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Abstract. In this paper, we analyze the recently proposed stochastic primal-dual hybrid gra-
dient (SPDHG) algorithm and provide new theoretical results. In particular, we prove almost sure
convergence of the iterates to a solution with convexity and linear convergence with further structure,
using standard step sizes independent of strong convexity or other regularity constants. In the gen-
eral convex case, we also prove the O(1/k) convergence rate for the ergodic sequence, on expected
primal-dual gap function. Our assumption for linear convergence is metric subregularity, which
is satisfied for strongly convex-strongly concave problems in addition to many nonsmooth and/or
nonstrongly convex problems, such as linear programs, Lasso, and support vector machines. We also
provide numerical evidence showing that SPDHG with standard step sizes shows a competitive prac-
tical performance against its specialized strongly convex variant SPDHG-u and other state-of-the-art
algorithms, including variance reduction methods.
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1. Introduction. The stochastic primal-dual hybrid gradient (SPDHG) algo-
rithm is proposed by Chambolle et al. [6] for solving the optimization problem

n

(L.1) ggg;fi(flﬂ) +9(z),
where f;: V; = RU{+o0} and g: X — RU {400} are proper, lower semicontinuous
(Ls.c.), convex functions and f is defined as the separable function such that f(y) =
Yoy filyi). Ai: X — Y is a linear mapping and A is defined such that (Az); = A;z.
The classical approaches provide numerical solutions to (1.1) via primal-dual
methods. In particular, a common strategy is to have coordinate-based updates for
the separable dual variable [6, 52]. These methods show competitive practical per-
formance and are proven to converge linearly under the assumption that f; Vi and g
are p; and pg-strongly convex functions, respectively. Step sizes of these methods in
turn depend on p;, /14 to obtain linear convergence. SPDHG belongs to this class.
Chambolle et al. provide convergence analysis for SPDHG under various assump-
tions on the problem template [6]. Indeed, SPDHG is a variant of the celebrated
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primal-dual hybrid gradient (PDHG) method [7, 8], where the main difference is
stochastic block updates for dual variables at each iteration. In the general convex
case, [6] proved that a particular Bregman distance between the iterates of SPDHG
and any primal-dual solution converges almost surely to 0 and the ergodic sequence
has a O(1/k) rate for this quantity. Note, however, that this result does not imply the
almost sure convergence of the sequence to a solution, in general. However, this result
does not give guarantees on the expected primal-dual gap function (see (4.28), (4.21)),
which is the standard optimality measure. If f; and g are strongly convex functions,
SPDHG-p, which is a variant of SPDHG with step sizes depending on strong convex-
ity constants, is proven to converge linearly [6, Theorem 6.1]. Estimation of strong
convexity constants can be challenging in practice, restricting the use of SPDHG-p.

Since its introduction, SPDHG has been popular in practice, especially in compu-
tational imaging, with implementations in different software packages [16, 26, 32, 38].
Despite the practical interest, fundamental theoretical results regarding the conver-
gence of SPDHG remained open, including almost sure convergence, O(1/k) conver-
gence rate for expected primal-dual gap, and adaptive a linear convergence.

In its most basic form, step sizes of SPDHG are determined using ||4;|| and proba-
bilities of selecting coordinates [6]. It is often observed in practice that the last iterate
of PDHG or SPDHG with these step sizes has competitive practical performance. Yet,
only ergodic rates are known for this method with restrictive assumptions [6, 8]. In
this paper, we analyze SPDHG with standard step sizes and provide new theoretical
results, paving the way for explaining its fast convergence behavior in practice.

1.1. Our contributions. We prove the following results for SPDHG:

General convex case. We prove that the iterates of SPDHG converge almost surely
to a solution. For this purpose, we introduce a representation of SPDHG as a fixed
point operator in a duplicated space. For the ergodic sequence, we show that SPDHG
has O(1/k) rate of convergence for the expected primal-dual gap. To prove this
result, we introduce a generic technique that is applicable to other stochastic primal-
dual coordinate descent algorithms. Moreover, we prove the same rate for objective
residual and feasibility for linearly constrained problems.

Metrically subregular case. When the problem is metrically subregular (see sec-
tion 2.3), we prove that SPDHG has linear convergence with standard step sizes,
depending only on A; and probabilities for selecting coordinates. Our result shows
that without any modification, basic SPDHG adapts to problem structure and attains
linear rate when the assumption holds.

Practical performance. We show that SPDHG shows a robust and competitive
practical performance compared to SPDHG-u of [6] and other state-of-the-art meth-
ods, including variance reduction and primal-dual coordinate descent methods.

We summarize our results and compare with those of [6] in Table 2.

2. Preliminaries.

2.1. Notation. We assume that X and ) are Euclidean spaces and that Y =
[T, Yi. We define 2 = X x Y and z = (z,y) € Z. For positive definite Q, we
use (z,y)go = (Qx,y) for denoting weighted inner product and ||9c||?;) = (Qz,z) for
weighted Euclidean norm. We overload these notations to also write for a vector o
with o; > 0, ||ly||2 = (y, diag(co)y). For a set C, and positive definite @, the distance of
a point « to C, measured in || - ||, is defined as disté(x,C) = mingec |z —ylg = |lz -
Pég ()[|3), where we have defined the projection operator P implicitly. When Q = I,
we drop the subscript and write dist(z,C). For o € R™, we use the elementwise inverse
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o=t =(o7',...,0,"). The domain of a function h is denoted as dom h. We encode
constraints using the indicator function: dgy(2) = 0 if 2 = b and 0y (7) = +oo if
x #b.

Given a vector z, we access the ith element as ;. We define e(i) € Y such that
e(i); = 1if j =4 and e(i); = 0 if j # i. Moreover, we use E(i) = e(i)e(i) . Unless
used with a subscript, 1 in Kronecker products denotes 1,, € R", all-ones vector.

Given a vector x € X, we use a bold symbol  to denote the duplicated version
of this vector, which consists of n copies of x, and the corresponding space is denoted
by X = X™. Similarly, the duplicated dual space is Y = Y™ and Z2 = X x Y. The
copies might be the same, or different, depending on how « is set. To access ith copy,
we use the notation x(i) € X. For the operator T: Z — Z, and a duplicated vector

g € Z, we denote the output as T(q) = (?Egg) For example, the ¢th primal copy is
Y

denoted as T,(q)(i) € X. Similarly, for the ith primal copy in g, we use q,(i) € X.
To access ith primal and dual copies, we use q(i) € Z.

