their scheme supports
all access policies computable by NC! circuits. Furthermore, utilizing the powerful dual system
technique [Wat09], security is proven assuming a composite order bilinear group with “subgroup
decision”-style assumptions and in the random oracle model.

Following Lewko and Waters [LW1la| there were several extensions and improvements.
Okamoto and Takashima [OT20] gave a construction over prime order bilinear groups relying on
the decision-linear (DLIN) [BBS04| assumption. Rouselakis and Waters [RW15| and Ambrona and
Gay |[AG21] provided efficiency improvements but provide weaker security guarantees and /or used
the less standard g¢-type assumptions and the generic group model (GGM) respectively. Datta
et al. [DKW21a] gave the first Learning With Errors (LWE)-based construction supporting a
non-trivial class of access policies. All of the above are in the random oracle model. Very
recently, Waters, Wee, and Wu [WWW22| gave a construction (for the same class of policies
as [DKW21a|) whose security can be based in the plain model without random oracles, relying on
the recently-introduced evasive LWE assumption |[Wee22, Tsa22| which is a very strong knowledge
type assumption.

Security: The natural MA-ABE security definition requires the usual collusion resistance against
unauthorized users with the important difference that now some of the attribute authorities may
be corrupted and therefore may collude with the adversarial users. While some constructions
support adaptive key queries, there is no known construction, under any assumption, which sup-
ports fully adaptive corruption of authorities. Given the distributed nature of MA-ABE
it seems unsatisfying to assume that an attacker commits on a corrupted set of authorities at
the beginning of the security game, even before seeing any secret key. Indeed, in reality we do



not even expect all attribute authorities to join the system at the same time. Therefore, we
argue that the “static corruptions” model that previous works have considered does not capture
realistic attack scenarios, and we therefore ask whether it is possible to improve it by supporting
adaptive corruption of authorities.

We emphasize that getting fully adaptive security is a well-known gap in existing construc-
tions. Even though the authors of [LW11a| were well versed in sophisticated dual system tech-
nique, they (and all followup attempts) got fundamentally stuck in solving this obstacle. More
broadly, getting adaptive security is a fundamental area of research in the cryptographic com-
munity with many successes over the years (e.g., [Wat15, ABSV15, GW20, LL20, KW20]). Still,
this natural question in the MA-ABE domain remained untouched.

Interestingly, this is one of the rare cases where generic complexity leveraging/guessing style
arguments fail (even if we are fine with a sub-exponential security loss). Indeed, applying these
arguments in our setting results in an exponential loss proportional to the maximum number
of authorities per ciphertext. Thus, there needs to be a pre-determined maximum number of
authorities per ciphertext limit and then the security parameter needs to be chosen appropriately.
Our goal, of course, is to devise a truly decentralized scheme where any party could join as an
authority at any point in time and there is no limit to the number of authorities.

1.1 Our Results

We construct the first truly decentralized MA-ABE schemes which is provably secure even when
fully adaptive corruption of authorities are allowed, in addition to fully adaptive key queries.
Our schemes are based on bilinear groups with standard polynomial hardness assumptions and
in the random oracle model. We emphasize that our constructions are the first provably secure
schemes against fully adaptive corruptions of authorities under any assumption.

We first give a construction based on bilinear groups of composite order with (by now)
standard subgroup-decision assumptions, and then give a construction in prime order bilinear
groups where the k-Linear (k-Lin) [HKO07,Sha07] or more generally the matrix Diffie-Hellman
(MDDH) [EHK™ 13| holds.

Theorem 1.1 (Informal; see Section 4): Assume a composite order bilinear group where “stan-
dard” subgroup-decision assumptions hold. Then, there is a fully-adaptive MA-ABE scheme in
the random oracle model.

The assumptions that we use in the above theorem have been used multiple times in the
past and they were shown to hold in the generic bilinear group model [LW10, LW11b, LW11a].
However, we still point out that composite order-based constructions have few drawbacks com-
pared to the more standard prime order setting. First, in prime order groups, we can obtain
security under more standard assumptions such as k-LIN or bilinear Diffie-Hellman (BDH) [BFO01]
assumption. Second, in prime order groups, we can achieve much more efficient systems for the
same security levels [Frel0,Guil3,dIPVA22|. This is because in composite order groups, security
typically relies on the hardness of factoring the group order. In turn, this requires the use of
large group orders, which results in considerably slower group and pairing operations.

To this end, starting with Freeman [Frel0| and Lewko [Lew12|, multiple frameworks and tools
have been developed to translate existing composite order group constructions into prime order
analogues (see, for example, [0T10,0T12, KL15, Att16, CGW15, GDCC16, AC16, CGKW18Db)).
We use a recent set of tools due to Chen, Gong, Kowalczyk, and Wee [CGKW18b| (building
on [CGW15,GDCC16]) and manage to obtain a construction in (asymmetric) bilinear groups of
prime order whose security is based on the more standard k-Lin or MDDH assumption.!

'Our construction is secure based on any choice of k. For instance, setting k = 1 we get security under the
Symmetric External Diffie-Hellman Assumption (SXDH), and setting k = 2 corresponds to security under the
DLIN assumption.



Table 1. State of the Art in Decentralized MA-ABE

’ Scheme ‘ Access policy ‘ Assumption ‘ Security ‘ Bounded policy size
[AG21] NC! GGM adaptive no
[AG21] NC! SXDH selective no
[LW11a] NC! subgroup decision | adaptive no
[OT20] NC! DLin adaptive no
[RW15] NC! g-type static no

[DKW21a) DNF LWE static yes
[DKW21b| NC! C/D-BDH static yes
[WWW22]| DNF evasive LWE static yes
This Work NC! subgroup decision full no
This Work NC! k-Lin or MDDH full no

In this table, static security requires all of the ciphertexts, secret keys, and corruption
queries to be issued by the adversary before the public key of any attribute author-
ity is published, selective security requires the ciphertext and corruption queries to
be made upfront while the key queries can be made adaptively, adaptive security
requires corruption queries to be issued ahead of time, but all other queries (secret
keys and ciphertexts) can be made adaptively, and full security enables all queries,
including corruption queries, to be made adaptively. Schemes having a restriction
that the maximal size of policies has to be declared during system setup are said
to have bounded policy size. All of the works are in the random oracle model ex-
cept [WWW22|. Lastly, we mention that this table only lists truly decentralized
schemes with no trusted centralized authority.

Theorem 1.2 (Informal; see Section 5): Assume a prime order bilinear group where the k-
Lin or MDDH assumption holds. Then, there is a fully-adaptive MA-ABE scheme in the random
oracle model.

The state of the art MA-ABE constructions are compared in Table 1.

Technical highlight: As all previous group-based decentralized MA-ABE systems secure against
adaptive key queries in the standard model [LW11a,0T20|, we also use the dual-systems method-

ology. However, as we explain below, the existing techniques in this space cannot be used to

prove fully adaptive security, that is, security against both adaptive key queries and adaptive

corruption of attribute authorities. As our main conceptual contribution, we introduce a new

technique within this space that allows us to bleed information from one sub-group to another

in an unnoticeable way. We call this technique dual systems with dual sub-systems and it allows

us to undetectably move information between different sub-groups across ciphertexts and key

components via a secondary dual sub-system. We believe that this conceptual contribution is of

independent interest. See Section 2 for details.

2 Technical Overview

This section starts by providing an overview of the notion of MA-ABE schemes and our fully
adaptive security definition, followed by an exposition of previous works and why they failed
to achieve the fully adaptive security. We then continue with explaining our main new ideas,
followed by an overview of the final scheme and its security proof. We decided to provide
an extensive and detailed technical overview in order to help in understanding the challenges



stemming from the fully adaptive security model and our approach for dealing with them. A
reader interested in our constructions can directly refer to Section 2.4.1.

2.1 Background on MA-ABE

Our MA-ABE (like all other known MA-ABE schemes) is designed under the assumption that
each user in the system has a unique global identifier GID coming from some universe of global
identifiers GID C {0,1}*. We shall further assume (without loss of generality) that each au-
thority controls just one attribute, and hence we can use the words “authority” and “attribute”
interchangeably. (We note that this restriction can be relaxed to support an a priori bounded
number of attributes per authority [LW11a].) We denote the authority universe by AU.

Let us recall the syntax of decentralized MA-ABE for NC! access policies, which is well known
to be realizable by (monotone) linear secret sharing schemes (LSSS) [BL88,LW11a|. A decentral-
ized MA-ABE scheme consists of 5 procedures
GlobalSetup, AuthSetup, KeyGen, Enc, and Dec. The GlobalSetup procedure gets as input the
security parameter (in unary encoding) and outputs global public parameters. All of the other
procedures depend on these global parameters (we may sometimes not mention them explicitly
when they are clear from context). The AuthSetup procedure can be executed by any authority
u € AU to generate a corresponding public and master secret key pair, (PK,, MSK,). An au-
thority holding the master secret key MSK,, can then generate a secret key SKgp, for a user
with global identifier GID. At any point in time, using the public keys {PK,} of some authorities,
one can encrypt a message msg relative to some linear secret sharing policy (M, p), where M
is the policy matrix and p is the function that assigns row indices in the matrix to attributes
controlled by those authorities, to get a ciphertext CT. Finally, a user holding a set of secret
keys {SKcgip,u} (relative to the same GID) can decrypt a given ciphertext CT if and only if the
attributes corresponding to the secret it possesses “satisfy” the access structure with which the
ciphertext was generated. If the MA-ABE scheme is built in the random oracle model as is the
case in this paper and in all previous collusion resistant MA-ABE schemes,? the existence of
a public hash function H mapping the global identifiers in GZD to some appropriate space is
considered. This hash function H is generated by GlobalSetup and is modeled as a random oracle
in the security proof.

2.2 Fully Adaptive Security

Just like standard ABE, the security of an MA-ABE scheme demands collusion resistance, that
is, no group of colluding users, none of whom is individually authorized to decrypt a cipher-
text, should be able to decrypt the same when they pull their secret key components together.
However, in case of MA-ABE, it is further required that collusion resistance should hold even if
some of the attribute authorities collude with the adversarial users and thereby those users can
freely obtain secret keys corresponding to the attributes controlled by those corrupt authorities.
Decentralized MA-ABE further allows the public and secret keys of the corrupt authorities to
be generated in a malicious way and still needs collusion resistance. This is crucial since, in a
decentralized MA-ABE scheme, anyone is allowed to act as an attribute authority by generating
its public and secret keys locally and independently of everyone else in the system. We are aiming
for fully adaptive security which is roughly defined by the following game:

e Global Setup: The challenger runs GlobalSetup to generate global public parameters.

e Query Phase I: The attacker is allowed to adaptively make a polynomial number of queries
of the following form:

2The very recent construction of Waters, Wee, and Wu [WWW22] is in the plain model, however, as mentioned,
it is based on a newly introduced and less standard assumption and achieves the rather weak “static” security
definition.



1. Authority Setup Query : the challenger runs AuthSetup to create a public/master key pair
for an authority specified by the adversary.

2. Secret Key Query : the challenger runs KeyGen to create a secret key for a given attribute.

3. Authority Master Key Query : the challenger provides the attacker the master secret key
corresponding to some authority of the adversary’s choice.

e Challenge Phase: The adversary submits two messages msg,, msg;, and an access structure
along with a set of public keys of authorities involved in the access structure. The authority
public keys supplied by the attacker can potentially be malformed, i.e., can fall outside the
range of AuthSetup. It gets back from the challenger an encryption of one of the messages
(chosen at random) with respect to the access structure. It is crucial that the adversary does
not hold enough secret keys/authority master keys to decrypt a message that is encrypted
with respect to the access structure.

e Query Phase 2: Same as in Query Phase 1 (while making sure that the constraint from the
challenge phase is not violated).

e Guess: The attacker submits a guess for which message underlies the challenge ciphertext.

All previous MA-ABE schemes consider a much weaker definition where the adversary must
commit during the Global Setup phase on the set of authorities in the system as well as on the
subset of corrupted authorities. Already at that point, the private/public key pairs of all non-
corrupt authorities are created by the challenger and the public keys are given to the attacker.
(That is, during Query Phase I and II, only queries of form 2 (secret key query) are allowed.)
Our fully adaptive definition is much more realistic given the distributed nature of MA-ABE.

2.3 Limitations of Previous Works

As in any ABE scheme, the challenge in MA-ABE is to make it collusion resistant. Usually, ABE
schemes achieve collusion resistance by using the system’s authority who knows a master secret
key to “tie” together different key components representing the different attributes of a user with
the help of fresh randomness specific to that user. Such randomization would make the different
key components of a user compatible with each other, but not with the parts of a key issued to
another user.

In a multi-authority setting, however, we want to satisfy the simultaneous goals of au-
tonomous key generation and collusion resistance. The requirement of autonomous key gen-
eration means that standard techniques for key randomization cannot be applied since there is
no one party to compile all the pieces together. Furthermore, in a decentralized MA-ABE system
each component may come from a different authority, where such authorities have no coordina-
tion and are possibly not even aware of each other. To overcome this, all previous decentralized
MA-ABE schemes use the output of a public hash function applied on the user’s global identity,
GID, as the randomness tying together multiple key components issued to a specific user by
different authorities.?

To see the challenge let us focus on one particular construction due to Lewko and Wa-
ters [LW1la|. Although this is the very first truly decentralized MA-ABE scheme, all relevant
follow-up works heavily rely on it and therefore suffer from similar problems. The security proof of
the [LW11a] construction uses the dual system technique originally developed by Waters [Wat09].
In a dual system, ciphertexts and keys can take on two forms: normal or semi-functional. Semi-
functional ciphertexts and keys are not used in the real system, they are only used in the security
proof. A normal key can decrypt normal or semi-functional ciphertexts, and a normal ciphertext
can be decrypted by normal or semi-functional keys. However, when a semi-functional key is

3 [WWW22| is an exception; see Footnote 2.



used to decrypt a semi-functional ciphertext, decryption will fail. Security for dual systems is
proved using a sequence of “indistinguishable” games. The first game is the real security game
(with normal ciphertext and keys). In the next game, the ciphertext is semi-functional, while
all the keys are normal. For an attacker that makes g secret key requests, we define ¢ games,
where in the k-th one, the first k£ keys are semi-functional while the remaining keys are normal.
In game ¢, all the keys and the challenge ciphertext given to the attacker are semi-functional.
Hence, none of the given keys are useful for decrypting the challenge ciphertext.

The proof of [LW11a] follows this high level approach, but inherently relies on the fact that
the corrupted authorities are specified in advance. There, towards the end of the proof, all
keys are semi-functional and the challenge ciphertext is also semi-functional. The goal in the
last hybrid is to move to a game where the semi-functional challenge ciphertext is of a random
message (rather than the original message). For this to be indistinguishable, they need to “shut
off” the rows in the matrix of the access policy corresponding to the corrupted authorities.
This is done by using an information theoretic tool of choosing a vector which is orthogonal to
those rows in the challenge ciphertext (such a vector must exist since the corrupted set must
be unauthorized). Effectively, this allows them to completely ignore the existence of authority
master keys corresponding to those rows, while for the other rows the inexistence of a secret key
was already taken care of when they moved to a game where all keys are semi-functional.

This approach clearly fails when authorities can be corrupted adaptively. Technically, it
is impossible to “shut off” the rows corresponding to the corrupted authorities since the latter
may not be even known at the time the challenge ciphertext is created since authorities may
be corrupted after the challenge ciphertext is created where the challenger should be able to
give the adversary the corresponding master key. However, with the (proof) approach of Lewko
and Waters [LW11a| this is impossible since the challenger (at that point) does not even have a
properly formed master key for the authority.

A Fundamental Limitation?: At this point it is useful to step back and try to discern
whether and why handling corrupted authorities was a foundational problem of [LW11la| and
has remained open for more than a decade. Lewko and Waters create an intricate dual system
encryption proof that uses two semi-functional subspaces. Their techniques go beyond the prior
methods of [LOST10,LW10] to adapt to the demands of the multi-authority setting. Now the
question is the following.

Question: Is the lack of handling authority corruption mostly an oversight that can be addressed
by pushing their techniques a tiny bit further or is there a more fundamental barrier?

The answer to this question can be distilled by making a quick observation about the Lewko-
Waters construction. In their construction all user keys are composed of bilinear group elements.
Thus, one can execute a dual system encryption proof by applying subgroup decision or k-linear
assumptions (depending on the setting) to change the distribution of such groups over the course
of a sequence of games as is typically done.

The authority master secret keys however consist solely of exponents over the order of the
group. The reason for authority keys being exponents is a consequence of the demands of the
multi-authority setting. To bring authority keys into the fold of a dual system encryption proof
one would need a plan for changing such keys to some kind of semi-functional form. However,
there is no trodden path in the dual system encryption literature for doing this for keys formed
solely from exponents. Indeed, none of the hardness assumptions seem to align with this goal at
all!

Due to these fundamental barriers, the construction and proof of Lewko and Waters dealt
with key queries and corrupted authorities separately. For uncorrupted authorities, the proof
handles key generation queries via a dual system encryption. In contrast, corrupted authorities



were statically “routed around” in the proof so as to not have important information when needed
and thus taken “outside” the dual system encryption proof.

In our work, we will show how to overcome this barrier and bring adaptive corruption of
authorities into the fold of a dual system encryption proof. Doing so will require both a novel
construction and proof ideas. We shall focus on the composite order construction next as this is
where most of the new ideas already come up and it is also much easier to describe. We give an
overview of how we port the construction to the prime order setting in Section 2.5.

2.4 . Overview of Our Approach and Our gComposite Order) Scheme
Looking into the Lewko—WatersﬁLWlla] MA-ABE scheme and the security proof more closely,

we observe that their authority master keys consist of two exponents, namely o,y < Zy where
N = pipaps is the order of the underlying composite order group. At the final step of their
security proof where they transition from a correctly formed semi-functional ciphertext for the
challenge message to one for a completely random message, they simulated the exponents o and
y based on the instance of the underlying hard problem. As such, they could not hope to give
out those keys to the adversary during the security game. In other words, they could not support
adaptive corruption of authorities.

In order to resolve this problem, ultimately, we want to come up with a construction and a
corresponding proof strategy that never needs to simulate the authority master keys based on
instances of underlying hard problems. Towards this end, we first observe that it is due to their
scheme design that Lewko-Waters [LW11a| needed to simulate the authority master keys. More
specifically, in each ciphertext, the payload is masked with the group element e(g;, g1)° in the
target group for random s < Zpy. Next, the ciphertext provides secret shares of the masking
factor s according to the underlying access policy in the exponent of e(gi1,¢1) and they mask
them with « for the corresponding authorities also in the exponent of e(gq, g1). This is done to
ensure that during decryption, only the shares corresponding to the attributes possessed by the
decryptor can be recovered by canceling out the a part with a collection of appropriate secret
keys for user GID.

Now, at the final hybrid transition of their security proof, they utilized an assumption similar
to decisional bilinear Diffie-Hellman (DBDH) where they simulate s as abe, where a, b, ¢ < Zy
are random exponents and unknown to the simulator. Therefore, the simulator has to embed
the term ab within « so that it can simulate the ciphertext components containing the shares of
s by canceling out ab in the exponent.

In order to do away with « and transition to a construction and proof technique that do not
require simulating the authority master keys, we consider a new element h from the p; subgroup
in the global public parameters. Instead of relying on the entropy derived from the exponents «
corresponding to the authorities/attributes a user does not possess, we would like to rely on the
entropy obtained from this new component h to hide the payload (recall that h is a part of the
global public parameters and is not associated with any attribute authority). Simulating h based
on the underlying hard problem would not affect the simulator’s ability to give out authority
master keys. So, our initial idea is to simply mask the payloads with e(g1,h)® for s < Zy.
We then provide ElGamal encryptions of the secret shares of the masking factor s under the
corresponding authority master keys, which now consist only of the exponents y. More precisely,
we include C1 5 = ¢7%,Cop = glll" @7 g7® for all rows z of the associated LSSS access structure
(M, p).* For the user’s secret keys, instead of generating it as g® - H(GID)Y, as in Lewko-Waters
construction, we form the secret keys as (h - H(GID))Y.

The high level idea of the security proof is then to change h from being an element of the
p1 subgroup to being an element of the pips subgroup. Then, the factor masking the message
would become e(g1, h)®-e(ge, h)®. At this point, we can leverage the entropy of s mod po to hide

AThe p function maps between rows of the policy matrix M and the index of the associated authori-
ties/attributes.



Dual systems with dual sub-systems: Unfortunately, the above scheme does not satisfy
correctness. This is because, at the time of decryption, while pairing the ciphertext and key
components, some additional terms involving the shares of the masking factor s in the exponent
of e(g1,H(GID)) would remain. In order to cancel out these terms and ensure correctness, we
introduce another parallel sub-system where we provide ElGamal encryptions of shares of —s
under corresponding authority master keys and provide elements of the form H(GID)Y as part
of the user’s secret keys. At the time of decryption, this part will produce e(g;, H(GID))~* that
will cancel e(g1, H(GID))® from the first sub-system.

Now, observe that if the same authority master keys y are used across both the sub-systems,
then a user obtaining (h - H(GID))Y and H(GID)Y as parts of its secret key can easily recover hY
which may hamper security. We therefore use two different exponents for the two sub-systems.

Overall, our scheme consists of two sub-systems which we refer to as the “A” sub-system and
the “B” sub-system. Accordingly, the master key of an attribute authority consists of two random
exponents ya,yp < Zpy. The first sub-system deals with encoding the payload and the shares
of the masking factor s, whereas the second sub-system works as a shadow system to cancel out
some extra terms during decryption to ensure correctness.

Our security proof proceeds as follows. The first step of our proof is to make a ciphertext
semi-functional over the p3 subgroup. The argument relies on two key facts. (1) Any subset of
authorities the attacker compromises will not satisfy the access structure. Thus, the corrupted
authorities alone are not enough to (information theoretically) determine if the challenge cipher-
text is semi-functional. (2) The keys given out by uncorrupted authorities will not have any
component in the order ps subgroup, thus they will not help out such an attacker (at this step).
Put together, this gives a method to leverage the information theoretic steps in order to handle
adaptive corruption of authorities. Our approach uses both computational and information the-
oretic arguments to step between different hybrid experiments. A critical feature of our security
proof is that any step that relies on the attacker’s keys not satisfying the access structure will
be an information theoretic argument, thereby sidestepping issues related to guessing which au-
thorities are corrupted. (There will of course be multiple computational arguments between and
setting up the information theoretic ones.) A similar high-level approach of using information
regarding what the adversary corrupts only in information theoretic arguments was used in few
previous dual system proofs (e.g., [Wat09, LW10,LOS™10]), but here we are able to implement
the technique in the (more challenging) distributed setting and enfolding corrupted authorities.

Our approach allows us to establish both semi-functional keys and ciphertexts in a given
subspace of the cryptosystem. However, it comes with a big caveat. While the semi-functional
argument is established in the ps subgroup we had to keep it separate from the ciphertext
component blinding the message which lives solely in the p; subgroup. At this stage it is therefore
unclear that all the work we did will even hide the message at all. Therefore, the next portion
of our proof needs to “bleed” the semi-functional portions of the ciphertext into the portions
blinding the message. Here again our two sub-system construction crucially comes into play. We
will take turns by first bleeding over into one and then into the other.

We call this novel technique as a dual system with dual sub-systems. This technique utilizes
the semi-functionality within one sub-system to introduce semi-functionality within the other.
Then, this will allow us to transform the challenge ciphertext and keys in such a way that
the po segment of the special group element A remains information-theoretically hidden to the
adversary and so its entropy can then be amplified using a suitable randomness extractor to hide
the encrypted message completely.

As we mentioned above, we set the user secret key components for the two sub-system
asymmetrically, namely, we multiply the special group element h within the user secret key
components that correspond to the first sub-system. But, we do not multiply it within those
corresponding to the second sub-system. We crucially leverage this asymmetry in the security
proof as follows. We first bleed the semi-functional portions within the ps subgroup of the second



sub-system into the po subgroup of the same to make the po components semi-functional. After
that, we utilize this semi-functionality of the second sub-system to switch the special group
element h from being embedded within the user secret key components of the first sub-system to
those corresponding to the second sub-system. Once we are done with this step, we then bleed
the semi-functional portions within the p3 subgroup of the first sub-system into the ps portions
of the same and make the py portions of this sub-system semi-functional. This strategy is crucial
since it is not clear how to leverage the dual-system methodology to inject semi-functionality into
the po portions of the first sub-system if the group element h is not moved away from this sub-
system. At this point, the ps segment of the ciphertext component blinding the message becomes
completely independent of the ps segments of all the other ciphertext and key components.
Therefore, we can utilize its entropy to blind the message information-theoretically. For a more
detailed overview of our hybrid proof strategy, please refer to Section 2.4.2 below.

We once again emphasize that all applications of the dual system methodology so far only
dealt with a single system. The two sub-system design is completely new to this work. Also, as
we argued above, full security of MA-ABE seems out of reach using standard previously used dual
system techniques (since it is not clear how to bleed the semi-functional portions of the ciphertext
components into those blinding the message and make the user keys independent of the special
group element h within a single system). As is evident from our work, our new technique is useful
and we believe that it will find further uses in other contexts related to adaptive security (for
example, constructing adaptively secure functional encryption schemes beyond linear functions
under standard group-based assumption).

2.4.1 Our Construction

Recall that our scheme relies on bilinear group G of composite order N which is a product of
three primes, that is, N = pipop3 with subgroups G,,,G,,, and Gp,. We also make use of
a seeded randomness extractor Ext and let seed be a seed for it. The elements g; and h are
uniformly random generators of the subgroup G, that along with seed are part of the global
parameters GP. H is a global hash function that we model as a random oracle in the security
proof.

At a very high level, as is evident from the construction, the encryption algorithm blinds the
message msg with the term Ext(e(g1, h)®, seed), where s is a random element in Zy. The goal in
the security proof is to show that given the view of the adversary there is enough entropy left in
e(g1, h)® so that the message is indeed hidden. There are two secret sharing schemes involved,
one of s and the other of —s. Let us denote the shares of s with 04, and the shares of —s
with op ;. The decryptor recovers e(gi, H(GID) - h)?4.= and e(g1,H(GID))?52= by appropriately
pairing their keys for attributes and ciphertext components. If the user holds sufficient secret
keys to decrypt a ciphertext, the two terms e(g1, H(GID) - h)?4= and e(g1, H(GID))?5= can be
used to recover e(gy, H(GID) - h)® and e(g1,H(GID))™® which, if multiplied, give the blinding
factor e(gy, h)®, as necessary.

AuthSetup(GP, u): The algorithm chooses random values y4 ., yB € Zn and outputs
PKu = (Q%A’uvg?fl?’u) MSKU = (yAﬂ“yB»u)'

Enc(GP, msg, (M, p), {PK,}): It first chooses a random value s <— Zy. It then uses the
LSSS access policy® (M, p) to generate a secret sharing of s where o A,z Will be the share for all
x € [{], i.e, for all z € [(], let o4, = M, - va, where vy + Z% is a random vector with s as
its first entry and M, is the z** row of M. It additionally creates another secret sharing of —s

The access policy (M,p) is of the foom M = (Muj)exa = (Mu,...,My)" € Z5¢% and p : [(] — AU.
The function p associates rows of M to authorities. We assume that p is an injective function, that is, an
authority /attribute is associated with at most one row of M. This can be extended to a setting where an
attribute appears within an access policy for at most a bounded number of times [Wat1l, LW11a].



with respect to the LSSS access policy (M, p) where op , is the corresponding share for p(z) for
all z € [{], i.e., for all z € [{], op , = M, -vp, where vp + Zﬁl\, is a random vector with —s as its
first entry. The procedure generates the ciphertext as follows: For each row x € [{], it chooses
random 74 5, 7B < ZN and outputs the ciphertext

CT = ((M, P), C, {Cl,A,xa CQ,A,.Z) Cl,B,ma CZ,B,x}mE[@)a

where

YA, p(x)TAx OAx

C' = msg @ Ext(e(g1, h)®, seed), Crae=g,"" Conz =9, 91

_ B _ YB,p(x)TBx 0B,
C’I,B,m =0 ¢ C2,B,x =0 91 i

KeyGen(GP, GID, MSK,,): The authority attribute u generates a secret key SKgip ,, for GID
as SKaip,u = (KGID,A,u, KGID,B,u), Where

KGID,A,u = (H(GlD) . h)yA’“ KGID,B,u = (H(GlD))yB’".

Dec(GP, CT, GID, {SKgip,».}): Decryption takes as input the global parameters GP, the hash
function H, a ciphertext CT for an LSSS access structure (M, p) with M € Z% and p : [(] — AU,
the user’s global identifier GID € GZD, and the secret keys {SKG|D,p($)}m€I corresponding to a
subset of rows of M with indices I C [¢]. If (1,0,...,0) is not in the span of these rows,
M7, then decryption fails. Otherwise, the decryptor finds coefficients {w, € Zy},; such that
(1,0,...,0) = > o we - M.

For all z € I, the decryption algorithm computes:

Dag = e(Cza2,H(GID) - h) - e(C1 a2, Kaip A p() " = €(g1, H(GID) - k)74
Dp, = e(Copq, H(GID)) - e(C1,3.0, Kaip, B p(x)) " = €(g1, H(GID))75 .

It computes D = [[,;(Das - Dp2)"* = e(g1,h)® and outputs C @ Ext(D, seed) = msg.
The proposed scheme is correct by inspection; see Section 4.3 for details.

2.4.2 Our Security Proof

We now dive into a more detailed look at our security proof. We choose to present an overview
of the main steps of our proof interleaved with a running commentary on the intuition behind
them. Our goal here is to give a reader both a semi-detailed sense of the proof along side the
conceptual ideas driving our approach.

Hyb, : We start with the real game.

Hyb; : Modify the random oracle to return random elements from G,,. This modification is
clearly indistinguishable under the subgroup decision assumption between G, and G (As-
sumption 4.1).

After this step all user key material is relegated to the G,, subgroup. (Recall h was already
in G,,). One important consequence of this is that for any uncorrupted authority u, both
the y4,., and yp, values modulo py and p3 are information theoretically hidden no matter
how many keys the attacker requests from the authority wu.

Hyb,y : Add a Gp, component to each part of the challenge ciphertext. This transition follows
from the subgroup decision assumption between G,, and Gy, ,, (Assumption 4.2).

Hybs : We modify the G,, components of C5 4 .., C2 B, to involve shares of independent secrets
instead of correlated ones.
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Hyb,

Hyb;

This is an information theoretic step relying on two important facts. (1) That the attacker
has no information on y4 4, ypu(mod p3) of any uncorrupted authority w per our step in
Hyb,. The fact that y4, mod ps is hidden (and each authority appears at most once in a
ciphertext) means that Cy 4, cannot be distinguished from random in the Gy, subgroup.
Thus, the share is hidden when row z corresponds to an uncorrupted authority u. (2)
That the rows of the challenge matrix (M, p) associated with the corrupted authorities
are unauthorized for decryption. Hence, they are insufficient for learning the value of s
mod ps3.

Critically, this step employs an information theoretic argument and therefore there is no is-
sue to how to properly embed a reduction to a computational assumption in the presence of
adaptive corruptions. In general, this is a theme in our whole reduction process. Through-
out the proof, we separate the computational and information theoretic arguments. The
parts of the argument that relate to what the attacker corrupted is only in the information
theoretic pieces where adaptivity is not a problem.

After this step the ciphertext begins to have a somewhat semi-functional form in that the
Gp, subgroups are not correlated in the system A and B halves. However, the effect is
currently vacuous as none of the keys “look at” the G,, subgroup which vanishes upon
pairing the keys and ciphertext.

: Add a G,, component to each part of the challenge ciphertext. This transition follows
from the subgroup decision assumption between G, and G,,p, (Assumption 4.3).

: Modify the random oracle to return random elements from G, p,. The proof that this
change is indistinguishable actually goes through a sequence of sub-hybrids where we
change the oracle queries one by one. Intuitively, changing the random oracle output for
a certain GID is akin to making the secret key components for GID to be semi-functional.
Thus, the proof will need to leverage the fact that the key components acquired by GID
do not satisfy the challenge ciphertext access structure. For each GID the proof will first
establish this in the G, subgroup to be “temporarily semi-functional”, then use this to
move it to the “permanent semi-functional” space in G,,. Finally, undo the work in the
Gp, space to make it available for moving the next GID over.

We consider the following sequence of sub-hybrids for each random oracle query GID;.

— First modify the random oracle output H(GID;) to be a random element in G, ,, instead
of Gp,. This change is clearly indistinguishable under the subgroup decision assumption
between G, and G,,p, (Assumption 4.3).

— Modify the G,, components of C3 4 4,C2 B, to involve shares of independent secrets

instead of correlated ones. This is again an information theoretic step which uses the fact
that the rows of the challenge matrix (M, p) associated with the corrupted authorities
in conjunction with all those rows for which the adversary requests a secret key for GID;
are unauthorized for decryption. The adaptive corruption of the authority as well as the
adaptive key requests for GID; do not cause any problem.
We emphasize that since this information theoretic argument is done over the G, sub-
group, it does not matter whether the adversary has information about the G, from
keys for other global identities. This is the benefit for modifying keys one by one in an
isolated subspace.

— Next, modify H(GID;) to be a random element from the whole group G. This transi-
tion is indistinguishable under the subgroup decision assumption between G,,,, and G
(Assumption 4.4). The work done so far allows us to simulate this transition using the
group elements available in the problem instance.

11



— Modify the Gy, components of C3 4 ., C2 B . to again involve shares of correlated secrets
instead of independent ones. This is again an information theoretic step similar to the
previous one.

— Change the random oracle output H(GID;) to be a random element in Gy, ,, instead of
G. This transition is indistinguishable under the subgroup decision assumption between
Gp, and Gy, p, (Assumption 4.3).

Note that in the above sequence of sub-hybrids, the G,, subgroup is used over and over
again to “escort” a value into the G, subgroup. Until this step, this portion of the proof
follows closely [LW11a] at a high level although there are differences in the low level details.
In particular, unlike [LW11a] which involves a single semi-functional form of the ciphertext,
we consider several different semi-functional forms in order to handle a more sophisticated
scenario of adaptive authority corruption in addition to the adaptive secret key queries.
However, the following steps significantly depart from [LW11a).

Hybg : Sample A from G, ,, instead of Gp,. The indistinguishability follows from the subgroup
decision assumption between G, and G,,p, (Assumption 4.3). In addition, the challenge
ciphertext message is now blinded as

1

C = msg, ® Ext(e(g1,h)’ -|e(g2, h)® | seed)

for random s” and a generator go € G,,. At this point the message is blinded in G,, while
the semi-functional components are established in the G, subgroups for both keys and
ciphertexts. We now need to bleed these over into G, to argue the message is hidden.

Hyb; : Make the C} g, C2 B parts have shares of an independent random secret in G, rather
than one correlated to C1 44,02 4. This is again an information theoretic step which
relies on the fact that the rows of the challenge matrix M labeled by the corrupted au-
thorities are unauthorized for decryption.

We now have that the ‘B’ side of our cryptosystem is complete for our proof with the
secret shared on the ‘B’ side being uncorrelated in the G, component with both the ‘A’
share and s” from C. This step is feasible since the keys in our system are created as
H(GID)¥B.=. In contrast the ‘A’ side has keys created as (H(GID) - h)¥4«. To decouple the
Gp, component of the ‘A’ side with s” we must next effectively move the h value from the
‘A’ side to ‘B’ side.

Hyby, :® Modify the random oracle output for all the global identifiers GID queried by the
adversary as H(GID;) = P; - h~1 for the j** random oracle query where P; is randomly
sampled from G, p,. Once this transition is achieved, we will clearly have H(GID;)-h = P;
for all random oracle queries, i.e., H(GID;) - h involves no G,, component. This step is
crucial for changing the G,, components of C7 4 ,,C2 4, in the subsequent hybrids. This
transition is achieved via a sequence of sub-hybrids.

— Modify the j* random oracle query to output random elements from G. The indis-
tinguishability follows from the subgroup decision assumption between G, and G
(Assumption 4.5).

— Modify the j* random oracle query to output R;- h~1 where R; is randomly sampled
from G. Observe that since R; is uniformly sampled from G, this new form of H(GID;)
is actually identical to the one in the previous game.

5In our formal proof of Section 4.4 this is spread out over Hybrids 8-10. We will condense these for this
overview and thus skip two numbers of hybrids. We are however not changing the numbers from those in the
formal proof in Section 4.4 for ease of correlation.
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— Modify the j* random oracle query to output P; - h~! where P; is randomly sampled
from Gp,p,. The indistinguishability follows from the subgroup decision assumption
between Gy, p, and G (Assumption 4.5).

Hyb,; : Make the C1 44,2 4. parts have shares of an independent random secret in G,,. This
is again an information theoretic step similar to the previous one of Hybg.

Hyb,5 : Replace C' with a random value unrelated to the message. Due to the work done so far,
s” mod py is information theoretically hidden and so s” has at least log(p2) bits of entropy.
The extractor hides the message.

2.5 Porting to Prime Order Groups

As mentioned there have been many works trying to come up with a method to translate existing
composite order group constructions into prime order analogues [Frel0, Lew12, OT10, 0T12,
KL15,Att16,CGW15,GDCC16,AC16,CGKW18b|. All of these frameworks are different and have
varying levels of simplicity or generality. We use the recent framework of Chen et al. [CGKW18b|
which seems to be the most efficient and (arguably) the simplest to use, and succeed in adapting
the construction as well as the proof from the composite order setting to the prime order setting.

This framework, in a high level, shows how to simulate a composite order group and its sub-
groups using a prime order group while guaranteeing a prime order analogue of various subgroup
decision style assumptions. These analogues follow from the standard k-Linear assumption (and
more generally, the MDDH assumption [EHK*17]). Here, since the translation process is not
completely black box and needs to be adapted for the scheme at hand, we need to introduce
a few extra technical ideas to handle our specific setting. Specifically, the proof of security of
our prime order construction relies not only on subgroup decision style assumptions but also on
few information theoretic arguments as well as on the security of a random oracle. Using the
framework and making it work on our scheme is fairly technical and systematic; we refer to the
technical section for details. Nevertheless, we point out that the high level idea as well as the
sequence of hybrids is the same as in the composite order case.

3 Preliminaries

A function negl: N — R is negligible if it is asymptotically smaller than any inverse-polynomial
function, namely, for every constant ¢ > 0 there exists an integer N, such that negl(\) < A\™¢ for
all A > N.. We let [n] ={1,...,n}.

We use bold lower case letters, such as v, to denote vectors and upper-case, such as M, for
matrices. We assume all vectors, by default, are column vectors. The ith row of a matrix is
denoted M; and analogously for a set of row indices I, we denote M for the sub-matrix of M
that consists of the rows M; for all ¢ € I. For an integer ¢ > 2, we let Z, denote the ring of
integers modulo ¢g. We represent Z, as integers in the range (—¢/2, ¢/2].

Indistinguishability: Two sequences of random variables X = {X\},cy and YV = {W\} ey
are computationally indistinguishable if for any non-uniform PPT algorithm A there exists a
negligible function negl(-) such that |Pr[A(1*, &y) = 1] — Pr[A(1*,)) = 1]| < negl(\) for
all A e N.

For two distributions D and D’ over a discrete domain 2, the statistical distance between D
and D’ is defined as SD(D,D’) = (1/2) - >, cq |P(w) — D'(w)|. A family of distributions D =
{Dr}yen and D' = {D} }, o, Parameterized by security parameter A, are said to be statistically
indistinguishable if there is a negligible function negl(-) such that SD(Dy, D)) < negl()) for
all A e N.
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3.1 Access Structures and Linear Secret Sharing Schemes

In this subsection, we present the definitions of access structures and linear secret sharing
schemes.

Definition 3.1 (Access Structures, [BL88,Beil2]): Let U be the attribute universe. An
access structure on U is a collection A C 2V \ {) of non-empty sets of attributes. The sets in A

are called the authorized sets and the sets not in A are called the unauthorized sets. An access
structure is called monotone if VB,C € 2V if B € A and B C C, then C € A.

Definition 3.2 (Linear Secret Sharing Schemes (LSSS), [BL88, Beil2, LW11a]): Let
g = q(\) be a prime and U the attribute universe. A secret sharing scheme II with domain of
secrets Zq for a monotone access structure A over U, a.k.a. a monotone secret sharing scheme,
is a randomized algorithm that on input a secret z € Z, outputs |U| shares shy,... ,shjy) such
that for any set S € A the shares {sh;},.¢ determine z and other sets of shares are independent
of z (as random variables). A secret sharing scheme II realizing monotone access structures on
U is linear over Z, if

1. The shares of a secret z € Z, for each attribute in U form a vector over Z,.

2. For each monotone access structure A on U, there exists a matrix M € ngs, called the share-
generating matrix, and a function p: [¢] — U, that labels the rows of M with attributes from
U which satisfy the following: During the generation of the shares, we consider the vector
v = (2,r9,...,rs), where ro, ..., rs < Z,. Then the vector of £ shares of the secret z according
toIlis given by p = Mv' € Z$X17 where for all j € [¢] the share p; “belongs” to the attribute
p(7). We will be referring to the pair (M, p) as the LSSS policy of the access structure A.

The correctness and security of a monotone LSSS are formalized in the following: Let S (resp.
S’") denote an authorized (resp. unauthorized) set of attributes according to some monotone access
structure A and let I (resp. I') be the set of rows of the share generating matrix M of the LSSS
policy pair (M, p) associated with A whose labels are in S (resp. S’). For correctness, there
exist constants {w;};.; in Zy such that for any valid shares { wi = (M vT)i}i c of a secret z € Zg

s—1

according to I, it is true that ) . ;w;m; = z (equivalently, > . ; w;M; = (1,0,...,0), where
M; is the ith row of M). For soundness, there does not exists any subset I’ of the rows of the
matrix M and any coefficients {w;},.;, for which the above hold.

Remark 3.1 (NC' and Monotone LSSS): Consider an access structure A described by an
NC! circuit. There is a folklore transformation that converts this circuit to a Boolean formula of
logarithmic depth that consists of (fan-in 2) AND, OR, and (fan-in 1) NOT gates. We can further
push the NOT gates to the leaves using De Morgan laws, and assume that internal nodes only
constitute of OR and AND gates and leaves are labeled either by attributes or by their negations.
In other words, we can represent any NC! policy over a set of attributes into one described by
a monotone Boolean formula of logarithmic depth over the same attributes together with their
negations. Lewko and Waters [LW11a| presented a monotone LSSS for access structures described
by monotone Boolean formulas. This implies that any NC! access policy can be captured by a
monotone LSSS.

3.2 Strong Randomness Extractors

The min-entropy of a random variable X is Hoo(X) = — log(max, Pr[X = z]). A t-source is a
random variable X with Hoo(X) > t. The statistical distance between two random variables X

and Y over a finite domain Q is SD(X,Y) = 33 o|Pr[X = w] — PrlY = u]|.
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Definition 3.3 (Seeded Randomness Extractor, Definition 6.16 [Vad12]): A function
Ext : @ x S — I is a strong (¢, €)-extractor if for every t-source X on Q, SD((Us, Ext(X,Us)),
(US,UF)) < €.

Theorem 3.1 (Theorem 6.17 [Vad12]): For every n,t € N and € > 0, there exists a strong
(t,€)-extractor Ext : {0,1}" x {0,1}¢ — {0,1}™ with m = t — 2log(1/e) — O(1) and d =
log(n —t) + 2log(1/€) + O(1).

3.3 The Notion of Fully-Adaptive Decentralized MA-ABE for LSSS

A decentralized multi-authority attribute-based encryption (MA-ABE) system MA-ABE =
(GlobalSetup, AuthSetup, KeyGen, Enc, Dec) consists of five procedures whose syntax is given be-
low. The supported access structures that we deal with are ones captured by linear secret sharing
schemes (LSSS). We denote by AU the authority universe and by GZD the universe of global
identifiers of the users. We denote by M the supported message space. Additionally, we assume
that each authority controls just one attribute, and hence we would use the terms “authority"
and “attribute" interchangeably. This definition naturally generalizes to the situation in which
each authority can potentially control an arbitrary (bounded or unbounded) number of attributes
(see [LW1la,RW15]).

e GlobalSetup(1*) — GP : The global setup algorithm takes in the security parameter X in unary
representation and outputs the global public parameters GP for the system. We assume that
GP includes the descriptions of the universe of attribute authorities AU and universe of the
global identifiers of the users GID. Note that both AU and GZD are given by {0,1}* in case
there is no bound on the number of authorities and users in the system.

e AuthSetup(GP,u) — (PK,, MSK,) : The authority u € AU calls the authority setup algorithm
during its initialization with the global parameters GP as input and receives back its public
and master secret key pair PK,, MSK,,.

o KeyGen(GP, GID, MSK,,) — SKgipy, : The key generation algorithm takes as input the global
parameters GP, a user’s global identifier GID € GZD, and a master secret key MSK,, of an
authority u € AU. It outputs a secret key SKgp ,, for the user.

e Enc(GP,msg, (M, p),{PK,}) — CT : The encryption algorithm takes in the global parame-
ters GP, a message msg € M, an LSSS access policy (M, p) such that M is a matrix over Zy
and p is a row-labeling function that assigns to each row of M an attribute/authority in
AU, and the set {PK,} of public keys for all the authorities in the range of p. It outputs a
ciphertext CT. We assume that the ciphertext implicitly contains (M, p).

e Dec(GP,CT,{SKgip}) — msg’ : The decryption algorithm takes in the global parameters GP,
a ciphertext CT generated with respect to some LSSS access policy (M, p), and a collection of
keys {SKgip .} corresponding to user ID-attribute pairs {(GID, u)} possessed by a user with
global identifier GID. It outputs a message msg’ when the collection of attributes associated
with the secret keys {SKgip,,} satisfies the LSSS access policy (M, p), i.e., when the vector
(1,0,...,0) is contained in the linear span of those rows of M which are mapped by p to
some attribute/authority u € AU such that the secret key SKgip , is possessed by the user
with global identifier GID. Otherwise, decryption fails.