For example, when we pick one coordinate at a time, we can set X = R?, Y = R",
which would result in the duplicated spaces X = R Yy = R”27 and Z = Rin+n®,

The probability of selecting an index ¢ € {1,...,n} is denoted as p; > 0, with
St pi = 1. We define P = diag(p1, . ..,p,) and p = min, p;. Notation F, defines the
filtration generated by randomly selected indices {i1,...,9k—1}. Let Ex [[] :=E[- | Fy]
denote the conditional expectation with respect to Fy.

The proximal operator of a function h is defined as

1
(2.1) prox, ,(z) = argmin h(u) + = |lu — z||>_..
’ ueX 2 T

The Fenchel conjugate of h is defined as h*(y) = sup,cr (2, y) — h(z).

2.2. Solution. Using the Fenchel conjugate of f, (1.1) is cast as the saddle point
problem

2.2 min sup Az, yi) — [ (yi) + g(z).
2.2 miy s 3 (Aie ) — 70+

A primal-dual solution (z*,y*) € Z* is characterized as

T, * *
(23) 0e |5 ki) < Fatn).

Given the functions g and f* as in (2.2), we define

(2.4) Dy(x;2) = g(x) — g(Z) + (A" g,z — 7),
(2.5) Dy-(y;2) = f*(y) — f*(§) — (Az,y — 7).
When z = 2* = (2*,y*), with 2* denoting a primal-dual solution as defined

in (2.3), we have that (2.4) and (2.5) are Bregman distances generated by functions
g(z) and f*(y). In this case, these Bregman distances measure the distance between
z and z*, and y and y*, respectively. Given z, Dp(z;2*) is the Bregman distance
generated by h(z) = g(z)+ f*(y) to measure the distance between z and z*. Moreover,
the primal-dual gap function can be written as G(z) = sup;¢z Dy« (2; Z) + Dy(y; 2).

2.3. Metric subregularity. For Euclidean spaces U4,V and a set valued map-
ping F': U = V, we denote the graph of F by graF = {(u,v) € U x V:v € Fu}.
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We say that F' is metrically subregular at @ for v, with (@,?) € gra F', if there exists
1o > 0 with a neighborhood of subregularity A (@) such that

(2.6) dist(u, F~10) < no dist(v, Fu) Yu € N(a).

If N(u) = U, then F is globally metrically subregular [14]. An absence of metric
subregularity is signaled by 79 = +oo. This assumption is used in the context of
deterministic and stochastic primal-dual algorithms in [15, 29, 31].
In this paper we shall study how the metric subregularity of the Karush-Kuhn-
Tucker (KKT) operator F' in (2.3) implies the linear convergence of SPDHG.
The metric subregularity of F' holds in the following cases:
1. fF and g are strongly convex functions, since N'(z) = Z.
2. The problem (1.1) is defined with piecewise linear quadratic (PLQ) functions
and domg and dom f* are compact sets, in which case N (zZ) = domg x
dom f*. In particular the domain of a PLQ function can be represented as
the union of finitely many polyhedral sets and in each set, the function is a
quadratic (see [29, Definition IV.3]). Problems with PLQ functions include
Lasso, support vector machines, linear programs, etc.

Remark 2.1. In the first example above, compact domains are not needed since
metric subregularity holds globally for these problems. One can also relax strong
convexity in the first case to weaker conditions (see [30]). Importantly, compact
domain assumption is only needed in the second example mentioned above in this
paper, for PLQs. The reason, as we see in Theorem 4.6, is the lack of control on
the low probability event that the trajectory makes an excursion far away. The same
assumption for proving linear convergence of another primal-dual coordinate descent
method is also needed in [29].

3. Algorithm. The algorithm SPDHG is given as Algorithm 3.1.

Algorithm 3.1 Stochastic PDHG [6, Algorithm 1].
Input: Pick step sizes o;,7 by (3.1) and 2° € &, 4 = y! = y* € Y. Given
P = diag(p1,--.,Pn)-
for k=1,2,... do
a¥ = prox, ,(zF 1 — 7ATHF)
Draw iy € {1,...,n} such that Pr(i =) = p;.

k+1 _ k . ek
Yo, = prOXUikyffk (yik +oi Aix )

Yyt =gk Vi,

end for

Remark 3.1. We use serial sampling of blocks in our analysis for the ease of no-
tation. We can extend our results with other samplings by using expected separable
overapproximation (ESO) inequality as in [6].

We use the standard step size rules for primal and dual step sizes [6]:
(3.1) p; o Ail* <47 < 1.

Assumption 1. We have the following assumptions concerning (1.1).
1. f; and g are proper, l.s.c., convex functions.
2. The set of solutions to (1.1) is nonempty.
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3. Slater’s condition holds, namely, 0 € ri(dom f — A dom g), where ri stands for
relative interior [4].

Slater’s condition is a standard sufficient assumption for strong duality, used
frequently for primal-dual methods [4, 6, 7, 19, 29, 47]. Strong duality ensures that
a dual solution exists in (2.2) and the set of primal-dual solutions is characterized
by (2.3).

4. Convergence. We start with a lemma analyzing one iteration behavior of
the algorithm. This lemma is essentially the same as [6, Lemma 4.4] up to minor
modifications and is included for completeness, with its proof in section A.3. We first
introduce some notation.

1 1 _
V(2) = 5llzlZ-s + 5lIyll-1 pr + (Az, P My),

1 B _ 1 _
(A1) Vilay) = llal? o — (Az, PR~ ) 4 Sl A R
1
+ Iyl
We also define the full dimensional dual update
(4.2) grtt = proxai,f'*(yll-C + 0 A% Vie{1,...,n}.

LEMMA 4.1. Let Assumption 1 hold. It holds for SPDHG that, Vo € X ,Vy € ),

(4.3) Dy(a*;2) + Dp- ("5 2) < Vi@ —z,0" — )
— B [Vipa(a* — 2,y —y)] =V (F =24,

Moreover, with C; = 1 — v, under the step size rules in (3.1), we have

1 1
@) VEE= A 20 (Gl - R gl - ),

1 1 _ 1
(45) Vi) 2 O (Gllolfo + 310 = oo )+ g

4.1. Almost sure convergence. In this section, we present the almost sure
convergence of the iterates of SPDHG to a solution of (1.1).