Correctness: An MA-ABE scheme for LSSS-realizable access structures is said to be correct if
for every A € N, every message msg € M, and GID € GZID, every LSSS access policy (M, p), and
every subset of authorities U C AU controlling attributes which satisfy the access structure, it
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holds that

GP ¢+ GlobalSetup(1*)
Vu € U: PK,, MSK,, < AuthSetup(GP, u)

Pr |msg’ = msg | Yu € U: SKgip,, < KeyGen(GP,GID,MSK,,) | = 1.

CT <« Enc(GP,msg, (M, p), {PKy,})

msg’ = Dec(GP, CT, {SKaID,u}e/)
Fully Adaptive Security: We define the fully adaptive (chosen-plaintext) security for a de-
centralized MA-ABE scheme, namely, we consider a security game where there could be adap-
tive secret key queries, adaptive authority corruption queries, and adaptive challenge ciphertext
query. This is formalized in the following game between a challenger and an attacker. Note that
we will consider two types of authority public keys, those which are honestly generated by the
challenger and those which are supplied by the attacker itself where the former type of authority
keys can be corrupted by the attacker at any point of time during the game and the latter type
of authority keys can potentially be malformed.

The game consists of the following phases:

Global Setup: The challenger runs GlobalSetup to generate global public parameters GP
and gives it to the attacker.

Query Phase 1: The attacker is allowed to adaptively make a polynomial number of queries
of the following types:

e Authority Setup Queries: The attacker request to set up an authority u € AU of its choice.
If an authority setup query for the same authority u has already been queried before, the
challenger aborts. Otherwise, the challenger runs AuthSetup to create a public/master key
pair (PK,, MSK,) for the authority u. The challenger provides PK, to the attacker and
stores (PK,, MSK,,). Note that the challenger does not return the generated public/master
key pair to the attacker.

e Secret Key Queries: The attacker makes a secret key query by submitting a pair (GID, u)
to the challenger, where GID € GZD is a global identifier and © € AU is an attribute
authority. If an authority setup query for the authority u has not been made already, the
challenger aborts. Otherwise, the challenger runs KeyGen using the public/master key pair
it already created in response to authority setup query for u and generates a secret key
SKgip,y, for (GID,w). The challenger provides SKgip ,, to the attacker.

e Authority Master Key Queries: The attacker requests the master secret key of an authority
u € AU to the challenger. If an authority setup query for the authority u has not been
made previously, the challenger aborts. Otherwise, the challenger provides the attacker the
master secret key MSK,, for authority u it created in response to the authority setup query
for u.

Challenge Phase: The attacker submits two messages, msgg, msg; € M and an LSSS access
structure (M, p). The attacker also submits the public keys {PK,} for a subset of attribute
authorities appearing in the LSSS access structure (M, p). The authority public keys {PK,}
supplied by the attacker can potentially be malformed, i.e., can fall outside the range of
AuthSetup. The LSSS access structure (M, p) and the authority public keys {PK,} must
satisfy the following constraints.

(a) Let U4 denote the set of attribute authorities for which the attacker supplied the au-
thority public keys {PK,}. Also let Up denote the set of attribute authorities for which
the challenger created the master public key pairs in response to the authority setup
query of the attacker so far. Then, it is required that U4 N Ug = 0.
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(b) Let V denote the subset of rows of M labeled by the authorities in U 4 plus the author-
ities for which the attacker made a master key query so far. For each global identifier
GID € GID, let Vgp denote the subset of rows of M labeled by authorities v such
that the attacker queried a secret key for the pair (GID,u). For each GID € GID, it is
required that the rows of M labeled by authorities in V' U Vg p do not span (1,0, ...,0).

The challenger flips a random coin b < {0,1} and generates a ciphertext CT by running the
Enc algorithm that encrypts msg; under the access structure (M, p).

Query Phase 2: The attacker is allowed to make all types of queries as in Query Phase 1
as long as they do not violate the constraints Properties (a) and (b) above.

Guess: The attacker must submit a guess b’ for b. The attacker wins if b =b'.

The advantage of an adversary A in this game is defined as:
AdVZIA—ABE,fuIIy—adaptive(/\) _ }Pr[b/ — b] _ 1/2|

Definition 3.4 (Fully adaptive security for MA-ABE for LSSS): An MA-ABE scheme for
LSSS-realizable access structures is fully adaptively secure if for any PPT adversary A there exists
a negligible function negl(-) such that for all A € N, we have Adv%A'ABE’fu”y'adapt've()\) < negl(A).

Remark 3.2 (Fully adaptive security of MA-ABE for LSSS in the Random Oracle
Model): Similar to [LW11la, RW15,0T20]|, we additionally consider the aforementioned notion
of fully adaptive security in the random oracle model. In this context, we assume a global hash
function H published as part of the global public parameters and accessible by all the parties
in the system, including the attacker. In the security proof, we model H as a random function
and allow it to be programmed by the challenger. Therefore, in the fully adaptive security
game described above, we further let the adversary adaptively submit H-oracle queries to the
challenger, along with the key queries it makes both before and after the challenge ciphertext

query.

4 Our Composite Order Group MA-ABE Scheme

In Section 4.1 we recall composite order bilinear groups and the assumptions on which our
construction relies. In Section 4.2 we give the construction. In Section 4.3 we prove correctness
of the construction and in Section 4.4 we give the security proof.

4.1 Composite Order Bilinear Groups and Assumptions

Our system relies on composite order bilinear groups, which were first defined in [BGNO5|.
Particularly, we will rely on a bilinear group G of composite order N which is a product of three
primes, that is, N = p1paps. Such a group has unique subgroups of order ¢ for all divisor ¢ of N
and we will denote such a subgroup as G,. Also every element g € G, can be written (uniquely)
as the product of an element of G,,, an element of G,,, and an element of G,,. We refer to
these elements as the “G,, part of g”, the “G,, part of g”, and the “G,, part of g”, respectively.
We shall assume that there is a procedure G(1*) that gets as input a security parameter A and
outputs G = (N = p1paps, G,Gp, e), where e: G x G — Grp is a pairing. We assume that the
group operations in G and G as well as the bilinear map e are computable in polynomial time
in A\. Further, we assume that e satisfies the following:

1. (Bilinear) Yg,h € G, a,b € Zy, e(g%, h®) = e(g, h)®.

2. (Non-degenerate) g € G such that e(g, g) has order N in Gr.
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Below, we formulate the precise assumptions under which our MA-ABE construction will be
proven secure.

Assumption 4.1 (Subgroup Decision SD-I): The SD-I assumption states that for any PPT
adversary A, there exists a negligible function negl(-) such that for any security parameter A € N

AdvSP(\) = | PrlA(D, Ty) = 1] — PrlA(D, T1) = 1]| < negl()),
where

G = (N = pipp3, G, Gr,e) + G(1Y),
g1 < Gp17
D= (G7 gl)a
T() «— G,Tl < Gpl'
Assumption 4.2 (Subgroup Decision SD-II): The SD-II assumption states that for any

PPT adversary A, there exists a negligible function negl(-) such that for any security parameter

AeN
AdvSP () = | PrlA(D, Ty) = 1] — Pr[A(D, T1) = 1]| < negl()),
where

G = (N = pip2ps,G,Gr,e) + G(1%),
917X1 — GplagQ — Gp27X3 — Gpga
D = (G, g1, 92, X1X3),
To Gp17T1 — Gp1p3.
Assumption 4.3 (Subgroup Decision SD-III): The SD-III assumption states that for any

PPT adversary A, there exists a negligible function negl(-) such that for any security parameter
AeN

AdvSP(N) = | PrlA(D, Ty) = 1] — PrlA(D, T1) = 1]| < negl()\),
where
G= (N = p1p2p37G7 GT7 6) — g(]-/\)a
gl,Xl < GPI,XQ < Gp2,93 < Gp3,

D = (G, g1, 93, X1X2),
T() <— Gp17T1 < Gp1p2.

Assumption 4.4 (Subgroup Decision SD-IV): The SD-IV assumption states that for any
PPT adversary A, there exists a negligible function negl(-) such that for any security parameter
AeN

AdvSPTV(\) = | PrlA(D, Tp) = 1] — PrlA(D, T) = 1]] < negl(}),
where

G = (N = pipap3, G,Gr,e) « G(1Y),

91, X1 < Gy, 92, Z2 + Gp,, X3, Z3 < Gp,,
D = (G, g1, 92, X1X3, Z2Z3),

Ty < Gy p,, Th + G.
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Assumption 4.5 (Subgroup Decision SD-V): The SD-V assumption states that for any
PPT adversary A, there exists a negligible function negl(-) such that for any security parameter
AeN

AdvSPV(\) = | PrlA(D, Ty) = 1] — Pr[A(D, T1) = 1]| < negl()),
where

G= (N = P1P2P3, Ga GTa 6) — g(l/\)v

g1, Xl — Gp17X27 Z2 — Gp2793a Z3 — Gp37
D = (Ga g1, 93, X1X27 ZQZ'S)a

To < Gpps, T1 + G.

Previous Appearances and Generic Security of the Assumptions: First observe that
we really only use three assumptions since Assumptions 4.2 and 4.3 are the same other than
the roles of the subgroups G, and Gp,. And similarly for Assumptions 4.4 and 4.5. However
we enumerate them as separate assumptions for clarity. Next, note that all these assumptions
were previously stated and used (multiple times) in the literature. Assumption 4.1 is exactly
Assumption 1 in [LW11a]. Assumption 4.3 (and hence Assumption 4.2) are exactly Assumption 2
in [LW11a]. Assumption 4.5 (and hence Assumption 4.4) are exactly Assumption 4 in [LW11b] (or
Assumption 2 in [LW10]). In particular, in the above works, it was shown that these assumptions

hold in the generic group model, as long as it is hard to find a nontrivial factor of the group
order N.

4.2 The Construction

Here, we present our MA-ABE for NC!' construction in composite order bilinear groups. As
mentioned, we assume that each authority controls just one attribute, and hence we would use
the terms “authority" and “attribute" interchangeably.

GlobalSetup(1*): The global setup algorithm takes in the security parameter 1* encoded in
unary. The procedure first chooses primes p1,po,p3 and let N = pipops. Next, it generates a
bilinear group G = (N,G,Gr,e) of order N. Let Gp, be the subgroup of G of order p; and
let g1 and h be uniformly random generators of the subgroup G,,. We make use of a strong
seeded randomness extractor Ext : Gy x S — M, where M C {0,1}* is the message space and
S C {0,1}* is the seed space. The algorithm samples a seed seed < S. It sets the global
parameters GP = (G, g1, h, seed). Furthermore, we make use of a hash function H: {0,1}* - G
mapping global identities GID € GID to elements in G.

AuthSetup(GP,H, u): Given the global parameters GP, the hash function H, and an authority
index u € AU, the algorithm chooses random values y4 4, ¥B.w € ZN and outputs

PKu = (PA,u = gzlJA’ua PB,u = gilB’u) MSKu = (yA,ua yB,u)-

Enc(GP,H, msg, (M, p), {PKy}): The encryption algorithm takes as input the global param-
eters GP, the hash function H, a message msg € M to encrypt, an LSSS access structure (M, p),
where M = (M, j)oxa = (M,...,My)T € Z8% and p : [f] — AU, and public keys of the
relevant authorities {PK,}. The function p associates rows of M to authorities (recall that
we assume that each authority controls a single attribute). We assume that p is an injective
function, that is, an authority/attribute is associated with at most one row of M.

It first chooses a random value s <— Zy. It then uses the LSSS access structure (M, p) to
generate a secret sharing of s where o4, will be the share for all € [¢], i.e, for all x € [], let
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OAx = M, - vy, where vy < Zﬁl\, is a random vector with s as its first entry and M, is the Zth
row of M. It additionally creates another secret sharing of —s with respect to the LSSS access
policy (M, p) where op, is the corresponding share for p(z) for all z € [(], i.e., for all x € [{],
0By = M - vp, where vp < Z?V is a random vector with —s as its first entry. The procedure
generates the ciphertext as follows: For each row = € [¢], it chooses random 74 4,7 4 < ZN and
outputs the ciphertext

CT = ((M, P), C, {Cl,A,QH CQ,A,I; Cl,B,ma CQvax}xE[ﬂ)’
where

C = msg & Ext(e(g1,h)®, seed),

_ TAx _ TAx TAx _ YA p@@)TAx TAx
Cl,A,:Jc =0 CQ,A,z = PA7p(x)91 =0 91

_ "Bz _ TB,x OB,x _  YB,p(z)TB,x OB
Cl,B,x =0 C2,B,z = PB’p($)91 =0 91 -

KeyGen(GP, H, GID, MSK,,): The key generation algorithm takes as input the global param-
eters GP, the hash function H, the user’s global identifier GID € GZD, and the authority’s master
secret key MSK,,. It generates a secret key SKgp,,, for GID as

SKaip,u = (Kb, 4,us KGID,Bu)
where

KGID,A,u = (H(GlD) . h)yA’“ KG|D’B’u = (H(GlD))yB’u.

Dec(GP, H, CT, GID, {SKgip,»}): Decryption takes as input the global parameters GP, the
hash function H, a ciphertext CT for an LSSS access structure (M, p) with M € Z?VXd and
p : [¢] — AU injective, the user’s global identifier GID € GID, and the secret keys {SKGIDau}uEp(I)
corresponding to a subset of rows of M with indices I C [¢]. If (1,0,...,0) is not in the span of
these rows, M7, then decryption fails. Otherwise, the decryptor finds {w, € Zn},.; such that
(1,0,...,0) = > crwe - M.

For all x € I, the decryption algorithm first compute:

Dag = e(C2,4,2,H(GID) - h) - e(C1 42, Kaip A p(x) " = €(g1, H(GID) - k)74
Dp, = €e(Co,p4, H(GID)) - e(C1,B.0, Kaip B p(x)) " = €(g1, H(GID))7B-
Then compute D = [[,c;(Daz-Dpe)"* = e(g1, h)°. Finally it outputs C ©Ext(D,seed) = msg.

Remark 4.1 (On GlobalSetup): Similar to all prior decentralized MA-ABE schemes, our pro-
posed schemes utilize a GlobalSetup algorithm that samples a random string (“setup”) with a
specific structure (i.e., private coin). This setup string needs to be generated only once, can be
reused in different sessions, and the randomness used to generate it is never used subsequently
so it can be discarded once the setup string is generated.

In the next section (Section 4.3) we prove correctness of the scheme. The proof of security,
i.e., that of Theorem 4.1, is deferred to Section 4.4.
4.3 Correctness

Assume that the authorities in {SKgip,,} correspond to a qualified set according to the LSSS
access structure (M, p) associated with CT, that is, the corresponding subset of row indices I
corresponds to rows in M that have (1,0,...,0) in their span.
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For each z € I, letting p(x) be the corresponding authority,

e(Co, a2, H(GID) - h) = e(g; """ g7** H(GID) - h)
(gl " H(GID) - h) - e(g7*, H(GID) - h)

= (g1, H(GID) - h)¥Ar@)ma . ¢(gy, H(GID) - )74+

Also, for each x € I,

e(C1, 4, Kaip,Apa) = Q(QIA’xv (H(GID) - h)¥A.r())
= e(gh H(GID) . h)yA,p(z)rA,x.

Hence,
Dag = e(Caa2,H(GID) - h) - e(Ch a2, Keip A pz)
6(917 H(GID) ) h)yA,p(w)TA,z : 6(917 H(GID) . h)UA,z
- 6(.917 H(GID) . h)yA’p(m)TA,z
= e(g1,H(GID) - h)74s.
Similarly,

Dp ., =e(C2 4, H(GID)) - e(Cy B s, KGID,B,p(gC))_l
e(g1, H(GID))¥B.) B2 . ¢(gy, H(GID))7 5.
- e(g1, H(GID))¥B.e() 5.
= e(g1, H(GID))B:=,

We then have

D =][(Daz-Dpx)*"

zel
= T (e(o1. H(GID) - i)74.2)" - (e(gy, H(GID)) 75 )
zel
=[] elor, H(GID) - k)74 - e(gy, H(GID)) =
zel
= ¢(g1, H(GID) - h)* - e(g1, H(GID)) ™
= e(gla h)s7
where the fourth equality follows since ) ;w, - M, = (1,0,...,0) and 04, = M, - v4 and

0Bz = M, -vp. Thus we have

C @ Ext(D,seed) = msg @ Ext(e(g1, h)®, seed) ® Ext(e(g1,h)?, seed)

= msg.

4.4 Security Analysis

Theorem 4.1 (Security of Composite-Order MA-ABE Scheme): The above MA-ABE
scheme for NC! is fully adaptively secure in the random oracle model assuming the various types
of sub-group decision assumptions, Assumptions 4.1 to 4.5 described in Section 4.1 to be precise,

hold.
In order to prove Theorem 4.1, we consider a polynomial-length sequence of hybrid games

which differ from one another in the formation of the challenge ciphertext, the output of the
random oracle H, or the secret keys queried by the adversary A. The first hybrid in the sequence
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corresponds to the fully adaptive security game of the proposed MA-ABE scheme, while the final
hybrid is one where the advantage of A is (unconditionally) zero. We argue that A’s advantage
changes only by a negligible amount between each successive hybrid game, thereby establishing
Theorem 4.1. The high level structure of our hybrid reduction is shown in Fig. 4.1.

Let the access structure submitted by the adversary A while requesting the challenge cipher-
text be (M, p) where M € ngxd and p : [({] = AU injective. In this proof, we will model H as a
random oracle programmed by the challenger. Let the total number of global identifiers GID the
challenger generates the H oracle outputs for be ¢q. Also, we order the global identifiers {GID,}
in the sequence the H oracle outputs for them are generated by the challenger.

The Hybrids

Real Game

Hyb, " Hyb, ” Hyb, " Hyb; " Hyb, " Hybs.g |°"|Hybs:o—1>|—

c c s c — c

Hbe:J:l ” Hybs;;:z ” Hyba:.,‘:s ” HbeiJ24 ” Hybs;J |"‘| Hbe:q:4 | Hyb5:q |—
Ve s : s c E£ =
Zero Advantage
Gylo
Hyb, [[ Hyb. [ Hyb, || Hyby || Hybio || Hyb [y
z S C = é £ é

SD-1 SD-II SD-IIT SD-1IV SD-V
Asm. 4.1||Asm. 4.2||Asm. 4.3||Asm. 4.4||Asm. 4.5

Qo —

Fig. 4.1: Structure of the Hybrid Reduction for Our Composite-Order MA-ABE Scheme

Hyb,: This is the real fully adaptive security game for the proposed MA-ABE scheme described
in Section 3.3.

Hyb,: This game is identical to Hyb except that for all global identifiers GID, the challenger
programs the output H(GID) of the random oracle H as |H(GID) < G,, |

Hyb,: This game is the same as Hyb; except the challenger generates the challenge cipher-
text as follows: Let Y denote the subset of rows of the challenge access matrix M labeled
by the authorities in Uy, i.e., the authorities for which A supplies the authority public keys
{PKy = (Pay, Ppu)}. Let Y = [f]\ Y. Tt first flips a random bit b « {0,1} and runs the Enc
algorithm to generate a normal ciphertext

CNT — < (Mv p)a C:’a {él,AfEa CYQ,AN,IM Ol,B,x» é2,B,x}fE€Y7 )
{Cl,A,x7 CZ,A,CC: Cl,B,CEJ 02,3,1}16?
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where C' = msg, @ Ext(e(g1,h)*, seed), for all z € Y,

jd TA’,. = o T'Ay,. UA,'-
Cl,A,m =0 L) CZ,A,r = PAWJ(Lx)gl La
~ TB, ~ TB, OB,
Cl,B,:L‘ =0 z: CQ,B,x = PB’pg(Ex)gl z?
and for all z € Y,
~ _TA, =, YA px)TAz 0A,
Crae=9,"", Conp=9,""""9."",
= __ TB, o _ YB,p(x)"B,z OB,
CiBe=91 " Copaz=9g, """ "7g "

Next, it samples random s’ < Zy and computes oy , = M, - vy, o, = M, - v} for all
x € [f], where v'|, v}y + Z4 are random vectors with s', —s’ as their first entry, respectively.
The challenger samples 7“14@,7"’371 <+ Zy for all x € Y and generates the challenge ciphertext

CT = ((M, P), Ca {Cl,A,xa CZ,A,ma Cl,B,x» C2,B,x}xe[€])a where

C = C = msg;, @ Ext(e(gy, h)®, seed),

forallz ey,
~ TAx ~ U;l,a: TA x OAx 0—14,1
Craz:=Craz=9,"", Coae=Coaelgs™" | = Py iy 79577 )
~ "B,z ~ U’B,z "B,z OB,z UIB,I
CiBz=CiBz=9, ", Copa=0C2Bal 95" | = Pp iy |93 ")

and for all z € Y,

! /
~ TA, TA, TA,
Cl,A,z = Cl,A,m gs ‘= g1 ! g3 “l
! ! ! !
_F YAp() Az A YA,pa)T Az OAm| YAp(@)TAx A
Co.42 = 02,44 95 g3 1 91 3 3 b
~ 7“}3’1 TB,x TIB,I
C1.Bz=C1,Ba|93 “|=91 "|93" |,
/ ! ! !
= YB,p(z)"B,x 9B, YB,p(z)TB,z 0B, YB,p(x)"B,x B,
02,80 = Co,B | 93 ‘95" =91 9" E2

Hybs: This game is the same as Hyb, except the challenger generates the challenge cipher-
text as follows: Let Y denote the subset of rows of the challenge access matrix M labeled
by the authorities in Uy, i.e., the authorities for which A supplies the authority public keys
{PKy = (Pay, Ppu)}. Let Y =[]\ 'Y. It first flips a random coin 3 + {0,1} and runs the Enc

algorithm to generate a normal ciphertext

CNT _ ( (Ma ,0)7 ij {él,AN,za é2,A~,xa él,B,m> é2,B,x}m€Y7

{Cl,A,:pv CQ,A,za Cl,B,za CQ,B,z }xE?
where C' = msg, ® Ext(e(g1, h)*, seed), for all z € Y,

~ TAx ~ _ TAx OA,x
Cl,A,:Jc =41 CQ,A,ac = PA,p(a:)gl s
= TB, = . TB, OB,
Cl,B,z =0 za CQ,B,x - PB,pg(Ex)gl z?

and for all z € Y,

~ TA, ~ YA p(x)TAz 0A,
Cl,A,z g1 17 CQ7A,CC =0 g1 za
~ __ B, A _ YByp(x)"B,z 0B,
Ci.Be=91 ", CoBz = 03 g1 "
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Next, it samples random s;,sp < Zy and computes o’y , = M, - vy, o, = M, - vp,
where v/y, vy <+ Z% are random vectors with s’; and s’y as their first entry, respectively. The
challenger samples 7’y ., 75 . < Zy for all x € Y and generates the challenge ciphertext CT =
((M) p)v C) {CI,A,am C2,A,337 Cl,B,$7 CQ,B,x}xG[E]) where

C = C = msg, & Ext(e(g1, h)*, seed),

forallz €Y,
! /
~ ~ TAx TAx
TA, _ ? _ TAx OA,x >
Cl,A,a: = Cl,A,az =0 1;7 CQ,A,x = CQ,A,a:gg - PA,p(w)gl g3 ’
o’ o’
. . to o8
C1,Be=CiBz =9, ", 02,82 = C2,B 293 =Pp o9 95

and for all z € Y,

!
~ Ta, ra,x TA,
Cl,A,a: = Cl,A,zg3 ‘= 91 Ig3 ‘,

! /
/ o / o
YA,p(2)" A,z YA,p(2)TAz OAz YAp)Tas | A

CQ,A,z = C2,A,x93 g3 =0 g1 93 g3 )
~ TJB x TB,x TB,Z
C’I,B,x = Cl,B,zgg =091 93

’ a'/ / 0'/
~ YB,p(2)"B,x _ YBp@)TBe OBa YBp(@)'Ba | BT
C2,Bz = C2,B 295 g3 =0 91 " 93 93 .

Hyb,: This game is analogous to Hybs, except that the challenge ciphertext is generated as fol-
lows: Let Y denote the subset of rows of the challenge access matrix M labeled by the authorities
in U4, i.e., the authorities for which A supplies the authority public keys {PK, = (P4, PB.u)}-
Let Y = [(]\ Y. It first flips a random bit b <— {0,1} and runs the Enc algorithm to generate a
normal ciphertext

CNT — ( (Ma p)a C:fa {CI,AJQH C’Q,Aia:a C~11,B,acy éQ,B,:v}mEYa >
{C1,4,2,C2,42,C1,B2,CoB 2} 7

where C' = msg, @ Ext(e(g1,h)*, seed), for all z € Y,

~ TA, ~ _ TAx OA,x
Cl,A,:): =0 x7 CQ,A,m = PA,p(m)gl )
~ TB,x ~ _ "B,z OB,z
Cl,B,x =0 ‘, CQ,B,CE = PB,p(:c)gl s
and for all z € Y,
A _ TA, A _ YA p@@)TAz 04,
Craz=91""  Coax=g""" "9,
A _ B, ~ _ YB,p(x)"B,x OB,
Cl,B,:p =0 xa C2,B,ac =0 P 91 ‘.
: / / " / _ /
Next, it samples random sy,sp,s" < //ZN and Comput(/e/s Opy = My - vy,
/ _ !/ 7 _ " —
g, = M, - vgoh, = M, v}, op, = M, wvp for all z € [4],
where vy, v, v}, v} <+ Z% are random vectors with sy, s5,5”,—s" as their first
entry, respectively. The challenger samples /4 75 7% .75, < Zn for all

r € Y and generates the challenge ciphertext CT = ((M,p),C,{C1 az,C24z,C1B.x
CQ’B’x}we[g]) where

C = C = msg;, @ Ext(e(g1, h)®, seed),
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forallx € Y,

TA,x

ClAz:CLA,x:gl "

1" / 1 /

Con2 = 0242 g;A’I gg“ = Pxﬁ;a)ng’I 9;“ Q;A’z7
Cl,B,:p = CN’I,B,z = gIBwa
Copo = Copal 037" log™" = PR 95" lgg P,
and for all z € Y,
Thw | The _ TAw| ThAz| Tae

Cl,A,x = Ol,A,m 9o 93 =0 9o gs

i 17 ! /
YA, p(@)TAz Az | YAp@)TAz TAq

Co.nz = 02,42 95 957" |93 93
yA,p(z)rA,z TA,x yA,P<I)TX T UZ x yA’P(I>Tf4 x 014 x
=0 g1 9o 9o " 93 g3
C _ C~1 Tg,z TIB,.T _ "Bz rx,m T/B,.r
1,B,z = U1 B x| 99 93 =0 9o 93
1! 1! ! !
A YB,p(z)"B,x B | YB.p(2)"B,e 9B,
C2,B,a: = CZ,B,z 9o xgz ‘ 193 x93 *

1 1 ! /
_ YB,p(x)"B,x 0B.z| YBp(x)"Bx 9B,a | YBp(=)"Bz 9B,
=N g1 |92 92 93 3 -

Hybs.j_1y (5 € [g + 1]): This game is the same as Hyb, except that for the ' global
identifier GID, for t < j — 1, the challenger programs the output H(GID;) of the random oracle H
as|H(GID¢) < Gp,p, |, while for t > j—1, it programs the output H(GID;) of the random oracle H
as H(GID;) <— G,, as earlier. Observe that Hyby.q coincides with Hyb,.

We introduce a sequence of sub-games namely, (Hybs. .1, ..., Hybs.;.4) between Hybs.(;_1) and
Hybs.; for all j € [q] as defined below.

Hybs.;u (5 € [g]): This experiment is the same as Hybg,;_;) except that for the jth
global identifier GID;, the challenger programs the output H(GID;) of the random oracle H as
H(GID;) < Gy, p, | while for all ¢ < j, it programs the output H(GID;) of the random oracle H

as H(GID;) < Gp,p,, and for t > j, it programs the output H(GID;) of the random oracle H as
H(GID;) < G, as earlier.

Hybs.;.o (J € [g]): This game is the same as Hyb;.;.; except the challenger generates the
challenge ciphertext as follows: Let Y denote the subset of rows of the challenge access matrix
M labeled by the authorities in U 4, i.e., the authorities for which A supplies the authority public
keys {PK, = (Pay, Ppu)}. Let Y = [(]\'Y. The challenger first flips a random bit b < {0,1}
and runs the Enc algorithm to generate a normal ciphertext

CNT _ ( (Ma p)v ij {él,AN,:m C’Q,AN,xa él,B,m7 é2,B,x}m€Y7 )
{Cl,A,:m CQ,A,za Cl,B,za CZ,B,m }xE?

where C' = msg, ® Ext(e(g1, h)*, seed), for all z € Y,

~ TAx ~ _ TAx OA,x
C(1,A,ac =91 C’Q,A,x = PA,p(m)gl )
~ "B, = _ "B, OB,
Cl,B,:p =0 :c’ CZ,B,x = PBhDa(cx)gl gcv
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and for all z € Y,

A _ TA, A _ YAp@@)TAz OA,
Craz=91""  Coax=g""" "9,
A _ . TB, A _ YB,p(z)TB,z OB,
Cl,B,:p =0 xa C’2,B,95 =0 7 91 ‘.
Next, it samples random sy, 85,8, % < Zn and computes oy . = M, - vy, oy, =

M, - vp, oy, = M, -V}, op, = M, -vg for all x € [{], where v)y, v, v, vp VAR
are random vectors with ¢/, s5,5’y, s, as their first entry respectively. The challenger sam-
ples 'y ., 75 2 ™4 4T < Zn for all € Y and generates the challenge ciphertext CT =
(M, p),C,{C1,42,C24,2,C1,B2,C2,B.x}zecl) Where

C = C = msg;, ® Ext(e(g1, h)?, seed),

forallz €Y,

TAx

Cl,A,x = Cl,A,x =091

y y
Az UA,z o PTA,z OA,x Az UA,z

02714,3: :C’Q,A,xQQ s = A,p(m)gl 095 gs

~ .
CiBz=CiBz=9, ",

] ’
B,z UB,Z "B,z OB,z B,z JB,z
2

CoBz = éQ,B,mQQ 93 = }DB,p(ac)g1 9

and forall z € Y,

1" / /

C _CY TA,z TA,z _ TAx r:"l,z TA,I
1,Az = U1,A299 "~ 95 =91 92 93

1 U” / ’
A YA, p(x)TA, A% Yap@)Tax A,
CZ,A,:;: = CZ,A,mgz wgg 3 wgg ‘
YA p(e)T Az OAz YAp(x)TA YA,p(2) a0 T
— »P(T s T \T »P(T , T ’ »p(T ,T ,T
=0 g1 7" 9o 93 g3 93

"
B

,r,/

! 1
S r ,T TB»I __ "By 7”B,z B,z
CiBz = Cl,B,a:gz g3 =091 92 93

a_//
YB,p(a) "B o YB,p(2)"Be OB
(%5 ds g3

C2,B,gc = é2,B,m92

_ gi/B,p(wB,zgicB,mggB,p@)Tﬁé,mg;B@ ggB,pm)”%,mgUﬁg,m.
Hybs.;.5 (j € [g]): This game is analogous to Hybs.;, except for the 4% global identifier
GID;, the challenger programs the output H(GID;) of the random oracle H as | H(GID;) < G|

Hybs.;.4 (J € [g]): This game is analogous to Hybs. ;.5 except that in this game, the challenge
ciphertext is generated as follows: Let Y denote the subset of rows of the challenge access matrix
M labeled by the authorities in U 4, i.e., the authorities for which A supplies the authority public
keys {PK, = (Pay, Ppu)}. Let Y = [(]\'Y. The challenger first flips a random bit b < {0,1}
and runs the Enc algorithm to generate a normal ciphertext

C~T — < (M? p)a C:’v {él,AJxv éQ,Aixa él,B,x; éQ,B,I}IEYa >
{C1,4,2,C2,42,C1,B2,C2Ba 17

where C' = msg, @ Ext(e(g1,h)*, seed), for all z € Y,

~ TAx A _ TA x TAx
Cl,A,x =4d1 C2,A,a: = PA,p(x)Eh )
~ TB, ~ "B, OB,
CLB,x =0 Iv CQ,B,x = PB,pg(Em)gl z?
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and for all z € Y,
A TAx YA TAz OAx
Cl,A,z =01 5 CQ Ax = 91 () g1 y

YB,p(z)"B,x OB,z
91

- o
CiBz=9; ", Copr =0

Next, it samples random ¢'y,s%,s” < Znx and computes o)y, = M,
vy, J%;,I = M, - 'ng,a;’m = M, - v, ng = M, - v, for all z ¢

(€], where vy, v, v",v} <+ Z% are random vectors with s'y,s%,s”,—s" as their

first entry respectively. The challenger samples 70y 7% ., 7% ., 7%, < Zn for all
x € Y and generates the challenge ciphertext CT = ((M,p),C,{C1,4.2,C2.42,C1 Bz
CZ,B,:U}:EE[Z]) where _

C = C = msg;, ® Ext(e(g1, h)?, seed),

and for all z € Y,

~ ra,
Cl,A,x = Cl,A,m =0 xa

UA T o! JA,o: 0{4

Coae = Coangs— 95" = Pyt g1 95— 95",
Cl,B,x = Cl,B,IL = gIB7 )

Cop = Copagy— 93" = Piiiol™ o5

Forall z €Y,

1 / 11 /
T

A TA,I Az _ TAx TA,(E A,z
Craz=C1429y""95"" =91"%99" “937",

CT" ! !
_ ya p(:C)’"A x Ya,p(x)"Az Az
Coaz = CoA40 9593 93

0' !
_ YA p(x)TAz Az YA,p(x) TA T A T YA P(T)TA x UA T
=0 91 " 92 92 93 93 >

1" / T,/

7”A,z B,x _ TB,x ,:c B,z
Cl,B,x:CLB,xQQ g3 =0 92 gs

1
i (e N ’ ’
YB,p(x)"B,x YB,p(z)"B,e 9B,z
93 93

Co.8.e = Co.B.29s 93

"
" o ’ ’
YB,p(z)"B,x OB,z YB,p(z)"B,x B,z YB,p(z)"B,2 B,z

=9 91 " 92 92 93
Hybg: This game is identical to Hybs., except the following: While generating the global public

parameters GP the challenger generates instead of h <— Gy,. Also in this game, the

challenge ciphertext is generated as follows: Let Y denote the subset of rows of the challenge
access matrix M labeled by the authorities in Uy, i.e., the authorities for which A supplies the
authority public keys {PK, = (Pay, Ppu)}. Let Y = [{]\ Y. The challenger first flips a random
bit b < {0,1} and runs the Enc algorithm to generate a normal ciphertext

T — ( (M, p),C {C1.a2,Co.42,C1.82,CoBa}ucy, >
{C1.40,C2,42:C1,B2 Co.B o} ey

where C' = msg, @ Ext(e(g1,h)*, seed), for all z € Y,

~ TA,x ~ _ pTAxz OAx
Cl,A,:p =491 CQ,A,m = PA,p(m)gl )
= TB,x =~ o "B,z OB,z
Cl,B,m =0 J“a CQ,B,:E = PB,p“(Lx)gl L?
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and for all z € Y,

= _TA, ~ YA px)TAxz OA
Ciaz=9""  Cona=g""""9,"",
X __ TB, = _ YB,p(x)TB,z OB,
Cl,B,x—gl Ia CZ,B,z—gl 7 91 ‘.
Next, it samples random ¢/;,s%5,s” < Zn and computes o), = M,
vy, o0, = M, vgos, = M, v, o, = M, vp for all z €

(€], where vy, v, v}, v} <+ Z% are random vectors with s'y,s%,s”,—s" as their
rst entry respectively. e challenger samples 7/, 1% 7" 7 +— Zy for a
first entry tively.  The challeng les oy v o Pl Zy for all
r € Y and generates the challenge ciphertext CT = ((M,p),C,{C1 a4, C242,C1B.x
CQ,B,x}x€[€]> where

1"

C = msg, ® Ext(e(g1, h)* - | e(g2, h)*" |, seed),
and for all x € Y,
Ciaz = CN’LA@ = gif“*‘f’
Cone = Conagy 03 = P07 g

~ "5,
Ol,B,z = Cl,B,x =0 z7
" ! 1" /

~ 9B,z B,z __ TB,x 0Bz 9B 9Bz
CoBz = CoB 29y "5 PB,p(x)gl 92 93 -

For all z € Y,

7
A

,',./

! "
~ r ,T TAx _ TAz=z TAz TAw
Crae=C1429y""95"" =91""9,""95"",

Coonp = Co,a gy 0 o g Ao gh ) s o T

— g?lJA,puwA,w girA,mggA,pwvﬁé,z g;f’}x,m ggA,pwvﬁq,z gg’A,m’
Crpa = Crpagy gy = g7 gyhe g,
CoBo = C’Q,B,mggB’”(‘”rg’”ggg’””ggB”’(”rg’””ggé’””

YB,p(z)TB,z OB,z me(m)T%’,.’z U%,m yB,P(m)T/B,m U/B,m
91 " 99 92 93 93 -

:gl

Hyb,: This game is the same as Hybg except the challenger generates the challenge cipher-
text as follows: Let Y denote the subset of rows of the challenge access matrix M labeled
by the authorities in Uy, i.e., the authorities for which A supplies the authority public keys
{PKy = (Pau,Ppu)}. Let Y = [f]\'Y. The challenger first flips a random bit b < {0,1} and
runs the Enc algorithm to generate a normal ciphertext

CT = < (M,p)@j {él7A~,xvé2,A~,xaél,B,xaéZB,x}xeYv >
{C1,4,2,02,42,C1,B2,CoBz} ey

where C' = msg, ® Ext(e(g1, h)*, seed), for all z € Y,

~ TAx ~ _ TAx OA,x
Cl,A,:): =91 CQ,A,x = PA,p(m)gl )
~ "B,z 2 _ p’'Bxx OB,z
Cl,B,:Jc =41 CZ,B,x = PB,p(m)gl s

and for all z € Y,

~ _ TA, A _ yA,p(x)TA,z OA,
Crae=9"" Cras=46 917"

~ _ TBxzx ~ _ YB,p(x)"B,z OB,z
C1,B,z—91 ) CQ,B,:c—gl g1 -
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Next, it samples random §',s%,s”,s%; < Zn and computes o'y, = M, - vy, oz, =

/ " _ " " _ " / / " 1 d

M, - vp, 0y, = My v}, op, = M, v} for all z € [(], where vy, vy, v}, v} — Z%
are random vectors with 'y, s’,s”,s%; as their first entry, respectively. The challenger sam-
ples 'y ., 75 2™ 0 Th . < Zn for all € Y and generates the challenge ciphertext CT =

(M, p),C,{C1,42,C24.2,C1.B2,C2.Bx}el) Where
C = msgy, @ Ext(e(g1, h)* - e(ga, h)*", seed),
and for all zx € Y,

~ TA,
Cl,A,x = C’I,A,x =0 ma

~ o’:‘{sz 0{41‘ TA,x OAx 0{4/3: 0-141
CZ,A,x = CQ,A,xQQ g3 = PA,p(z)gl 9o 93
TB,x

Cl,B,:p = CI,B,(E =91

o'l / o'l /
Bz 9B,z PTB x OB,z Bz 9B,z
— ’ ’ >

(9,8 = C'Q,B,xgg 93’ Bpx)91 92 ds3

Forall z €Y,

1 / /

C _C~1 rA,z rA,z _ TAz=z rf‘;,z TA,a:
1,Ax = UC1,A292 " 93 =91 9o " 9G3

Co,az = élA,mg;JA,p(m)rx,wgg%wggA,p(-'E)ri‘;,xg;;l,x
_ g?IJA,p(;c)TA,zgirA,mggA,p@)rx,z g%,mggA,p<z>T‘2x,zggk,m’
~ ' rh r rl ,
C1,B2=C1,B29y" 957" = 91779," 795",
Y U@ | 7B | U@ Tha
C2,Bx = C2,B 29, 9593 T 93

17
17 g ! !
ys,p<z>7‘3,zgaB,zgyB,p@)’”B,zggyB,p<z>’”B,z B,z

=0 1 2 2 3 93

Hybg: This game is identical to Hyb; except that for all global identifiers GID, the challenger
programs the output H(GID) of the random oracle H as |H(GID) < G |.

Hybg: This game is the same as Hybg except that the challenger generates the outputs of the
H oracle as follows: For any global identifiers GID, the challenger first samples a random group

element R + G and sets |[H(GID) = R-h™!|

Hyb,,: This game is the same as Hyby except that the challenger generates the outputs of the
H oracle as follows: For any global identifiers GID, the challenger first samples a random group
element P < Gp,,, and sets H(GID) = ~hL

Hyb,;: This game is the same as Hyb;, except the challenger generates the challenge cipher-
text as follows: Let Y denote the subset of rows of the challenge access matrix M labeled
by the authorities in Uy, i.e., the authorities for which A supplies the authority public keys
{PKy = (Pay,Ppu)}. Let Y = [¢]\ Y. The challenger first flips a random bit b + {0,1} and
runs the Enc algorithm to generate a normal ciphertext

C~T — < (My p)7 C:'7 {él,%$7 C’Q,Aiita él,B,x, éQ,B,Z‘}CCEY7 >
{C1,4,2,C2,42,C1,B2,CoBz} v

29



where C' = msg, @ Ext(e(g1,h)*, seed), for all z € Y,

~ TAx A _ TAx OA,x
Cl,A,x =091 CQ,A,x = PA,p(z)gl )
~ "B, ~ _ "B, OB,
Cl,B,:): =0 zv C2,B,x = PB,p?$)gl z’

and for all z € Y,

~ _TA, =, YA px)TAz 0A,
Craz=9"", Cong=9,"" """,
=~ __ TB, = _ YBp(x)"B,z OB,
Ci.Be =91 ", CoBa=9, """ "9 "

Next, it samples random sy, s’z,s”, 5"y, s, < Zy and computes ‘714,1 = M, - v, ajg’m =
M, - vg, o, = M, v}, op, = M, vp for all x € [(] where v)y,vp, v}, v} z%
are random vectors with &', s5, 5"y, s, as their first entry respectively. The challenger sam-
ples 'y ., 75 2™ T < Zn for all € Y and generates the challenge ciphertext CT =
((M7 p)v C7 {Cl,A,x7 C2,A,x7 Cl,B,:):v C2,B,:L‘}:B€[€]) where

C = msgy, ® Ext(e(g1, h)* - e(ga, h)*", seed),
and for all z € Y,

~ TAx
Cl Ax = Cl,A,x =0 )

y y
~ Az | o Az | o
: A, TAz OA, ’ A,
Cr,40 = C2,.4,295 g3 =1 A,pa)fh ‘95 937",

'I’B7
CiBx=CiBz=9, ",

1 / 1" !

Bz 9Bz __ "B,z 0B 9Bz B,z
Co.Bx = C2B 29y " 93 _PB,p(x)gl 92 93 -

Forallz €Y,

1 /

1"
C _ C~1 rA,.r TA,m _ TAx rA,m TA,ac
1,Ax = U1,A299 ~ g3 =91 92 93

"
" o ’ ’
_ CYQ yAyP(I)TA,z gyAvP(z)rA,z GA,z

JAxdo 45} 3 g3

/

CZ,A,:C

" O'// / !
_ Yap(x)TAx 0Ax YA p(x)TAx YAa,p(x)TAx TAx
=9 91 92 p) 93 g3 7,

s e The _ rpe The Th
» T T s T » T , T
Cl,B,ac = Cl,B,xQQ 93 =91 92 93

17 1" ! !
YB,p(z)"B,x °B,x YB,p(z)"B,x B,z

CoBz = C2B 29 9o " 93 93
_ yB,p(z)rB,l‘ OB,z yB,P(QC)T%,ac U%,x vaP(W)T/B,w GJB,JC
=91 9 2 2 U3 3 -

Hyb,,: This game is the same as Hyb;; except that while generating the challenge ciphertext,
the challenger sets the component C' as (independent of msg, msg; ).

Analysis

For any adversary A and any ¢ € {0,...,4} U{5:(j—1),5:5:1,...,5:5: 4}j€[q] U{5:q} U
{6,...,12}, let pa; : N — [0,1] denote the function such that for all A € N, p4,(}) is the
probability that A, on input 1*, guesses the challenge bit correctly in the hybrid game Hyb;. From
the definition of Hyby, it follows that for all A € N, [pag(\) — 1/2| = Adv’yABEMullvadaptive )
and pa3(A) = paso(N). Also, for all X € N, pa12 = 1/2 since there is no information of the
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challenge bit b < {0,1} selected by the challenger within the challenge ciphertext in Hyb,.
Hence, for all A € N, we have

AdVXA-ABE,fuuyzadaptive()\)

< ’pA,i—l()\) —PA,i(/\)’ + Z “pA,S:(j—l)()‘) —PA,5:j;1(/\)‘
]

icla J€ld]
4.1
+ Z DA 55 (N) _pA,E):j:(kJrl)()‘)” + Z |PA5:j:4 — DA (4.1)
ke[3] JElg—1]

+paseN) —pasM+ D Ipaia(N) —pai(V)]
i€{7,...,12}

Lemmas 4.1-4.16 will show that each term on the RHS of Eq. (4.1) is nothing but negligible.
Hence, Theorem 4.1 follows.

Lemma 4.1: If the SD-I assumption holds, then for every PPT adversary A, there exists a
negligible function negly(-) such that for all X € N, [pao(A) — pai(N)] < negli(N).