We start by introducing an equivalent representation of SPDHG that is instru-
mental in our proofs. The motivation of this representation can be seen as similar
to [22], where the focus was on PDHG. In particular, this representation shifts the
primal update so that the algorithm can be written as a fixed point operator. Since
7**! depends on the selected index i, at iteration k, the operator T is defined such
that all the possible values of 71, and consequently, of 2**1, are captured.

LEMMA 4.2. Let us define T: Z — Z that to (x,y) associates (&,7) such that
Vie{l,...,n},
(i) = prox, ;. (y(i) + diag(c) Az(i)),
() = y(@) + (1+p; (G0 — y(D)i)e(@),
(Z) prOXT,g (QB(Z) - TATg(Z))v

where (i) € X, y(i) € V.

(33
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The fized points of T are of the form (x(i),y(i)) such that (x(i),y(i)) € Z*

Vie {l,...,n}. Moreover,

( k+1a @’H_I) = (Tz(l ® xka 1® yk)(ik)va(l ® $k7 1® yk)(1)> :

We also denote

S = blkdiag(T ™ Ianxdn, Inxn @ 0 1),
-P - blkdiag(pl-[dxd, cee apnIdXdaplann; e apnIan)~

We then have

ITl®2* 10y*) - 1es*, 10y")|%p = B [[l"T — 2220 + |y" T — ¥ )220 50 ]

Before presenting the proof of the lemma, we use an example to illustrate the

notation and the main idea behind it.

Ezxample 4.3. Let d =1, n =2, then = (2(1;) ER?, y= (y(l)) € R*, and

S = diag(Tfl,Tfl,al_

(2 y(2)

1 -1 _—1 -1 6x6
,05 ,07 ,05 ) € RP*®

P = diag(p1, p2, p1,p1, p2, p2) € RO¥C.

Then, we have by letting x =1 ® xk, y=1® yk,

J(1) = prox, s (y* + diag(c)Az"),
g(1)=y"+ (1 +p;") {@7(1)10— ylf] :

#(1) = prox, ,(«* — 7ATg(1),

(1)

We have T(1 ® 2%,1 ® y*) = ({m( 2)|”

§(2) = prox, ;. (y" + diag(o) Az"),
. 0

@ =+ ]

(zF —7ATg(2)).

<

I

(2) = prox; 4

} [ZE ﬂ) By using the definition of §*+!

in Lemma 4.1, we see that (zF*1 g*t1) = (£(1),9(1)) if i, = 1 and (281, gF+!) =
(£(2),9(1)) if ix, = 2. Note that we can take any copy of § as §(1) = §(2). Moreover,

depending on iy, one obtains y**! from 7

in SPDHG (see Algorithm 3.1).

with a coordinatewise update, as given

Proof of Lemma 4.2. Let (x,y) be a fixed point of T. Then it follows that
y(i) = prox, ;. (y(i) + diag(o) Az (i) Vi, §(i) = y(i), Vi and x(i) = prox, ,(@(i) —
7ATy(i)), Vi. Hence, optimality conditions for each i are the same as (2.3). Therefore,
fixed points of T are such that (x(i),y(i)) € Z* Vi.

The equality (z**!

) = (L@ b, 10 yh) (i), T, (1@ 2, 1@ y¥)(1)) is just

another way to write the algorithm. Since when inputted (1 ® 2,1 ® y*), T outputs
(1 ® g*+1) for the dual variable, we can simply take first copy for g++1.

For the last result, we use ||yk+1

M:

i=1

NNgE

i=1

yF|12-
IT1®2* 10y - (1ea* 109%)%s

1 :Ek[‘lyk—i_l Y HU 1p- 1} to show

(ITe(t@ a2 1@ y*) (@) — 2™ |3-api + 1T, (1 @ 2", 1@ y*) (i) — y*(5-2p:)

(1T (1@ a*, 1@ ") (@) = |2-pi) + 185 =y 5 (D pi)

i=1

= Ei [llz" = 220+ Iy = yF 15 pa]

where we also used that Y ;" p; = 1.
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We proceed with the main theorem of this section. We present the main ideas and
ingredients that make the proof possible in the following proof sketch. The details of
the proof using classical arguments from [5, 11, 24] are deferred to section A.1. Let
us define

(4.6) AF = Vi1 (b — 2%y — ).

THEOREM 4.4. Let Assumption 1 hold. Then, it holds that E[Vy(z*~! — a*, y* —
y*)] < A% ST E[V(2F = 2R < A Moreover, almost surely, there exists
(z*,y*) € Z*, such that the iterates of SPDHG satisfy (z¥,y*) — (z*,y*).

Proof sketch. On (4.3), we pick (x,y) = (z*,y*) and by convexity, D, (z"*; 2*) > 0,
Dy« (9% 2*) > 0. Next, by using the definition of A*, we write (4.3) as

Ei [AF] < AR V(2R = 2.

We apply Robbins-Siegmund lemma [43, Theorem 1] to get that, almost surely, A*
converges to a finite valued random variable and V(2% — 2¥~1) — 0. Consequently,
by (4.4), ||y* —y*~!|| converges to 0 almost surely. Since, almost surely, A* converges
and [|y* — y* || converges to 0, we have that ||z* — 2*|| converges almost surely.

Next, we denote ¢* = (1 ® 2,1 ® y*) and use the arguments in [11, Proposition
2.3], [19, Theorem 1] to argue that there exists a probability 1 set Q such that for every
z* € Z* and for every w € Q, ||z (w) — 2*|| converges and || T(q*(w)) — ¢*(w)|| — 0.
As for every w € Q, (2¥(w))y is bounded, we denote by Z = (&,7) one of its cluster
points. Then, we denote ¢ = (1 ® #,1 ® §) and have that g is a cluster point of
(¢" ().

The key step in our proof that enables the result is the fixed point characterization
of T in Lemma 4.2. With this result, we derive Z € Z* as q is a fixed point of 7.