Proof. Suppose there exists a PPT adversary A that distinguishes between Hyb, and Hyb; with
non-negligible advantage €(\). Using A as a subroutine, we construct below a PPT adversary
B that has a non-negligible advantage in solving the SD-I problem. The algorithm B gets an
instance of the SD-I problem form its challenger that consists of the group description G = (N =
p1p2ps, G, Gr,e) < G(1*), the group element g; < Gy, and another group element Tj where
T <+ G if B =0 or Tg < Gy, if B = 1. The algorithm B proceeds as follows:

Generating the Global Public Parameters: B samples random 6 < Zy,seed < 5, sets
h = ¢¢, and gives the global public parameters GP = (G, g1, h, seed) to A.

Generating Authority Public-Master Keys: Whenever A requests to set up an authority
u € AU of its choice, if an authority setup query for the same authority v has already been
queried before, B aborts. In the post-challenge query phase, if additionally A submitted an
authority public key PK,, for the same authority w while querying the challenge ciphertext, B
aborts. Otherwise B runs AuthSetup to generate a public-master key pair (PK,, MSK,) for the
authority u as follows. B samples random y4.,YB. < Zn and sets PK, = (Q%A’H,Q%B’u) and
MSKy, = (yau,yYBu). B provides PK, to the attacker and stores (PK,, MSK,). Whenever A
requests the master secret key of the authority u at a later time, B provides it to A.

Generating the H Oracle Outputs: Whenever A queries the random oracle H for some

GID € GID, B chooses a random exponent Ogp € Zy and sets H(GID) = TgG'D. It stores this
value so that it can respond consistently if H(GID) is queried again. If T3 is a generator of G, ,
these will be random elements of G, . If Tj is a generator of G, these will be random elements

of G.

Generating Secret Keys: Whenever A makes a secret key query for some (GID,u) € GID x
AU, if an authority setup query for the authority v has not been made already, B aborts. In the
post-challenge phase, if an authority setup query for the authority v has not already been made,
A submitted the authority public key PK, for u while querying the challenge ciphertext, or for
each GID € GZD the vector (1,0,...,0) is in the span of all the rows of the challenge access policy
matrix M labeled by the authorities for which A submits the public keys {PK,} while querying
the challenge ciphertext plus the authorities for which A has made a master key query for u or
secret key query for (GID,u) so far, B aborts. Otherwise, B simply runs the KeyGen algorithm
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using the public-master key pair it already created in response to the authority setup query
for authority u and generates a secret key SKgip.w = (Kgip,Au = (H(GID) - h)¥4v, Kgip.pu =
(H(GID))¥B.«) for (GID, u). If H(GID) has not been generated so far, it follows the above procedure
to generate it during this time.

Generating the Challenge Ciphertext: At some point, A submits two messages, msg, msg;
€ M and an LSSS access structure (M, p) where M € Z?VXd and p : [{] — AU is an injective
map. A also submits the public keys {PK, = (Pa, Pp)} for asubset U4 of attribute authorities
appearing in the LSSS access structure (M, p). If for all attribute authority u for which B has
created a public-master key pair for so far are not contained in Uy4, and for each GID € GID,
the vector (1,0,...,0) is not in the span of all the rows of M labeled by the authorities in Uy4
plus the authorities for which A has made a master key query for u or secret key query for
(GID, u), then B flips a random coin b < {0, 1} and generates a ciphertext CT by running the
Enc algorithm that encrypts msg;, under the access structure (M, p).

Guess: A eventually outputs a guess bit &' € {0,1}. B outputs 1 if b = b’ and 0 otherwise.
Clearly the game simulated by B coincides with Hyby or Hyb; according as T3 <= G or

Tp < Gp, since 9~G|D < Zy for all global identifiers GID. Thus, B can use A to attain noticeable

advantage in solving SD-I. |

Lemma 4.2: If the SD-II assumption holds, then for every PPT adversary A, there exists a
negligible function negly(-) such that for all X € N, [pa1(A) — pa2(A)| < negly(A).

Proof Suppose there exists a PPT adversary A that distinguishes between Hyb; and Hyb, with
non-negligible advantage €(\). Using A as a subroutine, we construct below a PPT adversary
B that has a non-negligible advantage in solving the SD-II problem. The algorithm B gets
an instance of the SD-II problem from its challenger that consists of the group description
G = (N = p1paps3, G,Gr,e) < G(11), the group elements g1, go, X1 X3, where g1, X1 + Gp,,
92 < Gyp,, X3 < Gp,, and another group element T where T < G, if 8 =0 or T < Gy, p, if
B = 1. The algorithm B proceeds as follows:

Generating the Global Public Parameters: B samples random 6 < Zy,seed < S, sets
h = gf, and gives the global public parameters GP = (G, g1, h, seed) to A.

Generating Authority Public-Master Keys: Whenever A requests to set up an authority
u € AU of its choice, if an authority setup query for the same authority v has already been
queried before, B aborts. In the post-challenge query phase, if additionally A submitted an
authority public key PK, for the same authority u while querying the challenge ciphertext, B
aborts. Otherwise B runs AuthSetup to generate a public-master key pair (PK,, MSK,) for the
authority u as follows. B samples random y4.,yB. < Zn and sets PK, = (gi’A’“,g%B’“) and
MSK, = (ya.u,yBu). B provides PK, to the attacker and stores (PK,, MSK,). Whenever A
requests the master secret key of the authority u at a later time, B provides it to A.

Generating the H Oracle Outputs: Whenever A queries the random oracle H for some
GID € GID, B chooses a random exponent 0gp € Zy and sets H(GID) = ng'D. It stores this
value so that it can respond consistently if H(GID) is queried again.

Generating Secret Keys: Whenever 4 makes a secret key query for some (GID,u) € GID x
AU, if an authority setup query for the authority » has not been made already, B aborts. In the
post-challenge phase, if an authority setup query for the authority u has not already been made,
A submitted the authority public key PK,, for u while querying the challenge ciphertext, or for
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each GID € GZD the vector (1,0,...,0) is in the span of all the rows of the challenge access policy
matrix M labeled by the authorities for which A submits the public keys {PK,} while querying
the challenge ciphertext plus the authorities for which A has made a master key query for u or
secret key query for (GID,u) so far, B aborts. Otherwise, B simply runs the KeyGen algorithm
using the public-master key pair it already created in response to the authority setup query
for authority u and generates a secret key SKgip.y = (Kgip,Au = (H(GID) - h)Y4», Kgip.Bu =
(H(GID))¥5.«) for (GID, u). If H(GID) has not been generated so far, it follows the above procedure
to generate it during this time.

Generating the Challenge Ciphertext: At some point, A submits two messages, msg, msg;
€ M and an LSSS access structure (M, p) where M € Zg\,Xd and p : [{] = AU is an injective
map. A also submits the public keys {PK, = (P4, Pp,)} for asubset U4 of attribute authorities
appearing in the LSSS access structure (M, p). If for all attribute authority u for which B has
created a public-master key pair for so far are not contained in U4, and for each GID € GZD, the
vector (1,0,...,0) is not in the span of all the rows of M labeled by the authorities in U4 plus
the authorities for which A has made a master key query for u or secret key query for (GID, u),
then B flips a random coin b < {0, 1} and generates a ciphertext CT as follows.

First, B chooses a random w <« Zy and implicitly sets s = r - w where g is the Gy,
part of Tz and sets C = msg, @ Ext(e(T3,h)*,seed). B also chooses two vectors, ¥4 =
(w,@A’g, e 7614,(1)7 f?B = (—w,@B’g, Ce 7®B,d)7 where 17A72, ey 17147d,773’2 ey 'DB,d are chosen ran-

domly from Zy. We let wq, = M, - 04 and wp, = M, - o for all z € [(].

Let Y denote the subset of rows of the challenge access matrix M labeled by the authorities
for which A supplies the authority public keys {PK, = (Pau, Pgu)}. Let Y = [(]\'Y. For
each z in Y, B chooses random ry4 ,,rp, < Zyn. For each z in Y, B chooses random values
T Az, "Bz < Zn, and implicitly sets r4 , = 774, and 7, = 7B ;.

For each x € Y, B forms the ciphertext components as:

TA, TA, WA,
Crae=9"" Coae =Py T5™",

TB,x _ "B,z WB,x
CiBz =9 Coa = Pp iyTs "

For each x € Y, B forms the ciphertext components as:

_ A o YAp(a)TAe WA,z
Cl,A,x = Tg ; CQ,A,.CB = Tﬁ g xTﬁ )
_ B _ YB.p(2)TBx wWB,z
Cl,B,a: - Tg C2,B,a: - Tﬁ e Tg )

B gives the challenge ciphertext CT = (C,{C1 a4, C2,44,C1,B2, C2,Bx faelg) to A

Guess: A eventually outputs a guess bit ¥’ € {0,1}. B outputs 1 if b = b’ and 0 otherwise.
Note that for all z € [¢], the G,, part of TEJA”” (respectively TgB""”) is g{v‘[’”'v“ (respectively

g{VII'UB), where vy = rv4 (respectively vp = rvp) is a random vector in Zﬁl\, whose first entry

is s = rw (respectively —s = r(—w)). Also for all z € Y, the G,, part of TgA’”” (respectively

TEB“) is gIA’Z (respectively gIB’I), where 74, = 774, (respectively rp, = r7p,). Thus, if
Tg = g7 < Gp, the ciphertext simulated by B is distributed exactly as in Hyb;. On the other
hand, if T = g7g5 < Gp,p, the ciphertext simulated by B is distributed exactly as in Hyby with
parameters a;m = M, - cv4 (modulo p3), 0;37%‘ = M, - cvp (modulo p3), rh’x = ¢F A, (modulo
P3), T, = T (modulo p3) for all x € [/].

In order to see this, note that since {74+, 7B+ } 7> W, {04,5, UB,; }je[Q’d] are chosen randomly
in Zp, their values modulo p; and modulo ps are uncorrelated by the Chinese Remainder The-
orem. Hence, our parameters Ufﬁl,mgj&zvr;l,xvr% , are random and independent of the other
variables. Thus it follows that the games simulated by B coincides with Hyb; or Hyb, depending
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on whether T < G,, or T < Gy, p,, respectively. Thus, B can use A to attain noticeable
advantage in solving SD-II. |

Lemma 4.3: For every (possibly unbounded) adversary A, there exists a negligible function
negls(-) such that for all X € N, |pa2(X) — pas(A)| < neglz(X).

Proof: Observe that the only difference between Hyb, and Hybs is that in Hyb, the components
{0 2 teclg and {0 . }oc(g ave shares of correlated secrets, i.e., s’ and —s respectively for s <
Zy, whereas in Hybs they are shares of independent secrets sy, s’y <— Zy. Therefore, in order
to prove that these two games are statistically indistinguishable, we will argue that the secrets
being shared by {¢”y , }sc(q and {07 , }z¢[q are information theoretically hidden to the adversary
A in Hyb,.

First, note that the shares O’;Lw and a’B@ for all the rows z of the challenge access matrix M
labeled by corrupted authorities (i.e., the authorities for which A either requests the master key
or creates it on its own) are information theoretically revealed to A. However, by the game
restriction the subspace spanned by those rows does not include the vector (1,0,...,0). We may
assume that this holds modulo p3. This means that there must exist a vector u € Zﬁl\, such that
u is orthogonal to all these rows of M but is not orthogonal to (1,0,...,0), (i.e., the first entry
of u is nonzero). We consider a basis U of Z4, involving the vector w and write vy = 94 + au
for some a mod p3 and some vector v4 in the span of U\ {u}. We note that v4 is uniformly
distributed in the subspace spanned by U\ {u} (modulo p3) and reveals no information about
a mod p3. Now, since the first coordinate of w is nonzero modulo ps, it follows that the first
coordinate of v/, i.e., 4, depends on the value of @ mod p3. But the shares ¢/, , for all the
corrupted rows of M contains no information about a mod ps since w is orthogona[l to all these
TOWS.

Therefore, the only possible way for A to get information about @ mod p3 is through the
ciphertext components Cs 4 , corresponding to the uncorrupted rows of M. However, for each
such row x, A can only recover 'y , (modulo p3) and y p(z)7's , + 0% , (modulo p3) information
theoretically. Since the labeling function p is injective, it follows that y, ,(,) mod p3 is a fresh
random value that appears nowhere else. This means that given 7“;‘@, Y Am(z)rf&x + 0—14,93 (modulo
p3), if r;"x mod p3 is nonzero (note that TfA,m mod p3 = 0 with negligible probability), any value
of cr;m mod p3 can be explained by a particular value of yy4 ,,) mod ps. Since yy ,(;) mod p3
is uniformly random and information theoretically hidden to A given the public keys PK ) =

(g?fA"’ @ gqu"’ <I)> of the corresponding uncorrupted authorities p(x) (note that gylm"’ ) only leaks

YA,p(z) Mmod p1), it follows that 0’1471, is information theoretically hidden to A. Therefore, no
information about a mod p3 is leaked to A which in turn means that the secret being shared by
{0 2 }eclg (and analogously by {0’z , }.c[g) is information theoretically hidden to A. [ |

Lemma 4.4: If the SD-III assumption holds, then for every PPT adversary A, there exists a
negligible function negly(-) such that for all X € N, |pa3(A) — paa(X)] < negly(N).

Proof: Suppose there exists a PPT adversary A that distinguishes between Hybs; and Hyb, with
non-negligible advantage €(\). Using A as a subroutine, we construct below a PPT adversary B
that has noticeable advantage in solving the SD-III problem. The algorithm B gets an instance
of the SD-III problem from its challenger that consists of the group description G = (N =
p1p2p3, G, Gr,e) < G(11), the group elements g1, g3, X1 X2, where g1, X1 + Gy, Xo + Gy,
93 < Gyp,, and another group element T3 where T < Gy, if 3 = 0 or T < Gy,;, if 8 =1. The
algorithm B proceeds as follows:

Generating the Global Public Parameters: B samples random 6 < Zy,seed < S, sets
h = gf, and gives the global public parameters GP = (G, g1, h, seed) to A.
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Generating Authority Public-Master Keys: Whenever A requests to set up an authority
u € AU of its choice, if an authority setup query for the same authority v has already been
queried before, B aborts. In the post-challenge query phase, if additionally A submitted an
authority public key PK, for the same authority u while querying the challenge ciphertext, B
aborts. Otherwise B runs AuthSetup to generate a public-master key pair (PK,, MSK,) for the
authority u as follows. B samples random y4.,YB. < Zn and sets PK, = (gzl/A“,gi/B“) and
MSK, = (yau,yYBu). B provides PK, to the attacker and stores (PK,, MSK,). Whenever A

requests the master secret key of the authority u at a later time, B provides it to A.

Generating the H Oracle Outputs: Whenever A queries the random oracle H for some
GID € GID, B chooses a random exponent 0gp € Zy and sets H(GID) = ng'D. It stores this
value so that it can respond consistently if H(GID) is queried again.

Generating Secret Keys: Whenever A makes a secret key query for some (GID,u) € GID x
AU, if an authority setup query for the authority v has not been made already, B aborts. In the
post-challenge phase, if an authority setup query for the authority v has not already been made,
A submitted the authority public key PK, for u while querying the challenge ciphertext, or for
each GID € GZD the vector (1,0,...,0) is in the span of all the rows of the challenge access policy
matrix M labeled by the authorities for which A submits the public keys {PK,} while querying
the challenge ciphertext plus the authorities for which A has made a master key query for u or
secret key query for (GID,u) so far, B aborts. Otherwise, B simply runs the KeyGen algorithm
using the public-master key pair it already created in response to the authority setup query
for authority u and generates a secret key SKgip.w = (Kgip,Au = (H(GID) - h)¥4v, Kgip.Bu =
(H(GID))¥5.«) for (GID, u). If H(GID) has not been generated so far, it follows the above procedure
to generate it during this time.

Generating the Challenge Ciphertext: At some point, A submits two messages, msg, msg;
€ M and an LSSS access structure (M, p) where M € ngxd and p : [({] — AU is an injective
map. A also submits the public keys {PK, = (Pa, Pp)} for asubset U4 of attribute authorities
appearing in the LSSS access structure (M, p). If for all attribute authority u for which B has
created a public-master key pair for so far are not contained in U4, and for each GID € GID, the
vector (1,0,...,0) is not in the span of all the rows of M labeled by the authorities in U4 plus
the authorities for which A has made a master key query for u or secret key query for (GID, u),
then B flips a random coin b < {0, 1} and generates a ciphertext CT as follows.

First, B chooses a random w <« Zy and implicitly sets s = r - w where g is the Gy,
part of T and sets C = msg;, @ Ext(e(1p,h)",seed). B also chooses two vectors, v4 =
(W,D4,2,---,04,4),9B = (—w,UB2,...,0UB,d), where Da2,...,044,9B2-..,0UB,q4 are chosen ran-
domly from Zpy. We let wa =M, -9y and wp, = M, - v for all x € [¢]. B further samples
s'y,8's < Zn and defines O‘A = M, -v)y,0p, = M, -vp for all z € [{], where v}y, v < Z%
are random vectors with s/, and s/ B as their first entry, respectively.

Let Y denote the subset of rows of the challenge access matrix M labeled by the authorities
for which A supplies the authority public keys {PK, = (Pau, Ppu)}. Let Y = [(]\ Y. For
each x € Y, B chooses random 74 4,754 < Zn. For each x € Y, B chooses random values
7"1473:,7%@,7:&3;,773@ < Zn, and implicitly sets 74, =174, and 7z = 7B 4.

For each « € Y, B forms the ciphertext components as:

/
TAx TAx WA UA,m
Cl,A,z =0 C2,A,:): = PA p(;v)T,B g3 ’
/
TB,x "B,z WB,x B,z
C1.Bz = 9 Copa=Pg yiyTs 937"
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For each z € Y, B forms the ciphertext components as:

~ ! ~ ! !
TAe TAx YA, p(z)TAx WA,z YA p(x)"Ax Az
Cl,A,x = Tﬁ r93 ‘ CQ,A,x = Tﬁ P Tﬁ 193 T93 ‘,
C _ TFB,x TIB,:C C _ TyB,p(z)fB,mTwB,ac yB,/’(x)rlB,x U/B,gc
1,Bx =45 " g3 2,Bx = 13 g 93 gz

B gives the challenge ciphertext CT = (C,{C1,4,2,C2 4.2, C1,B 2> 0273790}:06[4) to A.

Guess: A eventually outputs a guess bit &' € {0,1}. B outputs 1 if b = b' and 0 otherwise.
We note that for all z € [], the G, part of TZ;A’I (respectively TZ;B’I) is gMrvA (respec-

z"vB)

tively g7 , where vy = r4 (respectively vp = rop) is a random vector in Z4, whose first

entry is s = rw (respectively —s = r(—w)). Also for all z € Y, the G,, part of T;A’:” (re-

T

spectively TEB‘I) is g,*" (respectively g;”*), where r4, = ria, (respectively rp, = r7p.).
Thus, if Ty = g7 < Gp,, the ciphertext simulated by B is distributed exactly as in Hybs.
On the other hand, if T = g¢ig5 < Gy,p, the ciphertext simulated by B is distributed ex-
actly as in Hyb, with parameters U/f,\,:v = M, - cv4 mod ps, O’%’x = M, - cvg mod po, for all
x € /], Tffm = cF g, mod pa, 1} . = ¢z mod po for all z € Y. In order to see this, note that
since {fA,x’,FB@}wE?, w, {6A7j,1~7)37j}j€[27d] are chosen randomly in Zy, their values modulo py
and modulo py are uncorrelated by the Chinese Remainder Theorem. Hence, our parameters
{04 2 0B 2 Yecl)s {74 2 "B 2} ey are random and independent of the other variables.

Thus, it follows that the game simulated by B coincides with Hybs or Hyb, according to
whether T <= G, or T <— Gp,p,. Thus, B can use A to attain noticeable advantage in solving
SD-III. |

Lemma 4.5: If the SD-III assumption holds, then for every PPT adversary A, there exists a
negligible function negls ;.1 (-) such that for all X € N, |pA’5;(j_1)()\) pr,5:j;1()\)‘ < negls.;.1(A).

Proof: Suppose there exists a PPT adversary A that distinguishes between Hybs.;_;) and
Hybs. ;.1 with non-negligible advantage €(A). Using A as a subroutine, we construct below a PPT
adversary B that has noticeable advantage in solving the SD-III problem. The algorithm B gets an
instance of the SD-III problem from its challenger that consists of the group description G = (N =
p1p2ps, G, Gr,e) < G(1), the group elements g1, g3, X1 X2, where g1, X1 + Gy, X2 + Gy,
g3 < Gp,, and another group element T3 where T <— G, if 8 =0 or T < Gy p, if 5 =1. The
algorithm B proceeds as follows:

Generating the Global Public Parameters: B samples random 6 < Zy,seed < S, sets
h = g¢¢, and gives the global public parameters GP = (G, g1, h, seed) to A.

Generating Authority Public-Master Keys: Whenever A requests to set up an authority
u € AU of its choice, if an authority setup query for the same authority v has already been
queried before, B aborts. In the post-challenge query phase, if additionally A submitted an
authority public key PK, for the same authority w while querying the challenge ciphertext, B
aborts. Otherwise BB runs AuthSetup to generate a public-master key pair (PK,, MSK,) for the
authority u as follows. B samples random y4.,YBy < Zn and sets PK, = (ngA’“,ngB’“) and
MSKy, = (yau,yYBu). B provides PK, to the attacker and stores (PK,, MSK,). Whenever A
requests the master secret key of the authority u at a later time, B provides it to A.

Generating the H Oracle Outputs: When B needs to generate H(GID) for some global
identifier GID € GZID, either it responds to a direct H oracle query of A or answers to a secret
key query of A, B proceeds as follows: For the first j — 1 global identifiers GID, B samples
fcip < Zy and sets H(GID) = (g1g3)%e® (this is a random element of Gy, ,, since the values of
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fcip modulo p; and modulo p3 are uncorrelated by the Chinese Remainder Theorem). For the
éGID

j™ global identifier GID;, B samples random éGle < Zp and sets H(GID;) = Ty 7. For all

subsequent global identifiers GID, B samples 0gip « Zy and sets H(GID) = g?G'D. It stores these
value so that it can respond consistently if H(GID) is queried again.

Generating Secret Keys: Whenever A makes a secret key query for some (GID,u) € GID x
AU, if an authority setup query for the authority v has not been made already, B aborts. In the
post-challenge phase, if an authority setup query for the authority v has not already been made,
A submitted the authority public key PK, for u while querying the challenge ciphertext, or for
each GID € GZD the vector (1,0,...,0) is in the span of all the rows of the challenge access policy
matrix M labeled by the authorities for which A submits the public keys {PK,} while querying
the challenge ciphertext plus the authorities for which A has made a master key query for u or
secret key query for (GID,u) so far, B aborts. Otherwise, B simply runs the KeyGen algorithm
using the public-master key pair it already created in response to the authority setup query
for authority u and generates a secret key SKgip.y = (Kgip,Au = (H(GID) - h)¥4», Kgip.Bu =
(H(GID))¥5.«) for (GID, u). If H(GID) has not been generated so far, it follows the above procedure
to generate it during this time.

Generating the Challenge Ciphertext: At some point, A submits two messages, msg, msg;
€ M and an LSSS access structure (M, p) where M € ngxd and p : [{] — AU is an injective
map. A also submits the public keys {PK, = (Pa, Pp)} for asubset U4 of attribute authorities
appearing in the LSSS access structure (M, p). If for all attribute authority u for which B has
created a public-master key pair for so far are not contained in U4, and for each GID € GID, the
vector (1,0,...,0) is not in the span of all the rows of M labeled by the authorities in U4 plus
the authorities for which A has made a master key query for u or secret key query for (GID, u),
then B flips a random coin b < {0, 1} and generates a ciphertext CT as follows.

First, B chooses a random w < Zy and implicitly sets s = a - w (modulo p;) and s” =
v+ w (modulo pg) where ¢ = X; and g7 = X, (letting g2 be a generator of G,,) and sets
C = msg;, @ Ext(e(X1X2,h)*,seed). B also chooses two vectors, D4 = (w,04,2,...,04,4d), VB =
(—w,?B2,...,0B,4), where U49,...,044,0B2...,0p,4 are chosen randomly from Zy. We let
waz =M, -0y and wp, = M, - 0 for all x € [¢]. B further samples s, s’y < Zy and defines
Oy = My -V)y,05, = M, vy for all x € [{], where vy, v < Z4; are random vectors with s’y
and s’ as their first entry respectively.

Let Y denote the subset of rows of the challenge access matrix M labeled by the authorities
for which A supplies the authority public keys {PK, = (Pau, Pg4)}. Let Y = [(]\'Y. For
each x in Y, B chooses random 74 ,,7B 4, Tf‘l,x’ r’Bw — Zy. For each z € Y, B chooses random
values 74 5, 7Bz < Zn, and implicitly sets 74, = a4 , (modulo py), T/f/\,w = Y7 A, (modulo py),
Bz = QTR 4 (modulo p;), and r%,x = 7B, (modulo py) which are random and uncorrelated by
the Chinese Remainder Theorem.

For each x € Y, B forms the ciphertext components as:

TAx TAx T U.’A,cc

CI,A,r =0 C2,A,x = PAjp(x)(XlXQ)wA’ g3 ,
C _ "By C _PTB,:c X, X WB .z U/B,m
1,Bz = 0; 2B = B7p(l,)( 1X9)“ B ga

For each = € Y, B forms the ciphertext components as:

r r;&,z r . Ya, (Z)TZA,I Uf4,a:
Craz = (X1X2) 42g, Co, a0 = (X1 Xo)V4r@) 4e (X Xg) 04w g, " 93",

S . YBp(2)"Be OB
CLB,x — (XlXQ)TB’xgg ) CQ,B,x — (X1X2)yB,p(z)rB,x (Xng)"JB””gS p s,
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B gives the challenge ciphertext CT = (C,{C1,4,2,C2 4,4, C1,B ) 027373;}1,6[@) to A.

We note that this implicitly sets 04, = M, - a¥4 mod p1, op, = M, - avp mod p; and
similarly, o4 , = My - 794 mod ps, 05, = M, - y0p mod py for all z € [{]. Since v4,vp are
uniformly sampled from Zﬁl\,, their entries modulo p; and modulo ps are uncorrelated by the
Chinese Remainder Theorem.

Guess: A eventually outputs a guess bit ¥’ € {0,1}. B outputs 1 if b = b’ and 0 otherwise.

Observe that if T = ¢g] < G,,, the H oracle output for the jth global identifier GID;
simulated by B is distributed exactly as in Hybs.(;_1) with feip, = T§G|Dj. On the other hand,
if Tg = gi95 < Gyp,p,, then the H oracle output for GID; simulated by B is distributed exactly
as in Hyb5:j:1 with Hngj = C§G|Dj (modulo pg) as its G, exponent. Here, since éGIDj is sampled
uniformly from Z its value modulo p; and modulo ps are uncorrelated by the Chinese Remainder
Theorem implying that the G,, exponent of H(GID;) is random and independent of the other
variables.

Thus, it follows that the game simulated by B coincides with Hybs.;_;) or Hybs,;.,; according
to whether T < G, or T < Gp,p,. Thus, B can use A to attain noticeable advantage in
solving SD-III. |

Lemma 4.6: For every (possibly unbounded) adversary A, there exists a negligible function
negls.;.o(+) such that for all A € N, |pas.j:1(A) — pasj2(A)] < negls.j.o(A).

Proof: Observe that the only difference between Hybs.;.; and Hybs. ., is that in the former
the parameters {0’y ,}.cq and {0, }sejq are shares of correlated secrets, i.e., s” and —s",
respectively, for s” € Zy, whereas in the latter, they are shares of independent secrets s, s’ <
Zpn. Therefore, in order to prove these two games are statistically indistinguishable, we will
argue that the secrets being shared by {U;’m}xem and {U%,m}CEE[Z] are information theoretically
hidden to the adversary A in Hybs.; ;.

We note that the shares UZLx and O'%’x for all the rows z of the challenge access matrix M
labeled by corrupted authorities (i.e., the authorities for which A either requests the master key
or creates it on its own) and for all the rows x of M labeled by authorities u such that A4 makes
a secret key query for (GID;,u) are information theoretically revealed to A, where GID; is the
4t global identifier whose H oracle output is simulated by the challenger. However, by the game
restriction the subspace spanned by those rows does not include the vector (1,0,...,0). We may
assume that this holds modulo po. This means there must exists a vector u € Zﬁlv such that u is
orthogonal to all these rows of M but is not orthogonal to (1,0, ...,0), (i.e., the first entry of u
is nonzero).

We consider a basis of U of Z‘fv involving the vector u and write vy = ¥4 + au for some a
modulo ps and some vector ¥4 in the span of U\ {u}. We note that 04 is uniformly distributed
in the subspace spanned by U \ {u} (modulo ps) and reveals no information about a (modulo
p2). Now, since the first coordinate of u is nonzero modulo ps, it follows that the first coordinate
of v}, i.e., sy, depends on the value of a (modulo py). But the shares affm for all the corrupted
rows of M and all the rows of M for which a secret key query is made by A with respect to the
global identifier GID; contains no information about a (modulo ps) since w is orthogonal to all
these rows.

Hence, the only possible way for A to get information about a mod py is through the ci-
phertext components C3 4, corresponding to the remaining rows of M. However, for each
such row x, A can only recover 1 , mod p2 and Y4 ()74, + 0% , mod p2 information the-
oretically. Since the labeling function p is injective, it follows that y4 ,) mod pa is a fresh
random value that appears nowhere else. This means given rﬁfm,y AM,(I)?{&I + a;’m mod po, if
7’4, mod py is nonzero (note that 4 , mod po = 0 with negligible probability), any value of
U;’m mod pz can be explained by a particular value of y,4 ,;) mod p2). Since YA,p(z) Mmod p2 is
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uniformly random and information theoretically hidden to A given the public keys PK,,) =

(g?fA"’m,g?fB"’(x)) of the corresponding authorities p(z) an possibly the secret keys SKgip p(z) =

(KG|D’A7P(I) = (H(GID) - h)¥4+@ , Kgip B p(z) = (H(GID))vaP(@) with respect to some GID ##
GID; (note that for GID # GID;, H(GID) < G,, or H(GID) ¢ Gy, ,, and g™, g5**™ only
leak respectively y4 ,z) modulo p; and modulo ps3), it follows that afﬁm is completely hidden
to A. Therefore, no information about a mod ps) is leaked to A which in turn means that the

secret being shared by {04 ,},c[g (and analogously by {0 . }.e(q) is completely hidden to A.
|

Lemma 4.7: If the SD-IV assumption holds, then for every PPT adversary A, there exists a
negligible function negls ;.5(-) such that for all A € N, [pas.:2(A) — pas3(A)] < negls.5(N).

Proof: Suppose there exists a PPT adversary A that distinguishes between Hyb, ;.o and Hyby, ;.5
with non-negligible advantage €(\). Using A as a subroutine, we construct below a PPT adversary
B that has a non-negligible advantage in solving the SD-IV problem. The algorithm B gets
an instance of the SD-IV problem from its challenger that consists of the group description
G = (N = p1paps3, G, Gr,e) < G(1%), the group elements g1, g2, X1 X3, Z2Z3 where g1, X1 + G,
92,22 < Gy,, X3,73 < Gy,, and another group element T where T < G,,p, if 5 = 0 or
Tg <+ G if 3 = 1. The algorithm B proceeds as follows:

Generating the Global Public Parameters: B samples random 6 < Zy,seed < S, sets
h = g9, and gives the global public parameters GP = (G, g1, h, seed) to A.

Generating Authority Public-Master Keys: Whenever A requests to set up an authority
u € AU of its choice, if an authority setup query for the same authority u has already been
queried before, B aborts. In the post-challenge query phase, if additionally A submitted an
authority public key PK,, for the same authority w while querying the challenge ciphertext, B
aborts. Otherwise BB runs AuthSetup to generate a public-master key pair (PK,, MSK,) for the
authority u as follows. B samples random y4.,yB v < Zn and sets PK, = (glllA’“,gijB’“) and
MSKy, = (yau,yYBu). B provides PK, to the attacker and stores (PK,, MSK,). Whenever A

requests the master secret key of the authority u at a later time, B provides it to A.

Generating the H Oracle Outputs: When B needs to generate H(GID) for some global
identifier GID € GZD, either it responds to a direct H oracle query of A or answers to a secret
key query of A, B proceeds as follows: For the first j — 1 global identifiers GID, B samples
fcip +— Zy and sets H(GID) = (X;X3)%0 (this is a random element of G,,,, since the values
of 6~G|D modulo p; and modulo p3 are uncorrelated by the Chinese Remainder Theorem). For

- fcip.
the j' global identifier GID;, B samples random fcip; + Zn and sets H(GID;) = TﬁchJ. For all

subsequent global identifiers GID, B samples fgip < Zx and sets H(GID) = g?G'D. It stores all of
these value so that it can respond consistently if H(GID) is queried again.

Generating Secret Keys: Whenever .4 makes a secret key query for some (GID,u) € GID x
AU, if an authority setup query for the authority v has not been made already, B aborts. In the
post-challenge phase, if an authority setup query for the authority v has not already been made,
A submitted the authority public key PK, for u while querying the challenge ciphertext, or for
each GID € GZD the vector (1,0,...,0) is in the span of all the rows of the challenge access policy
matrix M labeled by the authorities for which A submits the public keys {PK,} while querying
the challenge ciphertext plus the authorities for which A has made a master key query for u or
secret key query for (GID,u) so far, B aborts. Otherwise, B simply runs the KeyGen algorithm
using the public-master key pair it already created in response to the authority setup query
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for authority u and generates a secret key SKgip.w = (Kgip,au = (H(GID) - h)¥A», Kgip. .y =
(H(GID))¥B.«) for (GID, u). If H(GID) has not been generated so far, it follows the above procedure
to generate it during this time.

Generating the Challenge Ciphertext: At some point, A submits two messages, msg, msg;
€ M and an LSSS access structure (M, p) where M € Zf\,Xd and p : [({] — AU is an injective
map. A also submits the public keys {PK, = (P4, Pp,)} for asubset U4 of attribute authorities
appearing in the LSSS access structure (M, p). If for all attribute authority u for which B has
created a public-master key pair for so far are not contained in U 4, and for each GID € GZD, the
vector (1,0,...,0) is not in the span of all the rows of M labeled by the authorities in U4 plus
the authorities for which A has made a master key query for u or secret key query for (GID, u),
then B flips a random coin b < {0, 1} and generates a ciphertext CT as follows.

First, B chooses a random s < Zy and sets C' = msg;, @ Ext(e(g1,h)*,seed). B also chooses
two vectors, v4,vp + Zﬁl\, with s and —s as their first entry respectively. We let 04, = M, -va
and op, = M, -vp for all x € [{]. B further samples v4,vp < Zn and defines v4, =
M, -04,v3e = M, - vp for all z € [{], where ¥4, 0p + Zjiv are random vectors with v4 and vp
as their first entry respectively.

Let Y denote the subset of rows of the challenge access matrix M labeled by the authorities
for which A supplies the authority public keys {PKy, = (Pau,Ppv)}. Let Y = [{]\'Y. For
each x € [{], B chooses random ry ;, 7, < Zy. For each z € Y, B chooses random values
TAz, "Bz < ZN.

For each « € Y, B forms the ciphertext components as:

TA’ TA’ . O'A’ . -
Cl,A,m =0 ‘ CQ,A,m = PA,pr)gl JV(ZQZ3)%4’ )
rB, rB, 0B, -
Cl,B,x =0 ‘ CQ,B,x = Pvaa(cw)gl J(ZQZ?))’YB’ )

For each x € Y, B forms the ciphertext components as:

Cl,A,x — gIA’x (Z2Z3)FA,CC 0271471_ — ng’p(I)TA’ngA’x (Zzzg)yA,P(w),FA,z (2223)7A,z7

Cl,B,x — gIB’x (ZQZ?))'FB,I 027371 — ng’p(z)rB’mg(fB’m(Z2Z3)y3,p(m),;:B,:c (Z223)7B,1’

B gives the challenge ciphertext CT = (C,{C1 42, 02,42, C1,B2, C2,Bx faelg) to A

We note that this implicitly sets a;’m = M, - 2004 mod po, U%’x = M, - zvp mod py and
similarly, ¢’y , = M- 2304 mod p3, 0% , = M, - 2305 mod p3 for all z € [{], where Zy = g3*, and
Z5 = g5* (letting g3 be a generator of G,,) and since ¥4, ¥p are uniformly sampled from Z4;, their
entries modulo p2 and modulo p3 are uncorrelated by the Chinese Remainder Theorem. Similarly,
this implicitly sets 7/ = 23740 mod p3,r'p . = 237, mod ps, 174, = 2974, mod p2,rp , =
29T R,z mod py for all z € Y where {r;‘m 7'39,3;7 r;’l’x, r%7m}x€7 are random and uncorrelated by the
Chinese Remainder Theorem.

Guess: A eventually outputs a guess bit &' € {0,1}. B outputs 1 if b = b' and 0 otherwise.
Observe that if T = ¢7¢5 < Gp,p,, then H(GID;) simulated by B is distributed exactly as
in Hybs.;.o. On the other hand, if T = g7g5g5 < G, then H(GID;) simulated by B is distributed
exactly as in Hybs. ;5. In other words, the game simulated by B coincides with Hybs. ;.o or Hybs. ;.4
according as T < Gy, p, or T < G. [

Lemma 4.8: For every (possibly unbounded) adversary A, there exists a negligible function
negls.;.4() such that for all A € N, |pas.j:3(A) — pasja(A)] < neglsj.a(A).

Proof: The proof of this lemma is analogous to the proof of Lemma 4.6. We omit the proof to
avoid repetition. ]
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Lemma 4.9: If the SD-IIT assumption holds, then for every PPT adversary A, there exists a
negligible function negls.;(-) such that for all X € N, |pa5.5:4(N) — pas;(A)] < negls;(A).

Proof: The proof of this lemma is analogous to the proof of Lemma 4.5 (the proof requires only
minor notational modifications). We omit the proof to avoid repetition. |

Lemma 4.10: If the SD-III assumption holds, then for every PPT adversary A, there exists a
negligible function neglg(-) such that for all X € N, |pas5.q(X) —pas(N)| < neglg(A).

Proof: Suppose there exists a PPT adversary A that distinguishes between Hybs., and Hybg
with non-negligible advantage e(\). Using A as a subroutine, we construct below a PPT adversary
B that has a non-negligible advantage in solving the SD-III problem. The algorithm B gets
an instance of the SD-III problem from its challenger that consists of the group description
G = (N = pipaps, G,Gr,e) < G(11), the group elements g1, g3, X1 Xa where g1, X1 < Gp,,
X3 < Gyp,, g3 < Gp,, and another group element T where T3 <— Gy, if 8 =0 or T < Gy, p, if
B = 1. The algorithm B proceeds as follows:

Generating the Global Public Parameters: B samples random 0 < Zn,seed < S, sets
h= Tg , and gives the global public parameters GP = (G, g1, h, seed) to A.

Generating Authority Public-Master Keys: Whenever A requests to set up an authority
u € AU of its choice, if an authority setup query for the same authority u has already been
queried before, B aborts. In the post-challenge query phase, if additionally A submitted an
authority public key PK, for the same authority v while querying the challenge ciphertext, B
aborts. Otherwise B runs AuthSetup to generate a public-master key pair (PK,, MSK,,) for the
authority u as follows. B samples random ya.,yB.w < Zn and sets PK, = (g?l/A’“,g?fB’") and
MSKy = (Ya.u,YB.u). B provides PK, to the attacker and stores (PK,, MSK,). Whenever A
requests the master secret key of the authority u at a later time, B provides it to A.

Generating the H Oracle Outputs: When B needs to generate H(GID) for some global
identifier GID € GZD, either it responds to a direct H oracle query of A or answers to a secret
key query of A, B proceeds as follows: B samples fgip < Zx and sets H(GID) = (g1g3)%"® (this
is a random element of G, ,, since the values of 0gip modulo p; and modulo p3 are uncorrelated
by the Chinese Remainder Theorem). It stores these value so that it can respond consistently if
H(GID) is queried again.

Generating Secret Keys: Whenever A makes a secret key query for some (GID,u) € GID x
AU, if an authority setup query for the authority v has not been made already, B aborts. In the
post-challenge phase, if an authority setup query for the authority v has not already been made,
A submitted the authority public key PK, for u while querying the challenge ciphertext, or for
each GID € GZD the vector (1,0,...,0) is in the span of all the rows of the challenge access policy
matrix M labeled by the authorities for which A submits the public keys {PK,} while querying
the challenge ciphertext plus the authorities for which A has made a master key query for u or
secret key query for (GID,u) so far, B aborts. Otherwise, B simply runs the KeyGen algorithm
using the public-master key pair it already created in response to the authority setup query
for authority u and generates a secret key SKgip.w = (Kgip,au = (H(GID) - h)¥A», Kgip.p.u =
(H(GID))¥B.v) for (GID, u). If H(GID) has not been generated so far, it follows the above procedure
to generate it during this time.
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Generating the Challenge Ciphertext: At some point, A submits two messages, msg, msg;
€ M and an LSSS access structure (M, p) where M € ZfVXd and p : [{] — AU is an injective
map. A also submits the public keys {PK, = (P4, Pp,)} for asubset U4 of attribute authorities
appearing in the LSSS access structure (M, p). If for all attribute authority u for which B has
created a public-master key pair for so far are not contained in U4, and for each GID € GZD, the
vector (1,0,...,0) is not in the span of all the rows of M labeled by the authorities in U4 plus
the authorities for which A has made a master key query for u or secret key query for (GID, u),
then B flips a random coin b < {0, 1} and generates a ciphertext CT as follows.

First, B chooses a random w < Zy and implicitly sets s = a - w (modulo py) and s” =
v - w (modulo pg) where ¢ = X; and g7 = X, (letting go be a generator of G,,) and sets
C = msg;, @ Ext(e(X1 X2, h)¥,seed). B also chooses two vectors, ¥4 = (w,¥042,...,04,4), VB =
(—w,?B2,...,0B,4), where Ua9,...,044,0B2...,0p4 are chosen randomly from Zy. We let
wag =M, 04 and wp , = M, - O for all = € [{]. B further samples s, s’3 <= Zx and defines
Oy =My V)y,05, =M, vp for all v € [{], where vy, v < Z4; are random vectors with s,
and s’ as their first entry respectively.

Let Y denote the subset of rows of the challenge access matrix M labeled by the authorities
for which A supplies the authority public keys {PKy = (Pau, Ppv)}. Let Y = [{]\'Y. For
each z in Y, B chooses random 74 4, 7B ¢, 74 ;75 » < ZnN. For each x € Y, B chooses random
values 74z, 7B,z < Zn, and implicitly sets m;,x = 70477,471, (modulo py), rf{m = 74, (modulo py),
Bz = T, (modulo pp), and T%J = 7B, (modulo py).

For each x € Y, B forms the ciphertext components as:

/
TA, TA, Ta,
Crae=9"" Cot = Pyl (X1 X2) 79377,
C _ TB,x C _ PTB,Z X X WB. ¢ UIB,Z
1,Bx = 1 2,B,x — B,p(x)( 1 2) “Js3 ,

For each x € Y, B forms the ciphertext components as:

o TA, Fa e o YAp@)hw Ta,
Craz = (X1 Xp) 4zgy™” Co, a2 = (X1 Xp)YA4r@) 42 (X Xg)¥ 42 g, “g377,

i TB o 2 YBp(@) Bz OB,
Ci,Bz = (X1X2) Bogy™” Co Bz = (X1 Xo)YBr@ B (X1 Xo) B2 gy ‘937",

B gives the challenge ciphertext CT = (C,{C1 4,4, C2,4,2, C1,B,25 C2,B .z Yacfg) to A.

We note that this implicitly sets 04, = M, - av4 mod p1, o, = M, - avg mod p; and
similarly, Uf‘ll,ac = M, - y04 mod p2, 0p, = M, - yOp mod py for all z € [¢]. Since 04, 0p are
uniformly sampled from Z%,, their entries modulo p; and modulo p, are uncorrelated by the
Chinese Remainder Theorem.

Guess: A eventually outputs a guess bit &' € {0,1}. B outputs 1 if b = b' and 0 otherwise.

Note that if Tg = g7 < G,, then the group element h simulated by B is of the form h = g4
where 6 = rf (modulo p;) which is a random element of Gy, since 0 « Zy. Also, in this
case, C' will clearly be of the form C = msg, @© Ext(e(g1,h)®,seed) since, in this case, we have
e(Xa, h) = e(X2, %) = 1,

On the other hand, if T = g{g5 < Gp,p, then the group element h simulated by B is
the form h = ¢%¢%" where # = 6 (modulo p;) and 6” = ¢f (modulo p) which is uniformly
distributed in G, ,, since 6 being uniformly sampled from Zy, § modulo p; and modulo ps are
uncorrelated by the Chinese Remainder Theorem. Also, in this case, C' clearly takes the form
C = msgy, & Ext(e(g1, h)® - e(ga, h)*", seed).

Thus it follows that the game simulated by B coincides with Hybs., or Hybg according as
Tg < Gp, or Tg < Gy, p, respectively. Thus, B can use A to attain advantage € in solving
SD-III. This completes the proof of Lemma 4.10. |
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Lemma 4.11: For every (possibly unbounded) adversary A, there exists a negligible function
negl;(-) such that for all X € N, |pas(A) — pa7(A)] < neglg(N).

Proof. Observe that the only difference between Hybg and Hyb; is that in the former the
parameters {0 , } [ are shares of a secret correlated to {07 ,}, i.e., —s” where s” is the secret
being shared by {0} .}, whereas in the latter, they are shares of independent secrets s”, s, < Zn.
Therefore, in order to prove these two games are statistically indistinguishable, we will argue
that the secrets being shared by {0g7$}m€[4] are information theoretically hidden to the adversary
A in Hyb,.

We note that the shares U%,:c for all the rows x of the challenge access matrix M labeled by
corrupted authorities (i.e., the authorities for which A either requests the master key or creates
it on its own) are information theoretically revealed to .A. However, by the game restriction the
subspace spanned by those rows does not include the vector (1,0,...,0). We may assume that
this holds modulo po. This means there must exists a vector u € Z‘fv such that w is orthogonal
to all these rows of M but is not orthogonal to (1,0,...,0), (i.e., the first entry of w is nonzero).
We consider a basis of U of Zﬁl\, involving the vector uw and write v, = vp + au for some a
modulo p2 and some vector ¥p in the span of U\ {u}. We note that vp is uniformly distributed
in the subspace spanned by U\ {u} (modulo ps) and reveals no information about a (modulo
p2). Now, since the first coordinate of u is nonzero modulo py, it follows that the first coordinate
of v}, i.e., §’;, depends on the value of a (modulo py). But the shares ajé’x for all the corrupted
rows of M contains no information about a (modulo py) since w is orthogonal to all these rows.

Hence, the only possible way for A to get information about a (modulo ps) is through the ci-
phertext components Cs g, corresponding to the uncorrupted rows of M. However, for each such
row z, A can only recover 7 , mod p2 and yp ,(»)7p , + 0, mod p2 information theoretically.
Since the labeling function p is injective, it follows that yp ,,) mod ps is a fresh random value
that appears nowhere else. This means given 15 ., Yp o275, + 0, mod p2, if 7, mod ps is
nonzero (note that rj_é;’ » mod pa = 0 with negligible probability), any value of 0}_’37 , mod pa can be
explained by a particular value of yp ;) mod pa. Since yp ;) mod ps is uniformly random and

Ya,p(z) _YB,p(x)

information theoretically hidden to A given the public keys PK,,) = (91 , 01 ) and pos-

sibly the secret keys {SKG|Dt7u = (KGIDt,A,u = (H(GlDt) . h)yAv“, KGIDt,B,u = (H(G'Dt))y&“)}te[q]
with {H(GID¢)}ielq < Gpyps for the corresponding uncorrupted authorities p(z) (note that
g:'fB”’ @) and ggB’p @) only leaks y B,p(z) modulo p; and modulo p3, respectively), it follows that a’é’ -
is information theoretically hidden to .A. Therefore, no information about a mod ps is leaked to
A which in turn means that the secret being shared by {U%,x}xem is information theoretically

hidden to A. [ |

Lemma 4.12: If the SD-V assumption holds, then for every PPT adversary A, there ezists a
negligible function neglg(-) such that for all X € N, |pa7(A) —pag(A)| < neglg(N).

Proof. Suppose there exists a PPT adversary A that distinguishes between Hyb; and Hybg with
non-negligible advantage €(\). Using A as a subroutine, we construct below a PPT adversary
B that has a non-negligible advantage in solving the SD-V problem. The algorithm B gets
an instance of the SD-V problem from its challenger that consists of the group description
G = (N = p1p2p3,G,Gr,e) + G(11), the group elements g1, g3, X1Xo, ZoZ3 where g1, X1 <
Gp,, X2, 23 < Gyp,, g3, 23 < Gp,, and another group element T where Ty < Gy, p, if 8 =0 or
Ts < G if 3 = 1. The algorithm B proceeds as follows:

Generating the Global Public Parameters: B samples random 6+ Zy,seed < S, and
sets h = (X1X2)?. This is a random element in Gy, ,, since f modulo p; and modulo py are
uncorrelated by the Chinese Remainder Theorem. B gives the global public parameters GP =
(G, g1, h,seed) to A.
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Generating Authority Public-Master Keys: Whenever A requests to set up an authority
u € AU of its choice, if an authority setup query for the same authority v has already been
queried before, B aborts. In the post-challenge query phase, if additionally A submitted an
authority public key PK, for the same authority u while querying the challenge ciphertext, B
aborts. Otherwise B runs AuthSetup to generate a public-master key pair (PK,, MSK,) for the
authority u as follows. B samples random y4.,YB. < Zn and sets PK, = (gzl/A’“,gi/B’“) and
MSK, = (yau,yYBu). B provides PK, to the attacker and stores (PK,, MSK,). Whenever A

requests the master secret key of the authority u at a later time, B provides it to A.

Generating the H Oracle Outputs: When B needs to generate H(GID) for some global
identifier GID € GZID, either it responds to a direct H oracle query of A or answers to a secret

key query of A, B proceeds as follows: B samples fgip « Zy and sets H(GID) = TgG'D. It stores
these value so that it can respond consistently if H(GID) is queried again.

Generating Secret Keys: Whenever .4 makes a secret key query for some (GID,u) € GID x
AU, if an authority setup query for the authority » has not been made already, B aborts. In the
post-challenge phase, if an authority setup query for the authority u has not already been made,
A submitted the authority public key PK, for u while querying the challenge ciphertext, or for
each GID € GZD the vector (1,0,...,0) is in the span of all the rows of the challenge access policy
matrix M labeled by the authorities for which A submits the public keys {PK,} while querying
the challenge ciphertext plus the authorities for which A has made a master key query for u or
secret key query for (GID,u) so far, B aborts. Otherwise, B simply runs the KeyGen algorithm
using the public-master key pair it already created in response to the authority setup query
for authority u and generates a secret key SKgip.w = (Kgip,a,u = (H(GID) - h)¥4», KGip.B.u =
(H(GID))¥B.«) for (GID,u). If H(GID) has not been generated so far, it follows the above procedure
to generate it during this time.

Generating the Challenge Ciphertext: At some point, A submits two messages, msg, msg;
€ M and an LSSS access structure (M, p) where M € ZfVXd and p : [(] — AU is an injective
map. A also submits the public keys {PK, = (P4, Pp,)} for asubset U4 of attribute authorities
appearing in the LSSS access structure (M, p). If for all attribute authority u for which B has
created a public-master key pair for so far are not contained in U 4, and for each GID € GZD, the
vector (1,0,...,0) is not in the span of all the rows of M labeled by the authorities in U4 plus
the authorities for which A has made a master key query for u or secret key query for (GID, u),
then B flips a random coin b < {0, 1} and generates a ciphertext CT as follows.

First, B chooses a random s, § < Zy and sets C = msg, @ Ext(e(g1,h)® - e(Z2Z3, h)?, seed).
B also chooses two vectors, v4,vp < Zﬁl\, with s and —s as their first entry respectively. We let
0Ag = M, -vy and op, = M, - v for all x € [¢]. B further samples §p < Zy and defines
YAz = My - 0a, vy = M, - vp for all z € [{], where U4,0p Z?IV are random vectors with §
and §p as their first entry respectively.

Let Y denote the subset of rows of the challenge access matrix M labeled by the authorities
for which A supplies the authority public keys {PK, = (Pau,Pgu)}. Let Y = [{]\'Y. For
each x € [{], B chooses random ry ,, 7, < Zy. For each z € Y, B chooses random values
TAz, "B < ZN.

For each « € Y, B forms the ciphertext components as:

’,"A’ _ TA’ O'A7 -
Cl,A,z =0 ‘ CQ,A,Q: = PAwa)gl x(ZQZS)WA’ y
B, _ pTBaz OB, .
CiBz=9, " Co.pe = Pp )9 (ZoZ3)1B=,
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For each z € Y, B forms the ciphertext components as:

Cl Ag = g;’A,z (ZQZg)FA’m CQ,A@ _ g?llA,p(a:)TA,zng,z (ZQZg)yA*f’(I)FA’m (2223)7A,m7

Cr.Ba =g (ZaZ3) P Copa=gy """ " g P (2o Z3) VB 0@ 7B (Zy Z3) VBom,

B gives the challenge ciphertext CT = (C,{C1 a4, C2,44,C1,B4, C2,Bxtaelg) to A

We note that this implicitly sets Uffm = M, - 29504 mod po, ng = M, - zvp mod py and
similarly, 01471 = M, - 2304 mod p3, aﬁ’g’z = M, - z395 mod ps3 for all € [¢], where Zy = g5°
(letting go be a generator of Gyp,), and Z3 = g¢5*, and since ©4,Dp are uniformly sampled
from Z<;, their entries modulo py and modulo p3 are uncorrelated by the Chinese Remainder
Theorem. Similarly, this implicitly sets 7{4@ :7,237’,471 mod pg,T‘/B’x = 237, mod p3, r;’m =
22T 4, mod po,r'5 . = 227p , mod py for all x € Y where {r)y ., 75,7 ., 75, },cy are random
and uncorrelated by the Chinese Remainder Theorem.

Guess: A eventually outputs a guess bit ¥’ € {0,1}. B outputs 1 if b = b’ and 0 otherwise.
Observe that if T = g{g3 < Gp,p;, then the H(GID) values simulated by B are uniformly
distributed in G,,,,. On the other hand, if T = g7¢Sg5 < G, then the H(GID) values simulated
by B are uniformly distributed in G.
Therefore, the game simulated by B coincides with Hyb,; or Hybg, depending on whether
Ts < Gyp,py or T < G, respectively. Thus, B can use A to attain non-negligible advantage in
solving SD-V. |

Lemma 4.13: For every (possibly unbounded) adversary A and for all A € N, |pag(N)| =
[Pan(N)]-

Proof Observe that the only difference between Hybg and Hybg is that in the former H(GID)
is generated as H(GID) < G whereas in the latter, H(GID) = R-h~! where R < G for all global
identifiers GID for which the challenger needs to generate the H oracle output. Thus, in order
to prove these two games are indistinguishable, it is enough to show that the values H(GID) are
distributed identically in the two games.

To see this, note that for all global identifiers GID, H(GID) generated in Hybg can be expressed
as H(GID) = R-h™! = (¢g7'g5%g3*) - (gflggb)_l, where g1', g5%, g5° with r1,re, 73 <= Zy denote
(respectively) the G,,,G,,, G, parts of R and similarly, gfl, 932 with 601, 02 respectively denote
the G, and G,, parts of h. Thus, we have H(GID) = g7* =1 gr2=% 473 Since the values r1 (modulo
p1), r2 (modulo ps) are uniformly random and uncorrelated, it follows that 71 — 6; (modulo p;)
and ry — f (modulo py) are also uniformly random and uncorrelated. By construction, these
values are independent of all the other values. Hence, it follows that H(GID) values generated in
Hybg are uniformly and independently distributed in G, or in other words, identically to those
in Hybg. n

Lemma 4.14: If the SD-V assumption holds, then for every PPT adversary A, there ezists a
negligible function neglyg(-) such that for all X € N, |pao(A) — pai0(A)| < neglig(A).

Proof The proof is analogous to the proof of Lemma 4.12 (with minor alterations in notation).
We omit the proof to avoid repetition.

Lemma 4.15: For every (possibly unbounded) adversary A, there exists a negligible function
negly;(-) such that for all X € N, |pa10(A) —pa11(N)] < neglii(A).

Proof: The proof of this lemma is very similar to that of Lemma 4.11. We present it for
concreteness.
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Observe that the only difference between Hyb,, and Hyb;; is that in the former game the
parameters {07 ,},c[q are shares of a secret s” < Zy that is part of the input to the strong
extractor generating the mask for the message msg;, whereas in the latter game, they are shares
of independent secret s’y <= Zy. Therefore, in order to prove these two games are statistically
indistinguishable, we will argue that the secrets being shared by {a;’m}xem are information
theoretically hidden to the adversary A in Hyb,,.

We note that the shares ¢’y  for all the rows z of the challenge access matrix M labeled by
corrupted authorities (i.e., the authorities for which A either requests the master key or creates
it on its own) are information theoretically revealed to A. Further, observe that the shares
Jﬁ’m for no other rows x of M is fully leaked to A. In order to see this, note that for all the
rows x corresponding to corrupted authorities, A knows the values y4 ,(;) mod pe information
theoretically, but it does not get to know y4 () mod p for any uncorrupted rows = of M. This
is because the only way for A to learn y4 ,(,) mod py for uncorrupted rows is by asking a secret
key query corresponding to (GID, p(z)) for some global identifier GID. As per the description of
Hyb,, such a secret key SKgip, ,(») would look like

SKaip,p(@) = (i, 4,p(x) = (H(GID) - h)¥4r), K¢ip B p(a) = (H(GID))?P2())
— (KaipAp(@) = (P57 - K400 Ko g @) = (H(GID))¥50t)
= (KaIp,A,p(z) = P4, KGp,B p(x) = (H(GID))?Er@),

where P <— Gy, p,. The second equality follows from the fact that in Hyb;y H(GID) is generated as
H(GID) = P-h~! with P <~ G,,,,. Thus, it follows that a secret key SKGID,p(z) Only reveals y 4 ()
modulo p; and modulo p3 but does not leak this modulo ps to A information theoretically. Hence,
it follows that A can only learn y, ,;) (modulo pz) and hence a;’},x (modulo p2) information
theoretically.

However, by the game restriction the subspace spanned by those rows does not include the
vector (1,0,...,0). We may assume that this holds modulo ps. This means there must exists
a vector u € Z‘fv such that w is orthogonal to all these rows of M but is not orthogonal to
(1,0,...,0), (i.e., the first entry of u is nonzero). We consider a basis of U of Z¢ involving the
vector u and write v’y = ¥4 + au for some a modulo py and some vector ¥4 in the span of
U\ {u}. We note that 04 is uniformly distributed in the subspace spanned by U\ {«} (modulo
p2) and reveals no information about a (modulo py). Now, since the first coordinate of w is
nonzero modulo po, it follows that the first coordinate of v'}, i.e., s}, depends on the value of a
(modulo p2). But the shares ‘7;/1,:6 for all the corrupted rows of M contains no information about
a (modulo p9) since wu is orthogonal to all these rows.

Hence, the only possible way for A to get information about a (modulo p2) is through the
ciphertext components Cy 4 , corresponding to the uncorrupted rows of M. However, for each
such row x, A can only recover 4 , (modulo p2) and y p(2)7s , + 0% , (modulo p2) information
theoretically. Since the labeling function p is injective, it follows that y4 ,(,) (modulo py) is a fresh
random value that appears nowhere else. This means given rf&x, Ya, p(x)r’f"vm + U;’Lx (modulo ps),
if er,w (modulo p9) is nonzero (note that r;’w mod py = 0 with negligible probability), any value
of 0;’1@ modulo py can be explained by a particular value of y4 ) (modulo pa). Since y4 ()

(modulo p3) is uniformly random and information theoretically hidden to A given the public
YA, p(z YB,p(x)

keys PK ) = <91 >,g1 ) and possibly the queried secret keys {SKgipw = (Kgip,Au =
(H(GID) - h)¥4x, Kgip, gy = (H(GID))¥5)} for the corresponding uncorrupted authorities p(z)
as discussed above, it follows that JZM is information theoretically hidden to A. Therefore, no
information about a (modulo ps) is leaked to A information theoretically which in turn means
that the secret being shared by {U;/l,x}we[f] is information theoretically hidden to A. |

Lemma 4.16: For every (possibly unbounded) adversary A, there ezists a negligible function
neglis(+) such that for all X € N, [pa11(A) —pa12(N)] < neglis(A).
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Proof Observe that in Hyb;; the value s” mod py is perfectly hidden to A. This means
that e(gs,h)* is uniformly random and therefore has log(pz) bits of min-entropy, i.e.,
Hoo(e(g2, h)*") = log(pz) (recall that h < G,,p, in Hyby;). Thus, if Ext is parameterized
correctly, then Ext(e(gy, h)®-e(g2, h)*",seed) (which masks msg,) is statistically close to uniform

in A’s view. [ |

5 Owur Prime Order Group MA-ABE Scheme

In Section 5.1 we recall prime order bilinear groups and give the associated notations. In Sec-
tion 5.2 we give the basis structure of the translation framework. In Section 5.3 we give the
assumptions on which our construction relies. In Section 5.4 we give the construction. In Sec-
tions 5.5 and 5.6 we prove correctness and security respectively.

5.1 Prime Order Bilinear Groups and Associated Notations

Notations: Let A be a matrix over the ring Z,. We use span(A) to denote the column span of
A, and we use span™(A) to denote matrices of width m where each column lies in span(A); this
means M < span”(A) is a random matrix of width m where each column is chose uniformly
from span(A). We use basis(A) to denote a basis of span(A), and we use (A; || A2) to denote
the column-wise concatenation of matrices A;, As. We let I be the identity matrix and 0 be a
zero matrix whose size will be clear from the context.

Fix a security parameter, for any bilinear group parameter G = (p, G1, G2, Gr, g1, g2, €) and
any i = 1,2, T with gr = e(g1, g2), we write [M]; for g™ where the exponentiation is element-
wise. When bracket notation is used, we denote group operations with 8, i.e., [M]; B [N]; =
[M + NJ; for matrices M, N, and B as their negatives, i.e., [M]; B [N]; = [M — NJ;. Also,
we define N © [M]; = [NM]; and [M]; © N = [M NJ],. We also slightly abuse notations and
use the original pairing notation e to denote the pairing between matrices of group elements as
well, i.e., we write e([M]1, [N]2) = [MN]r.

Prime Order Bilinear Groups: Let Gi,Go and Gr be three multiplicative cyclic groups
of prime order p = p(A) where the group operations are efficiently computable in the security
parameter A and there is no isomorphism between G; and Gs that can be computed efficiently
in A. Let g1,g2 be generators of Gy, Gy respectively and e : G; x Go — Gp be an efficiently
computable pairing function that satisfies the following properties:

e Bilinearity: for all u € G1,v € G2 and a,b € Z,, it is true that e(u®,v?) = e(u, v)?.
o Non-degeneracy: e(g1,92) # lg,, where 1g,. is the identity element of the group Gr.

Let G be an algorithm that takes as input 1%, the unary encoding of the security parameter \,
and outputs the description of an asymmetric bilinear group G = (p, G1, Go, Gr, 91, 92, €).
5.2 Basis Structure for the Composite to Prime Order Translation Frame-

work

We want to simulate composite order groups whose order is the product of three primes. Fix
parameters ¢, {2, 3, fyy > 1. Pick random

A1 <— Zﬁxgl s A2 < Zix&, A3 < Z£X€3

where ¢ = (1 + o + f3. Let (A}| A3 || A%)T denote the inverse of (A || Az | As), so that
Al A = I (known as non-degeneracy) and AZTA; =0 if i # j (known as orthogonality).
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Correspondence: We have the following correspondence with composite order groups:
gi = [Ail, g9; = [Ais]h
w e Ly — W e Zw, g’ — [AT W],

The following statistical lemma is analogous to the Chinese Remainder Theorem, which tells us
that w mod p2 is uniformly random given g{’, g3, where w < Zy:

Lemma 5.1 (statistical lemma): With probability 1 — 1/p over A;, As, As, A7, A5, A5, the
following two distributions are statistically identical.

{A]W, AJW,[W]} and {A]W,AJW W+ VO]

where W < Zf,XZW and V' ?) < span‘™ (A%).

5.3 Prime-Order Complexity Assumptions

Assumption 5.1 (Matrix Diffie-Hellman: MDDHE’}, [EHKT13]): Let £ >k > 1. We

say that the MDDHE”; assumption holds with respect to G if for all PPT adversary A and for all
t € [2], the following advantage function is negligible in .

AP () = [PHA(D, [to]h) = 1] - PHAD. [ta],) = 1]

where

G = (p,G1,G2,Gr, 91,92, €)
to = Xu,t; + Z°

such that X « Zf;Xk,u — Z’;.

Assumption 5.2 (Subgroup Decision Assumption SD%HAi,Aj for (¢,57 € {1,2,3},
[CGKW18a, GHKW16, GDCC16]): For all i,j € [3] such that i # j, the SD%HAZ-,AJ-

assumption states that for any PPT adversary A, there exists a negligible function negl(-) such
that for any security parameter A € N and for all k£ € [3] \ {4, j},

Adv 2744 () = PAD, [toly) = 1] — PrA(D, [1],) = 1]

where

G= (p7 Gla (G’2> GT7917 g2, 6)
D = (G, [A1]1, [A2]1, [As]1, basis(A;), basis(A}), basis(A], A7),
to < span(A;),t, < span(A;, Aj).

Assumption 5.3 (Subgroup Decision Assumption SD%’_}B“BJ, for (4,5 € {1,2,3},
[CGKW18a, GHKW16, GDCC16]): For all 4,5 € [3] such that i # j, the SD%;_}BZ,’BJ_

assumption states that for any PPT adversary A, there exists a negligible function negl(-) such
that for any security parameter A € N and for all k£ € [3] \ {4, j},

G2

Adv 7P (3) = [PAA(D, [tol) = 1] — PrIA(D, [ta]a) = 1]

48



where

G = (p,G1,G2,Gr,91,92,€)
D = (G, [Bi]2, [Bz]2, [ Bs]2, basis(B;), basis(By,), basis(B;, B)),
to span(Bi),tl — span(Bi, BJ)

Assumption 5.4 (Subgroup Decision Assumption SD%zl’BzHBl,B2’Ba, [CGW18]): The
SD%? By B, B, B, ASSumption states that for any PPT adversary A, there exists a negligible
function negl(-) such that for any security parameter A € N,

sDS2

Adv , 1P PrBe B (3) i PrlA(D, [to]2) = 1] — Pr[A(D, [t:]2) = 1]|
where

G = (pale(GQaGT?glng?e)
D = (G, [B1]2, [B2]2, [ Bs]2, basis(By), basis(B3, B3)),
t() — span(Bl, Bg),tl — span(Bl, BQ,Bg).

5.4 The Construction

Here, we present our MA-ABE for NC! construction in prime order bilinear groups. As mentioned,
we assume that each authority controls just one attribute, and hence we would use the terms
“authority" and “attribute" interchangeably.

GlobalSetup(1*): The global setup algorithm takes in the security parameter 1* encoded
in unary. The procedure first chooses a prime p. Next it generates a bilinear group G =
(p,G1,Ga,Gr, g1, 92,€) of order p. Let g1, g2 be the generators of G1, Go respectively. We make
use of a strong seeded randomness extractor Ext : Gp x S — M, where M C {0,1}* is the
message space and S C {0,1}* is the seed space. The algorithm samples a seed seed <— S. Next,
the algorithm samples

Al, AQ, As Zika, h + Zlg

Let (A} A3 A%) = ((A1] A2 || Ag)’l)T where A}, A3, A5 < Z3"* such that AZTA; =1Tif
i=7,and 0 if i # j for all 7,5 € [3]. It outputs the global parameters as GP = (G, [A1];, H =
[Aih]2,seed).

Furthermore, we assume that all parties has access to the hash function H : {0,1}* — G3¥
mapping global identifiers GID € GZD to random vectors in G3¥, i.e., for all GID € GID we have
H(G'D) = [[hGIDHQ for some hGID — ng.

AuthSetup(GP, u): Given the global parameters GP and an authority index u € AU, the
algorithm chooses random matrices W4 ,,, Wp,, € Z;’)k X3k and outputs

PKu = (PA,u = Wlu ® IIAI]]L PB,u = W];u © [[Al]]l)
= (W4, A1l [Wg,Ail)
MSK, = (WA,u, WB,u)~
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Enc(GP, msg, (M, p), {PKy}): The encryption algorithm takes as input the global param-
eters GP, a message msg € M to encrypt, an LSSS access structure (M,p), where M =
(Myj)exa = (My,...,M,)T € Z?VXd and p : [¢{] — AU, and public keys of the relevant au-
thorities {PK,}. The function p associates rows of M (viewed as column vectors) to authorities
(recall that we assume that each authority controls a single attribute). We assume that p is an

injective function, that is, an authority/attribute is associated with at most one row of M.

It first samples a random vector d < Zlg and random matrices Uy, Up < ngx(d*l). The

procedure generates the ciphertext as follows: For each row x € [{], it chooses random vectors
SAz,SBa Z’; and outputs the ciphertext

CT =((M,p),C,{Cra2,C2,42:C1.B2, CoBa}sepy)
where C' = msg @ Ext(e([A1d]1, H), seed), and
Craz=[A1]1 ©saz =[A184:]1
Coaz = ([A11 © | [Ual1) © My + [W, ) At © $4.
_ T
= [ v) Mo+ W Arsa|
Ci.Bx = [Ai]1 ©® sps = [A18B2]1
Copo = ([A1]1 © (—d) || [Up]1) © M, + [[W;p(x)Al]]l © $B
_ T
= [~ A1 Us) Mo + WS ) Arsia] -

KeyGen(GP, GID, MSK,,): The key generation algorithm takes as input the global parameters
GP, the user’s global identifier GID € GID, and the authority’s master secret key MSK,,. It
generates a secret key SKgip , for GID as

SKaip,u = (Kb, 4,us KGID,Bu)
where

Kaip,au = Wau © (H(GID) - H) = [Wa, - (haip + ATh)]2
Keip,Bu = Wgu ©H(GID) = [Wg,, - haip]2

Dec(GP, CT, GID, {SKgip,».}): Decryption takes as input the global parameters GP, a cipher-

text CT for an LSSS access structure (M, p) with M € Z5@ and p : [¢] — AU injective, the user’s

global identifier GID € GZD, and the secret keys {SKG|D7u}u€p( N corresponding to a subset of

rows of M with indices I C [¢]. If (1,0,...,0) is not in the span of these rows, M, then decryp-

tion fails. Otherwise, the decryptor finds {w, € Zy},; such that (1,0,...,0) = >, w,- M, .
For all « € I, the decryption algorithm first compute:

Dag = e(Coaa, [heip + Ath]2)e(Cr a0, Kaip,ap) "
= [«aid|va) M) - (hao + 4in)]
Dp . = e(Ca,B s, [haip]2)e(Cr,B,x, Kaip,B,p(x))

= [(~A1d| Us) M) - |

-1

Then compute D = [[,c;(Daz-Dpa)" = e([A1d]1, H). Finally it outputs C ©Ext (D, seed) =
msg.

In the next section (Section 5.5), we prove the correctness of the scheme. The proof of security
is deferred to Section 5.6.
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5.5 Correctness

Assume that the authorities in {SKgip,,} correspond to a qualified set according to the LSSS
access structure (M, p) associated with CT, that is, the corresponding subset of row indices
corresponds to rows in M that have (1,0,...,0) in their span.

For each z € I, letting p(x) be the corresponding authority,

e(C2,4,, [haip + ATh]?2)
= ([(Ad| U0) M+ W, - Aisas) Thao + Afhl:)

= [(A1d | U0) M) (heo + Aih)| - [(A154.0)" W) - (Roip + AR
Also for each x € I,

e(C1,42, Kb, Au) = e([A184,2]1, [Wa p(z) - (haip + ATh)]2)
= [(A1542) W4 pu) - (haip + ATh)]r.

Hence,
Das = e(C2a4, [hap + Afh]2)e(Cr a4 Keip,aw)

= [(A1d ) U0) M) - (heo + Aih)| | - [(A154.) W sa—thicin + AR

and similarly,
Dp, = [{((—z‘hd |Up) M,)" - hGIDHT-
We then have

D=]][(Dasz- Dpa)

zel
=11 [[((Ald |Ua) Mz)" - (heip + A’{h)ﬂT. wa
= vel [[((—Ald |Us) M,)" - hGIDHT

erl wIBMxT (Aid ]| UA)T - (hgip + ATh)
|+ Y er wa M (—Ad| Us)' - hap .

_ | 10....,0)(A1d||UA)" - (heip + Afh)
| +(1,0,...,0) (—Aud]|| Up)' - haip T

= [(A1@) - (heip + ATh) + (~Ard) T - hG.DﬂT

= M-F(Ald)T-ATh—(A Iy Y .

:(Ald)T : A’{hﬂ = e([Ard]1, H).

Thus, we have

C @ Ext(D,seed) = msg & Ext(e TH ), seed) @ Ext(e TH, seed)

= msg.
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5.6 Security Analysis

Theorem 5.1 (Security of Prime-Order MA-ABE Scheme): Assuming the MDDH as-
sumption, described in Section 5.3 holds, then all PPT adversary has a megligible advantage
in breaking the fully adaptive security of the above MA-ABE scheme in the random oracle model.

We consider a sequence of hybrid games that differ from one another in the formation of the
challenge ciphertext, the output of the random oracle H, or the secret keys queried by the
adversary A. The first hybrid in the sequence corresponds to the real fully adaptive security
game for the proposed MA-ABE scheme, while the final hybrid is one where the advantage of A is
zero. We argue that A’s advantage changes only by a negligible amount between each successive
hybrid game, thereby establishing Theorem 5.1. The high level structure of our hybrid reduction
is shown in Fig. 5.1.

In this proof, we will model H as a random oracle programmed by the challenger. Let the
total number of global identifiers GID the challenger generates the H oracle outputs for be gq.
Also, we order the global identifiers {GlDt}te[q] in the sequence the H oracle outputs for them
are generated by the challenger. Let Y denote the subset of rows of the challenge access matrix
M = {M,; }ie[Z], jel € 7% submitted by A labeled by the authorities for which A supplies the

authority public keys {PK, = (P4, Ppu)}. Let Y = [(] \ Y. Without loss of generality, we will
assume that the first ’}7| many rows of M should correspond to honestly generated authorities,
ie., liesin Y.

The Hybrids

Hyb,: This is the real fully adaptive CPA security game described in Section 3.3 for the proposed
MA-ABE scheme.

Hyb,.; (5 € {0,...,q}): This game is analogous to Hyb, except that for the tth global
identifiers GID;, for ¢ < j, the challenger programs the output H(GID;) of the random oracle H as

|H(GIDy) = [Ajhqip,]2 |, while for > j, it programs the output H(GID;) of the random oracle
H as H(GID;) + G3F as earlier. Observe that Hyb,, coincides with Hyby.

Hyb,: This game is the same as Hyb,,, except the challenger generates the challenge ciphertext
as follows: It first flips a random bit b <— {0, 1} and runs the Enc algorithm to generate a normal
ciphertext CT = ((M, p), C,{C1,4.4,C2 A2, C1,B,2, C2,B 2 }we|g)) Where

C = msgy, @ Ext(e([A1d]1, H), seed),
and for all z € Y,

Craz = [A1sa.]h, Coap = [(A1d]|UA) M,]; B (P y2) © Sa0),
Ci Bz = [A158.4]1, Copr=[(—A1d||Up) M,], B (PB.p(z) © $B,2);

and for all z € Y,
Craz = [A1saz]h, Cong = [[(Ald |Ua) M, + W,IP(I)AISA,JCH L

Cipx = [A18B.2]1, Cops = [[(_Ald |Ug) M, + Wg,p(m)AlsB,z]] .

Next, it samples a random vector d’ < ZF. The challenger generates the challenge ciphertext

CT = ((Ma P)7 C, {Cl,A,Iv C2,A,ac; Cl,B,am 0273,1‘}:26[[})7 where

C = C = msg, ® Ext(e([A1d],, H), seed),
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Real Game
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5.1: Structure of the Hybrid Reduction for Our Prime-Order MA-ABE Scheme

forallz €Y,

Cinz =Cras=[A1844]1,
To.a. B [(Asd || 0) M, 2]
(A1d + E | UA> ﬂ B (Pap@) © 84.2),
Ci Bz = [A158.4]1,
CoBz = QBxEl [[(ASd/HO)M I,

[K MH UB) ﬂ B (Pp ) © $B,2),
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and for all z € Y,

Crae=Craz = [A1s4,],
CZ,A,:): = CN’Q,A,m t [[(ASd/ ” 0) Mx]] 1

= [(ara+[Asd )i 0a) M+ W v ]

Cipz=C1pz = [A185,.],
C2,B,a: = C~’2,B,:s = [[(A?)d/ H 0) Mﬂv]] 1

= [(-a1a- |Up) My + W} A15pa
1

Hybg. 4., (2 € {0, cee ‘?{ }) This game is the same as Hyb, except the challenger generates
the challenge ciphertext as follows: It first flips a random bit b < {0,1} and runs the Enc
algorithm to generate a normal ciphertext CT = (M, p), C, {C’l Az Co Az o B> C’g B )zeld])
where

C = msg, @ Ext(e([A1d]1, H), seed),

and for all z € Y,

Craz = [A1sagh, Conp = [(A1d||UA) M,], B (P @) © Saa),
CiBx = [A18Ba]1, Cope = [(—A1d || Up) M,], B (Pp ps) © 8B.a),
and for all z € Y,
Crae = [A1saz]h, Cone = [(A1d|UL) My + W] ) Arsis|
Cipx = [A18B.2]h, Copa = H(_Ald |Ug) M, + W;p(z)AlsB,x]] .
Next, it samples a random vector d’ < Z’;. The challenger samples random vectors 524,90 — Z’;

for all # < i where x € Y and generates the challenge ciphertext CT = ((M, p), C,{C1 44, C2 4z,
C1.B,2,C2,B.x }aelr)), Where

C = C = msg, ® Ext(e([A1d],, H), seed),
forall x € Y,

Craz=C1a.=[A184.]1,
Coap = Coa. B [(Asd || 0)M, ]y
= [(Ard+ A3d' |Ur) M, ]|, B (Papu) © Sa2),
Cipr=Cips = [A155.4]1,
Co,pp = Capo B [(—Asd || 0)M,];
= [(~A1d — Asd' | Up) My], B (Pp p) © $B.0),
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and for all z € Y,

C1a0 B [As8) .11 = [[Alsm [ Ass, |l forala<i,

Cl,A,:c = ’ 1
1Az— [[AlsAx]]l for all z > 1,
Conp = Cz Az A3d' ||0) M, + W,}:p(x)AE}S/A,x_ ) for all z < 1,
& :: [[ (Aszd' || 0)M,], for all = > i,

~—>~"

(Ard + Asd' || Ux) M.
—i—WA’p(m) (AlsAﬂ; + Ags;mC

(Ard + Asd’ |UA) M,
+W14T,p(:v)A13A’”" 1

ﬂ for all z <1,
1

forall x > ¢

Cipz=C1ps = [A185:],
Copy = Capy B (—Azd || 0)M,
= [(~A1d - Asd | Up) M.+ W5 Arsia|

Observe that Hybs. 4.9 coincides with Hyb,.

Hyb;.p; (¢ €0,. ‘?|) This game is the same as Hyb,. ,. 7| except the challenger gener-
ates the challenge mphertext as follows: It first flips a random bit b + {0, 1} and runs the Enc
algorithm to generate a normal ciphertext CT = (M, p), C, {C’1 Az Co Az o)) Ba Cg B $}xe[g])
where

C = msgy, @ Ext(e([A1d]1, H), seed),
and for all z € Y,

Cra0 = [A1sag]h, Conp = [(A1d||UA) M,], B (P y) © Sa),
C1.Bx = [A18B.]1, Co.po = [(—A1d||Up) My, B (Pp pz) © 8B.2),

and for all z € Y,
Crae = [A154.]1, Cona = [[(Ald [Ua) M + Wlp(QC)AlSA,mﬂl ;

Ci.8x = [A155.:]1, Cops= [[(_Ald |Ug) M, + W;p(z)AlsB,xﬂ .

Next, it samples a random vector d’ < Z’;. The challenger samples random vectors 814,90 — Z’;
for all x € Y and 3’371 — Z’; for all x < i where 2 € Y. The challenger then generates the
challenge ciphertext CT = (M, p),C,{C1 4.2, C2,44,C1,B.z: C2737x}x€[3])’ where

C = C = msg, ® Ext(e([A1d],, H), seed),
forall x € Y,

Ciag =Craz=[A1sazlh,
Coap = Ca. B [(Asd || 0)M, ]
= [(A1d+ Asd' | Us) M.}, B (P4 p(z) © Sa),
CiBx=Cipz = [A15B2]h1,
Co.po = Co.po B [(—Asd || 0) M, ]y
= [(~Ard — Asd' || Up) M,], B (Pp y0) © 55.0),
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and for all z € Y,
Ciaz=Cra.B[Azs) o= [Aisa. + Ass'y | 1
Co,4 H(A3d/ 10) M, + W;—p(ac)ASSi‘l,mﬂ .

1
1B = [[AlsBx]]l for all x > 1,

Cy.p. B |(—Asd || 0) M, + WBT oz )A3sjg,x}]1 for all z < 1,
Cy.p. B [[ (—Aszd' || 0)M,], for all x > i,
—Ajd — A3d' |Up) M,

_ ﬁ W5 ) <A1SB,z + AssB,az )

|[ (—Ad — Asd ||Up) M, ﬂ
+W;7p(x)AlsB,x 1

=Cya
C~' BzBﬂ[[AgsBx]]l = [[AlsBx+ A3zs’y . | for all x <1,
Ci,Ba = c ’

for all z <1,

for all x > i.
Observe that Hybs.p.o coincides with Hybg:A:|?|.

Hyb,: This game is the same as Hyb, ;. 7| except the challenger generates the challenge ci-

phertext as follows: It first flips a random bit b « {0, 1} and runs the Enc algorithm to generate
a normal ciphertext CT = (M, p), C, {C’l Az Co Az Cy B,z Cy B }zel) Where

C = msg, @ Ext(e([A1d], H), seed),

and for all z € Y,

él,A,x = IIAlsA,I]]la 62,14,:1: = [[(Ald ” UA) Mxﬂl H (PA,p(:v) O] SA,I)7

C1..x = [A155.2]1, Cope = [(—A1d||Up) M,], B (PB,p) © 8B.x);
and for all z € Y,

Craa = [A1saslh, Coaa = |(A1d | Un) My + W ) Arsa]

Cipr = [A15B2]1, Copas= [[(—A1d |Ug) M, + W;p(x)AlSB,m]] )
Next, it samples a random vector d’ < Z’; . The challenger samples random vectors 324,90’ sj&x —
Zlg and random matrices Végg(x), VE(;B;(I) — span3k(A§) for all z € Y and generates the challenge
ciphertext CT = ((M, p), C, {CLA@,CQAI,Cl’B’r,C’Q’B,x}IEm), where

C = C = msg, ® Ext(e([A1d]1, H), seed),

forall x € Y,

Ciag=Craz = [A1sazh,
Cynz = Coax B[(Asd || 0)M,]
= [(A1d+ Asd' | Us) M|, B (P4 p(z) © Saz),
Ci.8x=Cipx = [A15B2]h1,
Co.po = Co.po B [(—Asd || 0) M1
= [(-A1d — Asd' || Ug) M, ], B (Pp p() © $B,2),

56



and for all z € Y,
Ciaz=Cra, B [Assy ] 1= [Aisa. + Assly ] 1
A / (3) T /
Coae = Coaa B | (Asd | 0)M, + (W) + VA )) Assla,
1

(Ard+ Azd' | Uy) M,

+ <WA7P(9€) + V/&i?(x) ) (AlsA,gc + Ags;"x) )

1

0173733 = C’l,B,x H [[AgSIB’I]] 1= H:AISB7I + A3SIB,:1:]] 1
~ T
Copo=Chpy® |[(— Asd || 0)M, + (Wi 0+ V) A3sjg,xﬂ
1
(—Aid — Asd | Ug) M,
2

+ <WB,p(:v) + Véi))(x) > (AlsB’m + AgSIBJ)

1

Hyby: This game is the same as Hyb, except the challenger generates the challenge ciphertext
as follows: It first flips a random bit b < {0, }} and runs the Enc algorithm to generate a normal
ciphertext CT = ((M, p),C,{C1,42,C2,42,C1.B 2, C2,B,x}xe[£]) where

C = msg, @ Ext(e([A1d]1, H),seed),

and for all z € Y,

CN(I,A,:zs = [[AISA,m]]la é2,A,:L" = [[(Ald ” UA) Mmﬂl i (PA,p(m) © SA,x)a
él,B,:): = [[AlsB,x]]la C~'2,B,:1: = [[(*Ald || UB) Mx]]l s (PB,p(x) O] SB,{L‘)a

and for all z € Y,
Ciaz = [A1saql, Cona = [[(Ald [Ua) M, + WX,,)(I)AlsA,xﬂ L

Cipx = [A18B.2]1, Cops= [[(_Ald |Ug) M, + W;p(x)AlsB,x]] .

Next, it samples a random vector d'y,dz < Z’;. The challenger samples random vectors

3’14@,3/3733 — Z’; and random matrices Vfg(x),vg);(m) < span’*(A%) for all 2 € Y and gen-

erates the challenge ciphertext CT = ((M, p),C,{C1,4,2,C2,44,C1.B2, CQ,B,I}:EGM), where
C = C = msg, ® Ext(e([A1d],, H), seed),
forall x €Y,

Ciaz=C1az=[A184.]1,
Coan = Coae B [(Asdy || 0)M,],
= [{(Ald + Ag d;‘ H UA> Mxﬂ ) H (PA’p(x) ® SA,x);

Cipe=Cong = [A18p.:]1,
Co,pe = Cop B [Asdl || 0)M,],

= [(~a1d+ Afdy]| Us) M| 8 (Py ) © 550),

57



and for all z € Y,

Ciaz=Cra, B [Asss ], = [A1542 + Assly ],

~ T
Coap=Cra, B [[Agd’A 10)M, + (W + VA, Ags’A,zﬂ

1

(Ard+ A d, || U4) M,

+ (W) + Vfﬁ(x)f (Ar8as+ 0y )

Cipe=Cip.B [Ass ] 1= [Aisp. + Asslg,x]]l ,

CQ,B,x = C12,B,av

.
B |[(A3 G 10)M, + (W) + ViYL Agsg,mﬂ

1

(—A1d+A3 dy || Us) M,

+ (WB,,,(Z) n Vé?/);(x)) (AlsB,x v Agsg&x)

Hybg: This game is the same as Hybs except the challenger generates the challenge ciphertext
as follows: It first flips a random bit b <— {0, 1} and runs the Enc algorithm to generate a normal
ciphertext CT = ((M, p), C,{C1, 4.2, 02,A,z7Cl,B,mCZ,B,x}xe[é]) where

and for all z € Y,

CNfl,A,x = [[AISA,:E]]la
Ci.8.x = [A155.2]1,

and for all z € Y,

CN’l,A,x = [[Al SA,]}]]17

Ci.8x = [A15B.2]1,

Next, it samples a random

C = msg, & Ext(e([A1d]1, H), seed),

Coap = [(A1d]|UA) M,], B (P y2) © Sa),
Copp = [(—A1d||Up) M,], B (Pp pz) @ 8B4),

Coa = [(A1d U My + W] ) Arsaa]

Copa = |(~A1d || Up) My + Wiy Arsi| -

vector d/y,dy < Z];. The challenger samples random vectors

s;m, SjB,x — Z]; for all z € Y and generates the challenge ciphertext CT = ((M, p), C, {C1 4.z,
C2,A.2,C1,B.2,C2,B s }ocjq)), Where

C = C = msg, @ Ext(e([A1d], H), seed),

forallz €Y,

Ciaz=C1az=[A1842]1,
Coap = Coa, B [(Asdy || 0)M,] 1
= [(Ard+ Asd/y | Us) M., B (P4 pz) © 84.2),
Cipz=Crps = [A1sp.]1,
Copy = Cop, B [(Asdy || 0)M,]
= [[(_Ald + Asdp || UB) Mx]]l B (PByz) © 8Bz,
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and for all z € Y,
CLA#C = 6'17,473; H [[A?)S;l,x]] 1= [[AISA,x + A33£4,x]] 17
Conp = Coae @ [[(As A 10) M, + Wlp(x)A3si4,ac:” )
(Ard + Agd;l |UA) M,

1

CLB’J; = él,B,x tH |IA3338,1’]] 1= [[AISB,ac + A3SIB,Q:]] 10
CQ,B,{E = é2,B,:B = H(A3 /B || O)MI + W;,p(ac)A3slB,$ﬂ1
(—A1d+ Azdl; | Up) ]\/I%

+ (WB,pw) T V(?p@c) ) <A1337z +A3335’@)

1

Hybz.j_1y (5 € [g + 1]): This game is the same as Hybg except that for the tth global

identifier GID; for t < j — 1, the challenger programs the output H(GID;) of the random oracle H
as |H(GID;) = [Alhqip, + A3hgp,]2 | where haip;, h’Gle — Z’;, while for ¢ > j — 1, it programs
the output H(GID;) of the random oracle H as H(GID;) = [Ajhgip,]2 as earlier. Observe that
Hyb-., coincides with Hybyg.

We introduce a sequence of sub-games, namely, (Hybz,;.1,...,Hybz,;.12) between Hybz,;_4)
and Hyb.; for all j € [q] as defined below.

Hybz.;., (J € [g]): This game is the same as Hybz;_;) except that for the 4™ global
identifier GIDj, the challenger programs the output H(GID;) of the random oracle H as

H(GID;) = [Athcip, + A’z‘h’G’,D],]]g where hG|Dj,h’G’|Dj —Zk.