To sum up, we have shown that at least on some subsequence z*(w) converges
to 2 € Z*. As for every w € Q and 2* € Z*, ||zF(w) — 2*|| converges, the result
follows. O

4.2. Linear convergence. The standard approach for showing linear conver-
gence with metric subregularity is to obtain a Fejer-type inequality of the form [29]

(4.7) Ex [cl(zkJrl -2")] < d(zF — 2%) = V(T(2%) = 2%)

for suitably defined distance functions d, V' and operator T. However, as evident
from (4.3) and the definition of V41, one iteration result of SPDHG does not fit into
this form. When z = 2%,y = y*, Vip1(2® — 2%, y*+1 — y*) does not only measure
distance to solution, but also the distance of subsequent iterates y**! and y*. In
addition, Vi includes 2* — z* and y**! — y* rather than ¥+ — 2* and y*+! — y*,
which further presents a challenge due to asymmetry, for using metric subregularity.
Therefore, an intricate analysis is needed to control the additional terms and handle
the asymmetry in V1. In addition, Lemma 4.2 is a necessary tool to identify 7T'.
We need the following notation and lemma, which builds on Lemma 4.2, for
easier computations with metric subregularity. For the operators, we adopt the con-
vention in [29]. Operator C is the concatenation of subdifferentials, and M is the
skew symmetric matrix that is formed using matrix A. Operator F' is the KKT oper-
ator and H is the “metric” that helps us write the algorithm in proximal point form
(see Lemma 4.2). Due to duplication in Lemma 4.2, we need duplicated versions of

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 08/14/23 to 128.104.153.42 . Redistribution subject to STAM license or copyright; see https://epubs.siam.org/terms-privacy

ON THE CONVERGENCE OF STOCHASTIC PDHG 1295

C and M. Consistent with the notation of Lemma 4.2 (also see section 2.1), we use
boldface to denote operators in the duplicated space.

LEMMA 4.5. Under the notation of Lemma 4.2, to write compactly the operation
of T, let us define the operators

C: (z,y) = (09(x), 01" (y)),

M: (z,y) = (Aly, —Ax),

C: (z,y) — (99(x(1)),...,99(x(n)),0f (y(1)),...,0f"(y(n))),
M: (z,y)— (ATy(1),...,ATy(n), —Az(1),..., —Ax(n)),
F=C+M

and

H: (z,y)— (7_133(1) +AT(1 +pf1)E(1)y(1), o
rle(n)+ AT (1 +p, HYEMm)y(n), e ty(1),..., a_ly(n)) .

Let ¢* = (1@, 10yk), ¢ = T(g") and 2441 = (%1, 95+1) = (g5 (i), @, T (1)).
Then, we have (H — M)q* € (C + H)?]k“, (M — H)((j{lﬂ1 —q") e (C+ M)(]kH,

Ej [dist?(0, F2"1)] = By [dist?(0, (C + M)zF+1)] = dist%(0, (C + M)g").

Proof. We start by the representation in Lemma 4.2 by incorporating the update
of 7**! and recalling the definition of E(i) = e(i)e(i)" Vi € {1,...,n}

§(i) = proxg, ¢ (y(i) + diag(o) Az(i)),
(i) = prox, o (x(i) = TAT [y(i) + (1 +p; HE@)(5(0) - y(0))])
= prox, ,(z(i) — TAT (1 +p; ) E@)§(i) + TAT (~Lusen + (1 + p; HE(i))y(3)).

We now use the definition of proximal operator to obtain

o~ y(i) + Ax(i) € f*(§(0)) + o~ 5(1),
T (i) — ATy(i) + AT(L+p; ) E(i)y(i) € 9g(2(i)) + 7 1a(0) + AT(1+p; ) E(i)g(0).

We identify

[ (1) + AT(1+prHE[D)y(1) ATy(1)

) + AT+ p Y Em)y(n) R R ey
Hq* o_—ly(1p> Y an —A:Z!(].) 7Cq J

o~ ly(n) | Ax(n)] 0f*(y(n))

We set ¢ = ¢* and ¢ = (}kH and use the definition of 7" in Lemma 4.2 to obtain the
first inclusion.

The second inclusion follows by adding to both sides M f]kH

and rearranging.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 08/14/23 to 128.104.153.42 . Redistribution subject to STAM license or copyright; see https://epubs.siam.org/terms-privacy

1296 AHMET ALACAOGLU, OLIVIER FERCOQ, AND VOLKAN CEVHER

For the equality, we write
K [dist?(0, (C + M)zFH)] Zdlst L (C+ M) (i))pi

= dlStP( (C + M)g"™),

where the first equality follows by 28+ = (zF+1 ght1y = (g5 +1 (i), i]lf' (1)) and the

second equality is by the definitions of C, M, C, and M and (}SH( ) =

a, (1) Vi. 0
We continue with our assumption for linear convergence (see section 2.3).

Assumption 2. Metric subregularity holds for F' (see (2.3) and section 2.3) at all
z* € Z* for 0 with constant 1 > 0 using || - || with S = diag(7 1,07 ",..., 0, 1),
and the neighborhood of regularity N'(z*) contains 2* Vk.

We present our main theoretical development in the next theorem, which states
that SPDHG with step sizes in (3.1) attains linear convergence with Assumption 2.
The proof idea is to utilize the term —V (z¥ —2%~1) in (4.3) to obtain contraction. For
this, we have to use the results of Lemmas 4.2 and 4.5 to write this term with the fixed
point characterization given in Lemma 4.2, which allows using metric subregularity.

We denote

(.’L’i 7y*)_a‘rg min Vk( 1_mayk_y)7
(w,y)eZ~

which exists since Vj, is a nonnegative quadratic function. We define (cf. (4.6))
AF = Vi (aF — a2,y =y,

= Ak - *Ily —yil5- >0

THEOREM 4.6. Let Assumptions 1 and 2 hold. Then it holds that
(4.8) By, [AF] < AR -V (P = 2

and

C
B St — b2+ g - g | < (1 p)h2e,

where, p = 6;1427 (=2+292|H - M]|? C=1—7.

Proof. Starting from the result of Lemma 4.1, we have
Dg(z 12)+ Dy (g B+l ) < —Ey [Vkﬂ(xk — ozttt — y)}
(4.9) + V(@b =z, g% —y) = V(2F = 2R,

We pick z = 2F~ ,y
2y)

yF with 2% = (2%71,y¥) and use convexity to get Dy(z*; 2¥) >
0 and Dy« (g% 0.

> 0. In addition, we define
Akfl — Vk(xkfl o xlifl’yk _ y’f),

AF = Vi (a8 — 271 yF Tt — by,
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We use these definitions in (4.9) to write
Eg {Ak} < AR V(R - 2R,

By definition of (z¥,y**1), we have A¥ < AF, which implies that

Ex [Ak] < ARy (R = 2R,

Recursion of this inequality gives the boundedness of the iterates xj and y, in ex-
pectation. However, it is not possible to derive sure boundedness of the sequence.
Without sure boundedness, the set that includes xy, yr depends on the specific tra-
jectory of the algorithm, and it is not possible to find a set independent of these. As
metric subregularity holds for PLQs with a bounded neighborhood (see section 2.3),
we cannot utilize this result and this is the main reason for the need for bounded do-
mains in this case. This assumption would ensure sure boundedness of the sequence,
which gives us a suitable set to use for using metric subregularity assumption for
PLQs.