Hyb;..» (j € [g]): This game is the same as Hyby ., except the challenger generates the
challenge ciphertext as follows: It first flips a random bit b < {0, 1~} and runs the Enc algorithm
to generate a normal ciphertext CT = ((M, p), C,{C1, 4,4, C2 A2, C1,B.2, C2,B.2 }vefg) Where

C = msg, @ Ext(e([A1d]1, H),seed),
and for all z € Y,

Craz = [A1sah, Cynz = [(A1d||U4) M,], B (Pap(z) © 8az),
Ciez = [A18B.2]1, Copw = [(—A1d||Up) M,], B (Pp pz) © 8B2),

and for all z € Y,
Craz = [A1saz]1, Conw = [[(Ald [Ua) M, + WAT,p(I)AlsA,xﬂ g

Ci.8x = [A15B.2]1, Cops= [[(_Ald |Ug) M, + Wgyp($)A1SB,z]]l

Next, it samples a random vector d/y,dz,d" «+ Zlg. The challenger samples random vec-
tors sy ., 8% 4184 1 SB. Z’; for all x € Y and generates the challenge ciphertext CT =
((M7 p)v C7 {CI,A,J)? CQ,A,zy Cl,B,xa CZBJ:}xe[g])a where

C = C = msg, ® Ext(e([A1d], H), seed),
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forallx € Y,
Ciaz=C1az=[A154.]1,
Coae = Crae B [(A2d” + Asdly | 0)M,],
[[<A1d+ + A3d I UA) M ]] H (PAJ?(!E) ©842)

Cipe=Cong = [A18p.:]1,
Copo = Copo B [(—A2d” + Asdj || 0)M, ]

= [K—Ald - + Azdy || UB) Mz]] B (PBo(z) © 8B.x);

and for all z € Y,

Ciaz=C1a, B [Assy ] L= [Aisa. + Assy ] x

Co = Cona B | (Asd’ + Asd)y | O)M, + W Assls, |
(Ard+ + Asd, | Us) M
+W, (@) (AlsA,x + Ags’A’x) )
Crpe = Cipe B [Asshy,], = [Aispe + Assls,], .
Copa = Copa B |(~Asd’ + Asdly | 0) M. + Wi ) Assly |

(—Ald - + AgdlB || UB> M

W (AlsB,x + A3353@>

)

1

Hyb;. 5.4, (3 € [a],i € {0,...,‘?”): This game is the same as Hyb;;., ex-
cept the challenger generates the challenge ciphertext as follows: It first flips a ran-
dom bit b < {0,1} and runs the Enc algorithm to generate a normal ciphertext CT =
(M, p),C, {ClA:mCZAzaCIBx;CZBx}IG 1) where

C = msg, @ Ext(e([A1d], H),seed),

and forall z € Y,

Craz = [A1sa.]h, Cynz = [(A1d||U4) M,], B (Pap(z) © 8az),
Cipe = [A158.4]1, Copr=[(—A1d||Up) M,], B (PB.p(z) © 8B,2);

and for all z € Y,
él,A,x = [[AlsA,x]]la C’Q,A,x = [[(Ald H UA) Ma: + W,Z,p(m)AlsA,x:H 1’

Ci.8x = [A15B5.4]1, Cops= [[(—A1d |Ug) M, + W;p(x)AﬁB,x]] .

Next, it samples a random vector d A,d’B,d” — Zk The challenger samples random vectors
sAx, s’y z Zk for all z € Y and s} , « Z for all 2 < i where x € Y. The challenger then
generates the Challenge ciphertext CT ((M p),C.{C1,42,C242,C1,B2,C2.B x}ze[é ), where

C = C = msg, & Ext(e([A1d],, H), seed),
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forallz €Y,
Ciae = C1a: = [A184.]1,
Co,a0 = Co,np B [(A2d” + Azd)y || 0)M, ],
= [(A1d + Asd” + Asd)y ||Un) M, B (Pa ) © 84,0,
Ci.Bx=Cipx = [A15B2]1,
Co.px = Cope B [(—A2d" + Azdly | 0)M,],
= [(-A1d — A2d" + Asd}y | Up) M.], B (Ps ) © $5,0),
and for all z € Y,

C~'1,A,:p B [{Az.sg’x + A3Si4,xﬂ1 for all x < 1,

Cl,A,x = ~ , .

Ci,a. H HA35A,mH1 for all =z > 1,

[Arsa, +| Assly, |+ Agsly | forallz <,

g ’ ’ 1
[{AlsA,x + A38§4,:p}:| ) for all z > i,
~ (Azd” + Agd;‘ || O)Mx .
<

Cone = Coert [[ FW] o (Azslh, + Agsl,,) || TS E

for all z > 1,

G [[ (Axd” + Asd, || 0)M, H
1

+W;1r,p($)A38,A»I

(Ald + Agd// + Agd;‘ H UA) M,
for all z <1,

—|—W;£p(z) <A18A7x + AQSZL;E + A38/A,a¢>
B |l (Ard + Axd” + Asd/, | Ua) M, m
1

+W;£p($) (AISA,z + A33147x>

Cl,B,z = C’LB@ H [[AgS/B,x]] 1= HAISB,;L’ + A3sjB,xﬂ 17
C2,B,:E = C~’2,B,z H H(fAQd” + A3dlB ” O)Ml‘ + W;—,p(ac)A:gS/B,:E]]l

for all z < 1,

_ [[(—Ald — Asd” + Asdyy | Up) My + W (Arsp + Agsle)H -

Observe that Hyb;.;.5. 4.0 coincides with Hybz.;.o.

Hyby.;.3.5.; (g € lq],7 € {0,...,‘?‘}): This game is the same as Hyb7:j:3:A:‘7‘
except the challenger generates the challenge ciphertext as follows: It first flips a ran-
dom bit b « {0, 1~} and runs the Enc algorithm to generate a normal ciphertext CT =

((M7 p)v év {él,A,CC7 CZ,A,x; él,B,xu C2,B,x}z€m) where

C = msg, @ Ext(e([A1d]1, H), seed),
and for all z € Y,

Craz = [A1sa.]1, Cynz = [(A1d||U4) M,], B (Pap(@) © 84,z),

Cr.Bx = [A18B.2]1, Co.pe = [(—A1d||Up) M,], B (PBp(z) © SB,2);
and for all z € Y,

Ciaz = [A1sazlh, Cong = [[(A1d |UA) M, + W,IP(I)A1SA@H L

Cipx = [A18B.2]h, Cops = [[(—Aui |Up) M, + W;,p(x)AlsB,z]] g
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Next, it samples a random vector d'y,ds,d” <+ Zlg. The challenger samples random vectors
Sy SR SAy Z’; for all x € Y and 8B Zlg for all z < i where € Y. The challenger

then generates the challenge ciphertext CT = ((M,p),C,{CLA@,CZA,I,CLB@,C'Q,B,m}xem),
where

C = C = msg, @ Ext(e([A1d], H), seed),
forall z € Y,
Ciae =Craz = [A18a]1,
Cone = Cone B [(A2d” + Asd) || 0)M, ],
= [(A1d + A2d" + Azd)y | Ua) M, ]| B (P pa) © 842),
C1.52 = C1,82 = [A18B.4]1,
Co.a = Copo B [(—A2d" + Asdy || 0)M,],
= [(—Aid — Axd” + A3d} | Up) M|, B (Pp ) © $B.2),
and forall z € Y,
Ciag = CN'LA,:,; H [[Agsf&x + Agsf47x]] 1= [[AlsA,x + Agsf&x + A38£47x]] .
Cone = Copy @ [[(Agd” + Asdly [ O)M, + W] ) (Assly, + Ags’m)ﬂ 1
(Ard+ Asd” + Asd), |Ua) M,
B ﬁ W, p(x) <A13A’”” + Axsly o+ A33f4@> H ’

él,B,x H [{1‘128'[37m + Ags’B’x]] ) for all z < 1,

" o [[Agsj%]] 1 for all z > i,
| |Asse +| Avsh |+ Ass, | | foralla <4,
a [[Alsg,x + Agsb’x}] ) for all x > 1,
( éQBxBaﬂ( Azd’+ Az || 0)M H for all x <1,
T B (f;/m;;m)
\ é2,B,x t [[ g'_Wir,p(xj_A3§/13j 10)M. ﬂl for all z > i,

(~Ad — Ayd" + Asdyy || Up) M |
u —|—WB () <A1SB,x + A23%7I + A3s§9,x) ml for all x < i,
(~Ard — Aod" + Agdly [ Up) M.
|’ +WB ) <A1$B,:p + Ags%’z) N 1

for all z > 1,

o

Observe that Hyb7;j:3:B:O coincides with Hyb7:j:3:A:|§7"

Hyb;.;.4 (J € [g]): This game is the same as Hyb, . 3. 5. id except the challenger generates
the challenge ciphertext as follows: It first flips a random bit b <« {0 1} and runs the Enc

algorithm to generate a normal ciphertext CT = ((M, p), C, {C’l Az Cs Az C1.8.2,Co.p xYaell])
where

C = msg, @ Ext(e([A1d]1, H), seed),
and for all x € Y,
Craz = [A1sa.]h, Conp = [(A1d||UA) M,], B (P y0) © Sa),
C~11,B,a: = [[AlsB,x]]lv éQ,B,:E = [[(_Ald || UB) x]]l ( (x) ©® sB x)
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and for all z € Y,
Ciaz = [A1sazlh, Cong = [[(A1d |UA) M, + W;ll—’p(x)AlsA,wﬂ L

Ci.52 = [A1sp.]h, CoBa = [[(_Ald |Up) My + W;,p(x)AlsB,z]] g

Next, it samples a random vector d/y,ds,d" «+ Z];. The challenger samples random vectors
84 28R Sh e SBa Z’; and random matrices sz(x), V]_g;(x) + span®*(A3) for all z € Y and
generates the challenge ciphertext CT = ((M, p),C,{C1,4.2,C2.4.2,C1,B ., CQvax}:EE[Q)’ where

C = C = msg, @ Ext(e([A1d]1, H), seed),
forall z € Y,

Ciaz=Craz = [A1saz]h,
Coane = Coae B [(A2d” + Asdly | 0)M,],
= [(Aid + Axd" + A3dly || Us) M|, B (P4 p2) © S4.),
C1.52 = C1,82 = [A18B.4]1,
Co.a = Copa B [(—Azd” + Asdy | 0)M,],
= [(-A1d — A2d" + Asd}y | Up) M|, B (Pp ) © 850,

and for all z € Y,
Cl,A,x = él,A,:r i [[AQSZX,:E + A3S£4,x]] 1 [[AlSA#E + AQSZLQ: + A3Sf4,m]] 17
(Agd” + A3d’A ” O)MJ;T
+ (WA,p(x) + V/fp)(a;)) (AZSZX,;U + A3S£4,z)
(Ard + Asd’ + Agd;‘ H E_JA) M,

+ <WA7p(x) + V2, ) (AlsA,x + Aps’y, + Agsh’x> 1,

Cipz=C1p, B [A2sh . + Ass’ ] = [Ai1spa+ Assh, + Ass | L
(—A2d" + Azdy || 0)]\{1
+ (WB,p(I) + VéQ) )) (AQS%@ + Agslex)

C27A,:c = éQ,A,a: i |l

CQ,B,x = C~12,B,:1: H ﬁ
oz

(~A1d = Azd’ + Aydly | Up) M,
2
+ (WBW) + V) ) (AlsB,x + Agsly, + Agsﬁg,m>

1

Hyb,..s (j € [g]): This game is the same as Hyby.;, except the challenger generates the
challenge ciphertext as follows: It first flips a random bit b <+ {0, 1~} and runs the Enc algorithm
to generate a normal ciphertext CT = ((M, p), C,{C1, 44, C2 A2, C1,B.2, C2,B.2 }vefg) Where

C = msg, @ Ext(e([A1d]1, H), seed),
and for all z € Y,

Craz = [A1sazh, Cynz = [(A1d||U4) M,], B (Pap(z) © 8az),
Ciez = [A18B.2]1, Copp = [(—A1d||Up) M,], B (Pp pz) @ 8B,4),
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and for all z € Y,
Crae = [Arsaalh, Conp = [(Ard | UL My + W] Arsas]
Cipx = [A18B.4]1, Copa = [[(—A1d |Up) M, + W];p(x)AlsB,ac]] .
Next, it samples a random vector d'y, dz, d’}, d; < Zlg. The challenger samples random vectors

S/A’m, s’B“,D, sf{l’m, 83/3730 — Z’; and random matrices Vfg(x), Vg;(z) + span®*(A3) for all z € Y and
generates the challenge ciphertext CT = ((M, p),C,{C1,4,2,C2 4,2, C1 Bz CQ,B,I}xe[Z}), where

C = C = msg, & Ext(e([A1d]1, H), seed),
forall z € Y,
Craz=Cra.=[A184.]1,
Coae = Coae B [(Azd) + Asd) || 0) M, Asd), ]
= [(Ard+ Afdi |+ Asd)y | UL) Me| 8 (Pa ) © 54,0,

Ci1.8x=Cipz = [A18B.2]1,
C’2,B,m = é2,B,x tH [[(AZd% + Aj ,B H O)Mx]] 1

= [(~ A+ Afdp]+ Asdy | Us) M.] 8 (P i) © 55.0).

and for all z € Y,

Ciaz=0C1a, B [A2sy , + Ags/A,z]]l = [A1sa. + A2y, + Assy ] 1
(Asd, + Asd', | 0)M, N

+ (W ooy + V) )T(Ags” + Azsy )
p() A,p(x) Az Az

C2,A,:c = éQ,A,I i |l

(Ard+ As]dl |+ Agd, | Us) M,
(2) T " /
+ (WA”)(:”) + VAm(x)) (AlSA’x + A28, + A38A7x>

Cipe=Cipa. B [[Azslfgw + A3S/B7$]] = [A1sp. + Aysh , + Assp | 1
(Asly + Aadt, | 0)M,
+ (WB,p(J:) + VBE?;(I)) (Azs/é7x + A3SIB7Q:)

C2,B,m = 02,3,:1: B ﬁ

(—Ard+ A dj |+ Agdly | U) M,
@ \'
+ (WB,p(x) + VB,p(z)) (AISB@ + A2Slé,x + A3S,B,x)

Hyb;..c (J € [g]): This game is the same as Hyby ;5 except the challenger generates the
challenge ciphertext as follows: It first flips a random bit b < {0, 1~} and runs the Enc algorithm
to generate a normal ciphertext CT = ((M, p), C,{C1, 44, C2 A2, C1,B.2, C2,B 2 }vefg) Where

C = msg, ® Ext(e([A1d]1, H), seed),
and for all z € Y,

él,A,x = [[AlsA,x]]lu 62,14@ = [[(Ald ” UA) Mx]]l H (PA,p(:p) O] SA,I)v
C~11,B,a: = [[AlsB,x]]lv éQ,B,:E = [[(_Ald || UB) Mx]]l H (PB,p(:B) O] SB,:L‘)7
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and for all z € Y,

Ciaz = [A1sazlh, Cong = [[(Ald |Ua) M, + W,Ip(x)AlsA,a;ﬂ L

Cipx = [A18B.2]h, Cops = [[(_Ald |Ug) M, + W;,p(x)AlsB,z]] )

Next, it samples a random vector d'y,dy,d’),d}, «+ Z];. The challenger samples random

vectors s’f‘@,sb@,sﬁ’m,s%@ — Zlg for all + € Y and generates the challenge ciphertext
CT=((M,p),C,{C1,42,C2.42,C1,B, 02,3733}1_6[@}), where

C = C = msg, @ Ext(e([A1d], H), seed),
forallz €Y,

Crae=Cras= [[AlsAz]]l,
Coap = Coa, B [(A2d)y + Asd)y 10) M. ],

= [(Ard + Azd)y + A3dly | Ua) M,]| B (P4 @) © 844),
CiBe=Cips = [[AlsBx]]h
Co.pe = Cop o B [(A2dp + Asdy || 0)M, ],

= [[(_Ald + AQdB + A3dB H UB) MCC]] 1 tH (PB,p(x) © SB,x)a

and for all z € Y,

Ciae = Cra. B [Azs, + Assly | = [A1saz + Assy , + Azsy ],
Conp = Coae B [[(AQ + Azd)y | 0) M, + W ) (Aasly , + AsslA,x)]] )
(A1d + Axd’y + Asd/, || U4) M,

T
1

Cl,B,x = OI,B z H [[Agslé z T Ags/B@,]] 1= HAISB,I + Agslé,z + AgslBjx]] =
Copa = Copa B |(Asdf + Asdy || O)M, + W ) (Assh , + Assly )|
(—A1d + A2d% + ASdlB H UB) M

T
+ (WB,P(I) + V(?p(z) ) (AlSB xt AQS + A3SB x>

1

Hyb7.;.r (j € [q]): This game is the same as Hyby. ;. except that for the j* global identifier
GIDj, the challenger programs the output H(GID;) of the random oracle H as |H(GID;) « G3F

while for all ¢ < j, it programs the output H(GID;) of the random oracle H as H(GID;) =

[Aihcip, + Agh’Gmt]]g, and for ¢t > j, it programs the output H(GID;) of the random oracle H as
H(GID;) = [Ajhcip,]2 as earlier.

Hybz.;.5 (7 € [q]): This game is the same as Hyby.;.7 except the challenger generates the
challenge ciphertext as follows: It first flips a random bit b - {0, 1} and runs the Enc algorithm
to generate a normal ciphertext CT = (M, p), C, {01 A CQ Az Ch B s B )zel) Where

C = msgy, @ Ext(e([A1d]1, H), seed),
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and for all z € Y,

Craz = [A1sa.]h, Coap = [(A1d||UA) M,], B (P y) © Saa),
CiBx = [A18Ba]1, Cope = [(—A1d ||Up) M,], B (Pp ps) © 8B.2),

and for all z € Y,
Craz = [A1sa.l, Con = [[(Ald [Ua) M + W;{p(x)AlSA,xﬂ L

Cipx = [A18B.2]1, Copa = [[(—A1d |Up) M, + W;p(z)AlsB,xﬂ .

Next, it samples a random vector d/y, dz, d’y, d7, < Zk. The challenger samples random vectors

842 SBarSA s Sy Z and random matrices V(Z)( ) VB£2;(I) < span®*(A3) for all z € Y and

generates the challenge mphertext CT=((M,p),C,{C1,42,C2.4.2,C1 B4, CQ,B,:E}IE[Q), where
C = C = msg, @ Ext(e([A1d], H), seed),
forallz €Y,
Ciaz=Cras=[A184:]1,
Conp = Caae B [(A2d)y + Asd) || 0)M, ],
= [(Ard + Azd)y + A3d)y | Ua) M,]| B (Pa @) © s44),
Ci.Bx = CiBe = [A18B.2]1,

Cope = Copa B [( Agd” + Azd | 0) M, ],
[[( Aid+ A2 —|— A3d H UB> Mm]]l H (PB,,D(:I:) ® SBJ),

and for all z € Y,

Ciaz=Cra, B [A2sh , + Aszsly |, = [A18a. + Ass’y , + Azsy ],
(A2d} + Asd), || 0) M,
+ (WA,p< ) Vfﬁgg) (A28 , + Ass)y ) Hl
(A1d + Aodl) + Asd, || QA)
+ <WA,,)($) +H Ve ) (Als e+ Assy, + Agsgw) 1
C1.Bx=Cipo B [Assh, + Ass ], = [A1spa + Assh , + Assp ]|,
(Aadf, + Aszd/y || 0) M,
+ (Wp ) + Vi )) (Assly, + Assly,) H 1

CQ,A,;U = éZ,A,a: & |l

Cypy=Copa B |l
ol

(—Ald + Agdlé + AgdB_M UB M

+ <WB,IJ($) + VBE?;(.T) ) (AlsB@ + AQS%,QC + A3S/B,x>

1

Hyb;.;.o (J € [g]): This game is the same as Hyby ;¢ except the challenger generates the
challenge ciphertext as follows: It first flips a random blt b < {0,1} and runs the Enc algorithm
to generate a normal ciphertext CT = (M, p), C, {Cl Az CQ Az ol B Cs Bz }aely)) Where

C = msg, ® Ext(e([A1d]1, H), seed),
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and for all z € Y,

C~11,A,;v = [[AISA,;B]]la éQ,A,x = [[(Ald ” UA) Mxﬂl & (PA,p(z) © SA,x)a
Ci Bz = [A158.4]1, Copr=[(—A1d||Up) M,], B (PB,pz) © 8Bz,

and for all z € Y,
Cras = [Aisaals, Coaa = |(A1d | Un) My + W ) Arsa]
Ci.8x = [A155.2]1, Cope = [[(—A1d |Ug) M, + Wg,p(m)AlsB,x]] g
Next, it samples a random vector d'y, d’z,d”, d” + Zlg. The challenger samples random vectors

R Z’; and random matrices Vfg(ﬁ), ng,z))(;p) < span®#(A3) for all x € Y and
generates the challenge ciphertext CT = ((M, p),C,{C1,4.2,C2.4.2,C1,B ., 0273733}%[5]), where

C = C = msg, @ Ext(e([A1d]1, H), seed),
forall z €Y,
Ciaz=C1az=[A184.]1,
Conp = Crae B [(A2d” + Asdly | 0)M,],
= [(Ard+ Add"]+ Asd)y | UL) Me]| 8 (P o) © 54.0).

Cipe=Cips = [A1554]1,
Cyps=Cop. B [(—A2d” + Asd} || 0) M, ] 1

= [K—A1d — A2+ Asdy || UB) Mz]] ) B (Pppa) © SB,2),

and forall z € Y,
Cl,A,a} = C~11,14@ & [[AQSZLJ; + A3Si4,x]] 1= [[AISA@ + AQSZLCC + A?’s;lvx]] 1’
(Asd” + Asd, | 0)M, H

Coap = Coay B T
> 2 ﬂ X (WA,M + Vfﬁgg) (A8 , + Ass'y )

(Ard+ asla’|+ Ay, |UL) M,

T
Cl,B,x = él,B,x H [[AQS%,Q: + A3S/B,x]] 1= [[Al'SBJ + AQSI]_/?,m + A3SIB,:L"]] 17
(—Agd” + A3d39 ” O)Mx H

+ (Wp ) + Vi )T(AQS" + Assly )
() B,p(x) B,z B,z

(—A1d - A" |+ Avdy | UB) M,
(Wi + Vi) (Arsss + Aasly, + Ausly )

Cypy=Cop. B u

Hyb;.;.10 (J € [g]): This game is the same as Hyb;.;.q except the challenger generates the
challenge ciphertext as follows: It first flips a random bit b < {0, 1~} and runs the Enc algorithm
to generate a normal ciphertext CT = ((M, p), C,{C1, 44, C2 A2, C1,B.2, C2,B 2 }refg) Where

C = msg, & Ext(e([A1d]1, H), seed),
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and for all z € Y,

Ciaz = [A1842]1, Coap = [(A1d]|UA) M,], B (P y) © Sa),

Cieax = [A18B.2]1, Copp = [(—A1d||Up) M,], B (Pp pz) © 8Ba),
and for all z € Y,

Ciaz = [A184.]1, Cone = [[(Ald |UA) M, + W,IP(I)AISA,QC:H L

Ci.8x = [A15B.2]1, Copr = H(*Ald |Ug) M, + W;p(gj)AﬁB,zﬂl

Next, it samples a random vector dy,d,d",d" < Z’;. The challenger samples random
vectors 8y ., 8% ., 8% 11 SB, Z’; for all x € Y and generates the challenge ciphertext
CT = ((M, ), C,{Cra0,C2,42,C1,B.2, C2, B} 4eg))> Where
C = C = msg, @ Ext(e([A1d];, H), seed),
forall x € Y,
Ciaz = Crae = [A1sa4]1,
Cone = Cone B [(A2d” + Asd)y || 0)M, ],
= [(A1d + Asd” + Asd)y ||Un) M, B (Pa ) © 84,0,
Ci1.B2 =C1,B2 = [A18B2]1,
Cope = Copo B [(—Ad” + Asdz || 0)M, ],
= [(~A1d — Axd" + Asdyy | Up) M|, 8 (Pp ) © sBa),
and for all z € Y,
Ciae=Cra. B [Assh, + Assly ], = [Aisa. + Assl, + Assly ],
Copg = Copy @ [[(AQd” + Asd)y | O)M, + W ) (Azsls , + Ags;m)ﬂ 1
(Ard+ Axd" + Azd), || Us) M,

)

+ (WA,p(x) + V(?p(x) ) (AlSA@ + AZSCQ,:U + A3Si4,x)

1
~ " / " /
Cl,B,x = Cl,B,:L‘ = [[AQSB,:E + A3SB,xﬂ 1= [[AlsB,x + AQSB,UU + A3SB,$]] 1’

CQ,B,Q; = 6’2,B,x i H:_AQd// + A3dlB ” O)Mx + W;p(x) (AQS%,z + A3S,B,z):|] 1
(—Ald — Axd” + AgdlB |—|rUB) M,
+ (WB,P(m) + Vg ) (AlsB,a: + Azsp, + ASSb,m)

() L

Hyb;.;.11.4. (3 € [q],i € {o,..., ‘17‘}: This game is the same as Hyb; ., except the
challenger generates the challenge ciphertext as follows: It first flips a random bit b < {0, 1~} and
runs the Enc algorithm to generate a normal ciphertext CT = ((M, p),C,{C1,4.2,C2. 4.2, C1,B .,

OQ,B,I}QJG[Z]) where

C = msg, @ Ext(e([A1d]1, H), seed),
and for all zx € Y,

C~11,.»4,23 = [[AlsA,x]]lu 62,14@ = [[(Ald ” UA) Mxﬂl t (PA,p(:p) © SA,I)v
C~11,B,a: = [[AlsB,x]]lv éQ,B,:E = [[(_Ald || UB) Mx]]l tH (PB,p(:B) © 'SB,ZL‘)7
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and for all z € Y,

Cl,A,x =

[Aisaal. Cone = [(A1d | U) My + W],y Arsaa]

Cipx = [A18B.2]h, Cops = [[(_Ald |Ug) M, + W;,p(x)AlsB,z]] .

Next, it samples a random vector d”,d/y,d; + Z];. The challenger samples random vectors

/ / " k AV "
SA 21 SBa SBa < Z,, for all z € Y and s

— Z’; for all x > i for x € Y. It generates the

T

challenge ciphertext CT = (M, p),C,{C1 4.2, C2,44,C1,B.2: CZB@}xe[z])> where

forallz €Y,

C = C = msg, @ Ext(e([A1d], H), seed),

Craz=Craz=[A1844]1,

Cyng=Coa, B [(A2d” + Asd!y || 0) M, ],

= [[(Ald + Agd” + A3di4 H UA) Mz]] 1 H (PA,p(:r) ® SA,ac)7

Ci1.8x=Cipx = [A15B.2]1,

Copy = Cop, B [(—Axd” + Azdly || 0)M,] 1

and for all z € Y,

CI,A,:U =

C2,A,x =

= [[(—Ald — Agd” + Agd%; H UB) Mz]] 1 H (PB7p(x) © SBJ;),

OI,A@ H [[ASSQLI]] . for all z < 1,

él,A,x H [[Azsfﬁm + Ags;"x]] . for all x > 1,

[{AlsA,x + + A38£47$]:| X for all x < 1,

[{AlsA,x + AQSC&J + A3S/A,azﬂ ) for all x > 1,

Gy o B |[ (Agd_;/ + Azd, ||0) M, ﬂ
» A4, /

W4 o) A35 0,0

& e (Aqd” + A3di4 ||0) M,
2 +Wz:lr,p(:1:) (A2SZX,1' + A3S£4,z)
(Ard+ Asd’ + Agd/A H Uj) M,
W1 (Arsa. +[ A7)+ Assly,)
(Ald + Agd” + AgdiA || UA) M,
+WAT,p(w) <A18A7x + A2SZX,:E =+ A3Sf47x)

for all x <4,

ﬂ for all z > 1,

\

m for all z <1,

]] for all z > 1,

Cl,B,x = CN'LBJ; H [[AQS%J + A33/B7;(;]] 1= [[AISB,x + AQS%@ + A33,B,x]] 17
Co,pe = Co,p,c B [[(—A‘zd" + Asdlp [|0) My + Wy ) (Azsfy , + A33337~”“)]] 1

(—Ald — Agd” + Agd,B H UB) M,
W (Als B+ Assly  + Agsjw)

Observe that Hybz.;.11.4.9 coincides with Hyb.;.1¢.

Hyb;.;.11.5:i (7 € [q],i € {0, cees ‘?}}) This game is the same as Hyb7:j:11:A:‘7‘ except the

challenger generates the challenge ciphertext as follows: It first flips a random bit b < {0, 1} and
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runs the Enc algorithm to generate a normal ciphertext CT = (M, p), C, {(5'17,473;, 02’A7m, C~’1,B7m,
CQ,B,:E}:EE[Z]) where N

C = msg, & Ext(e([A1d]1, H), seed),
and for all z € Y,

él,A,x = IIAlsA,I]]lu OZ,A,:E = [[(Ald ” UA) Mxﬂl & (PA,p(:v) O] SA,I)7

Cipe = [A1554]1, Copr = [(—A1d||Up) M,], B (PB,p) © 8B.x);
and for all z € Y,

é].,A,I = [[AlsA,x]]la éQ,A,x = [[(Ald H UA) Ma: + W,Z,p(m)AlsA,x:H 1’

C1.pe = [A1spalh, CoBa = [[(—A1d |Up) M + W;p(x)AwB,m]] L

Next, it samples a random vector d”,dy,dy < Zlg. The challenger samples random vectors

N Z’; for all z € Y and 8B Z’; for all z > i for x € Y. It generates the challenge
ciphertext CT = ((M, p), C, {Cl,A,:m02714796»Cl,B,vaQ,B,x}xe[z])v where

C = C = msg, @ Ext(e([A1d], H), seed),
forallz €Y,
Ciaz=Cras=[A1544]1,
Cone = Cone B [(A2d” + Asd) || 0)M, ],
= [(A1d+ Asd” + Ayd)y | Ua) My] | B (Pa ya) © 54.0),
Cipz=Cips = [A155.]1,
Co.Ba = Copo B [(—A2d" + Asdy || 0)M,],
= [(—Aid — Axd” + A3dy | Up) M|, B (Pp ) © $B.2),
and for all z € Y,
Cinz=Cra.B [Ass'y ] 1= [A1sa.+ Azsly ] 1
Coae = Cona B | (Asd’ + Asd)y | O)M, + W Assls, |

= [[(Ald + Agd// + A3di4 ” UA) M, + W;lr’p(x) (AISA,x + A3S£4,x)}] L

CN'LB@ 5 [{AgSIB m]] for all x < i,
Ci1,Be = - Tl
Ci B H [{A25/JI3,m + A35/B,x]] ) for all z > 1,
B [[A1SB,x + + A3SIB,:):]] X for all z < 1,
[[AlsB,x + Ags%,x + A3335,7x}] . for all z > 1, ,
~ —Asd"” + Asd'’; | 0) M,
CZ,B,xaa[[(WQT +A 3d5 10) xﬂ for all z < i,
Copa = TWB o) A35B.0
2B (—A2d” + Azdy || 0) M,

Cop. B for all ',
2,B, [[ +W;,p(z)(A2379,x + A3S/B,x) Hl orallx >1

(—Ald — Agd" + AgdlB ” UB) Mx
FW ) (Arspe +[Assh |+ Assly,)
o |l (*Ald*AQd”+A3dlB ||UB) M,
\

W (Arspe + Assly, + Asshy, )

]] for all z <1,

]] for all = > i,
Observe that Hyby.;.11. 5.9 coincides with Hyb7:j:11:A:|17|'
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Hyb;.;.12  (J € [g]): This game is the same as Hyb,..11.5. 7] except the challenger generates

the challenge ciphertext as follows: It first flips a random bit b < {0,1} and runs the Enc
algorithm to generate a normal ciphertext CT = (M, p),C, {C'1 Az Co Az o Ba Cg B Yzell])
where

C = msg, @ Ext(e([A1d]1, H),seed),
and for all x € Y,

Craz = [A1saz]h, Cone = [(A1d||Ua) M,], B (P4 p(@) © SA),

él ,B,x [[AISB x]]la éQ,B,x = [[(_Ald H UB) 33]]1 (PB () © 83796)7
and for all z € Y,

Crae = [A1saslh, Coaa = |(A1d | Un) My + W ) Arsa]

CiBa = [A18B2]1, Copy = [[(—Ald |Up) M + Wg,p(x)AlsB»m]] )

Next, it samples a random vector d/y,dy <« Z’;. The challenger samples random vectors
s’A@, SlB,x — Z’; for all z € Y and generates the challenge ciphertext CT = ((M, p), C, {C1 4z,
C2,A,27a Cl,B,ﬂEa CQ,B,CE}QCE[@)’ where

C = C = msg, ® Ext(e([A1d],, H), seed),
forallz €Y,

Cl,A,:): = él,A,x = [[AlsA,x]]la
C2,A,z = éQ,A,a: tH [[(Agd;‘ H O)MIE]] 1

(Ald + M + Agd;‘ I UA> Mxﬂ H (PA,p(x) ®© SA,x)7
1

Ci.Bz = Ci,Bz = [A15B2]1,
CZBx:C2BmEﬂ[[A3d ||0 x]]l

_ [K—Ald .

Cine=Cra. B [Agshyx]]l = [A1sa0 + A3Sf47x]]1 ,
Cynp = Cosy B [[(Agd/A 10)M,, + Wlp(z)Ags’A’z]] 1

<A1d+ A" |+ Azd, | UA> M

+Wf—lr,p(r) (AlsA’”" + Ags%@) 1
Cl,B,:c = Cl,B,w H [[A3SlB7x]] 1= [[AISB,x + A3SIB,I:|:| 10
CQ,B,m = CNYQ,B,at? & [[(A?) /B || O)Mw + W;,p(x)AB’SlBJ}] 1

- (-Ald—M+A3dgg ||UB>M

+WB (@) (AlsB z+ Azsy x)

Il
=

i

+ A3d,B H UB> MCE:H & (PB,p(x) O] sB,a:),
1

and for all z € Y,

<~

<

1

Hybg: This game is the same as Hyb;,, except the following: While generating the global public
parameters GP the challenger gencrates | H = [ATh + A5h"]s | where h, h" < Zk.
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Hybg: This game is the same as Hybg except the challenger generates the challenge ciphertext
as follows: It first flips a random bit b <— {0, 1} and runs the Enc algorithm to generate a normal
ciphertext CT = ((M, p),C, {01 A C’z Az Ch B,z Co Bz fzele)) Where

C = msg, @ Ext(e([A1d], H),seed),
and for all z € Y,

Craz = [A1sazh, Coap = [(A1d||UA) M,]1 B (P y0) © Sa),
CiBx = [A18B4]1, Cope = [(—A1d || Up) M,]1 B (Pp pr) @ 8Ba),

and for all z € Y,
Craz = [A154.4]1, Conz = [(Ar1d||Us) M, + Wlp(I)AlsA,a:]]la

C1.3x = [A1spalh, Cope = [(—A1d||Up) My + W,y Ai8B o]

Next, it samples a random vector d'y,ds,d” < Z];. The challenger samples random vectors
S’Am S/B,:r — Z’; for all x € Y and generates the challenge ciphertext CT = ((M, p), C, {C1 44,
027A,Za Cl,B,ﬂTa 02,3,95}586[@)’ where

C = msg, ® Ext(e([A1d]; B [A2d"]1, H), seed)
= msgy, © Ext(e([A1d]1, H) - | e([A2d"]1, H) |, seed),

forallx € Y,
Ciaz=C1az=[A154.]1,
CZ,A:): = éZAmHﬂ [[ A2d//+A3d/A ||0 M ]]1
[[(Ald+ + A3d || UA) M ]] H (PAW(;E) ® SA,x),

Cipe=Cips = [A1554]1,
Cyps=Cop, B [(—A2d” + Asdy || 0) M, ],

_ [[(_Ald _ + Asdy || UB) Mz]] B (Pep(a) © 85.0),

and for all z € Y,

Crae=Crac B [Ass)y,], = [A1saq + Assly ],

Co = Cona B | (Asd’ + Asd)y | O)M, + W, ) Assls, |
(Ald + + Azd/, || UA> M.

W1 (Arsas + Ass)y,) 1
Cipr=Cip.DB [Ass ] = [Aisps + A33/B,xﬂ1 ,

Co.pe = Copo M@ [[(—Agd" + Asdy | 0)M, + W} p(x)Agsggﬁxﬂ 1

(~Asa- + Agdly | Up) M

+W;p(£) (Al.sB@ + A38/B’$>

)

1
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Hyb,g.4.; (¢ € {O, v |}7‘ }) This game is the same as Hybg except the challenger generates
the challenge ciphertext as follows: It first flips a random bit b < {0,1} and runs the Enc
algorithm to generate a normal ciphertext CT = (M, p), C, {C’1 Az Co Az o)) Ba Cg B $}ze[g])
where

C = msgy, @ Ext(e([A1d]1, H), seed),
and for all z € Y,

él,A,x = IIAlsA,I]]lv 62,A,:1: = [[(Ald ” UA) xﬂl (PA () @ SA x)
CiBx = [A18B.]1, Copp = [(—A1d || Up) M,], B (Pp pr) @ 8Ba),

and for all z € Y,
Ciaz=[A184.2]1, Cone = [[(Ald |UA) M, + W,Ip(x)AlsA,xﬂ L

Ci.8x = [A155.2]1, Cops = H(—A1d |Up) M, + W;,p(m)AlsB,x]] ,

Next, it samples a random vector d'y,ds,d” < Z’;. The challenger samples random vectors
SlA,m"SIB,x — Z]; for all x € Y and sfﬁm — Z’; for all x < i for # € Y. The challenger then
generates the challenge ciphertext CT = ((M, p),C,{C1,42,C2. 4.2, C1 Bz CQ’B’:E}IE[Q), where

C = msg;, D EXt(e([[Ald]]l H [[AQd”]]l, H), seed)
= msgy, ® Ext(e([A1d]1, H) - e([A2d"]1, H), seed),

forallx €Y,

Ciaz = Craq = [A18a.]1,
Cone = Coae B [(A2d” + Asdly | 0)M,],
= [(Aid+ Axd" + Asdy || Us) M| | B (P4 p2) © Sa.),
Cipz =C1ps = [A1sp.]h,
Co.a = Copa B [(—A2d” + Asdj || 0)M,],
= [(~A1d - A2d" + Asd}; | Up) M.], B (Pp () © sB.0),
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and for all z € Y,

Cia. B [[Azsfﬁm + A3Si4,x]] for all <1,
Cl,A,a: = 1

él,A,m 58] [[Ags;m]] , for all z > 1,
[[AlsA,gC +| A28’y . |+ Ass)y rﬂ for all x <1,
— i ) 1
[{AlsA@ + A3S/A,xﬂ ) for all x > 1,
~ (Axd" + Azd/, || 0) M, ,
. Con,0 B |[ +W,:1rp(z)(A23me + Ass, ) 1 for all x <1,
Ax — y | ’
o C~'2 A B |[ (AQd';/ * A3d14 10)M; ﬂ for all x > 1
x !/ 9
| [EE) +WA7p($)A38A,(L’ 1

(Ald + A,d’ + Agd;‘ H UA) M,
for all z < 1,

—i—WXp(z) (AlsA,x +| Agsly . |+ A38£4’$>
o |l (Ald + Agd” + Agde H UA) M, N
1

—i—WXp(x) <A1.s,47z + A3sf47w)
Ci,pe = C1,B. B [Assy,] = [A1spa + Assp ],
C'2,B,w = C~Y2,B,:E B [[(_AQd” + A3dlB H O)Mw + W;7p(x)A3slB,x]] 1
(—A1d — Axd” + Azdl; || Up) M,
- +W;,p(x) (AlsB,x + A3S/B7x) 1 ’

for all =z > 1,

Observe that Hyby(. 4.9 coincides with Hybg.

Hyb,o.5; (2 € {O, cees ‘}7|}) This game is the same as HyblO:A:‘?| except the
challenger generates the challenge ciphertext as follows: It first flips a random bit
b <« {0,1} and runs the Enc algorithm to generate a normal ciphertext CT =

(M, p),C.{C1,42:Co,42,C1.B.z, 02713@};,;6[@) where
C = msg, @ Ext(e([A1d]1, H),seed),
and for all x € Y,

Croae = [A1sag]r, Conp = [(A1d||UA) M,], B (P y0) © Sa),
Ci.pe = [A18B.4]1, Copp = [(—A1d || Up) M,], B (Pp ps) © 8Ba),

and for all z € Y,
Craz = [A1saz]h, Cong = [[(Ald |UA) M, + W,Ip(x)AwA,xﬂ L

C1.Bx = [A1spalh, Copa = [[(—Aui |Up) M + W;,p(z)AlsB,z]] g

Next, it samples a random vector d/y,d,d" + Z’;. The challenger samples random vectors
s’A,m, s’B@, sf{l,m — Z’; for all z € Y and s%@ — Z’; for all x < i for € Y. The challenger then
generates the challenge ciphertext CT = ((M, p),C,{C1,42,C2.4.2,C1 Bz CQ,B,:E}IE[Q), where

C = msg;, b EXt(e([[Ald]]l H [[AQd//]]l, H), seed)
= msg;, D EXt(e([[Ald]]l, H) . 6([[A2d”]]1, H), seed),
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forallz € Y,

Ciaz=Claz=[A1842]1,

Conp = Coan B [(Azd” + Asd)y | 0)M,],
= [(A1d + A2d" + Asd)y | Ua) M. ],

Ci1.8x=Cipx = [A18B.2]1,

Co,po = Copo B [(—A2d’ + Asdyy | 0)M.]
= [(~Avd — Asd" + Asdyy | Up) M., B (Pp ) © $5.2),

H (PA,p(:p) © SA,x);

and for all z € Y,

CLA#" = CN'LA@ H [[AQSZLm + A35£47z]] 1= [[AlsA,:p + AQSZX,;E + A35£4,z]] 17
Cone = Cone B [{(AQd” + Azd)y || 0) M, + W ) (Assh , + A38'A,z)]] )

(Ald + Aoxd” + Agd;l H UA) M,
+WA () <A13A790 + AQSZl,z + A3Sf4,m> 7

(@Y

1,B,x HA2S + As3s'y x]] for all z <1,
Crp. @ [{Agsj%]]l for all @ > 4,

A18pg +|Assh, |+ Assy wﬂ for all z <1,
b ) 1

Aispy + Agsj&x}] . for all > 1,

~ (—Asd” + Asdy || 0)M, ,
<

02 B,x H H +W;p(m) (AQ-S%’:B + A3g/3}£) X for all = < 1,

Craen | e+ ston, |

(—Ad - Azd” + Asd), |Up) M, |
|l +Wp, () <A13B,x +| Aasp, +A3833,x> ]]1 for all x < i,
(—Aid — Axd’ + Azdly |Up) M,
|l —I—WB (@) <A1SB,z + A3S/B,x) H 1

CQ,B,x =

for all x > i,

for all x > i,

Observe that Hyb,(.5.o coincides with Hyb10:A:‘?"

Hyb,;: This game is the same as Hyb,, except the challenger generates the challenge ciphertext
as follows: It first flips a random bit b <— {0, 1} and runs the Enc algorithm to generate a normal

ciphertext CT = ((M, p),C, {C’1Az,CzAg;,ClB:p,C2Bw}xe [g)) where

C = msg, @ Ext(e([A1d]1, H),seed),
and for all x € Y,

Croae = [A1sag]n, Coap = [(A1d||Ua) M,], B (Pa p) © Saz)

Cipe = [A1854]1, Copr = [(—A1d||Up) M,], B (P () © $B.2)
and for all z € Y,

Crae = [A1saslh, Coaa = |(A1d | Un) My + W ) Arsa]

Ci.8x = [A155.2]1, Cope = [[(—Aui |Ug) M, + W;,p(x)AlsB,z]] )
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Next, it samples a random vector d'y,ds,d” <+ Zlg. The challenger samples random vectors
842 SBarSAp SBay Z’; and a random matrix VE(%?;);(x) + span®*(A%) for all z € Y and
generates the challenge ciphertext CT = ((M, p),C,{C1,42,C2. 4.2, C1 Bz CQ’B’:E}IE[Q), where

C = msg;, EXt(e([[Ald]]l H [[AQd”]]l, H), seed)
= msgy, ® Ext(e([A1d]1, H) - e([A2d"]1, H), seed),

forallz €Y,
Craz=C1az=[A1842]1,
Conp = Coae B [(A2d” + Asdly | 0)M,],
= [(Aid+ Axd" + A3dy || Us) M|, B (P4 p2) © Sa.),
Cipz =C1ps = [A1sp.]h,

Cs,p0 = Capyp B [(—A2d” + Asdyy || 0)M,],
= [[(—Ald — Azd" + AgdlB || UB) Mx]] 1 H (PB,p(gc) ® SB,x)7

and for all z € Y,
Ciaw = Cra, B [Azs , + Aszsa,] L= [Aisaq + Assh , + Aszsly ],
Cong = Coaq B [[(Agd" + Asd)y | 0)M, + W] ) (Aaslh . + Ass A@)ﬂ 1
(Ayd + Asd’ + Asd, || Un) M,
- |l —i—W;p(x) <A13A,x + Aasl)y , + A3sf47x) ]] ’
C1.Ba=Clp. B [Assh, + Assp ], = [A1spa + Assh , + Assp ]|,
(—Asd” + Asdly | 0)M,
+ (WB,p@) + Véa(w))T (A2s, + Aszsp ;) ]]

(—Ald — Agd// + AgdlB H UB) M,
T

+ <WB,p(a:) + Vé,;(x) ) (AlsB,m + AQS%@ + A3S/B,:c)

Cype=Cop, @ |l

1

Hyb,,: This game is the same as Hyb;; except the challenger generates the challenge ciphertext
as follows: It first flips a random bit b <— {0, 1} and runs the Enc algorithm to generate a normal
ciphertext CT = ((M, p), C,{C1, 4.2, CZ,A,x,Cl,B,mCz,B,a:}ze[z]) where

C = msg, & Ext(e([A1d]1, H), seed),

and for all z € Y,

Craz = [A1sah, Conz = [(A1d||Us) M,], B (Pap(z) © 8az),
Cr.B. = [A18B.2]1, Copp = [(—A1d||Up) M,], B (Pp pz) @ 8B4),

and for all z € Y,
Craz = [A1saql, Coam = [[(Ald | Ua) Mz + WAT,p(z)AlsA,xﬂ g

Ci.8x = [A15B.2]1, Cops= [[(_Ald |Ug) M, + Wgyp($)A1SB,z]]l
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Next, it samples a random vector d/y, ds, d”, d'f; + Zlg. The challenger samples random vectors
/ / " " k : (2) 3k Ve
SAzSBarSAw Spa < Zp and a random matrix Vva(x) < span®?(A3) for all z € Y and

generates the challenge ciphertext CT = ((M, p),C,{C1,42,C2. 4.2, C1 Bz CQ’B’:E}IE[Q), where

C = msg;, EXt(e([[Ald]]l H [[AQd”]]l, H), seed)
= msgy, ® Ext(e([A1d]1, H) - e([A2d"]1, H), seed),

forallz €Y,
Ciaz=Craz=[A184:]1,
Conp = Coae B [(Azd” + Asdly | 0)M,],
= [(A1d+ Asd” + Ayd)y | Ua) My] | B (Py pa) © 54.0),
Cir=Cips=[A1584]1,
Copy=Copa B [(A2d% + Asdl || 0) M, ] 1
- [[(—Ald + A d |+ Asdy | UB) Mwﬂ B (Pa ) @ 80),

and for all z € Y,

CLA@’ = C’LAJ H [[AQSZLZ, + A38A7x]] 1= [[AlsA,x + AQSZLI, + A3S£4,xﬂ 19
CQ’Aw = 02 Az tH |:|:(A2d” + A3d£4 || O)MI + W/—ll—,p(a:) (Agsfﬁm, + A38A’z>]] .
|l (Ard+ Asd’ + Asd!, || Ua) M. N

WL <A13Aw + Aos'), + Ag,,s;l x)

Cipz=C1p, B [A2sh , + Assy fc]]1 = [A1sp. + Assh, + Assp z:” ;
(A2d + Asdi || 0) M. N

(2)
+ <WBaP(I) + VB p(x)) (AQS%,z + A3S;5,x) 1
(—Ard+ A dj |+ Agdly | U) M,
+ (WBW(JC) + VB(’?;))(:E)) (AlsB z + A23 T AgsB z)

C2,B,:E = éQ,B,m H |’

Hyb,3: This game is the same as Hyb;, except the challenger generates the challenge ciphertext
as follows: It first flips a random bit b <— {0, 1} and runs the Enc algorithm to generate a normal
ciphertext CT = ((M, p),C, {C’l Az CzAx,Cl B:E,CQBJU}J;E [g)) where

C = msg, ® Ext(e([A1d]1, H), seed),
and for all z € Y,

C~’1,A,ac - [[AISA,:(;]]M CZ,A,JJ - [[(Ald H UA) acﬂl (PA () @ SA x)
CiBx = [A18B]1, Cope = [(—A1d || Up) M,], B (Pp pr) @ 8B,a),

and for all z € Y,
Craz = [A154.]1, Cone = [[(Ald |UA) M, + Wlp(m)AlsA,xﬂl ;

Cipx = [A18B.2]h, Copa = [[(_Ald |Ug) M, + W]—gr,p(z)AlsB,x]] .

7



Next, it samples a random vector dy,dz,d”,d}f; Z’;. The challenger samples random

vectors 8’y ., 8% ., 8% 11 SB, Z’; for all x € Y and generates the challenge ciphertext
CT = ((M7 p)) Ca {Cl,A,xv CQ,A,x, Cl’B,x, C27B’x}$€[a)’ Where

C = msg;, @ Ext(e([A1d]s B [A2d"]1, H), seed)
= msgy, © Ext(e([A1d]1, H) - e([A2d"]1, H), seed),

forallz €Y,

Cl,A,m = CN’I,A,x = [[AlsA,x]]la
Conp=Coa, B [(Asd” + Asd) || 0)M,] 1
= [[(Ald 4 Agd” -+ Agd;‘ H UA) Mm]]l H (PA,p(m) ® SA@),

Cipz=Cips = [A155.4]1,
Cypy=Cop. B [(A2d% + Asd || 0) M, ],
= [(—Aid + Axd} + A3dp || Up) M, |, B (Pp pz) © $B.2);

and forall z € Y,

Cl,A,x = C'l,A,x H [[AQSZMC + A3SA7I]] = [[AlsA,x + Agsg’x + A3Si4,x]] 1
Cyng=Coa, B [[(A2d" + Azd)y || 0) M, + szlr,p(:c) (A28, + A?’SA””‘)H 1

_ (Ald + Agd” =+ Agd/A || UA) M,
= +W,1p(x) (Al SAx —+ AZSZX,J: -+ A3S£4,a:) )

Cipr=Crp. B [A2sh . + Assp ] e [A1sp.+ Assp, + Azsp | 1
Co.po = Cop. [[(A2 B+ Azdp [|0) M, + W5 () (Assh , + A38/B,r)]]1
(—A1d + AQd% + ASdlB H UB) .2\4'z

il
+ (Ws,pu) + | Voo ) (AlSBJ A2, + A‘”’S/Bvx>

1

Hyb,s.; (5 € {0,...,q}): This game is identical to Hyb,3 except that for the tth global
identifiers GIDy, for ¢ < j, the challenger programs the output H(GID;) of the random oracle H

as | H(GID;) < G3F |, while for all t > j, it programs the output H(GID;) of the random oracle

H as H(GID;) = [AThqaip, + A3hgp,[2 with heip,, hgp, < Z’; as earlier. Observe that Hyb,,.q
coincides with Hybqs.

Hyb,5: This game is the same as Hyb,,,, except that the challenger generates the outputs of
the H oracle as follows: For any global identifiers GID, the challenger first samples a random

vector rgp ng and sets ‘ H(GID) = [rgip]: B H ‘

Hybys.; (5 € {0,...,q}): This game is the same as Hyb,5 except that for the ™ global
identifiers GIDy, for ¢ < j, the challenger first samples a random vector pgip, < span(Aj, Aj) and

then generates the outputs H(GID;) of the random oracle H as H(GID;) = Hﬂ 2EIH , while for

t > j, the challenger first samples a random vector rgip, < ng and sets H(GID;) = [raip,]: B H
as earlier. Observe that Hyb,g.o coincides with Hyb;5.
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Hyb,~: This game is the same as Hyb,4 except the challenger generates the challenge ciphertext
as follows: It first flips a random bit b <— {0, 1} and runs the Enc algorithm to generate a normal
ciphertext CT = (M, p), C, {C1, Az CQA;B,Cl B Co.Ba}ue [g)) where

C = msg, @ Ext(e([A1d];, H),seed),
and for all z € Y,

C’I,A,x = IIAISA,J:]]L 62,A,:1: = [[(Ald ” UA) a:ﬂl (PA () @ SA x)
CiBx = [A18B4]1, Cope = [(—A1d || Up) M,], B (Pp pr) @ 8Ba),

and for all z € Y,
Crae = [Arsaalh, Coaa = |(A1d | Un) Mo+ W ) Arsa]

C1. = [A1sp]h, Copa = H(—A1d |Up) M, + W;,p(m)AlsB,x]] )

Next, it samples a random vector d/y, ds, d”, d}; + Z’;. The challenger samples random vectors
84 28R Sh e SBa Z’; and a random matrix pr)(m) for all z € Y and generates the challenge
ciphertext CT = ((M, p),C,{C1, 4,2, C2,.4,2,C1,B ., 027]3@}%[5]), where

C = msg, ® Ext(e([A1d]; B [A2d"]1, H), seed)
= msg; D Ext(e([[Ald]]l, H) . 6([[A2d//]]1, H), seed),

forallz €Y,
C&,A,x = él,A,x = IIAlsA,I]]la
Cone = Cone B [(Azd” + Asd)y || 0)M, ],
= [(Ard+ Axd" + Asd/y || Ua) M|, B (P4 pz) © Saz),
Cips=Cips = [A1s54]1,

C2Bm—C2BxEE‘[[A2 +A3 ||0)Mac]]1
= [(—A1d + Axd} + Asdy ||Up) M|, B (Pg ) © $B.2),

and for all z € Y,

Cl,A,z = C~'1’A7$ H [[AQSZLQC + A33A,a:]] . [[A1SA,93 + AQSZ‘,Z‘ + A38/A7z]] 1

(Axd” + Asd/y || 0) M,
+ (WAvp(l’) + VAW(JE))T (A2SZX,$ + A3sa)

(Ald + Aoxd” + A3di4 || UA) M,
2
+ (WA,p(x) +V} ;3(2:) ) (AlSA,:v + sy, + A3Si4,a:)

C2,A,33 = éZ,A,m & u

)

1
Ci.Ba=Cl. B [Assh, + Assy ], = [A1spa + Assh , + Assp ]|,

Cypr=Cop. B [[(A2 + Azdp || 0) M, + WBT,p( )(A23 + Azsp x)ﬂ

_ (—A1d+ Agd/é + AgdlB |Up) M,
W5 ) (AISB,gc + Agsh , + Ags’m)
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Hyb,g: This game is the same as Hyb;, except the challenger generates the challenge ciphertext
as follows: It first flips a random bit b <— {0, 1} and runs the Enc algorithm to generate a normal
ciphertext CT = (M, p), C, {C1, Az CQA;B,Cl B Co.Ba}ue [g)) where

C = msg, @ Ext(e([A1d];, H),seed),
and for all z € Y,

C’I,A,x = IIAISA,J:]]L 62,A,:1: = [[(Ald ” UA) a:ﬂl (PA () @ SA x)
CiBx = [A18B4]1, Cope = [(—A1d || Up) M,], B (Pp pr) @ 8Ba),

and for all z € Y,
Crae = [Arsaalh, Coae = [(A1d|UL) My + W] ) Arsie]
Ci.8x = [A155.2]1, Cope = H(—A1d |Up) M, + W;,p(m)AlsB,x]] )
Next, it samples a random vector d'y,dy,d”, d’y,d}, « Z];. The challenger samples random

vectors 8'y ., 8% 1y 84 4y 8B, Z’Ij and a random matrix VA(?p)(z) for all € Y and generates the
challenge ciphertext CT = (M, p),C,{C1,4,2,C2,4,2,C1.B ) CZB’x}xE[E]), where

C = msg, ® Ext(e([A1d]; B [A2d"]1, H), seed)
= msg;, D Ext(e([[Ald]]l, H) . 6([[A2d//]]1, H), seed),

forall z €Y,
Cl,A,x = C~'1,A,:z? = [[AlsA,x]]l)
C2,A,m = éQ,A,m & [{(AQle + A3di4 H O)Mw]] 1
= [[(Ald + Aold |+ Asd, | UA) Mx]] B (P @ 840),

CiBx=Cipx = [A18B.2]1,
Co.pe = Cop o B [(Azdp + Asdp || 0)M,],
= [(—Aid + Axd} + A3d ||Up) M..], B (Pp ) © $B.2),

and forall z € Y,

Ciaz=Cra, B [A2s’y , + Azsa.] 1= [Aisae + Assy , + Azsly ] 1
(A2d’y + Asd/, || 0) M.

B o |l (WA,p(:v) + VA,P(!E)) (AQS + Assaq) ]] 1

(Ard+ Aol |+ Agdy | Us) M
(2) T " /
+ (WAp( )+V oz )) <A13Ax+A2SAa:+A3SAx>
CiBz = CleEEl[[AQS —|—A3.SB$]]1— |IA183$+AQSB$+A3SB$]]1,
Co.pe = Copo @ [[(Azd;g + Asdly | O)M, + W, (Azslh . + Assly m)ﬂ

( Aid+ AQd,]_/; + A3d H UB)
W (Arspe + Assly, + AgsB’r>
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Hyb,g: This game is the same as Hyb;g except the challenger generates the challenge ciphertext
as follows: It first flips a random bit b <— {0, 1} and runs the Enc algorithm to generate a normal
ciphertext CT = (M, p), C, {C1, Az CQA;B,Cl B Co.Ba}ue [g)) where

C = msg, @ Ext(e([A1d];, H),seed),
and for all z € Y,

C’I,A,x = IIAISA,J:]]L 62,A,:1: = [[(Ald ” UA) a:ﬂl (PA () @ SA x)
CiBx = [A18B4]1, Cope = [(—A1d || Up) M,], B (Pp pr) @ 8Ba),

and for all z € Y,
Ciaz=[A1842]1, Conz = [[(Ald |UA) M, + Wlp(x)AwA,xﬂ L

Ci.8x = [A155.2]1, Cops = H(—A1d |Up) M, + W;,p(m)AlsB,x]] )

Next, it samples a random vector d'y,dy,d”, d’y,d}, « Z];. The challenger samples random
vectors sy .8 8" s <« 7ZF for all z € Y and generates the challenge ciphertext CT =
Ax'°B,x °Ax) °Bx P S

((M7 ;0)7 07 {CI,A,CE7 CZ,A,JU) Cl,B,xa CQ,B,I}IE[Q])a where

C = msg;, D EXt(e([[Ald]]l H [[AQd”]]l, H), seed)
= msgy, ® Ext(e([A1d]1, H) - e([A2d"]1, H), seed),

forallz ey,
Craz=Cra.=[A1842]1,
Coap = Coa, B [(Axd)) + Asd/y || 0) M, 2],
= [(Ard + Aod’y + Asd)y || Ua) ML, 8 (Pyyio) © 54.),
Cipx =Cips = [A1sp.]h,
Cypy=Copa [(A2d% + Asdi || 0) M, ] 1
= [(-A1d + Axd}, + Azdy ||Up) M|, B (Pg ) © $B.2),

and for all z € Y,

Cl,A,:p = CN’I,A,x H [[AZS/A@ + ABSA,:):]] 1= [[A].SA,x + AZS/A@ + ABS/A@]] 1
Cos = Cona B [(Asd + Aad)y [ 0)M, + W ) (Assls, + Agsaa)]
(A1d+ Axd’y + Asd', || Ua) M,

i (WAm) Voo ) (Arsas+ Aasly, + Ass,) |
1

Cip.=Cip.B [A2sT . + Assp ] 1= [A1spa.+ Aash, + A3839,x]]1 ,
Co,pz = Copu B [[(A2d% + Azdl | 0) M, + W5 () (Aash , + A3S/B,x>ﬂ X

|| (FAwd+ Axdp + Azdp | Up) M,
—i—W;’p(m) (Alst + AQS%’I + A38§37x>

Hyb,o: This game is the same as Hyb;q except that while generating the challenge ciphertext,
the challenger sets the component C' as (independent of msg,, msg;).
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Analysis

For any adversary A and any ¢ € {0,...,2} U {3:A4: i}ie[‘?“ U {3’3’2}1‘6[]}7]] U
{4,5,.6}U{7: (j — 1),7:75: 1,...,.7 1j Q}je.[q]u{7 2j:3: A : i}ieH?UU{? 2j:3: B : i}ie[|57|]u
{T:7:4,...,7:5: 10}je[q]g{7:] 211 A:z}ie[J?“U{'?:] :11: B: z}ieH?UU{j:] : 12}je[q]U
{7:¢} U {8,9} U {10: A: z}ie[’?“ U {10: B: Z}ie[]?]] U {11,12,13} U {14 : j} ;g U {15} U
{16 :j}e;q Y {17,...,20}, let pa; : N — [0,1] denote the function such that for all A € N,

pai(\) is the probability that A, on input 1%, guesses the challenge bit correctly in the hy-
brid game Hyb,. From the definition of Hyb, it follows that for all A € N, |p4o(A) —1/2| =

AdVXA_ABE’fu”y:adaptive(/\)aPA,2(>\) = PA,3:A:0()\),pA73;A;’?‘()\) = pazpo(A),pas(A) =
pAT0(N),pATj2(N) = p.A,7:j:3:A:O()\)ap_A77:]‘;3;A;‘§7‘(>\) = parj3:8:0(A),pa75:10(N)
pA,?:j:ll:A:O(/\)apA77:j:11:A:‘§7‘(A) = pA,'?:j:ll:B:O()‘)va,g()\) = pA,lO:A:O()\)apAJo;A;’?’(>\)

PA10:B:0(A), pA13(A) = pa1a:0(N), pa1s(N) = paieo(N). Also, for all X € N, pago = 1/2 since
there is no information of the challenge bit b < {0,1} selected by the challenger within the
challenge ciphertext in Hyb,,. Hence, for all A € N, we have

AdVXA—ABE,fully:adaptwe()\)

<Y lpa-1 D) = paN+ Y Ipasgai-1(A) — pagai(N)|

i€[2] i€[|Y]

+ 3 pasmiar () = pasni V] + [P (0) — Pas)]
i€[|Y]

+ Z ’p.A7L—1(A) _p.A,L()‘)‘ =+ Z ‘pAJ:(jfl) ()‘) - pA,7:j:2()‘)‘
1e{5,6} J€ld]

+ Z |DA7:5:3:4:-1(A) — Pa75:3:4:(N)]
i€[|Y]]

+ Z |pA,7:j:3:B:ifl()‘) _pA,7:j:3:B:i(/\)’ + ‘pA,7:j:3:B:|}7|()‘) _pA,7:j:4(>\)‘
i€[|Y]

+ > pamir—1(N) — pazgr(V)]
ke{s,...,10}

+ Z [pA7:j:11:4:-1(N) — Pazj11:4:(A)]
i€[|Y]]

+ Z |pA7:5:11:B:—1(A) — Pa75:11:B:4(N)]
i€[|Y]]

+ Z ‘pA,7:(j—1);12*PA,7:j|
j€lg—1]

+ [Pa7:q(A) = Pas(N)] + Ipas(A) — pag(M)]
+ > panocai-1(N) = patoaiN + D Patosi1(N) = pagosi(V)]

+ )pAJ:j:ll:B:’?’ ()‘) - pA,?:j:12()\)‘

i€[|Y] i€[|Y]]
P asomr| ) =AM+ D Ipa-1(N) = pa V)
1e{12,13}
+ 3 Ipanai-1(N) = para (V] + [parag(N) = pais(V)]
Jj€ld]
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+ ) Ipaei-1(A) = patei (M| + [Pateg(A) — paar(V)|
Jj€ld]

+ Z ’p.A,L—l()\) - p.A,L()\)‘ (5'1)

i€{18,...,20}

Lemmas 5.2-5.36 will show that each term on the RHS of Eq. (5.1) is nothing but negligible.
Hence, Theorem 5.1 follows.

Lemma 5.2: If the I\/IDDH(E%k assumption holds, then for all PPT adversary A, there exists a
Pat—1)(A) = pa1(N)| < negly;(A) for

negligible function negly ;(-) such that for all X € N,
all j € [q].

Proof: Suppose there exists a PPT adversary A that distinguishes between Hyb;.;_;) and
Hyb,.; with non-negligible advantage. Using A as a subroutine, we construct below a PPT

adversary B that has a non-negligible advantage in solving the MDDHS?% problem. The al-
gorithm B gets an instance of the MDDH(,S’%k problem from its challenger that consists of
G = (p,G1,G2,Gr, 91,92, €), [ X]2, and [tg]2 for random 5 «+ {0,1} where X <« Zf’,ka and

tg = Xu for u + Z’; when 3 = 0 or tg « ng when § = 1. The algorithm B proceeds as
follows:

Generating the Global Public Parameters: B samples random matrix A; < ng” and
implicitly sets A} = X R~ where R = AlTX € Z’;Xk. Observe that since A7, X <« ngXk, R

is invertible with all but negligible probability. B then samples random h « Z’; , implicitly sets

h = Rh and sets H = [X]» ® h = [Xh], = [A}h]. B further samples a seed for the strong
randomness extractor seed <— S and sets the global public parameters GP = (G, [A1]1, H, seed).

Generating Authority Public-Master Keys: Whenever A requests to set up an authority
u € AU of its choice, if an authority setup query for the same authority u has already been
queried before, B aborts. In the post-challenge query phase, if additionally A submitted an
authority public key PK, for the same authority v while querying the challenge ciphertext, B
aborts. Otherwise B runs AuthSetup to generate a public-master key pair (PK,, MSK,,) for the
authority u as follows. B samples random W4 ,, Wg, ngX3k and sets PK, = (Pa, =
[[W;lruAl]]l,PB,u = [[W;uAl]]l) and MSK, = (W4, Wg,). B provides PK,, to the attacker
and stores (PKy, MSKU).7 Whenever A requests the master secret key of the authority u at a
later time, B provides it to A.

2fth

Generating the H Oracle Outputs: For all ¢ € [g], in response to the fresh H oracle

query of A for some global identifier GID;, B generates H(GID;) as follows:

k
~ p’
is uniformly distributed since hgp, < Z’; and R € Z’;Xk is invertible), and sets the output

H(GID;) of the random oracle H as H(GID;) = [X]2 ® hgip, = [Xhaip,]2 = [Ajhcp,]2 -

e For t < j, B samples a random vector iLG”)t < Z,, implicitly sets hgp, = RiLGIDt (which

e For t = j, B sets the output H(GID;) of the random oracle H as H(GID;) = [tg]2. Observe
that if t3 = Xwu then H(GID;) takes the form H(GID;) = [Ajhgip,]2 where hgp; = Ru.
Note that in this case, hGle is clearly uniformly distributed over Z’; since u < Z’;, R e Z’;Xk
is invertible. On the other hand, if ¢5 < Zg’“, then H(GID;) < G3¥. Then clearly H(GID;) is
clearly uniformly distributed over G3*.

e For t > j, B sets the output H(GID;) of the random oracle H as H(GID;) + G3*.

It stores this value so that it can respond consistently if H(GID;) is queried again.
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Generating Secret Keys: Whenever A makes a secret key query for some (GID,u) € GID x
AU, if an authority setup query for the authority v has not been made already, 5 aborts. In the
post-challenge phase, if an authority setup query for the authority v has not already been made,
A submitted the authority public key PK, for u while querying the challenge ciphertext, or for
each GID € GZD the vector (1,0,...,0) is in the span of all the rows of the challenge access policy
matrix M labeled by the authorities for which A submits the public keys {PK,} while querying
the challenge ciphertext plus the authorities for which A has made a master key query for u or
secret key query for (GID,u) so far, B aborts. Otherwise, B simply runs the KeyGen algorithm
using the public-master key pair it already created in response to the authority setup query for
authority u and generates a secret key SKgip,, = (kgip, Ay = [Waw - (hcio +ATh)]2, kcip, By =
[Wg.u - haip]2) for (GID,u). If H(GID) has not been generated so far, it follows the above
procedure to generate it during this time.

Generating the Challenge Ciphertext: At some point, A submits two messages,
msgg, msg; € M and an LSSS access structure (M, p) where M € ZﬁXd and p : [{] - AU
is an injective map. A also submits the public keys {PK, = (P4, Ppy)} for a subset Uy of
attribute authorities appearing in the LSSS access structure (M, p). If for all attribute authority
u for which B has created a public-master key pair for so far are not contained in Uy, and for
each GID € GID, the vector (1,0,...,0) is not in the span of all the rows of M labeled by the
authorities in U4 plus the authorities for which A has made a master key query for u or secret
key query for (GID,u), then B flips a random coin b < {0, 1} and generates a ciphertext CT by
running the Enc algorithm that encrypts msg, under the access structure (M, p)

Guess: A eventually outputs a guess bit &' € {0,1}. B outputs 1 if b = b’ and 0 otherwise.
Observe that if tg Z;’)k then H(GID;) simulated by B coincides with that in Hyby.(;_y)
whereas if t5 = Xu, then H(GID;) simulated by B coincides with that in Hyb,.;. All the other
components of the game are also properly simulated by B. Thus, it follows that the game
simulated by B coincides with Hyby.;_;y or Hyb,.; according as 8 =1 or 0. Thus, B can use A to
attain non-negligible advantage in solving MDDHS%k. This completes the proof of Lemma 5.2.
|

Lemma 5.3: If the SD%IHA1 A, assumption holds, then for all PPT adversary A, there exists
a negligible function negly(-) such that for all X € N, [pa1.4(A) — pa2(X)] < negly(N).

Proof: Suppose there exists a PPT adversary A that distinguishes between Hyb,., and Hyb,
with non-negligible advantage. Using A as a subroutine, we construct below a PPT adver-
sary B that has a non-negligible advantage in solving the SDglIH A,.A; broblem. The algo-

rithm B gets an instance of the SD%H A,.A; broblem from its challenger that consists of
G = (pv Gla GQ? GT?.gla 92, 6)7 [[Al]]17 [[A2ﬂ1’ [[A3]]1? basis(A’{), baSiS(A;), baSiS(Aiv A§)7 and [[tﬂ]]l
for random B € {0,1} where tg < span(A;) if 3 = 0 or tg < span(A;, As) if B = 1. The
algorithm B proceeds as follows:

Generating the Global Public Parameters: B generates H = [Ajh]2 by taking random
linear combinations of the members of basis(A7). B also samples a random seed seed < S for the
strong randomness extractor, and provides the global public parameters GP = (G, [A1]1, H, seed)

to A.

Generating Authority Public-Master Keys: Whenever A requests to set up an authority
u € AU of its choice, if an authority setup query for the same authority u has already been
queried before, B aborts. In the post-challenge query phase, if additionally A submitted an
authority public key PK,, for the same authority w while querying the challenge ciphertext, B
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aborts. Otherwise B runs AuthSetup to generate a public-master key pair (PK,, MSK,) for the
authority u as follows. B samples random Wy ,, Wg, < Zf,kX% and sets PK, = (Pa, =
[[W,IUAl]]laPB,u = [[W];uAl]]l) and MSK,, = (W4, Wg,). B provides PK, to the attacker
and stores (PK,, MSK,). Whenever A requests the master secret key of the authority u at a
later time, B provides it to A.

Generating the H Oracle Outputs: Whenever A queries the random oracle H for some
GID € GID, B generates H(GID) = [Ajhgip]2 by taking a random linear combination of the
members of basis(A7). It stores this value so that it can respond consistently if H(GID) is queried
again.

Generating Secret Keys: Whenever A makes a secret key query for some (GID,u) € GID x
AU, if an authority setup query for the authority v has not been made already, B aborts. In the
post-challenge phase, if an authority setup query for the authority v has not already been made,
A submitted the authority public key PK, for u while querying the challenge ciphertext, or for
each GID € GZD the vector (1,0,...,0) is in the span of all the rows of the challenge access policy
matrix M labeled by the authorities for which A submits the public keys {PK,} while querying
the challenge ciphertext plus the authorities for which A has made a master key query for u or
secret key query for (GID,u) so far, B aborts. Otherwise, B simply runs the KeyGen algorithm
using the public-master key pair it already created in response to the authority setup query for
authority v and generates a secret key SKgip,, = (kgD Au = [Waw - (hcip + ATh)]2, kcip.Bu =
[Wgu - haip]2) for (GID,u). If H(GID) has not been generated so far, it follows the above
procedure to generate it during this time.

Generating the Challenge Ciphertext: At some point, A submits two messages,
msgg, msg; € M and an LSSS access structure (M, p) where M € Zf;Xd and p : [{] — AU
is an injective map. A also submits the public keys {PK, = (P4, Ppy)} for a subset Uy of
attribute authorities appearing in the LSSS access structure (M, p). If for all attribute authority
u for which B has created a public-master key pair for so far are not contained in Uy, and for
each GID € GID, the vector (1,0,...,0) is not in the span of all the rows of M labeled by the
authorities in U4 plus the authorities for which A has made a master key query for u or secret
key query for (GID,w), then B flips a random coin b < {0,1} and generates a ciphertext CT
as follows. First, B sets C' = msg;, @ Ext(e([tg]1, H),seed). Next, B samples random matrices
U, Up + 227D,

Let Y denote the subset of rows of the challenge access matrix M labeled by the authorities
for which A supplies the authority public keys {PK, = (P, P)}. Let Y = [(]\ Y. For all
x € [{], B chooses random $4 ;, 8B 4 < Z’;.

For each x € Y, B forms the ciphertext components as:

Ciaz=[A1]1 ©saz =[A15a2]1,

Coa0 = ([tali © My1) B(O || Ua)My]i B (Pa pz) © Sa,2)
= [(ts | Ua)Mz]1 B (Pa p(z) © S4,2),

Ci.Bz = [Ai]1 © sz = [A15B2]1

Cope = ([—ts]1 © Mun) B(0[|Ua)Ma]i 8 (Pp ) © SB,2)
= [(=ts[|Up)Mz]1 B (Pp pz) © $B,2),
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For each z € Y, B forms the ciphertext components as:

Ci oz =[A1]1 ©saz =[A15a2]1
Co.az = ([tsls © My 1) BIO[|Ua)My]1 B ([W4 0y Ar]1 © 54.2)
= [t | UMy + W iy Arsasl,
CiBz = [Ai]1 © sz = [A15B2]1
Co.pe = (I=talh © M) B0 | Un)M,]1 8 (W] 0y il © 55.0)
= [(~t3 | Up) My + W,y Arsp .l
B gives the challenge ciphertext CT = (C,{C1 Az, 02,42, C1,B2, C2,Ba }aely) to A

Guess: A eventually outputs a guess bit ¥’ € {0,1}. B outputs 1 if b = b' and 0 otherwise.
Observe that if tg < span(A1) then the challenge ciphertext is distributed identically as in
Hyby.,. On the other hand, if £5 < span(A1, A3), then the challenge ciphertext simulated by B is
distributed identically as in Hyb,. All the other components of the game are properly simulated
by B. Hence it follows that the game simulated by B coincides with Hyb;., or Hyb2 according as
B8 =0 or 1. Thus, B can use A to attain non-negligible advantage in solving SD . This
completes the proof of Lemma 5.3. |

>—>A1

Lemma 5.4: If the SD%HAI’A3 assumption holds, then for all PPT adversary A, there exists a
negligible function negls. .;(+) such that for all A € N, }pA’ng:(i_l)()\) — pazai(N)] < negls.4.:(N)
for alli € [|Y]].

Proof: Suppose there exists a PPT adversary A that distinguishes between Hybg 4.;_1) and
Hybs. 4.; with non-negligible advantage. Using A as a subroutine, we construct below a PPT
adversary B that has a non-negligible advantage in solving the SD%1 AL As problem. The

algorithm B gets an instance of the SDG1 ,.A; broblem from its challenger that consists of
G = (p,G1,G2,Gr,g1,92,€), [A1]1, [[Agﬂl, [[Ag]]l,basm(A*) basis(A3), basis(A7}, A%), and [ts]:
for random B € {0,1} where tg < span(A;) if 3 = 0 or tg < span(Ay, A3) if 3 = 1. The
algorithm B proceeds as follows:

Generating the Global Public Parameters: B generates H = [Ajh]2 by taking random
linear combinations of the members of basis(A7). B also samples a random seed seed < S for the
strong randomness extractor, and provides the global public parameters GP = (G, [A1]1, H, seed)

to A.

Generating Authority Public-Master Keys: Whenever A requests to set up an authority
u € AU of its choice, if an authority setup query for the same authority v has already been
queried before, B aborts. In the post-challenge query phase, if additionally A submitted an
authority public key PK, for the same authority u while querying the challenge ciphertext, B
aborts. Otherwise BB runs AuthSetup to generate a public-master key pair (PK,, MSK,) for the
authority u as follows. B samples random Wy ,, Wp, < ngX% and sets PK, = (Pa, =
[[W;‘ruAl]]l,PB,u = [[W]—BruAl]]l) and MSK,, = (W4, Wg,). B provides PK, to the attacker
and stores (PKy, MSKu).7 Whenever A requests the master secret key of the authority u at a
later time, B provides it to A.

Generating the H Oracle Outputs: Whenever A queries the random oracle H for some
GID € GID, B generates H(GID) = [Ajhgip]2 by taking a random linear combination of the
members of basis(A7Y). It stores this value so that it can respond consistently if H(GID) is queried
again.
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Generating Secret Keys: Whenever A makes a secret key query for some (GID,u) € GID x
AU, if an authority setup query for the authority v has not been made already, 5 aborts. In the
post-challenge phase, if an authority setup query for the authority v has not already been made,
A submitted the authority public key PK, for u while querying the challenge ciphertext, or for
each GID € GZD the vector (1,0,...,0) is in the span of all the rows of the challenge access policy
matrix M labeled by the authorities for which A submits the public keys {PK,} while querying
the challenge ciphertext plus the authorities for which A has made a master key query for u or
secret key query for (GID,u) so far, B aborts. Otherwise, B simply runs the KeyGen algorithm
using the public-master key pair it already created in response to the authority setup query for
authority u and generates a secret key SKgip,, = (kgip, Ay = [Waw - (hcio +ATh)]2, kcip, By =
[Wg.u - haip]2) for (GID,u). If H(GID) has not been generated so far, it follows the above
procedure to generate it during this time.

Generating the Challenge Ciphertext: At some point, A submits two messages,
msggy, msg; € M and an LSSS access structure (M, p) where M € Zf,Xd and p : [(] - AU
is an injective map. A also submits the public keys {PK, = (Pay, Pp)} for a subset U4 of
attribute authorities appearing in the LSSS access structure (M, p). If for all attribute author-
ity u for which B has created a public-master key pair for so far are not contained in U4, and
for each GID € GZID, the vector (1,0,...,0) is not in the span of all the rows of M labeled
by the authorities in U4 plus the authorities for which A has made a master key query for
u or secret key query for (GID,u), then B flips a random coin b < {0,1} and generates a ci-
phertext CT as follows. First, B samples random vectors d,d’ < Z’]j for all z € [¢] and sets

C = msg, @ Ext(e([A1]1 © d, H),seed) = msg, & Ext(e([A1d]1, H),seed). Next, B samples

. Ex(d—1
random matrices Uy, Up Zz x( ).

Let Y denote the subset of rows of the challenge access matrix M labeled by the authorities
for which A supplies the authority public keys {PKy = (Pau, Ppy)}. Let Y = [(]\Y. B samples
random vectors sS4 ., SB z < Z’; for all z € Y. B also samples s4 ., 31471 — Z]; for all x < 7 where

z €Y and s Ag Z’; for all z > i where z € Y. B also samples random vectors s B < Z’; for
allz €Y.
For each « € Y, B forms the ciphertext components as:

Craz =[A1]1 © saz = [A1542]1,
Coae =(([A1]1 © d) B ([A3]1 © d') © My1) B0 || Ua) M. ]
B (Pap@) © 84.z)
=[(A1d+ Asd' |Us) M, ]y B (P4 pz) © Sa2),
Ci.Bx =[A1]1 © sBz = [A18B 2]
C2,82 =((([A1]1 © —d) B ([A3]1 © —d')) © M, 1) B[(0 || Up) M. ]
B (Pp ) © $B2)
=[(—A1d — A3d' | Up)M,]1 B (Pp y(z) © 8B,2),

For each z € Y, B forms the ciphertext components as:

([A1]1 © s4,) B ([As] © 8 ,) forall z <,

Craz =19 [tsh for x = 1,
[A1]1 ©® 54 for all x > i,
([A1542 + Ags;"m]]l for all z < 1,
= [[t@]]l for x = i,
[Aisazl for all z > 1,
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(([A]r © @) B ([As]1 © d')) © M)
B[0||Us)M,], B ([[W,Ip(x)Al]]l ©84,) forall x <i,
BW,i ) © [As]i 0 84 ,)

Coae =4 (([A]i©d)B([As]1 ©d)) © M)

~—

for =1,
B[(0 || UA)M,]1 B (W] ) © [ts]) ot
(([A1 © d) B ([As]1 © d)) © M) :
: for all z > i,
| BIO|UNM] B (W], Ali0sas) 7"
( (Ald + Agd/ H UA)Mw f Mo <i
T
WL (Arsas + Azs'y ) oratEst
= [[(Ald + Asd |Us)M, + Wip(x)tﬁ]] 1 for z = 4,

[[(Ald + Asd UM, + ng(x)AlsA@ﬂ | oralla >,

Ci1.Bx =[A1]1 © spo = [A18B2]1,
Copx = (([A1]1 © —d) B ([As]1 © —d')) © M,.1) B[(0 || Up) M. ],

B (Wg ) A1 © 85,2)
= [(—A1d — A3d' | Up) M, + W () A15p.a]1-

B gives the challenge ciphertext CT = (C,{C1 4,2, C2,4.2,C1,B.2; 0273750}:06[@) to A.

Guess: A eventually outputs a guess bit ¥’ € {0,1}. B outputs 1 if b = b" and 0 otherwise.
Observe that if tg < span(Ap) then the challenge ciphertext is distributed identically as in
Hybs. 4.(;—1). On the other hand, if t5 < span(A1, A3), then the challenge ciphertext simulated by
B is distributed identically as in Hybs. 4.,. All the other components of the game are also properly
distributed by B. Hence it follows that the game simulated by B coincides with Hybs. 4.;;_1) or
Hybs. 4.; according as 5 = 0 or 1. Thus, B can use A to attain non-negligible advantage in solving
SDgll'—Mh,A:a‘ This completes the proof of Lemma 5.4. |

Lemma 5.5: If the SDﬁllHA1 A, @ssumption holds, then for all PPT adversary A, there exists a
PA3:B:(-1)(A) — Pas:Bi(N)| < neglz.p.i(A)

negligible function negls.g.;(+) such that for all A € N,
forie[|Y]).

Proof. This proof is similar to that of Lemma 5.4 but with some minor changes that can readily
be figured out. [ |

Lemma 5.6: For every (possibly unbounded) adversary A, there exists a negligible function
negly(:) such that for all X\ € N, ‘pA 3:B:|17|(/\) —paa(N)| < negly(N).

Proof: Observe that in order to prove this, it is sufficient to prove that, for
A, Ay, Az, AT A5 AL — Z;’,ka such that A:A;f =T ifi=j and 0 if ¢ £ j, we have

{PAW(C‘C)}IE? {027‘4’1}16?
T
({WA,p(a:)Al }me?’ {WA,p(m) }ze?)

B 3
= (W4 A1} ser W) + V,i,,?@ }oev)

where Wy ) < ngwk,vff’g(w) + span®*(A%) for all x € Y. This clearly follows from the
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statistical lemma, Lemma 5.1. The same holds for

{PB,p@) taey {CoBotiey
({Wl;r,p(:r)Al}ZGV’ {WB,p(m) };1:637)

3
= ({Wg pwy A} per AWB o) + Vf(;,g(m) }eev)

where Wp ) <+ ngx‘%, ]é?;(x) « span3¥(A%) for all z € Y. This completes the proof of

Lemma 5.6. |

Lemma 5.7: For every (possibly unbounded) adversary A, there exists a negligible function
negls(-) such that for all X € N, [paa(X) — pas(A)| < negls(N).

Proof: Observe that the only difference between Hyb, and Hybjy is that in Hyb, the components
{(A1d+A3d | Ua) M, } e and {(—A1d—Azd' || Up) M, } g are shares of secrets that involve
correlated randomness d’, —d’, where d’ < Z’;, whereas in Hyby those components are changed
to {(A1d+ Azd/y | Ua) M, },cpq and {(—A1d+ Azd || Up) M, },cq which are shares of secrets
that involve independent randomness d'y, d'5 < Z’Iﬁ. Therefore, in order to prove that these two
games are statistically indistinguishable, we will argue that the portions of the secrets being
shared that lie in span(Aj3) matrix are information theoretically hidden to the adversary A in
Hyb,.

Note that the vectors (A1d+ Asd’ | Ua)M, and (—A1;d — Asd' || Ug)M,, for all the rows x
of the challenge access matrix M labeled by corrupted authorities (i.e., the authorities for which
A either requests the master key or creates it on its own) are information theoretically revealed
to A. However, by the game restriction the subspace spanned by those rows does not include the
vector (1,0,...,0). This means that there must exist a vector u € Zg such that u is orthogonal
to all these rows of the challenge access matrix M but is not orthogonal to (1,0,...,0), (i.e.,
the first entry of w is nonzero). We consider a basis U of Zg involving the vector u and write
(A1d + Asd' |U,) = (A1d ]| 0) + (Asd' | Us) = (A1d||0) + V4 + au’ for some a € Z3% and
some V1 € span®*(U\ {u}). We note that each row of V4 lies in the subspace spanned by U\ {u}
and reveals no information about a. Now, since the first coordinate of w is nonzero, it follows
that the first column of (Asd'||Uy), i.e., Asd/, depends on a. But (Asd’|U4)M, for all the
corrupted rows of M contains no information about a since w is orthogonal to all these rows.
Thus, it follows that these rows do not leak information of Asd'.

Therefore, the only possible way for A to get information about Asd’ is through the ciphertext
components Cs 4, corresponding to the uncorrupted rows of M. However, for each such row z,
A can only recover A1s4 , + A38/A7x and

(Ard + Asd' || Un) My + (W o)+ Vi) (Arsag + Azs)y,)

= (A1d || Ua) My + W, ) (Arsa, + Azs'y,) + (Asd' || 0) M,

+ V) Ass

information theoretically. Now recall that Vf’g(m) + span®*(A3) hence we can write Vfg(z) as

3 ~ (3 . ~ (3 .
Vfg’f)l(””) = Vfg’g(z) + ASRfA’p(I)A; where Vj,;(z) + span®*(A%) and R;l,p(z) € Z’;Xk. Therefore,
we have

(Asd' || 0) M, + Vfg(z)Ags;m

= (Asd'||0) M, + (Véiz(af) +ASR) 0 As) | AsS

_ (3T
= (Asd' ||0) M, + Vi@

= (3)T
= (Asd' || 0) M, + V)T Agsly , + AR 8,

A3y, + AR A3 Azsy,
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Since the labeling function p is injective, it follows that Vf’;(z),Rg p(z) BT€ freshly random

matrices that appear nowhere else. This means that given Ais4 . + Ags;l’z, (A1d||Uy) M, +
szp(x)(AlsAvw + Azsy,) + (Asd' || 0) M, + VE;(—;)A;;SAI, if A3sy, is nonzero (note that
Ags;"x = 0 with negligible probability), any value of Asd’ can be explained by a particular
value of R/, ()’ f/f;(x) matrices. It follows that Asd’, is information theoretically hidden to A.

The same argument can be applied to show that —Asd’ is information theoretically hidden
to A as well. This completes the proof of Lemma 5.7. |

Lemma 5.8: For every (possibly unbounded) adversary A, there exists a negligible function
neglg(-) such that for all X € N, |pas(A) —pae(A)| < neglg(N).

Proof: The proof is similar to that of Lemma 5.6. |

Lemma 5.9: If the SD%";HB1 B, assumption holds, then for all PPT adversary A, there exists
Pa7(-1)(A) = pazg1(A)| < neglyjq (N)

a negligible function negly.;.1(-) such that for all A € N,
for all j € [q].

Proof: Suppose there exists a PPT adversary A that distinguishes between Hybz.(;_1) and
Hybz.;.; with non-negligible advantage. Using A as a subroutine, we construct below a PPT

adversary B that has a non-negligible advantage in solving the SD%I,_)B1 B, broblem. The

algorithm B gets an instance of the SD%1H B,.B, Problem from its challenger that consists of
G = (p, Gl, GQ, GT, g1, 92, 6), [[B1]]2, [[Bg]]g, [[Bg]]g, basis(Bf), basis(B§)7 basis(B’f, B;), and [[tg]]g
for random f < {0,1} where tg < span(B;) when 8 = 0 or tg < span(By, By) when § = 1.
The algorithm B proceeds as follows:

Generating the Global Public Parameters: B samples matrix A; < spank(B’f) by using
basis(B7). Then A; can be expressed as A; = BfR for R <+ Z];Xk. B then implicitly sets
A} = BV where V = (R™!)T. Observe that, since R < ZE**, 'V exists with all but negligible
probability. B also implicitly sets Ay = B3, A3 = B; and A5 = By, A5 = B3. Also note that
AZTA; =Tifi=jand 0ifi# jfori,j e [3]. B then samples random h < Z’;, implicitly
sets h = V''h = R"h, and sets H = [Bi]o © h = [B1h]s = [Ajh]o. Observe that h
is uniformly distributed over Z’; since h Z]; and R € Z’;Xk is invertible. B also samples a
random seed seed < S for the strong randomness extractor and sets the global public parameters

GP = (G, [A1]1, H, seed).

Generating Authority Public-Master Keys: Whenever A requests to set up an authority
u € AU of its choice, if an authority setup query for the same authority v has already been
queried before, B aborts. In the post-challenge query phase, if additionally A submitted an
authority public key PK, for the same authority u while querying the challenge ciphertext, B
aborts. Otherwise B runs AuthSetup to generate a public-master key pair (PK,, MSK,) for the
authority u as follows. B samples random W4 ,, Wp, < ngX% and sets PK, = (Pa, =
[[W,IuAl]]laPB,u = [[W]—BruAl]]l) and MSK,, = (W4, Wg,). B provides PK, to the attacker
and stores (PKy, MSKU).7 Whenever A requests the master secret key of the authority u at a
later time, B provides it to A.

Generating the H Oracle Outputs: For all ¢ € [g], in response to the t* fresh H oracle

query of A for some global identifier GID;, B generates H(GID;) as follows:
e For t < j — 1, B samples random iLGIDt’h,GIDt — Zl;, implicitly sets hgp, = V_liLth =

R"hgp, and sets H(GID;) = ([Bi]2 ® haip,) 8 ([Bs]2 © ki p,) = [Biheip, + Bshgp, ]2 =
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[Aihgp, + A§h’G|Dt]]2. Observe that hg)p, is uniformly distributed over Z’; since iLth — Z’;
and R € Z’;Xk is invertible.

e For the t = j, B generates H(GID;) as H(GID;) = [tg]2. Observe that, if tg = BlilG|Dj —
span(Bi), then H(GID;) simulated by B takes the form H(GID;) = [Bihaip,]2 = [AThaip;]2
where hgp, = V~'hgp, = R"hgp, implicitly. On the other hand, if t3 = Bihgp, +
th’Glle < span(Bj, Bz), then H(GID;) simulated by B takes the form H(GID;) = [Bihgip, +
Bsh¢p, ]2 = [Atheip, + A3h¢p ]2 where heip, = V~'haip, = R heip, implicitly. Observe

that in both cases, hGle is uniformly distributed over Z’pg since l~1G|Dt — Z’; and R € Z’;Xk is
invertible.

e For t > j, B samples random iLQDt — Z];, implicitly defines hgip, = Vflizgmt = RIiLG|Dt,

and sets H(GID;) = [[Bl]]z ®© iLGIDt = [[BliLG|Dtﬂ2 = IIAThG|Dtﬂ2. Observe that hGIDj is
uniformly distributed over Z]Zj since hgip, + Z’; and R € Z’;Xk is invertible.

It stores this value so that it can respond consistently if H(GID;) is queried again.