We recall S = diag(r7'1,, oyt ...,07Y); S and P are as defined in Lemma 4.2,
and dist? (=¥, 2%) = |25 — PS. (2F)[2 = Jla* — 22, + " — y¥I2-., where &% is
the projection of z* onto the set of solutions with respect to norm || - ||,-1. We now
use Assumption 2, stating that F = C + M is metrically subregular at P5. (2¥+1) for
0. We recall, ¢* = (1@ 2%,1 ® y*) and ¢"™" = T(¢*) and estimate as

e = Z5I2 -0 + 1" = yfl5 -0 = distd(", 2) < By [l2° - PE. (23]

(4.10) < 2By, [||7 — 2FTYE] + 2By [||2FT — PR (2R 1],

where the first inequality is due to the definition of dist3(z*, Z*). Next, we estimate
the second term on the right-hand side

(411) 28 [[J54! = P2 (DIIE] < 20°Bx [dist3 (0, (C+ M)
= 22 dist}(0, (C + M)g™) < 20| M — H|?|¢" — ¢"||%5

with the first inequality being due to metric subregularity of C'+ M (see Remark 4.7)
since distg (291, Z2*) = [|2F1 —PZ, (2¥+1)||%. The first equality and second inequality
are by Lemma 4.5 and the Cauchy—Schwarz inequality. Joining the estimates gives

(4.12) fl2® = Z3)200 + [ly* — yfl12-0 < 2By [||2° - 243
+2i°|M — H|*l§""" - ¢"|[35.
First, we use [|§""! — y*[|2_, = Ey, [[[y** — y*||2_1 p_1] to estimate

Ei [[I2° — 23] = By [lla™* — 2®|2] + (19 — o5

(4.13) = B[4 — ab |2 + = R ]
Second, we use Lemma 4.2 to obtain

1" —q"2p = ITL@a" 10 y*) — 1@ 2" 10 y")%p
(4.14) =B [" — 2|20 4 I = R ]
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We combine (4.13) and (4.14) in (4.10) to get

1
1A [

1 ~k|2
B+

Hx —I

1 1
@15) < @+ 2PN - HIPJBL et = a2 G - ]

Herein, we denote ¢ = 2 + 2n?||H — M ||?.

By using (4.4), we have that, Yo € [0, 1],

1 1
o [V~ 7] 2 By [l — o5 2+ L = o
Cl « _ e 1 _ _

(4.16) > G (Gt - g R )
where the second inequality is due to (4.15) and « > 1.

We have, by the definition of z}_,, that

AR S V(@ =2yt - y’i)

|$k_1 k 1||

G ||:U | 1+*Hyk
— (P A —E) 1)7y’“ —y"h.

Next, by the Cauchy—Schwarz and Young’s inequalities with (3.1), we have

o—1p-1

_1‘
)

_ _ ke _ Y _ Y _ ~k—
—(PTIAGRT = ), = gh ) < Tl - g D - 2

Using the final estimate and adding and subtracting = 1+’Y lyF=t —yF=12

i gives

_ 1+ _ oy 1+ _ _
(417) AR < et - a2+ T

1+~ _ 1+y _
R e A T O LAt A =
We now take conditional expectation of both sides and use (4.16) to get
_ 1+ _ 1+ B
Ekfl [Ak 1] < wEkil [V(Zk _ Zk 1)] + ’yEkfl [Hyk _ yk 1”5711371]

OlOz
Ly et k=12
| N | e

+ Ek 1[“3/ —yFZ e 1}_W Yy

By using (4.4) and requiring that (Hj) < (151 "347 or equivalently ¢ > «a, which is not

restrictive since « is finite, and one can increase 7 as in (2.6) to satisfy the requirement,
we can combine the first two terms in the right hand side to get

201 4+9)¢ _ 1
B (8471 < 5o m [V(k = 25 4 3 (I = o]

1+~ _ _
ar et | A A |

We now insert this inequality into (4.8) and use that Ej_; [Ek [Ak]] =FEr_1 [Ak]
ClOz

Ep_1 [AF] < Epy [AP] - mEk—l [Ak*l]
Ci _ 2 My k=1 k—1y2
+4(1+ et ly* = y2 121 pi] IIy [T [
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We take full expectation and rearrange to get

C’la
4.18) E|AY — ———|jyF —y¥|2l o
(118) B[A* — 1Sl — o]

Cia ) k1 Ch k=1 k—1y2
<(l1—-r |E|AY — —————— |y =y 5 |

ek -z |

We require
Cia Ch &

4.19 Co=—"% <l L e 4 <(14+9)p
(4.19) S T R Tl T Ta e rry (e

Let us pick a = (14 )p so that Cy = % and define

o8 = A" = Oally* — yflI5-.
We note (4.16) and (4.8) to have

Iy = H2s < R [V - 4] < 2R, [AR].
Cl Cl

Then, we can lower bound ®* as

2 1
(4.20) E[o"] > (1- 20 ) E[aY] = LE[a4].
1 2
Therefore, it follows that |E [q)k] is nonnegative, by the definition of A¥ and (4.5).
We can now rewrite (4.18) as

B [04] < (1 - ) [0+7),

c . . .
where p = 2—22. We have shown that ®* converges linearly to 0 in expectation.

By (4.20), it immediately follows that A* converges linearly to 0.
To conclude, we note A* = Vjyq (¥ — 2F y*T1 —y#+1) and (4.5), from which we
conclude the linear convergence of ||z% — z¥||2_, and |[y*+1 — A F1)12_ ..

It is obvious to see that 0 < p follows by the fact that n is finite by metric
subregularity and p < 1 follows since v <1 and p < 1. ]

One important remark about Theorem 4.6 is that the knowledge of the metric
subregularity constant 7 is not needed for running the algorithm. Step sizes are chosen
as (3.1) and linear convergence follows directly when Assumption 2 holds. Important
examples where Assumption 2 holds are given in section 2.3.

Even though Assumption 2 is more general than prior assumptions for linear
convergence and our result is agnostic to the choice of the step size, we observe in
practice that SPDHG can be much faster than the rate derived in Theorem 4.6. We
reflect on this issue more in section 7 and present some open questions in this context.

Remark 4.7. Strictly speaking, metric subregularity is used in Theorem 4.6 in the
weighted norm, i.e.,

distg(z, Z2*) < ndistg(0, Fz),

where S = diag(77'1,, ort,...,0;"). In terms of the definition in (2.6) if 7o is the
constant using the standard Euclidean norm, it is obvious that n < [|S]|[|S~*|n0, but
we use 77 in Theorem 4.6 since it can be smaller, resulting in a better rate.
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4.3. Sublinear convergence. In this section, we prove O(1/k) convergence
rates for the ergodic sequence with different optimality measures.

4.3.1. Convergence of expected primal-dual gap. We recall the definition
of the primal-dual gap function,

G(z,9) = sup H(Z, 7; 2, y)
z€EZ

(4.21) = Stelgg(f) +(AZ,y) — f*(y) — g(x) — (Az,9) + f* (1)

It is also possible to consider the restricted primal-dual gap in the sense of [6, 7],
which for any set B = B, x B, € Z would correspond to

(4.22) Gp(z,7) = SugH(@ gi 2, y).
zE

The main quantity of interest for randomized algorithms is the expected restricted
primal-dual gap E [G(Z, 7)]. As also mentioned in [13], showing the convergence rate
for this quantity is not straightforward, as the interplay of supremum and expectation
can be problematic. In [13], the convergence rate is shown in a weaker measure named
the perturbed gap function. We show in what follows that obtaining the guarantee in
the expected primal-dual gap is also possible, however, with a more involved analysis.

The expected primal-dual gap proof in [6] has a technical issue, near the end of
the proof in [6, Theorem 4.3]. Since the supremum of expectation is upper bounded
by the expectation of the supremum, which is in the definition of the expected primal-
dual gap (4.22), the order of expectation in the proof is incorrect. As we could not
find a simple way of fixing the issue using the existing techniques, we introduce a new
technique and provide a proof to show that the conclusions of [6, Theorem 4.3], for
the primal-dual gap, are still correct, with different constants in the bound.

Our technique in the following proof is inspired by the stochastic approximation
literature of variational inequalities and saddle point problems (see [36, Lemmas 3.1,
6.1] for a reference), where such an analysis is used to obtain O(1/Vk) rates. In the
new proof, we adapt this idea by using the structure of primal-dual coordinate descent
to obtain the optimal O(1/k) rate of convergence. Our technique uses the Euclidean
structure of the dual update of SPDHG and therefore might not be directly applicable
to cases where general Bregman distances are used for the proximal operator, such as
in [27, 28].

We start with a lemma to decouple supremum and expectation in the proof.

LEMMA 4.8. Given a point §* € Y, for k > 1, we define the sequences
(423) ,Uk+1 _ yk: o Z}k+1 o P*l(yk o yk+1) and gk+1 _ gk o ka+1.

Then, we have for any y € Y,

K K
~ 1. . 1
(4.24) Z@/’“ —y,oF 0 < §Hy1 —yllZpa + Z §Ilvk“lli—1p,
k=1 k=1
K q 1
4.25 E R ] < =AY,
( ) ; 2”1} ||0' ipl = Cl

Moreover, v* and §* are Fj-measurable and Ej, [ka] =0.
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Proof. For brevity in this proof, we denote T = ¢~ 1P~1. We have Yy € ),

1 ~k 1 ~k k ~k 1 k
SIFE = yl3 = S5 -yl — (PO, 5% — )r + 5 I PO

k k
v +1 +1||371P.

1. i 1
= §||y’“ —yllZoipo — (WL G — ) + 3w

Summing this equality gives the first result.
For the second result, we use E; [P~ (y* — y*1)] = y* — g**1, the tower prop-

erty, and the definition of variance,

K
Zl||vk+1”2 ‘|
2 o-1p

k=1

E E [Ex [[0" 13- p]]

I
M=
[NCRI

>
Il
—

E [Ex [IP7 (05 = y5))1205]]

I\
] >
N =

=
I
—

1A0

E [y — 20 pa] < &A%

I
M=
NSRS

=~
Il
—

where the last inequality follows by >"p° | E [V (2" — 2¥)] < A® from Theorem 4.4
and gyt =¥ 1 p 0 < & V(EFTT = 2F) from Lemma 4.1.
Other results follow immediately by the definition of the sequences and the equal-

ity By, [ykJrl _ yk] = P(gF+1 — k). 0

A direct proof of Lemma 4.1 would proceed by developing terms involving ran-
dom quantities, by utilizing conditional expectations (see [6]). In this case, however,
our approach is to proceed without using conditional expectation since the quantity
of interest requires us to take first the supremum and then the expectation of the
estimates. Our proof strategy is to characterize the error term and then utilize the
results of Lemma 4.8 to decouple and bound this term. First, we give the variant
of Lemma 4.1 without taking expectations, with its proof given in section A.2.

LEMMA 4.9. We define f5(y) = > iy pif; (yi), and similar to (2.5), D}D* (g;2) =

S il W) — piff (i) — ((Az)i, pi(§ — v)i), and recall the definitions of V and Vy
from Lemma 4.1 and H from (4.21). Then, it holds that

H(", yF Tz, y) < Vi@® ! — 2, yf —y) = Vi (@F — 2, pF T —y) = V(EF - 2R

-1 -1
(4.26) +EF+ D Ty 2) - DR T ) = (g, oM o,

where vFtt = yk — gkl p=1(yk — yk+1) gnd

1 A
£5 = 212~ 17 12 = (I 2 sps — )]
! 7 1 ~ * [N
S A v e - A VDR MU
(21) (e (0F) = Fpa(y™h) — (Aa g — 5 — P Ay — ),

and also Ey, [5’“] =0.