Generating Secret Keys: Whenever A makes a secret key query for some (GID,u) € GID x
AU, if an authority setup query for the authority v has not been made already, 5 aborts. In the
post-challenge phase, if an authority setup query for the authority v has not already been made,
A submitted the authority public key PK, for u while querying the challenge ciphertext, or for
each GID € GZD the vector (1,0,...,0) is in the span of all the rows of the challenge access policy
matrix M labeled by the authorities for which A submits the public keys {PK,} while querying
the challenge ciphertext plus the authorities for which A has made a master key query for u or
secret key query for (GID,u) so far, B aborts. Otherwise, B simply runs the KeyGen algorithm
using the public-master key pair it already created in response to the authority setup query for
authority v and generates a secret key SKgip,, = (kgD Au = [Wau - (hcip +ATh)]2, kcip, By =
[Wgu - haip]2) for (GID,u). If H(GID) has not been generated so far, it follows the above
procedure to generate it during this time.

Generating the Challenge Ciphertext: At some point, A submits two messages,
msggy, msg; € M and an LSSS access structure (M, p) where M € Zf)Xd and p : [(] - AU
is an injective map. A also submits the public keys {PK, = (Pay, Pp)} for a subset U4 of
attribute authorities appearing in the LSSS access structure (M, p). If for all attribute authority
u for which B has created a public-master key pair for so far are not contained in Uy, and for
each GID € GID, the vector (1,0,...,0) is not in the span of all the rows of M labeled by the
authorities in U4 plus the authorities for which A has made a master key query for u or secret
key query for (GID,u), then B flips a random coin b <— {0,1} and generates a ciphertext CT as
follows.

First, B samples random vectors ¢) « span(B}) and CS),cg’) < span(Bj) by using
basis(Bj) and basis(Bj) respectively for all € [¢]. Observe that the vectors c(l),cf’),cg)

can be viewed as Aid, Azdy, Asd'y respectively where d,dy, d; + Z’;. B also samples random

matrices Uy, Up + Zf;kx(d*l).

Let Y denote the subset of rows of the challenge access matrix M labeled by the au-
thorities for which A supplies the authority public keys {PK, = ([[WluAl]]l, [[WE.T LA}
Let Y = [/J\Y. B samples Sa,,Sps ZI; for all x € Y. Then B samples
cfj)x,cg)z + span(B7) and cf)x,cg’)x + span(Bj) by using basis(B]) and basis(Bj;) respec-
tively for all # € Y. Observe that the vectors {0541):8, cg)x, cf)x, cg’)x} zey also can be viewed as
{AlsA@,Al.sB@,A33A7x7A3s’]3x}x@7 where $42,5B2,8 ,, 55, ¢ Zl;. Then B generates the
challenge ciphertext CT = (M, p),C,{C1,42,C2,4,2,C1,B g, Cgvgvx}xem), where
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C = msg @ Ext(e([¢M] 1, H), seed) = msg & Ext(e([Ad]1, H), seed),

forall z € Y,

Crae = [A1542]1,
Coaa = [ + D UM, | B (Pay) © sa0),
= [(Ard+ A3d)y |Ur) M, , B (Papa) © SA2),
Ci1.Bx = [A18B2]1,
CoBa = [[(—c(l) + cg’) I UB)MI]] ) B (PBpz) © $B2),
= [(—Aid + Asd}y | Up) M., B (Pg p) © $B2),

and for all z € Y,

Cipag = _0541)96 + 0(3) ﬂ = [[Als,qvz + A3s£4 Iﬂ ,

Coax = :(c( ) 4+ cA || Us)M, + W;p(x)(cfj)z + C(A)a:)]]l
= [(Ard+ Asd)y | U2) Mo+ W, (Arsas + Assl,)]
C1,Bx = _ (1) o 0(3) ﬂ = [Aispa + Assp z]]17

CQ,B,x = (_c(l) + Cg) H UB)Ma? + W;,p(x) (cg)x + Cg)x)ﬂ 1

- :(*Ald + Asdp || Up) M, + WB,p(w) (Atspa + A3S;B’I)ﬂ 1

Guess: A eventually outputs a guess bit v’ € {0,1}. B outputs 1 if b = b’ and 0 otherwise.

Observe that if £5 < span(Bi), then H(GID;) simulated by B coincides with that in Hyb7,(; 1)
whereas if t3 < span(Bjy, Bz), then it coincides the one in Hyb;,;,;. All the other components
simulated by B are also properly distributed. Hence it follows that the games simulated by
B coincides with coincides with Hybr.;_;) or Hyby.;., according as tg < span(Bl) or tg <
span(Bi, Bs). Thus, B can use A to attain non-negligible advantage in solving sp%2 By BBy’
This completes the proof of Lemma 5.9.

Lemma 5.10: If the SD%HAI,A2 assumption holds, then for all PPT adversary A, there exists
a negligible function negly.;o(-) such that for all X € N, |pa7.j:1(A) — pazj2(A)] < neglzjo(N)
for all j € [q].

Proof. Suppose there exists a PPT adversary A that distinguishes between Hybz.;.; and Hyb.;.5
with non-negligible advantage. Using A as a subroutine, we construct below a PPT adver-
sary B that has a non-negligible advantage in solving the SDGlH A,.A, broblem. The algo-
rithm B gets an instance of the sD&: Al ArLA, problem from its challenger that consists of
G = (p, Gl,GQ,GT,gl,gQ, ) [[Al]]l [[Agﬂl, [[Ag]]l,baSIS(A*) baSIS(A*) basm(A“{,A*), and [[tﬁ]]l
for random B € {0,1} where tg < span(A;) if 3 = 0 or tg < span(A;, Az) if B = 1. The
algorithm B proceeds as follows:

Generating the Global Public Parameters: B generates H = [Ajh]2 with h « Z’; by
taking random linear combinations of the members of basis(A}). B also samples a random
seed seed < S for the strong randomness extractor, and provides the global public parameters

GP = (G, [A1]1, H,seed) to A.
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Generating Authority Public-Master Keys: Whenever A requests to set up an authority
u € AU of its choice, if an authority setup query for the same authority v has already been
queried before, B aborts. In the post-challenge query phase, if additionally A submitted an
authority public key PK, for the same authority u while querying the challenge ciphertext, B
aborts. Otherwise B runs AuthSetup to generate a public-master key pair (PK,, MSK,) for the
authority u as follows. B samples random Wy ,, Wp, < ngX% and sets PK, = (Pa, =
[[W;uAl]]l,PB,u = [[W;uAl]]l) and MSK,, = (W4, Wg.). B provides PK, to the attacker
and stores (PKy, MSKU).7 Whenever A requests the master secret key of the authority u at a
later time, B provides it to A.

Generating the H Oracle Outputs: For all ¢ € [g], in response to the ¢ fresh H oracle
query of A for some global identifier GID;, B generates H(GID;) as follows:

e For t < j, B generates H(GID;) = [AThgip, + Agh’GlDt]]g with hGlth’/GlDt — Z’; by taking a
random linear combination of the members of basis( A7) and basis(A%).

e For t = j, B generates H(GID;) = [AThqgip, + A;h’(f”Dj]]g with hG|Dj,hg|Dj — Z’; by taking a
random linear combination of the members of basis( A7}, A%).

e For t > j, B generates H(GID;) = [Ajhgip,]2 with hgpp, <+ Z’; by taking a random linear
combination of the members of basis(AY).

It stores this value so that it can respond consistently if H(GID) is queried again.

Generating Secret Keys: Whenever .4 makes a secret key query for some (GID,u) € GID x
AU, if an authority setup query for the authority v has not been made already, B aborts. In the
post-challenge phase, if an authority setup query for the authority u has not already been made,
A submitted the authority public key PK, for u while querying the challenge ciphertext, or for
each GID € GZD the vector (1,0,...,0) is in the span of all the rows of the challenge access policy
matrix M labeled by the authorities for which A submits the public keys {PK,} while querying
the challenge ciphertext plus the authorities for which A has made a master key query for u or
secret key query for (GID,u) so far, B aborts. Otherwise, B simply runs the KeyGen algorithm
using the public-master key pair it already created in response to the authority setup query for
authority v and generates a secret key SKgip,, = (kgD A,u = [Waw - (hcio +ATh)]2, kcip,Bu =
[Wg. - haip]2) for (GID,w). If H(GID) has not been generated so far, it follows the above
procedure to generate it during this time.

Generating the Challenge Ciphertext: At some point, A submits two messages,
msggy, msg; € M and an LSSS access structure (M, p) where M € Zf;Xd and p : [(] - AU
is an injective map. A also submits the public keys {PK, = (Pay, Ppy)} for a subset U4 of
attribute authorities appearing in the LSSS access structure (M, p). If for all attribute authority
u for which B has created a public-master key pair for so far are not contained in Uy, and for
each GID € GZID, the vector (1,0,...,0) is not in the span of all the rows of M labeled by the
authorities in U4 plus the authorities for which A has made a master key query for u or secret
key query for (GID,u), then B flips a random coin b < {0,1} and generates a ciphertext CT
as follows. First, B sets C' = msg;, @ Ext(e([ts]1, H),seed). Next, B samples random vectors
" dy — Z’;. B also samples random matrices U, Up < ngx(d*l).

Let Y denote the subset of rows of the challenge access matrix M labeled by the authorities for
which A supplies the authority public keys {PK, = (Pay, Ppu)}. Let Y = [(]\Y. For all z € [/],
B chooses random s4 4, 8B, < Z’;' For each z € Y, B also chooses random S/A,x’ s’B@ — Z’;.

For each x € Y, B forms the ciphertext components as:

Ciaz =[A1]1 ©sas =[A1sa:]1
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Co,ae =(([tsh B ([As] © dy)) © My 1) B0 || Ua)M.]u
B (Pap@) © SA2)s
=[(ts + Azdy | Us) M,]1 B (P pz) © Sa),
Ci.Bz =[A1]1 © sz = [A1SB 2]
Cope =((—[tsh B ([As]1 © dp)) © My1) B[(0]|Up) M ]1
B (Pppz) © $B,2);
=[(~ts + Asdp | Up)M.]1 B (Pp y2) © 5B.2)-

For each x € Y, B forms the ciphertext components as:

Crae =([A1]1 © s4.) B ([A3]1 © 8 ,) = [A154. + Azsly 1
Coaz =(([ts]r B ([As] © dy)) © My1) B(0]|Ua) M, ]u
B (WA Al © 842) B (W, ) © [As] © 84 ,)
=[(ts + Asdy | Ua) My + W, ) (Arsae + Azsly ),
C1,Bx =([A1]1 © spo) B ([As]1 © sp,) = [A1SB. + A3sp |1
Cope =((—[ts] B ([As]1 © dj)) © My1) B[(0]|Ua) M. ]u
B (W5 @Al © s5.2) B(Wg ) © [A3]1 © s,)
=[(—ts + Asdz || Ug) M, + WB,p(x)(AISB@ + Azsp )]

B gives the challenge ciphertext CT = (C,{C1,4,2,C2,4.4,C1,B.2, C2 B:D}:ce ) to A.

Guess: A eventually outputs a guess bit ¥’ € {0,1}. B outputs 1 if b = b' and 0 otherwise.
Observe that if t3 = A1d < span(A;) with d Z’; then the challenge ciphertext is dis-
tributed identically as in Hybz.;.;. On the other hand, if t3 = A1d + A2d” < span(A1, Az) with
d,d" + Z’; , then the challenge ciphertext simulated by B is distributed identically as in Hybz..,.
All the other components of the game are properly distributed by B. Hence it follows that the
game simulated by B coincides with Hybz,;.q or Hybz. ;.o according as 8 = 0 or 1. Thus, B can
use A to attain non-negligible advantage in solving SDEI1H> AL Ay This completes the proof of
Lemma 5.10. |

Lemma 5.11: If the SD%HALAQ assumption holds, then for all PPT adversary A, there exists
: :(¢—1)()\) _pA,7:j:3:A:i()\)‘ <

a negligible function negly.;.q. 4.:(:)
neg|7:j:3:A:i()\) fO’)” all] € [Q] and © € H?H

Proof: Suppose there exists a PPT adversary A that distinguishes between Hyby.;.3.4.;_1) and
Hyb7.;.3.4,; with non-negligible advantage . Using A as a subroutine, we construct below a

PPT adversary B that has a non-negligible advantage in solving the SDElH AL Ay problem. The

algorithm B gets an instance of the sp¢! A AL Ay problem from its challenger that consists of
G = (p, Gl,GQ,GT,gl,gg, ) HAI]]I,[[AQHI, [[Ag]]l,baSIS(A*) baSIS(A*) ba5|s(A>{,A*)7 and [[tg]]l
for random B € {0,1} where tg < span(A;) if 8 = 0 or tg < span(Aj, As) if 3 = 1. The
algorithm B proceeds as follows:

Generating the Global Public Parameters: B generates H = [A}h]y with h < ZE by
taking random linear combinations of the members of basis(A}). B also samples a random
seed seed < S for the strong randomness extractor, and provides the global public parameters

GP = (G, [A1]1, H,seed) to A.
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Generating Authority Public-Master Keys: Whenever A requests to set up an authority
u € AU of its choice, if an authority setup query for the same authority v has already been
queried before, B aborts. In the post-challenge query phase, if additionally A submitted an
authority public key PK, for the same authority u while querying the challenge ciphertext, B
aborts. Otherwise B runs AuthSetup to generate a public-master key pair (PK,, MSK,) for the
authority u as follows. B samples random Wy ,, Wp, < ngX% and sets PK, = (Pa, =
[[W;uAl]]l,PB,u = [[W;uAl]]l) and MSK,, = (W4, Wg.). B provides PK, to the attacker
and stores (PKy, MSKU).7 Whenever A requests the master secret key of the authority u at a
later time, B provides it to A.

tth

Generating the H Oracle Outputs: For all ¢ € [g], in response to the fresh H oracle

query of A for some global identifier GID;, B generates H(GID;) as follows:

e For t < j, B generates H(GID;) = [Athaip, + A3hgp,J2 With heip,, hgp, + Z’; by taking a
random linear combination of the members of basis( A7) and basis(Aj).

e For t = j, B generates H(GID;) = [AThcip, + A;hgm]_]]g with hG|D].,h’é|D]_ — Z’; by taking a
random linear combination of the members of basis(A7, A%).

e For t > j, B generates H(GID;) = [AThgip,]2 with hgp, < Z’; by taking a random linear
combination of the members of basis(A7Y).

It stores this value so that it can respond consistently if H(GID) is queried again.

Generating Secret Keys: Whenever .4 makes a secret key query for some (GID,u) € GID x
AU, if an authority setup query for the authority v has not been made already, B aborts. In the
post-challenge phase, if an authority setup query for the authority v has not already been made,
A submitted the authority public key PK, for u while querying the challenge ciphertext, or for
each GID € GZD the vector (1,0,...,0) is in the span of all the rows of the challenge access policy
matrix M labeled by the authorities for which A submits the public keys {PK,} while querying
the challenge ciphertext plus the authorities for which A has made a master key query for u or
secret key query for (GID,u) so far, B aborts. Otherwise, B simply runs the KeyGen algorithm
using the public-master key pair it already created in response to the authority setup query for
authority v and generates a secret key SKgip.y = (kgip,au = [Waw - (heip + ATh)]2, kcip,Bu =
[Wgu - haip]2) for (GID,u). If H(GID) has not been generated so far, it follows the above
procedure to generate it during this time.

Generating the Challenge Ciphertext: At some point, A submits two messages,
msggy, msg; € M and an LSSS access structure (M, p) where M € Zf;Xd and p : [{] — AU
is an injective map. A also submits the public keys {PK, = (P4, Pp )} for a subset Uy of
attribute authorities appearing in the LSSS access structure (M, p). If for all attribute au-
thority u for which B has created a public-master key pair for so far are not contained in
U4, and for each GID € GID, the vector (1,0,...,0) is not in the span of all the rows of
M labeled by the authorities in U4 plus the authorities for which A has made a master key
query for u or secret key query for (GID,u), then B flips a random coin b < {0,1} and gener-
ates a ciphertext CT as follows. First, B samples random vectors d,d”,dy,d; + Z’; and sets
C = msg, @Ext(e([A1]10d, H),seed) = msg, ®Ext(e([A1d]1, H),seed). B also samples random
matrices Uy, Up + ngx(d_l).

Let Y denote the subset of rows of the challenge access matrix M labeled by the authorities for
which A supplies the authority public keys {PK, = (Pau, Psy)}. Let Y = [(]\Y. Forallz € Y,
B chooses random s4 ;, 8B ¢, < Z];. For each x € Y, B also chooses random s;m, 393,;]0 — Z’;.
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Further, B also samples random vectors s4 z, sfﬁm — Z]; for x < i where x € Y and s Az Z’;

for x > i where x € Y.
For each x € Y, B forms the ciphertext components as:

Craz =[A1]1 © saz =[A1saz]1
Cr,a0 =((([A1]1 © d) B ([A2)1 © d") B ([As]1 © dy)) © My ;)
B[0[|Ua)Mz]1 B (Pap@) © Sa2)
=[(A1d + Axd” + A3zdy |Us) M, ], B (Pap(z) © 8a2)s
Ci,Bx =[A1]1 © sa, = [A1]1 © 8Bz = [A18B 2]t
Coe =((([A1]1 © —d) B ([A2]: © —d") B ([A3]1 © dp)) © M,;)
BH[(0[|Up)Mz]1 B (Pp pu) © SB,2)
=[(—A1d — Axd” + Asdp | Up) M, ]1 B (Pp ) © SBx)-

For each z € Y, B forms the ciphertext components as:

([A1]1 © saz) B ([A2]1 © 8% ,) B ([As]1 © ) for all 2 <1,
Cle{ [ts]: B ([As] © sy ,) for x = 1,
(TA1]1 © 84:) B ([As]1 © 84 ,) for all x > i,
[Aisas+ Agsfﬁm + A3Si47x]]1 for all z < 1,
{ [[tﬁ + A38247$]]1 for x =1,
[Ai1sa. + Assly . ]h for all z > 1,

[ ([A1]: © d) B ([A2]1 © d") B ([As]1 o dy)) © My;)
EB[[(O ”TUA) ﬂl & ([[WA (@) Al]]l ® SA@) for all z <1,
BW, ) © ([A2]1 © 87 ,) B ([As] © 84 ,)))
((([A1]1 Q(C%) B ([A2]1 ©d") B ([As]1 © d}y)) © M)
Cota = B0 || Ua) M, B(W, ) © [ts]1) for x = i,
BW ) © ([As]1 © 84 )
(([A1]1 © d) B ([A2]1 © d") B ([As]1 o dy)) © M)
B0 | Ua)M]y B (W], Ai]1 © 54.) for all z > i,
BOW, ) @ ([Ash © 8,))
[ (Ard + Aad” + Azd, | Us) M.
i +W,1p(x)(A18A,x + Agsfﬁm + Agsz,x)
T (A1d+ Ard" + Azd, | Ua) M, ﬂ for = — i
| AW (s + Assly ) . ’
[ (Ard+ Asd’ + Agd)y |Un)M,
\ —i—WA p(m)(Al.sA,$ + Agsz@) ﬂ )

C1,8e =([A1]1 © sp2) B ([A3]1 © sp,) = [A15B. + A3sp 1
Cope =((([A1]1 © —d) B ([A2]1 © —d") B ([As]1 © d)) © M)
B0 Up)M]1 8 (W ) A1 © s.2)
B (W5 ) © ([A2] © s,) B ([As]s © 835.,)))
=[(—A1d — Aod” + A3d || Up) M, + W, (A1sp . + Ass )1

ﬂ for all z < 1,

for all = > i,

B gives the challenge ciphertext CT = (C,{C1,4,2,C2,4.4,C1,B.2, C2 Bl«}xe ) to A.

Guess: A eventually outputs a guess bit ¥’ € {0,1}. B outputs 1 if b = b’ and 0 otherwise.
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Observe that if t3 = A1sa, < span(A;) then the challenge ciphertext is distributed iden-
tically as in Hyb;5.4.3-1). On the other hand, if t5 = Ai1sa, + A28}y, < span(Ay, Az),
then the challenge ciphertext simulated by B is distributed identically as in Hybz,;.5.4.;. All the
other components of the game are properly distributed by B. Hence it follows that the game
simulated by B coincides with Hybz.;.3.4.;_1) or Hyby.;.3.4,; according as § = 0 or 1. Thus, B
can use A to attain non-negligible advantage in solving SD%H A,.A,- This completes the proof
of Lemma 5.11. |

Lemma 5.12: If the SD%HAI’A2 assumption holds, then for all PPT adversary A, there exists
a negllglble function neg|7:j:3:B:i(') such that fO’F all A € N, ‘pA,7:j:3:B:(i—1)()‘) _pA,7:j:3:B:i(>\)’ <
negl?:j:?):B:i()‘) fOT all VAS [Q] and i € H?H

Proof. The proof is similar to that of Lemma 5.11 with some minor changes that can be easily
figured out. |

Lemma 5.13: For every (possibly unbounded) adversary A, there ezists a negligible function
negly.;.4(+) such that for all A € N, ’pA77:j:3:B:|}7|()\) —pA77;j;4()\)‘ < negly.;.4(A) for all j € [q].

Proof: The proof is similar to that of Lemma 5.6 with some minor changes that can be easily
figured out. |

Lemma 5.14: For every (possibly unbounded) adversary A, there exists a negligible function
negly.;.5(-) such that for all A € N, |pa7.j.4(A) — pazj:5(AN)| < negly.;.5(A) for all j € [q].

Proof Observe that the only difference between Hyb;,, and Hybg,; is
that in the former the components {(A1d+ Axd” + Asd), || UA)Mw}:ce[e] and
{(—A1d — Axd” + Azdly |UB)Mz},ciq are shares of secrets that involve d’,—d" for some
d’ « Z’; which are correlated, whereas in the latter, they are shares of secrets that involve

"\, d'f; respectively for independent d'y, d'y;, < Z’;. Therefore, in order to prove these two games
are statistically indistinguishable, we will argue that the portion of the secrets that belong to
span(Az) are information theoretically hidden to the adversary A in Hyb.;.4.

Note that the shares (A;d + Aad” + Azd/, || Ua) M, and (—A1d — Axd” + Azdy ||Up) M,
for all the rows = of the challenge access matrix M labeled by corrupted authorities (i.e., the
authorities for which A either requests the master key or creates it on its own) and for all the
rows x of M labeled by authorities u such that A makes a secret key query for (GID;,u) are
information theoretically revealed to A, where GID; is the 4 global identifier for which the H
oracle output is generated by the challenger. However, by the game restriction the subspace
spanned by those rows does not include the vector (1,0,...,0). This means there must exists
a vector u € Zg such that w is orthogonal to all these rows of M but is not orthogonal to
(1,0,...,0), (i.e., the first entry of u is nonzero).

We consider a basis of U of Zg involving the vector w and write (A1d+ Aad” + Azd/, || Us) =
(Ard + Azd/, || 0) + (Ad” | Ua) = (Ard + Azd/y | 0) + Via + au' for some a € Z;’,k and some
V4 € span®*(U\ {u}). We note that each row of Vy lies in the subspace spanned by U\ {u} and
reveals no information about a. Now, since the first coordinate of u is nonzero, it follows that
the first column of (Asd” || Uy), i.e., Aad”, depends on the vector a. But (Asd” ||Ua)M, for
all the corrupted rows of M and all the rows of M for which a secret key query is made by A
with respect to the global identifier GID; contains no information about a since w is orthogonal
to all these rows. Thus, it follows that these rows do not leak information of Asd”.

Therefore, the only possible way for A to get information about Asd” is through the cipher-
text components Cy 4, corresponding to the remaining rows of M. However, for each such row
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z, A can only recover A1s4, + AQS%’I + Ags;‘,m and

(Ald + Aod” + Agd;‘ I UA) M,
+ (Wi p@) + Vﬁ;(x))T(AlsA,m + Agsh , + Assy ;)
= (Ard + Azdy | Ua) My + W ) (A15a0 + Asslh, + Azs'y )

+ (Asd” || 0) M, + V2| Ay,

(2)

. . . (2) 3k * 3
information theoretically. Now recall that VA,p(x) < span”?(A3), hence we can write VA,p(z) as

2 (2 . (2 .
Vé’é(””) = Vig(x) + AQRZLP(:C)A; where Vigw + span¥(A}%) and R ) € Zkx*F. Therefore,
we have

(A2d[|0) M, + V)| Assly,

= (A2d" [ 0) M, + (VD | + ASR) ) AS) Ansly,

= (A2d" | 0) M, + V2T Apsly , + AsRYT AT Ansly

Ap(z)

= (Asd" [ 0) M, + VD)

AQS +A2R//T() %CE
Since the labeling function p is injective, it follows that Vfg p)(x) R/, p(z) A€ freshly
random matrices that appear nowhere else. This means given Aisq, + Agsfﬁm +

A3S/I4x,(A1d+A3d ”UA>M + W/—xrp(g;)(AlsA,x + AQSZ‘@ + A3si4,x) + (AQd//HO) M, +

Vfg 3(x)A23sz if Azs’), is nonzero (note that A»s’y , = O with negligible probability), any

value of Asd” can be explained by a particular value of pr)(x), le/l,p(z)' It follows that Aod” is
information theoretically hidden to A.

The same argument can be applied to show that —Asd” is information theoretically hidden
to A as well. This completes the proof of Lemma 5.14. |

Lemma 5.15: For every (possibly unbounded) adversary A, there exists a negligible function
negly.;.6(-) such that for all X € N, |pa7.j:5(\) — pa7j6(A)| < negly.;.6(A) for all j € [q].

Proof: The proof is similar to that of Lemma 5.6 with some minor changes that can be easily
figured out. |

Lemma 5.16: If the SD%QlJ_E,QH]_E,thJ_q3 assumption holds, then for all PPT adversary A, there
exists a megligible function negly.;.7(-) such that for all A € N, |pa7j6(N) —pazjz(A)] <
negl'?:j:?(A) fOT’ a’”j € [Q]

Proof: Suppose there exists a PPT adversary A that distinguishes between Hyby. ;. and Hybz. ;.7
with non-negligible advantage. Using A as a subroutine, we construct below a PPT adversary
B that has a non-negligible advantage in solving the SD%1 Bos By B,.B; Problem. The algorithm
B gets an instance of the SD%2 BosB;.By.Bs problem from its challenger that consists of G =
(p, G1,Ga,Gr, g1, g2, €), [ Bi]e, [[Bg]]g, [[B3]]2, basis(BY), basis(Bj, B3), and [tg]2 for random /5 <
{0,1} where and tg < span(Bj, Bz) when § = 0 and tg < span(Bj, Bz, B3) when 5 = 1. The
algorithm B proceeds as follows:

Generating the Global Public Parameters: B samples matrix A; < span®(B?) by using
basis(Bj). Thus, A; can be expressed as A; = BfR for some R; <+ Z’;Xk. B implicitly sets
A} = B,V where V = (R™')T. Observe that, since R + ZI;X’“, V exists with all but negligible
probability. B also implicitly sets Ay = B3, A3 = Bj. B then explicitly sets A5 = By and
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A} = Bj . Note that AIA; =Tifi=jandO0ifi#jfori,j € [3]. B then samples random
h Zl; and implicitly sets h = V~'h = R"h and sets H = [Bi]: ® h = [B1h]> = [Ath]s.
Observe that h is uniformly distributed over Z’; since h + Z’; and R € Z];Xk is invertible. B

also samples a random seed seed <— S for the strong randomness extractor and sets the global
public parameters GP = (G, [A1]1, H, seed).

Generating Authority Public-Master Keys: Whenever A requests to set up an authority
u € AU of its choice, if an authority setup query for the same authority u has already been
queried before, B aborts. In the post-challenge query phase, if additionally A submitted an
authority public key PK,, for the same authority w while querying the challenge ciphertext, B
aborts. Otherwise BB runs AuthSetup to generate a public-master key pair (PK,, MSK,) for the
authority u as follows. B samples random W4 ,, Wp, < ngX% and sets PK, = (Pay, =
[[W,:;ruAl]]hPB,u = [[W]—SruAl]]l) and MSK,, = (W4, Wg,). B provides PK, to the attacker
and stores (PKy, MSKU).’ Whenever A requests the master secret key of the authority u at a
later time, B provides it to A.

Generating the H Oracle Outputs: For all ¢ € [g], in response to the t™ fresh H oracle
query of A for some global identifier GID;, B generates H(GID;) as follows:

e Fort < j, B samples random fNLG|Dt, h/GIDt — Z’;, implicitly sets hgip, = V_liLGmt = RTfNLG”)t
and sets H(GID;) = ([B1]2 @ haip,) B ([[B3ﬂ2®h/GIDt) = [Bihagp, +B3’1’,GIDJ]2 = [Ajhgip, +
A§h’G|Dt]]2. Observe that hgp, is uniformly distributed over Z’; since hgip, + Z’; and R €
Z';Xk is invertible.

e For t = j, B generates H(GID;) as H(GID;) = [tg]2. Observe that, if t3 = BliLij +
th’G’lDJ_ <+ span(Bj, Bs) zzvith iNLG|Dj,h’G’|Dj — Z’;, then H(GID;) simulated by B takes
the f~orm H(G|Dz) = [[Bth“)j + BQh/G/|DJ_]:|2 = [[AThGIDj —&:A;hgmjﬂg where hGIDj =
V_th|D]. = RThG|Dj implicitly. On the other hand, if tg = BthIDj +B2h’/C,;IDj +B3h,GIDj —
span(By, By, B3) with ilGIDjah/émj, hlGle — Zl;, then H(GID;) simulated by B takes the form
H(GID,) = [[BiliLGle + th’G’le + th’GIDj]]g = [[A’{hG”)j + A;h/G’le + A;h’Gle]]g where
heip, = Vfth|Dj = RThG|Dj implicitly. Observe that in both cases, hgp, is uniformly
distributed over Z’Ij since f~L(;|Dt — Z’; and R € Z’;Xk is invertible.

e For t > j, B samples random iLGIDt — Z];, implicitly defines hGIDt = V_IFLGIDt = RTFLG|Dt
and sets H(G|Dt) = [[Bl]]g ® hGIDt~: [[Blhgmt]]g = [[AThG|Dt]:|2. Observe that hGIDt 1S
uniformly distributed over Z’; since hgp, + Z’; and R € Z’;Xk is invertible.

It stores this value so that it can respond consistently if H(GID;) is queried again.

Generating Secret Keys: Whenever A makes a secret key query for some (GID,u) € GID x
AU, if an authority setup query for the authority v has not been made already, B aborts. In the
post-challenge phase, if an authority setup query for the authority u has not already been made,
A submitted the authority public key PK, for u while querying the challenge ciphertext, or for
each GID € GZD the vector (1,0,...,0) is in the span of all the rows of the challenge access policy
matrix M labeled by the authorities for which A submits the public keys {PK,} while querying
the challenge ciphertext plus the authorities for which A has made a master key query for u or
secret key query for (GID,u) so far, B aborts. Otherwise, B simply runs the KeyGen algorithm
using the public-master key pair it already created in response to the authority setup query for
authority u and generates a secret key SKgip,, = (kgip, Ay = [Wau - (hcip +ATh)]2, kcip,Bu =
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[Wg. - haip]2) for (GID,w). If H(GID) has not been generated so far, it follows the above
procedure to generate it during this time.

Generating the Challenge Ciphertext: At some point, A submits two messages,
msgg, msg; € M and an LSSS access structure (M, p) where M € Zf;Xd and p : [{] — AU
is an injective map. A also submits the public keys {PK, = (P4, Pp )} for a subset Uy of
attribute authorities appearing in the LSSS access structure (M, p). If for all attribute authority
u for which B has created a public-master key pair for so far are not contained in Uy, and for
each GID € GID, the vector (1,0,...,0) is not in the span of all the rows of M labeled by the
authorities in U4 plus the authorities for which A has made a master key query for u or secret
key query for (GID,w), then B flips a random coin b < {0, 1} and generates a ciphertext CT as
follows.

First, B samples random vectors ¢(!) < span(Bj) and c(A 3 5323) «+ span(Bj, B3) by using
basis(Bj) and basis(Bj, Bj) respectively. Observe that the vectors cW, C(AQ’?)), 0(32’3) can be viewed
as Aid, Aod’y + Asdy, Aod’, + Azd)y respectively with d,d’y, d, dy, dy Z’;. B also samples

3kx(d—1
random matrices Uy, Up < Zy x( )

Let Y denote the subset of rows of the challenge access matrix M labeled by the authorities for
which A supplies the authority public keys {PK,, = ([[W,er,uAl]]lv [[W];uAl]] )} Let Y =[(]\Y.

B samples random vectors sS4 ,,8Ba2 Z’Ij for all z € Y. B samples c(A)x,cg)x <+ span(Bf)

and cfj),cg i) < span(Bj, B3) by using basis(B7}) and basis(Bj, B;) respectively for all z €

Y. Observe that {cg)m,cg)x,cfj),cg?}me? also can be viewed as {A154,4, A15B 4, A28’y +

A38y . A28, + A3sp  },cp Tespectively with s4 ., 8p.u, 8 4, 8B 4 804 4 8B, Z’;. Then B
generates the challenge ciphertext CT = ((M, p), C,{C1,4.2,C2.4,2,C1,B .z, CQvax}xe[é})ﬂ where
C = msg @ Ext(e([¢M]1, H), seed) = msg @ Ext(e([A1d]1, H), seed),
forallz €Y,
Crax = [A154, x]]h
Cone = [[( W4 C DU M ]] B (P4p(z) © 8A2)
= [(A1d + Axd)y + Azdly || Ua)M, ] | B (P4 p) © Saa),
C1,B.x = [A18B2]1,
Copa = [[(_cu) 29 || Up) Mx]] B (Pp ) © 55,0)
= [(Aid + Axdp + A3d || Up) M, ], B (Pp p2) © $B.2),
and for all z € Y,

Ciaz = cfi)x + Cf’i)ﬂ = [A1sa,0 + A2s’y 2t Aszs)y x]] 1

Con = ( ()+CA HUA)M +WAp(w)(CE4)x+CE4x))H

[ (A1d+A2 +A3d H UA)
_+WAp()(AISAI+A2SA£E+A38ACE> ’

Crpae = [c!l ) L (322)]] = [Aispo + Assh, + Assy ], |
Coaz= :(—C(l) V| Up) M, + W} p(w)(c%)z + iy 3))H )
[ (—Ald + Agd% + A3d H UB)
- i —|—Wg’p(w) (A1SB z+ Ags o AgsB x) ]]
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Guess: A eventually outputs a guess bit ¥’ € {0,1}. B outputs 1 if b = b’ and 0 otherwise.
Observe that if tg < span(By, Bg), then H(GID;) simulated by B coincides with that in
Hyb;.;.s whereas if t3 < span(B1, Bz, B3), then it coincides the one in Hybz,; 7. All the other
components simulated by B are also properly distributed. Hence it follows that the games
simulated by B coincides with coincides with Hybz.;.¢ or Hyb;. ;.7 according as 8 = 0 or 1. Thus,
B can use A to attain non-negligible advantage in solving SD%‘;’ BosBy By.Bs- Lhis completes
the proof of Lemma 5.16. [ |

Lemma 5.17: For every (possibly unbounded) adversary A, there ezists a negligible function
negl?:j:S(') such that fOT’ all A € N7 |p.A,7:j:7()\) - pA,7:j:8(>\)| < negl?:j:S()\) fO?” all .7 € [Q]

Proof: The proof is similar to that of Lemma 5.6 with some minor changes that can be easily
figured out. |

Lemma 5.18: For every (possibly unbounded) adversary A, there exists a negligible function
negly.;.o(+) such that for all X € N, |pa7.:8(A) — parj9(A)| < negly.j.o(A) for all j € [q].

Proof: The proof is similar to that of Lemma 5.14 with some minor changes that can be easily
figured out. |

Lemma 5.19: For every (possibly unbounded) adversary A, there exists a negligible function
negly.;10(+) such that for all X € N, [pa7.5:0(A) — pa7j:10(A)] < negly.q0(N) for all j € [q].

Proof: The proof is similar to that of Lemma 5.6 with some minor changes that can be easily
figured out. |

Lemma 5.20: If the SDgllHA1 A, assumption holds, then for all PPT adversary A, there exists a
PATA1A—1) (A) = PA g1 (A)| <

negligible function negly.;.11.4.;(+) such that for all X € N,
negly.j11:4.:(A) for all j € [q] and i € HYH

Proof: The proof is similar to that of Lemma 5.11 with some minor changes that can be easily
figured out. |

Lemma 5.21: [f the SD%HAI A, assumption holds, then for all PPT adversary A, there exists a
pazB(i-1)(A) = pazgi (V)| <

negligible function negly.;.11.p.,;(-) such that for all X € N,
negly.j11.5:4(A) for all j € [q] and i € HYH

Proof The proof is similar to that of Lemma 5.12 with some minor changes that can be easily
figured out. |

Lemma 5.22: If the SD%HAI,AQ assumption holds, then for all PPT adversary A, there ex-
ists a negligible function negly.;.15(-) such that for all X € N, |p 4 7:j:11:B:|)7|(/\) —parji2(A)] <
neg|7:j:12()‘) fO?” a’llj € [Q]

Proof: The proof is similar to that of Lemma 5.10 with some minor changes that can be easily
figured out. |

Lemma 5.23: If the SD%@HBQ,BP, assumption holds, then for all PPT adversary A, there exists
a negligible function negly.;(-) such that for all X € N, |pa7.:12(A) — pa7j(A)] < neglz;(A).

Proof Suppose there exists a PPT adversary A that distinguishes between Hybz.;.,5 and
Hybz.; with non-negligible advantage. Using A as a subroutine, we construct below a PPT
adversary B that has a non-negligible advantage in solving the SD%;_) Bs.Bs problem. The al-

gorithm B gets an instance of the SD%@,HB2 p. broblem from its challenger that consists of
G = (p, Gl, GQ, GT, g1, 92, 6), [[Bl]]g, [[BQ]]Q, [[Bg]]g, basis(B{), basis(B;;"), baSiS(B;7 B;), and [[tg]]g
for random f <— {0,1} where and tg < span(Bs) when 3 = 0 and tg < span(Bsy, B3) when
B = 1. The algorithm B proceeds as follows:
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Generating the Global Public Parameters: B samples matrix A; < span®(B}) by using
basis(B7). Thus, A; can be expressed as A; = B} R for some R « Z’;Xk. B implicitly sets
A} = B1V where V = (R™!)T. Observe that, since R < Z’;Xk, V exists with all but negligible
probability. B also implicitly sets Ay = B3, A3 = B;. B then explicitly sets A5 = By and
A3 = Bs. Note that A;-rA;‘- =Tifi=jand 0ifi # j for 4,5 € [3]. B then samples random
h < ZF and implicitly sets h = V"'h = RTh and sets H = [B1]s © h = [B1h]s = [A}h]..
Observe that h is uniformly distributed over Zlg since h « Zlg and R € Z’;Xk is invertible. B

also samples a random seed seed < S for the strong randomness extractor and sets the global
public parameters GP = (G, [A1]1, H, seed).

Generating Authority Public-Master Keys: Whenever A requests to set up an authority
u € AU of its choice, if an authority setup query for the same authority u has already been
queried before, B aborts. In the post-challenge query phase, if additionally A submitted an
authority public key PK,, for the same authority w while querying the challenge ciphertext, B
aborts. Otherwise B runs AuthSetup to generate a public-master key pair (PK,, MSK,,) for the
authority u as follows. B samples random Wy ,, Wg, <+ ngX?)k and sets PK, = (Pa, =
[[W;lruAl]]l,PB,u = [[W;uAl]]l) and MSK,, = (Wa,, Wg,). B provides PK, to the attacker
and stores (PKy, MSKU).’ Whenever A requests the master secret key of the authority u at a
later time, B provides it to A.

Generating the H Oracle Outputs: For all ¢ € [¢], in response to the t*™ fresh H oracle
query of A for some global identifier GID;, B generates H(GID;) as follows:

e For t < j, B samples random vectors FI’G|Dt7h,GIDt — Z’; and implicitly sets hgip, =
VﬁthJDt = RThG|Dt. B then sets H(G|Dt) as H(G|Dt) = ([[Bl]]g ® hGIDt) H ([[33]]2 O) h/GIDt)
= [[Bth|DtB3~h’G|Dt]]2 = [Aihcp, + Agh’GlDt]]g. Observe that hgp, is uniformly distributed
over Zl; since hgp, + Z’; and R € Z’;Xk is invertible.

e For t = j, B first samples a random vector iI,G|D]. — Z’; and implicitly sets hgp, =
V_lbe”)j = RTiLG|Dj. B then sets H(G|DJ) as H(G|DJ) = ([Bi]2 ® iLG”)j) H [[t/g]]g =
[Bihgip; + tg]a = [AThcip, + ts]2. Observe that if t5 < span(Bs), then H(GID;) takes
the form H(G|Dj) = HBthIDj + th’Gle]]g = HATh(HDj + AghlGle]]Q where h/GIDj — Z’;.
On the other hand, if t3 <« span(B2, B3), then H(GID;) takes the form H(GID;) =
[Bihaip, +B2h/G/|Dj+B3h/G|Dj]]2 = [Ajhcip, +A§h’G/|Dj+A§h/G|Dj]]2 where h/G/|Dja hlGle — Zy.
Observe that in both cases, hgp; is uniformly distributed over Z’; since hgip; Zlg and
R e Z’;x’“ is invertible.

e For ¢t > j, B samples random iLG|Dt — Z];, implicitly defines hgp, = V*Ifz(;”gt = RTﬁth
and sets H(GID;) = [Bi]2 © hgip, = [Bihaip,]2 = [Ajhcip,J2. Observe that hgp, is
uniformly distributed over Z]]j since hgip, + Z’Ij and R € Z’;Xk is invertible.

It stores this value so that it can respond consistently if H(GID;) is queried again.

Generating Secret Keys: Whenever 4 makes a secret key query for some (GID,u) € GID x
AU, if an authority setup query for the authority v has not been made already, B aborts. In the
post-challenge phase, if an authority setup query for the authority u has not already been made,
A submitted the authority public key PK, for u while querying the challenge ciphertext, or for
each GID € GZD the vector (1,0,...,0) is in the span of all the rows of the challenge access policy
matrix M labeled by the authorities for which A submits the public keys {PK,} while querying
the challenge ciphertext plus the authorities for which A has made a master key query for u or
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secret key query for (GID,u) so far, B aborts. Otherwise, B simply runs the KeyGen algorithm
using the public-master key pair it already created in response to the authority setup query for
authority v and generates a secret key SKgip,, = (kgip, Au = [Wau - (hcip +ATh)]2, kcip,Bu =
[Wg. - haip]2) for (GID,w). If H(GID) has not been generated so far, it follows the above
procedure to generate it during this time.

Generating the Challenge Ciphertext: At some point, A submits two messages,
msgg, msg; € M and an LSSS access structure (M, p) where M € Z* and p : [(] — AU
is an injective map. A also submits the public keys {PK, = (Pay, Ppy)} for a subset U4 of
attribute authorities appearing in the LSSS access structure (M, p). If for all attribute authority
u for which B has created a public-master key pair for so far are not contained in Uy, and for
each GID € GID, the vector (1,0,...,0) is not in the span of all the rows of M labeled by the
authorities in U4 plus the authorities for which A has made a master key query for u or secret
key query for (GID,u), then B flips a random coin b <— {0,1} and generates a ciphertext CT as
follows.

First, B samples random vectors ¢) « span(B}) and CS),cg’) < span(Bj) by using
basis(B7) and basis(Bj) respectively. Observe that the vectors c(l),cf),cg) can be viewed
as Aid, Asd'y, Asd; respectively with d,d,,d; <+ Z’Ij. B also samples random matrices

U, Up « 727D,

Let Y denote the subset of rows of the challenge access matrix M labeled by the author-
ities for which A supplies the authority public keys {PK, = ([[WluAl]]l, [[W;uAl]]l)}. Let
Y = [(]\'Y. B samples sa4,83, < Z} for all € Y. B samples 6541,):1:’65‘31,)1 < span(Bj)

and cf)x,cg)x + span(Bj) by using basis(B}) and basis(Bj) respectively for all x € Y. Ob-

1 1 3) (3 .
serve that {054)35, CSB)w c(A)x, C(B)w}x€}7 also can be viewed as {A154,4, A15B ¢, A38y ,, A3Sp .} ey

respectively with s4.,sB, s’A’m, 839@ — Z’;.. Then B generates the challenge ciphertext
CT = ((Mv P)7 Ca {CI,A,za O?,A,:Ea Cl,B,x» C2,B,x}xem)7 where
C = msg & Ext(e([¢M] 1, H), seed) = msg & Ext(e([Ad]1, H), seed),

forall x € Y,

Ciaz = [A1545]1,
Cone = (e + e UML) 8 (Pa ) @ 540)
= [(Ard + Azd)y | Ua)M.] | B (Pa @) © $a.2),
C1,Bx = [A15B.2]1,
Co.Be = [[(—c(l) + cg’) I UB)MI]] ) B (PB,pz) © $B,2)
= [(—Aid + A3dp || Up) M, ], B (Pp p) © $B.2),
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and for all z € Y,

Cuae= (€21, = v ],

CQ,A,x = (C( + CA H UA)MCE + WAT,p(x) (ci}l)x + CE4):E)]:| 1
= (Ald + A3di4 || UA) M, + WA,p(I) (AISA,ac + A3Si4,x)ﬂ L
C'1,B,x = Cg)m + C( ) ]:| = [[AlsB,z + ASSIB z]] 10

CQ,B,x = (_C(l) + C(B;)) ” UB)MfE + W;,p(x) (Cg)x + C(BE)))J:)H 1

- :(—Ald + Agd | Up) My + W ) (A1spe + A3S/vi)ﬂ 1

Guess: A eventually outputs a guess bit &' € {0,1}. B outputs 1 if b = b’ and 0 otherwise.
Observe that if t5 < span(Bs), then H(GID;) simulated by B coincides with that in Hyb.;.
On the other hand, if t3 < span(Bs, B3), then H(GID;) simulated by B coincides with that
in Hyby.;.15. All the other components simulated by B are also properly distributed. Hence it
follows that the games simulated by B coincides with Hyb;,; or Hybz.;.15 according as 8 = 0 or
1. Thus, B can use A to attain non-negligible advantage in solving SD%SH B, By Lhis completes
the proof of Lemma 5.23. |

Lemma 5.24: If the D%HBI B, assumption holds, then for all PPT adversary A, there exists
a negligible function neglg(+) such that for all A € N, DAT:q(A) —DAs(N)] < neglg(N).