With this lemma, we identify the problematic inner product for deriving the
rate for the expected gap: (y,v*!) (see (4.26)). This is the only term coupling the
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free variable z and random term v**'. In the next theorem, we use Lemma 4.8 to
manipulate this inner product. For the rest, we can observe in (4.26) that the terms
-1
of the form Vj and D}i 71(yk) will form a telescoping sum. Moreover, the term &
has expectation 0 and is independent of free variable z.
THEOREM 4.10. Let Assumption 1 hold. Define the sequences & = e Zk 1 xk

and yE+1 = e Zk:l y* L. Then, for any set B = B, x B, C Z, the followmg result
holds for the expected restricted primal dual gap defined in (4.21):

Cg
429 B sl S )| = B [Galall ) < G2
z€B
where
1+ 2¢c " *
Cp = sup ||930 - x||3,1 =+ sup ||y1 - Z/Hi*lel + fPflfj(yl) = fp_1(y")
2 zeEB, yeB,
1 o1/2 A71/2)|2
+ (g o) A% ey = B + I o

Cl 2018

where ¢; = |TV2AT oV 2P2|| e = |7/ 2AT (P~ — D)o /2PV?||, C =1 — 4.
Proof. We start from the result of Lemma 4.9. We have for the last term in (4.26)

(429) _<y7 Uk+1>o'_1 = <gk - Y, Uk+1>o'_1 - <gk7vk+l>a—lv

where §* is the random sequence defined in Lemma 4.8.
We sum (4.26) after using (4.29) and Lemma 4.1

ZH ) < Vi (@ =2,y T —y) + V(2" —z,y" —y)
+DE Tyl ) - DR (R )
(4.30) Y (G =y o) g — (0P o+ EF)
Next, by Young’s inequality (see also (A.17))
(431) — (Al = 2"), P " = y) < Sl = a4 Sy 2

On (4.30), we use (4.24) from Lemma 4.8 with g = :yo (4 31) with the definition
of Vg 11(z¥—z,y®¥+1—y) from Lemma 4.1 (see also ( , (A.17)), and y <1 from (3.1)

K
SOy, y) < Sl — el 'yl
 Fper () = Fpeas )+ (A, (P = DR = )
K
(4.32) £ 30 (G R p = (0 o + ).
k=1

We have (Az,(P~" = I)(y"*' —y')) < c(gllzl2-2 + 5lly" " —y'|2-1p-1), where
c= |7 2AT(P~! = D)o 2P| and g0 < llo — 220 + (|22
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We use these inequalities, arrange (4.32), and divide both sides by K

K
1 1 (142
e D 00) < e { T el !l el

C
Iy = R+ Th ) — ()

K
1
(1.33) 30 (G g - R e
k=1

We now take the supremum of (4.33) with respect to z, noting that only the first two
terms on the right hand side depend on z = (z,y), and 2°, y' are deterministic. Then
we take the expectation of both sides of (4.33):

1 1+2¢
[SUPKZH AR TARRS N )] K{SUIB){2||5”O$|Z—1 +ly* y||(27—1p—1}

z€eB z€

+E [iuym — B+ Fe ) = Fros )]+ a2
K
(4.34) +Z ([0 122 5] ZE TAIRTARE 1]+ZE[5k]}.

As §* is Fi-measurable and Ey, [vk‘H] = 0, by Lemma 4.8 and by the tower property,
K

K
E Z<gk’vk+1>al‘| = Z]E [Ek [<gkavk+1>0*1”
k=1

(4.35)

I
Dgx i

j* Ek[vk—i_l])o’*l] =0.
k=1

On (4.34), we use (4.25) from Lemma 4.8, (4.35), and Y, E[€¥] = S E [E;, [€¥]] =
0, which follows from Lemma 4.9 along with the tower property, to obtain

14 2¢ 1
[iggKZH oy )| < sup {EEE L < el Ll =yl
C
+ ﬁE [HZJK+1 yHIZ i pe W+ E\Iwollia
N 1
(4.36) + KE [fp oyt - fpfl—z(yKH)] + CliKAO'

By Theorem 4.4 and Lemma 4.1, E [[|y** — y*[|2_,,_,] < 2A° and by Jensen’s
inequality, E [||yK‘H — y*||a_1p_1] < V2A9, With these estimations we have

(4:37) E [y =y 2ospo] < 2yt =y 20 pr +4A°.
As f; is proper, ls.c., and convex and A;z* € 0f; (yf), we additionally note that

S > ) + (A T =y

> fH(y) = A oy - Yillo-rs

g
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and by substitution, Young’s inequality, and defining ¢; = ||[7'/2AT ¢*/2P~1/2|,

Elfpa ("] =) (pl - 1) E[f; ()]

K3

=1
>3 (22 1) (500 - a2, - 2B [l = 5712 ] )
= pt i i \Ji 2, o illo;
) =Y (5 =1) 260 - oo A2 2 = SR =y s
, Di 2c1p 2

We now use (4.37) and (4.38) in (4.36), use E [[|[y* ™ —y*[|2_, p_.] < 2A°, and use
definition of ¢; to obtain

supKZ’H YT 2 y)

zeB

1+20 0 2 1 1 2
S — _ — S — _ _
< Sr S |27 — z[|7-1 + I ungy Yllo-1p
Jrglly1 — Y2 pa +*A0 *H o+ = (fp W) = e (yY)

K
lo/2A7H /22 Lo, o

*||2 €1 A0
LA A0 B
gepk . 1l T AT AR K

We define as Cp the constant of the right hand side and use Jensen’s inequality on
the left-hand side with definitions of X and yX*! to get the result. d

Remark 4.11. In Theorem 4.10, when p; = %, setting scalar step sizes 7 =
rmax, A 0 = in view of (3.1) gives O(n[||Al|l+f*(y")— f*(y*)] max.ep(|z[|*+
llyl|?]) as the worst case order for Cp.

1
max; [|A;]|

4.3.2. Convergence of objective values. The guarantee for the expected
global primal-dual gap (see (4.28)) requires bounded primal and dual domains.

In this section, we show that the O(1/k) rate of convergence in terms of objective
values and/or feasibility can be shown with possibly unbounded primal and dual
domains. The case f(-) = d(+) is studied in [34] and a similar result was derived. The
rate in [34] has a different nature in the sense that it is an almost sure rate where
the constant depends on trajectory, whereas our rate is in expectation. We use the
smoothed gap function introduced in [47], which, for (1.1), is defined as

(4.39)  Ga,p(w,y53,9) = supg(z) + (Az,v) — f*(v)
— gl) — {Au,y) + () — S~ Do — gl
THEOREM 4.12. Let Assumption 1 hold. We recall 2% = % Eiil zk.
o If f is L(f)-Lipschitz continuous and y* € dom f*,
E [f(Azg,) + g(zg,) — f(Az*) - g(a™)]

o If f(1) = (S{b}() with b e Y,

IN

E [g(a:fv) — g(x*)] < 672’ E [||AI£<’U - b”diag(cr)P} < =
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where (see Theorem 4.10)

. 1
Co = Fon () = For_y (") + (01 +zc+cl) A0

H‘71/2A71/2”2

2
e A

+ellz®F- +elly’ =yl pr +

Cen = Ce + 2L(f)? + 2572 — 2*|I2

71

1/2
Ces = 3y =9 lo- 171 + (I — 9221 pos + 4Ce + 6]l — 2%]|,-1) "},
Cez = Cot Ally* = 9 I2sprs + Z22 [0 = 2*[12-, + [y lo-1p-1Cos.