Proof: Suppose there exists a PPT adversary A that distinguishes between Hyb;,, and Hybg
with non-negligible advantage. Using A as a subroutine, we construct below a PPT adver-
sary B that has a non-negligible advantage in solving the SD%QHB B, problem. The al-

gorithm B gets an instance of the SD% B, problem from its challenger that consists of
G = (p, Gl,GQ,GT,gl gz, € ) [[Bl]]g, [[BQ]]Q, [[Bg]]g,baSIS(Bl) baSIS(B3) baS|s(B1‘,B2) and [[tg]]g
for random 3 < {0,1} where and tg < span(B;) when 3 = 0 and tg < span(Bj, By) when
B = 1. The algorithm B proceeds as follows:

Generating the Global Public Parameters: B samples matrix A < spank(B’f) by using
basis(B7). Thus, A; can be expressed as A; = B} R for some R < Z’;Xk. B implicitly sets
A} = BV where V = (R™!)T. Observe that, since R < ZE**, 'V exists with all but negligible
probability. B also implicitly sets Ay = B3, A3 = B3. B then explicitly sets A5 = By and
A; = Bz . Note that AJAS = I'if i = j and 0 if i # j for 4,5 € [3]. Bsets H = [tg]a.
Observe that if t5 < span(B;) then H as simulated by B takes the form H = [Bjh]s (where
h Z%) which is equal to [Afh]s where h = RTh. Observe that h is uniformly distributed
over Z'; since h + Z]; and R is invertible. On the other hand, if t3 < span(B, Bg) then H
takes the form H = [Bih+ Bah']y (where h, h” Zk) which is equal to [A}h + A3h"]; where
h = R"h. Observe that h is uniformly distributed over Z]; since h < Z’; and R is invertible.
B also samples a random seed seed < S for the strong randomness extractor and sets the global
public parameters GP = (G, [A1]1, H, seed).

Generating Authority Public-Master Keys: Whenever A requests to set up an authority
u € AU of its choice, if an authority setup query for the same authority u has already been
queried before, B aborts. In the post-challenge query phase, if additionally A submitted an
authority public key PK, for the same authority w while querying the challenge ciphertext, B
aborts. Otherwise B runs AuthSetup to generate a public-master key pair (PK,, MSK,,) for the
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authority u as follows. B samples random W4 ,, Wp, < ngX?’k and sets PK, = (Pa, =
[[WluAl]]l,PB,u = [[WBTuAl]]l) and MSK,, = (W4, Wg,). B provides PK, to the attacker
and stores (PK,, MSKU).’ Whenever A requests the master secret key of the authority u at a
later time, B provides it to A.

Generating the H Oracle Outputs: For all ¢t € [g], B generates H(GID) as follows: B
samples random hgip, hgp Z’;, implicitly sets hgip = V" 'hgp = R hgp and sets H(GID) =
([B1]2 ® haip) B ([Bs]2 © hgp) = [Biheip + Bshgpl2 = [AThcip + A3hgp]2. Observe that
hgp is uniformly distributed over Z’; since hgip + Z’; and R is invertible. It stores this value
so that it can respond consistently if H(GID) is queried again.

Generating Secret Keys: Whenever A makes a secret key query for some (GID,u) € GID x
AU, if an authority setup query for the authority v has not been made already, B aborts. In the
post-challenge phase, if an authority setup query for the authority v has not already been made,
A submitted the authority public key PK, for u while querying the challenge ciphertext, or for
each GID € GZD the vector (1,0,...,0) is in the span of all the rows of the challenge access policy
matrix M labeled by the authorities for which A submits the public keys {PK,} while querying
the challenge ciphertext plus the authorities for which A has made a master key query for u or
secret key query for (GID,u) so far, B aborts. Otherwise, B simply runs the KeyGen algorithm
using the public-master key pair it already created in response to the authority setup query for
authority v and generates a secret key SKgip,, = (kgD Au = [Wau - (hcip +ATh)]2, kcip, By =
[Wgu - haip]2) for (GID,u). If H(GID) has not been generated so far, it follows the above
procedure to generate it during this time.

Generating the Challenge Ciphertext: At some point, A submits two messages,
msggy, msg; € M and an LSSS access structure (M, p) where M € Zf,Xd and p : [{] - AU
is an injective map. A also submits the public keys {PK, = (Pay, Pp)} for a subset U4 of
attribute authorities appearing in the LSSS access structure (M, p). If for all attribute authority
u for which B has created a public-master key pair for so far are not contained in U4, and for
each GID € GID, the vector (1,0,...,0) is not in the span of all the rows of M labeled by the
authorities in U4 plus the authorities for which A has made a master key query for u or secret
key query for (GID,u), then B flips a random coin b < {0,1} and generates a ciphertext CT as
follows.

First, B samples random vectors ¢ < span(Bj) and CS),C(B:)’) < span(Bj) by using
basis(Bj) and basis(Bj) respectively. Observe that the vectors c(l),cf),cg’) can be viewed
as Aid, Asd'y, Asdy respectively with d,d,,d; <+ Z’;. B also samples random matrices
U, Up + 727D,

Let Y denote the subset of rows of the challenge access matrix M labeled by the author-
ities for which A supplies the authority public keys {PK, = ([[WIIuAl]]l’ [[W;,uAl]]l)}' Let
Y =[]\ Y. B samples $4,,85, < Z’; for all z € Y. B samples CSL,C%L « span(Bj)
and cf?x,cg?x + span(B3) by using basis(B7) and basis(B3) respectively for all x € Y. Ob-
serve that {05417):0, CSBl,)w Cf,):w Cg,)x}xe? also can be viewed as {41544, A18B.4, A38) s A38p .} ey

respectively with S, 884,58 ,,55., < Z’;.. Then B generates the challenge ciphertext
CT = ((M, p), C, {CI,A,xa 027,4735, Cl,B,an 0273@}966[@})’ where

C = msg @ Ext(e([¢M]1, H),seed) = msg @ Ext(e([A1d]1, H), seed),
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forallx € Y,

Ciaz = [A154,2]1,
Cone = (V4 | UN)ML] 8 (Payy @ sa.)
= [(Ard + Asd)y | Us)M,], 8 (P o) © s4.0),
C1,Bx = [A15B.2]1,
Cop = (=W + ) | Up)ML] 8 (P ) @ 55.)
= [(-A1d + A3d || Up) M, |, B (Pp pz) © $B.2),

and for all z € Y,

Cl,A,x = (1) +C(3):|:| = [[AlsA,x +A3314 wﬂ )

Cona = [V + e UM + W] (e + 0]

= [(Ard+ Asdy | U2) Mo+ W, (Arsas + Assls)]

Cl,B,x = cg)gC + cg)x]] - [[AlsB,:c + Agsjg a:]] 1

Copa = |(=e® + e | Un) My + W (), + )]

_ :(_Ald + Asdyy | Up) M, + W} (Arsp o + Ags’m)ﬂ 1

Guess: A eventually outputs a guess bit &’ € {0,1}. B outputs 1 if b = b' and 0 otherwise.

Observe that if t5 < span(B1), then H as simulated by B coincides with that in Hybr,,.
On the other hand, if tg < span(Bj, Bz), then the form of H simulated by B coincides with
that in Hybg. All the other components simulated by B are also properly distributed. Hence it
follows that the games simulated by B coincides with coincides with Hybz., or Hyb8 according as
B =0 or 1. Thus, B can use A to attain non-negligible advantage in solving SD%? BisB,.B,- Lhis
completes the proof of Lemma 5.24.

Lemma 5.25: If the SD%HALAQ assumption holds, then for all PPT adversary A, there exists
a negligible function negly(-) such that for all A € N, [pag(X) —pag(N)| < neglg(N).

Proof. Suppose there exists a PPT adversary A that distinguishes between Hybg and Hybg
with non-negligible advantage. Using A as a subroutine, we construct below a PPT adver-
sary B that has a non-negligible advantage in solving the SDEIIH A,.A, Problem. The algo-

rithm B gets an instance of the sp¢! A AL Ay problem from its challenger that consists of
G = (p, Gl,GQ,GT,gl,gg, ) HAI]]I,[[AQHI, [[Ag]]l,baSIS(A*) baSIS(A*) ba5|s(A>{,A*)7 and [[tﬁ]]l
for random B € {0,1} where tg < span(A;) if 3 = 0 or tg < span(Aj, As) if 3 = 1. The
algorithm B proceeds as follows:

Generating the Global Public Parameters: B samples a random vector r < span( A7}, A})
by using basis(A}, A3) and sets H = [r]a = [ATh + A5h"]2 with h,h” « Z’;. B also samples
a random seed seed < S for the strong randomness extractor, and provides the global public
parameters GP = (G, [A1]1, H, seed) to A.

Generating Authority Public-Master Keys: Whenever A requests to set up an authority

u € AU of its choice, if an authority setup query for the same authority v has already been
queried before, B aborts. In the post-challenge query phase, if additionally A submitted an
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authority public key PK, for the same authority w while querying the challenge ciphertext, B
aborts. Otherwise BB runs AuthSetup to generate a public-master key pair (PK,, MSK,) for the
authority u as follows. B samples random W4 ,, Wp, < Z3kX3k and sets PK, = (Pa, =
w, Al Py = Wi LA1]1) and MSKy, = (Wa ., Wg,). B provides PK,, to the attacker
and stores (PK,, MSK,). Whenever A requests the master secret key of the authority u at a
later time, B provides it to A.

Generating the H Oracle Outputs: For all ¢t € [¢], B generates H(GID) as follows: B samples
random rgp < span(A}) and rgp < span(Aj) by using basis(A}) and basis(A%) respectively.
B sets H(GID) = [[TGID + T,GID]]2 = [[Afh(;”) + A;h,GlD]]Q with h’G|D7h/(/;|D — Zlg. It stores this
value so that it can respond consistently if H(GID) is queried again.

Generating Secret Keys: Whenever A makes a secret key query for some (GID,u) € GID x
AU, if an authority setup query for the authority v has not been made already, 5 aborts. In the
post-challenge phase, if an authority setup query for the authority v has not already been made,
A submitted the authority public key PK, for u while querying the challenge ciphertext, or for
each GID € GZD the vector (1,0,...,0) is in the span of all the rows of the challenge access policy
matrix M labeled by the authorities for which A submits the public keys {PK,} while querying
the challenge ciphertext plus the authorities for which A has made a master key query for u or
secret key query for (GID,u) so far, B aborts. Otherwise, B simply runs the KeyGen algorithm
using the public-master key pair it already created in response to the authority setup query for
authority v and generates a secret key SKgip,, = (kgD Au = [Wau - (hcip + ATh)]2, kcip,Bu =
[Wg.u - haip]2) for (GID,u). If H(GID) has not been generated so far, it follows the above
procedure to generate it during this time.

Generating the Challenge Ciphertext: At some point, A submits two messages,
msggy, msg; € M and an LSSS access structure (M, p) where M € fod and p : [({] - AU
is an injective map. A also submits the public keys {PK, = (Pay, Pp)} for a subset U4 of
attribute authorities appearing in the LSSS access structure (M, p). If for all attribute authority
u for which B has created a public-master key pair for so far are not contained in Uy, and for
each GID € GID, the vector (1,0,...,0) is not in the span of all the rows of M labeled by the
authorities in U4 plus the authorities for which A has made a master key query for u or secret
key query for (GID,u), then B flips a random coin b < {0,1} and generates a ciphertext CT
as follows. First, B sets C' = msg;, & Ext(e([ts]1, H),seed). Next, B samples random vectors
dy,dy < Zk for all x € [(]. B also samples random matrices U, Up Z?’kx(d b,

Let Y denote the subset of rows of the challenge access matrix M labeled by the authorities
for which A supplies the authority public keys {PKy = (Paw, Ppu)}. Let Y = [{]\'Y. For
each z € Y, B chooses random s4,,8B, Zk For each € Y, B also chooses random
SAz,SB,z SA’m, sB’w — Z];.

For each x € Y, B forms the ciphertext components as:

Craz =[A1]1 © 842 =[A184:]1
Cone =(([ts]1 B ([As]1 © dy)) © My1) B(0]|Ua) M1
B (Pa,pz) © 84.2),
=[(ts + Asd)y | Ua) M,]1 B (P pz) © S42),
Ci,Bx =[A1]1 © sz = [A18B ]t
Co.px =((—[tsl B ([As]1 © dp)) © My,1) B(0 | Up) M,
H (PB7p(m) © SB,x)
=[(~ts + Asd | Up) My]1 B (Pp y(2) © 8B.x)-
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For each z € Y, B forms the ciphertext components as:

Cra0 =([A1]1 © s42) B ([A3]1 © 84 ,) = [A154.0 + A3y 1
Co,ae =(([tsh B ([As]i © dy)) © My 1) B0 Ua)M.]u
B (W4 A1 ©sa2) B(W, ) 0 [As]1 ©sy,)
=[(ts + Asdy || Ua) My + Wy, (AlsA,x + Ass)y )]
C1,8x =([A1]1 © sp2) B ([As]1 © sp,) = [A1SB. + Assp 1
Cope =((—[tsh B ([As]1 © dj)) © My1) B[(0]|Ua) M1
B (W5 Al © sp2) B(Wg ) © [A3]1 © s,)
=[(~ts + Asd | Up) M, + WB,p(I)(AlsB,x + A3 )]

B gives the challenge ciphertext CT = (C,{C1,4,2,C2, 4,2, C1.B «, CQ’B’x}xe[@) to A.

Guess: A eventually outputs a guess bit &' € {0,1}. B outputs 1 if b = b’ and 0 otherwise.
Observe that if t3 = A1d < span(A;) with d < Z'; then the challenge ciphertext simulated
by B coincides with that in Hybg. On the other hand, if t3 = A1d + Aad” < span(A;, As) with
d,d’" + Z’;, then the challenge ciphertext simulated by B coincides with that in Hybg. All the
other components of the game are also properly distributed by B. Hence it follows that the game
simulated by B coincides with Hybg or Hyb9 according as 8 = 0 or 1. Thus, B can use A to attain
non-negligible advantage in solving sp¢! ApsAl Ay L his completes the proof of Lemma 5.25. W

Lemma 5.26: If the SDS?HALAQ assumption holds, then for all PPT adversary A, there ex-
ists a negligible function neglyg.4.;(+) such that for all A € N, Axi—1)(A) —pA,m:A:i()\)‘ <

neglio. 4.(A) for alli € [|Y]].

Proof: Suppose there exists a PPT adversary A that distinguishes between Hybyg. 4.;—1) and
Hyb,. 4., with non-negligible advantage. Using A as a subroutine, we construct below a PPT
adversary B that has a non-negligible advantage in solving the SD AL A problem. The

algorithm B gets an instance of the SDG1 Al Ay problem from its challenger that consists of
G = (p, Gl,GQ,GT,gl,gz, ) [[Al]]l, [[AQﬂl, [[Ag]]l, ba5|s(A*) baSIS(A*) baSIS(AT,A*), and [[tﬁ]]l
for random B € {0,1} where tg < span(A;) if 3 = 0 or tg < span(A;, Az) if B = 1. The
algorithm B proceeds as follows:

Generating the Global Public Parameters: B samples a random vector r < span( A7}, A%)
by using basis(A}, A3) and sets H = [r]y = [Ajh + A5h"]y with h,h” < ZE. B also samples
a random seed seed < S for the strong randomness extractor, and provides the global public
parameters GP = (G, [A1]1, H,seed) to A.

Generating Authority Public-Master Keys: Whenever A requests to set up an authority
u € AU of its choice, if an authority setup query for the same authority u has already been
queried before, B aborts. In the post-challenge query phase, if additionally A submitted an
authority public key PK,, for the same authority v while querying the challenge ciphertext, B
aborts. Otherwise B runs AuthSetup to generate a public-master key pair (PK,, MSK,) for the
authority u as follows. B samples random Wy ,, Wp, < Zf,kX% and sets PK, = (Pa, =
[[W,IUAl]]laPB,u = [[W];uAl]]l) and MSK,, = (W4, Wg,). B provides PK, to the attacker
and stores (PK,, MSK,). Whenever A requests the master secret key of the authority u at a
later time, B provides it to A.

108



Generating the H Oracle Outputs: For all ¢t € [¢], B generates H(GID) as follows: B samples
random rgp < span(Aj) and rgp < span(Aj) by using basis(A}) and basis(Aj) respectively.
B sets H(GID) = [[TGID + T,GID]]2 = [[Afh(;”) + Agh’GlD]]g with h’G|D7h/(/;|D — Zlg. It stores this
value so that it can respond consistently if H(GID) is queried again.

Generating Secret Keys: Whenever A makes a secret key query for some (GID,u) € GID x
AU, if an authority setup query for the authority v has not been made already, B aborts. In the
post-challenge phase, if an authority setup query for the authority v has not already been made,
A submitted the authority public key PK, for u while querying the challenge ciphertext, or for
each GID € GZD the vector (1,0,...,0) is in the span of all the rows of the challenge access policy
matrix M labeled by the authorities for which A submits the public keys {PK,} while querying
the challenge ciphertext plus the authorities for which A has made a master key query for u or
secret key query for (GID,u) so far, B aborts. Otherwise, B simply runs the KeyGen algorithm
using the public-master key pair it already created in response to the authority setup query for
authority v and generates a secret key SKgip,, = (kgip, Ay = [Waw - (hcio +ATh)]2, kcip,Bu =
[WgB.u - haip]2) for (GID,u). If H(GID) has not been generated so far, it follows the above
procedure to generate it during this time.

Generating the Challenge Ciphertext: At some point, A submits two messages,
msgg, msg; € M and an LSSS access structure (M, p) where M € ZZ‘;Xd and p : [{] — AU
is an injective map. A also submits the public keys {PK, = (Pa, Ppu)} for a subset Uy of
attribute authorities appearing in the LSSS access structure (M, p). If for all attribute authority
u for which B has created a public-master key pair for so far are not contained in Uy, and for
each GID € GZID, the vector (1,0,...,0) is not in the span of all the rows of M labeled by the
authorities in U4 plus the authorities for which A has made a master key query for u or secret
key query for (GID,u), then B flips a random coin b <— {0,1} and generates a ciphertext CT as
follows. First, B samples random vectors d, d”, d/y, d'; < Z% and sets C' = msg, ®Ext(e(([A1]1©
d) B ([A2]1 ©d"), H),seed) = msg, @ Ext(e([A1d]1, H) - e([A2d"]1, H),seed). B also samples
random matrices Ug, Up szx(d_l).

Let Y denote the subset of rows of the challenge access matrix M labeled by the authorities
for which A supplies the authority public keys {PK, = (P, Ppu)}. Let Y = [(] \ Y. For each
x €Y, B chooses random s 4 4, 8 4 Zl;. For each x € Y, B chooses random sp 4, S/A@’ sjBJ —
Z];. B also samples random vectors s4 ., sfﬁm — Z’; for x < i where z € Y and SAz Z’; for
x> i where z € Y.

For each « € Y, B forms the ciphertext components as:

Craz =[A1]1 © saz =[A1saz]1
Co,n0 =((([A1]L © @) B ([A2]1 © d") B ([As]1 © dy)) © My;)
BIO|Ua)M.]1 B (Papz) © sax)
=[(A1d + Axd” + A3zdy |Us) M, ], B (PA,p(x) ©S8az),
Ci.Bx =[A1]1 © 842 = [A1]1 © 8B = [A18B2]1
C2,82 =((([A1]1 © —d) B ([A2]1 © —d") B ([A3]1 © d)) © M, ;)
B0 |Up)M;]1 B (Ppp@) © $Bx)
—[(~Avd — Asd" + Asdly | Up) M]3 B (Pp o) © $5.0).

For each z € Y, B forms the ciphertext components as:

([A1h © 54.) B ([A2]1 © 84 ) B ([A3]1 © 8 ,) for all z <4,
Crae =14 [tsh B([As] ©8),) for z =1,
([A1]1 © 84) B ([As]1 © 84 ,) for all x > 1,
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[Aisas + Ags;’m + A33147x]]1 for all z < 1,

= [[tﬁ + AgslA’x]]l for x =1,

[[AlsA,m + A3S/A,xﬂ1 for all z > 1,

(([A1]: © d) B ([A2]h © d") B ([As]1 © dy)) © M)
BI0 || Ua)M.]1 B (W, ,(,)A1]1 © 54.2)
BW, ) © ([A2]1 © 8 ,) B ([As]1 © 8y ,)))

(([A1]1 © @) B ([A2]1 © d") B ([As]1 © dy)) © May)

Conw—{  BIOIUNML S (W], ©[ts])

EB(WXp(x) © ([As]1 © 8y ;)

(([A1]1 © @) B ([A2]1 © d") B ([As]1 © dy)) © May)
BI0 || Ua)M.]1 B (W, ,(,)A1]1 © 54.)
EB(WX,,(;E) © ([Ash © sy ,))

(T (Ald + Agd” + Agd{A H UA)MI

i +W;—,p(x)(A1.sA,m + Azs;’m + A33/A,x)

[ (A1d+ Axd” + Azd), || Ua) M, ﬂ

i +W;p(x)(tﬁ + Azsly ) X

[ (Ard+ Axd” + Azd)y || Ua) M,
+W11p(x)(A13A,x + A38147x) L

Crpe =([A1]1 © spa) B([As]h © s ,) = [A1spe + Assp i
Coe =((([A1]1 © —d) B ([A2]: © —d") B ([As]1 © dp)) © My;)
B0 Up) M1 B ([Wg ) Al © 58,)
B (Wg ) © (([A2]1 © 85 ,) B ([A3)1 © s55,)))
=[(—Aid — Azd" + A3dl |Up) My + W,y (A18B. + Ass )]

for all z <1,
for z =1,

for all = > 1,

ﬂ for all z < 1,

for x = 1,

for all z > 1,

B gives the challenge ciphertext CT = (C,{C1 4.4, C2 A2, C1,B,2, C2,B.2 }xelg)) to A.

Guess: A eventually outputs a guess bit &' € {0,1}. B outputs 1 if b = b' and 0 otherwise.

Observe that if g3 = A154, < span(A1) with s4, Z’; then the challenge ciphertext sim-
ulated by B coincides with that in Hybyg, 4,;_1). On the other hand, if t5 = A184, + A28y ,
span(Aj, As) with s4 4, sfﬁm — Z’; , then the challenge ciphertext simulated by B coincides with
that in Hybg.4.;. All the other components of the game are also properly distributed by B.
Hence it follows that the game simulated by B coincides with Hybg. 4.;;_1) or Hybyg. 4.; according
as f# =0 or 1. Thus, B can use A to attain non-negligible advantage in solving SD%H AL Ay
This completes the proof of Lemma 5.26.

Lemma 5.27: If the SD§11P—>A1 A, assumption holds, then for all PPT adversary A, there ex-
PA10:B:(i—1)(A) — pa10:B:i (V)| <

ists a negligible function neglyy.g.;(-) such that for all A € N,
neglg.3.i(A) for alli € [|Y].

Proof: The proof is similar to that of Lemma 5.25 with some minor changes that can be easily
figured out. |

Lemma 5.28: For every (possibly unbounded) adversary A, there exists a negligible function
neglyy () such that for all A € N, |p g 10,5.7|(A) = A1 (V)] < neglyy ().

Proof. The proof is similar to that of Lemma 5.6 with some minor changes that can be easily
figured out.
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Lemma 5.29: For every (possibly unbounded) adversary A, there exists a negligible function
neglio(-) such that for all X € N, [pa11(A) —pai2(N)] < neglip(A).

Proof: Observe that the only difference between Hyb;; and Hyb;, is that in the former the
components {(—A1d — Aad” + Azd || Up) M, },c|q are shares of a secret that involves —Azd”
that is correlated to the span(Asg) portion of the secret shared by the components {(A;d +
Axd’+Azd, |Ua) M, },c(q), Whereas in the latter, they are shares of secrets whose corresponding
span(As) portions are Ad’;, Apd” for independent d7,d” < Z’;. Therefore, in order to prove
these two games are statistically indistinguishable, we will argue that the portion of the secrets
—Aid — Ayd” + Asdy that lie in span(As3) is information theoretically hidden to the adversary
A in Hyby;.

Note that the shares (—Ad— Aad”+Azdl; || Ug) M, for all the rows z of the challenge access
matrix M labeled by corrupted authorities (i.e., the authorities for which A either requests the
master key or creates it on its own) are information theoretically revealed to A. However, by the
game restriction ,the subspace spanned by those rows does not include the vector (1,0,...,0).
This means there must exists a vector u € Zg such that w is orthogonal to all these rows of
M but is not orthogonal to (1,0,...,0), (i.e., the first entry of w is nonzero). We consider a
basis of U of Zg involving the vector uw and write (—A;d — Axd” + A3dz | Up) = (—Ai1d +
Azdly ||0) + (—Axd” |Up) = (~A1d + Aszds ||0) + Vi + au' for some a € ng and some
Vi € span’®*(U\ {u}). We note that each row of Vp lies in the subspace spanned by U\ {u} and
reveals no information about a. Now, since the first coordinate of u is nonzero, it follows that
the first column of (—Aad” || Up), i.e., —Aad”, depends on the vector a. But (—A2d” ||Up) M.
for all the corrupted rows of M contains no information about a since w is orthogonal to all
these rows. Thus, it follows that these rows do not leak information of —Asd”.

Hence, the only possible way for A to get information about —Asd” is through the ciphertext
components Cs g, corresponding to the uncorrupted rows of M. However, for each such row z,
A can only recover A;sp, + AQS%@ + Ags’B,x and

(—Ald — Ayd" + AgdlB I UB) M,
+ (WB,p(x) + Vé?;(z))T(AlsBJ + A28/é,5!3 + A3SIB,5L‘)
= (Ad + Asdly || Up) M, + WBT,p(x)(AlsB@ + Ayslp , + Asslp )

+ (Asd” || 0) M, + VD Assh,
(2)

information theoretically. Now recall that Vi j

@ & span®#(A%) hence we can write V]?g(x) as

2 (2 . (2 .
Vé’f))l(x) = V];/))(x) + A2R%,7p($)A;— where V];B)(I) + span¥(A}%) and R} ) € ZE*F. Therefore,
we have

(A2d” [ 0) M, + V) Asslh,

B,p(z)

= (A2d" [ 0) M, + (VD + ASRY, ) AS) Assh,

= (A2d" || 0) M, + V)| Aosly, + ARy A5 Ay,

Bip(z)

= (Agd,/ H 0) M, + V( )T AQS z T AQR%TP(I) % P

B,p(z)

Since the labeling function p is injective, it follows that ‘7(2)( ¥ R/, pa) ATe freshly ran-
dom matrices that appear nowhere else. This means given Aisp, + Ags .+ Ass’ B and

(A1d+A3d || UB) 1+W];— p(z )(AlsB x+A23 +A3SB:1:) (A2d// H 0) $+V(2)2—)A28Bx7

if Ays’; . is nonzero (note that Ags’; . = 0 with negligible probability), any value of —Aod”
can be explained by a particular value of VE(; ;(I), RY, .. It follows that —Asd" is information
theoretically hidden to A. This completes the proof of Lemma 5.29. |
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Lemma 5.30: For every (possibly unbounded) adversary A, there exists a negligible function
negl3(-) such that for all X € N, |pa12(A) — pa13(N)| < negliz(A).

Proof: The proof is similar to that of Lemma 5.6 with some minor changes that can be easily
figured out. |

Lemma 5.31: If the SD%@'—}BQ,B?, assumption holds, then for all PPT adversary A, there exists
p.A,14:(j—l)()\> - pA,14:j(/\)‘ < "eg|14:j()\)

a negligible function neglyy.;(-) such that for all X € N,
for all j € [q].

Proof. Suppose there exists a PPT adversary A that distinguishes between Hyby4.(j—1) and
Hyb,,.; with non-negligible advantage. Using A as a subroutine, we construct below a PPT

adversary B that has a non-negligible advantage in solving the SD%@HBQ’ B, broblem. The
algorithm B gets an instance of the SD%SH B,.B; Problem from its challenger that consists of
G = (p,G1,G2,Gr, 91, 92, €), [Bil2, [B2l2, [Bs]2, basis(BY), basis(Bj ), basis(B5, B3 ), and [tg]2
for random f < {0,1} where and tg < span(B3) when § = 0 and tg < span(By, B3) when
B = 1. The algorithm B proceeds as follows:

Generating the Global Public Parameters: B samples matrix A; + spank(Bi‘ ) by using
basis(B7). Thus, A; can be expressed as A; = B} R for some R « Z’;Xk. B implicitly sets
Ai = B,V where V = (R™!)T. Observe that, since R + Z’;Xk, V exists with all but negligible
probability. B also implicitly sets Ay = B3, A3 = B3;. B then explicitly sets A5 = By and
A3 = Bs. Note that AZTA;? =Tifi=jand 0if i # j for i,j5 € [3]. B then samples
random h, b’ + Z’;, implicitly sets h = V~'h = R"h, and sets H = [B1]o ® h+ [B]a ® h" =
[Bih+Byh']y = [Ajh+ Ajh"]y. Observe that h is uniformly distributed over Z% since h Zk
and R € ZI;XI‘“ is invertible. B also samples a random seed seed < S for the strong randomness
extractor and sets the global public parameters GP = (G, [A1]1, H, seed).

Generating Authority Public-Master Keys: Whenever A requests to set up an authority
u € AU of its choice, if an authority setup query for the same authority v has already been
queried before, B aborts. In the post-challenge query phase, if additionally A submitted an
authority public key PK,, for the same authority v while querying the challenge ciphertext, B
aborts. Otherwise B runs AuthSetup to generate a public-master key pair (PK,, MSK,) for the
authority u as follows. B samples random Wy ,, Wg, < Zf;kX% and sets PK, = (Pa, =
[[W,IuAl]]laPB,u = [[W;uAl]]l) and MSK,, = (W4, Wg,). B provides PK, to the attacker
and stores (PK,, MSK,). Whenever A requests the master secret key of the authority u at a
later time, B provides it to A.

Generating the H Oracle Outputs: For all ¢ € [g], in response to the t™ fresh H oracle
query of A for some global identifier GID;, B generates H(GID;) as follows:

e For t < j, B samples random vectors iLG|Dt, h’GlDt,h'G’lDt — Z’; and implicitly sets hgp, =
V_th”)t = RThG|Dt. l/Dj then sets H(GlDt) as H(G|Dt) = ([[Bl]]QGtht)EB ([[BQ]]Q@h/GllDt) H
([Bsl2 © hgp,) = [Bihaip, + Bohgp, + Bshgp,l2 = [Ajhap, + A5hgp, + Ashgp,[2-
Observe that hgp, is uniformly distributed over Zl; since hgip, Z’; and R € Z’;Xk is
invertible.

e For t = j, B first samples a random vector fNLG|Dj — Zlg and implicitly sets hgp, =
V~lhgp, = R"hep,. B then sets H(GID;) as H(GID;) = ([Bi]2 ® heip,) B [ts]: =
[[BJL@DJ. +ts]2 = [AThaip, + tg]a. Observe that if t5 < span(Bj), then H(GID;) takes
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the form H(GID;) = [Biheio, + Bshgp lo = [Ajhcio, + A3hgp Jo where hip — Zj.
On the other hand, if ts3 <« span(Bs, B3), then H(GID;) takes the form H(GID;) =
[Biheip, +B2h,G/|Dj+B3h2;|Dj]]2 = [[AThGIDj+A§h,G/|Dj+A§h&|Dj]]2 where h/élev h%le < leg‘
Observe that in both cases, hGIDj is uniformly distributed over Z’; since hGIDj — Z]; and
R e Z’;Xk is invertible.

e For t > j, B samples random vectors BGIDt’h/GIDt — Z’; and implicitly sets hgip, =
V*1~hG|Dt = R"hgp,. B then sets H(GID;) as H(GID;) = ([Bi]2©haip,)B([Bs]2© hgp,) =
[Bihaip, + B3h/G|Dt]]2 = [Aihcp, + A};h’G'Dt]]Q. Observe that hgip, is uniformly distributed
over Z’; since iszt — Z’; and R € Z’;Xk is invertible.

It stores this value so that it can respond consistently if H(GID;) is queried again.

Generating Secret Keys: Whenever .4 makes a secret key query for some (GID,u) € GID x
AU, if an authority setup query for the authority v has not been made already, B aborts. In the
post-challenge phase, if an authority setup query for the authority v has not already been made,
A submitted the authority public key PK, for u while querying the challenge ciphertext, or for
each GID € GZD the vector (1,0,...,0) is in the span of all the rows of the challenge access policy
matrix M labeled by the authorities for which A submits the public keys {PK,} while querying
the challenge ciphertext plus the authorities for which A has made a master key query for u or
secret key query for (GID,u) so far, B aborts. Otherwise, B simply runs the KeyGen algorithm
using the public-master key pair it already created in response to the authority setup query for
authority v and generates a secret key SKGID,u = (kGID,A,u = IIWA,U . (hG|D + Aih)]]z, kGID,B,u =
[Wg.u - haip]2) for (GID,u). If H(GID) has not been generated so far, it follows the above
procedure to generate it during this time.

Generating the Challenge Ciphertext: At some point, A submits two messages,
msgg, msg; € M and an LSSS access structure (M, p) where M € ZﬁXd and p : [{] — AU
is an injective map. A also submits the public keys {PK, = (Pa, Pp)} for a subset Uy of
attribute authorities appearing in the LSSS access structure (M, p). If for all attribute authority
u for which B has created a public-master key pair for so far are not contained in Uy, and for
each GID € GID, the vector (1,0,...,0) is not in the span of all the rows of M labeled by the
authorities in U4 plus the authorities for which A has made a master key query for u or secret
key query for (GID,w), then B flips a random coin b < {0, 1} and generates a ciphertext CT as
follows.

First, B samples random vectors ¢(!) « span(B7) and c(23), 0542’3), cg’?’)
and basis(B3, Bj) respectively. Observe that the vectors c(l),cf’?)),cg’?’) can be viewed as
Aid, Axd’y + Aszd/y, Aad + Azd'y respectively. B also samples random matrices U, Up
ng;x(d—l).

by using basis(B7)

Let Y denote the subset of rows of the challenge access matrix M labeled by the author-
ities for which A supplies the authority public keys {PK, = ([[WX,UAI]]M [[WBT,uAl]]l)}. Let

Y = [J\Y. B samples $4,,85, < Z’; for all z € Y. B also samples random vectors

CS,)x’Cg,)a; < span(Bj) and cf”j),cgﬁ) < span(B;, B;) by using basis(B7) and basis(Bj, B;)

respectively for all # € Y. Observe that {cgé,cg)wcgi’),cg’i)}xe? also can be viewed as
{Ai1544, A15B .2, AQSZL:E + Agsz’x, Ags’]’ix + A33/B,x}z€17' Then B generates the challenge ci-

phertext CT = (M, p), C,{C1,4,2,C2.4,2,C1,B CQ,B@}QCGM), where

C = msgy, @ Ext(e([cM]1, H) - e([c®P]1, H), seed)
= msg;, D EXt(@([[Ald]]l, H) . 6([[A2d”]]1, H), seed),
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forall x € Y,

Crae = [A1842]1,

Cong = [[( M 4 33 UA)MI]] B (Papie) © 5a0)

— [(Ard + Aod)y + Asd)y | Ua)M,], B (P o) © 84.0),
C1,B2 = [A18B:]h,
Cop = [(=eV + eGP | UB)M,] 8 (Pp ) © 55.0)
= [(—A1d + Axdp + Azdy | Up)M,] | B (Pp ) © $B.2),

and for all z € Y,

Copz = _( c!! )+CA H Ua)M, +WAp(a;)(C(A)x+C(Ax))]]1

_ -(Ald—FAQdA—FA?,dAHUA) =
- | +WX p(z) (AlsA’z + AQ'SZL:E + A3824@> ’

CI,B,$: [ ( ) + (‘32):” = [[A13B$+A23/éx+A38/Bx:”17
Copa= (_cu) V| Up)M, + W pm(%’z +c? 3>)H 1
( Aid+ Agd// + Agd H UB)
Wi (AlsB,x + Agslh o+ AgsBﬁx)

Guess: A eventually outputs a guess bit v’ € {0,1}. B outputs 1 if b = b’ and 0 otherwise.

Observe that if t3 <« span(Bs), then H(GID;) simulated by B coincides with that in
Hyb4(j_1)- On the other hand, if t5 < span(Bg, Bs), then H(GID;) simulated by B coincides
with that in Hyby4 ;. All the other components simulated by B are also properly distributed.
Hence it follows that the games simulated by B coincides with Hyb,4.;_;) or Hyb,4 ; according
as f# =0 or 1. Thus, B can use A to attain non-negligible advantage in solving sp%2 BssBy.Bs
This completes the proof of Lemma 5.31.

Lemma 5.32: For every (possibly unbounded) adversary A and for all X\ € N, |pa14.4(N)] =
IpAa15(AN)]-

Proof:  Observe that the only difference between Hyb, ., and Hyb, ; is that in the former, H(GID)
is generated as H(GID) < G3* whereas in the latter, H(GID) = [rqip]o B H where rgp < Z3* for
all global identifiers GID for which the challenger needs to generate the H oracle output. Thus,
in order to prove these two games are indistinguishable, it is enough to show that the values
H(GID) are distributed identically in the two games.

To see this, note that for all global identifiers GID, since rgp < Z3k, then rgp can
be expressed as Athgp + A;il,'G’lD + A;ﬁ’GlD where iLG|D,iLg|D,f~LIG|D +— Zp. This is because
(A3|| A3 || A3) spans Z3*. Also, in these hybrids, we have H = [A{h + A3h"]; where
h,h" « Z%. Thus H(GID) generated in Hyb5 can be expressed as H(GID) = [rep]e B H =
[(Af hG|D + A*h'G’|D + A*h’GlD) (ATh + A5h")[2. Thus, we have H(GID) = [Aj( (heip — h) +
A*(h’élD h") + Aghch]]Q Since the vectors hGIDth|D are uniformly random over Z and
uncorrelated, it follows that hgp — h, hGID — h” are also uniformly random over Z]; and un-
correlated. Hence it follows that H(GID) generated in Hyb;s are uniformly and independently
distributed in G , or in other words, identically to those in Hyb,.,. This completes the proof
of Lemma 5.32. [}
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Lemma 5.33: If the SD([J;’BEHB%B3 assumption holds, then for all PPT adversary A, there exists
a negligible function neglyq.;(-) such that for all A € N, Ipat6:-1)(A) = PAt6 (A)] < neglig.; (M)
for all j € [q].

Proof: The proof is analogous to that of Lemma 5.31 with some minor changes that can be
easily figured out.

Lemma 5.34: For every (possibly unbounded) adversary A, there exists a negligible function
negly7(-) such that for all X € N, |pa16:q(A) — pa17(N)| < negli7(A).

Proof: The proof is similar to that of Lemma 5.6 with some minor changes that can be easily
figured out. |

Lemma 5.35: For every (possibly unbounded) adversary A, there ezists a negligible function
neglig() such that for all X € N, [pa17(A) — pa18(A)] < neglig(A).

Proof The proof of this lemma is very similar to that of Lemma 5.29. We present it for
concreteness.

Observe that the only difference between Hyb,; and Hyb,g is that in the former game the
parameters {(A1d+ Azd"” + Asd)y || Ua) M, },c|q are shares of a secret that involves Aad” with
d’ « Zk that is part of the input to the strong randommess extractor generating the mask
for the message msg,, whereas in the latter game, the secret involves Apd’j with d} < Z’;
that is independent from d”. Therefore, in order to prove these two games are statistically
indistinguishable, we will argue that the portion of the secrets being shared by span(Az) are
information theoretically hidden to the adversary A in Hyb,-.

First observe that the portion of the secrets being shared that lie in span(A;), i.e., A1d, is in-
formation theoretically revealed to A by the ciphertext component C' = msg, GExt(e([A1d]1, H)-
e([A2d"]1, H), seed).

We note that the shares (A1d + Axd” 4+ Azd/, || Ua) M, for all the rows x of the challenge
access matrix M labeled by corrupted authorities (i.e., the authorities for which A either requests
the master key or creates it on its own) are information theoretically revealed to A. Further,
observe that the shares (A;d+ Aad” + Azd/y || Ua) M, for no other rows z of M is fully leaked
to A. In order to see this, note that for all the rows x corresponding to corrupted authorities, A
knows the values W—r (x)AQ information theoretically, but it does not get to know W;‘r oo )A2

for any uncorrupted rows x of M. This is because the only way for A to learn W Ap(s )A2 for
uncorrupted rows is by asking a secret key query corresponding to (GID, p(x)) for some global
identifier GID. As per the description of Hyb,7, such a secret key SK¢p, () would look like

SKGID,p(z)
(KchAp = [Wa p@) - (haip + H)]2, Kaip,B,p(x) [[WBp -haip]2)
= (Keip,apz) = [Wap@) ((Peip —H) +H)l2, Kaip,B,p(z) = [Wa,p(x)PciD]2)
= (Kaip,ap(x) = [Wapz)Pcibll2; Keip,Bpx) = [Wa p(z)hGlD]] ),

where pgip + span(A*{, A3). The second equality follows from the fact that in Hyb;; H(GID)
is generated as H(GID) = [pcip]2 B H with pgp ¢ span(Aj, A3). Thus, it follows that a
secret key SKgip,y(z) only reveals W;lr’p(x)Al and Wlp(w)Ag but does not leak Wlp(x)AQ to
A information theoretically. Hence, it follows that A can only learn WZP(@AQ and hence
(Aid + Asd” + Asdy || Ua) M, information theoretically.

However, by the game restriction the subspace spanned by those rows does not include the
vector (1,0, ...,0). This means there must exists a vector u € Zg such that w is orthogonal to all
these rows of M but is not orthogonal to (1,0,...,0), (i.e., the first entry of w is nonzero). We
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consider a basis of U of Zg involving the vector w and write (A1d+ Asd” + Asd/, || Ua) = Va+

au’ for some a and some matrix V € span®*(U\{u}). We note that each row of V4 is uniformly
distributed in the subspace spanned by U\ {u} and reveals no information about a. Now, since
the first coordinate of w is nonzero, it follows that the first column of (A1d+ Axd"+ Asd/, || Ua),
ie., Aid+ Azd” + Asd/,, depends on a. But the shares (A1d + Axd” + Aszd, ||U4) M, for
all the corrupted rows of M contains no information about a since u is orthogonal to all these
rows. Thus, it follows that these rows do not leak information of A;d + Asd” + Azd/,. This
means the information of A>d” + Asd’, is not revealed to A by these rows.

Hence, the only possible way for A to get information about Asd” is through the ciphertext
components Ca 4, corresponding to the uncorrupted rows of M. However, for each such row z,
A can only recover Ai184, + Agsf&x + Ags;w and

(Ald + Agd” + A3di4 H UA)Mx

+ (W) + V§ ,z(z)) (A8, + Agsy, + Azsly,)
= (Ard + Azdy |Ua) M, + W ) (A1sas + Assly , + Azs'y )

+ (Aod” [ 0)M, + VDT Assly,

information theoretically. Now recall that Vf;(x) < span®*( A%) hence we can write v as

A,p(x)
‘M/j ;(x) + ASR A pa )A;— where V( ) span®*(A%) and Ry o) € Zngk. Therefore, we have

Ap(x)
(Ayd” | 0) M, + Vfg(z)

= (Asd" [ 0) M, + (V2

— (Ad" | 0) M, + V‘Q)(T)Azs;@ ot AQR} A5 Azsly

Agsi&x
+ AgRA,p(:c) A;)TAQ Siil,x

information theoretically. Since the labeling function p is injective, it follows that ‘N/fp)(x), R4 p)

are freshly random matrices that appears nowhere else. This means given A;s4 . + Agsfﬁm +

Azsy, and (Ard + Asd)y |Ua) My + W 0 (Arsag + Ass’y, + Ass)y ;) + (A2d” || 0) M, +

Vfg 3( )AQSA o i A184 .+ Agsifm + A3S/A,w is nonzero (note that A1say+ Azsg,m + A38£47I =

0 with negligible probability), any value of Asd” can be explained by a particular value of

Vfg p)(x) Ry ). It follows that Asd” is information theoretically hidden to A. This completes
the proof of Lemma 5.35. n

Lemma 5.36: For every (possibly unbounded) adversary A, there exists a negligible function
neglig(-) such that for all X € N, |pa18(A) — pa19(N)]| < neglig(A).

Proof. The proof is similar to that of Lemma 5.6 with some minor changes that can be easily
figured out. |

Lemma 5.37: For every (possibly unbounded) adversary A, there ezists a negligible function
neglyy () such that for all X € N, [pa19(A) — pa20(N)] < neglyg(A).

Proof: Observe that in Hyb, g, the value d” € Z’; is information theoretically hidden to A. This
means that e([A2d"]1, H) is uniformly random and therefore has klog(p) bits of min-entropy,
ie., Hy(e([A2d"]1, H)) = klog(p) (recall that H = [Ajh + A3h"]2 in Hyb,g). Thus, if Ext
is parameterized correctly, then Ext(e([A1d]1, H) - e([A2d"]1, H), seed) (which masks msg;) is
statistically close to uniform in A’s view. This completes the proof of Lemma 5.37. |
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