Proof. For the smoothed gap (see (4.39)), from Theorem 4.10, we have

E [g%,ﬁ(xﬁ,yﬁ“;wo,yl) < %
To see this, we proceed the same as in the proof of Theorem 4.10 until (4.33). Then,
we move the terms %on — |-, and +|ly* —y[|%2_1 p_1 to the left hand side, take
the supremum, use the definition of smoothed gap, and then take expectations of both
sides and use the same estimations as in the first part to conclude.

e When f is Lipschitz continuous in the norm | - ||, we will argue as in [19,
Theorem 11]. On (4.39), with the parameters used in this theorem, we make the
following observations. By [4, Corollary 17.19], when f is L(f)-Lipschitz continuous
in the norm || - ||giag(o), it follows that [[y* — y||2_. < 4L(f)?. By Lipschitzness
and the definition of conjugate function, we can pick y € 9f(AzxX) # ) such that
(AzE ) — f*(y) = f(AzK). Next, by the Fenchel-Young inequality, f*(yX*!) —
(ATyE+L 2%y > — f(Ax*). We also use p = min; p; to obtain (see (4.39))

E guﬁ,gxﬁ,yfﬁl;xo,ylﬂ > E [f(42K) + g(xk) — f(A2*) — g(a*)]

- (P - e -,

where the result directly follows.
e When f(-) = d(+), we use [47, Lemma 1] to obtain the bounds

E[g(el) — ()] < [Gum o (@l yht 500, y1)]

1
2K 2K

1+ 2y 1 .
+ e ||;1c0 — x*||3,1 —E [(y*,Amfv — b)] + —2K||y - y1||f,71p71,
1 * *
E [ A2L, — bllsiag(oyp] < 2K{ny gl + (ny — g2 pe

1/2
FAKE (G (ol s )]+ 204 2l o) )

L
2K 2K

We use the Cauchy—Schwarz inequality and the bound of E [||Am§) — blldiag(o) p]
on (y*, AzE — b) to conclude. d

5. Related works. We summarize the comparison of the most related primal-
dual coordinate descent methods (PDCD) in Table 1.

Primal camp. Stochastic gradient based (SGD) methods can be applied to solve
(1.1) [36,42]. SGD cannot get linear convergence except in special cases [35]. Variance
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reduction based methods obtain linear convergence when the functions f; are smooth
and ¢ is strongly convex or f; are smooth and strongly convex [2, 25, 48]. The
smoothness of f; is equivalent to the strong convexity of f/. Therefore, the linear
convergence results of these methods require similar assumptions as in [6]. Moreover,
as in [6], variance reduction based methods require knowing the constants p; and gy
to set the algorithmic parameters accordingly, for obtaining linear convergence.

When f;(-) = d13,1(-), SGD-type methods are proposed in [18, 39, 49]. However,
these methods only obtain the O(1/k) rate with the strong convexity of g, since
they focus on the general problem where the objective can be given in expectation
form. Even though this rate is optimal for the given template, it is suboptimal
for (1.1).vskip2mm

Primal-dual camp. This line of research uses coordinate descent-type schemes
for solving (1.1). Coordinate descent with random sampling for unconstrained opti-
mization was proposed in [37] and later generalized and improved in [20, 41]. These
methods apply coordinate descent in the primal and obtain linear convergence rates
with smooth and strongly convex f; or smooth f; and strongly convex g.

Another approach is to apply coordinate ascent in the dual to exploit the sep-
arability of the dual in (1.1). Stochastic dual coordinate ascent and its accelerated
variant are proposed in [44, 45]. These methods require the smoothness of f; and
strong convexity of g for linear convergence and the strong convexity constants are
used in the algorithms for setting the parameters.

The algorithm we analyzed in this paper is SPDHG, proposed in [6]. The authors
proved the linear convergence of the modified method SPDHG-p [6, Theorem 6.1] by
assuming strong convexity of [, g and special step sizes depending on strong convexity
constants. The iterate convergence and ergodic O(1/k) rate results in [6, Theorem
4.3] are given in terms of Bregman distances, which is not a valid optimality measure
in general. Our analysis for SPDHG shows linear convergence with standard step sizes
in (3.1) and with weaker metric subregularity assumption (see section 2.3). Moreover,
in the general convex case, we prove almost sure convergence of the iterates to a
solution, which is stronger than Bregman distance based almost sure convergence
in [6]. Finally, we prove the O(1/k) rate for the ergodic sequence, with possibly
unbounded domains, for optimality measures stronger than Bregman distances, such
as the expected primal-dual gap. The comparison of the results is also summarized
in Table 2.

PDCD schemes similar to SPDHG are proposed in [13, 19, 52]. These variants
assume the strong convexity of fF, g for the linear rate of convergence. Ounly [19]
proved linear convergence with step sizes independent of strong convexity constants,
to provide a partial answer for the adaptivity of PDCD methods to strong convexity.
However, as detailed in Table 1, with dense A matrix and uniform sampling, this
method requires step sizes n times smaller than (3.1), which can be problematic in
practice (see section 6.1). For sublinear convergence, [19] proved the O(1/v/k) rate on
a randomly selected iterate, under similar assumptions to ours, whereas [52] requires
boundedness of the dual domain, setting a horizon and proves primal-only rates.

PDCD algorithms are also studied in [11, 12, 40]. As mentioned in [6, 19], operator
theory-based proofs of these methods require using step sizes depending on global
constants about the problem, causing slow performance in practice. PDCD methods
for linearly constrained problems are studied in [1, 13, 34], with sublinear rates.

Latafat, Freris, and Patrinos [29] proposed TriPD-BC and proved linear con-
vergence for this method under metric subregularity. There are two drawbacks of
TriPD-BC for our setting. First, when A is not of special structure, such as block
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diagonal, one needs to use duplication for an efficient implementation (see [19]). The
second issue is that as in [19], this method needs to use n times smaller step sizes with
dense A. For the details of duplication and small step sizes, we refer to [19]. The need
to use small step sizes seriously affects the practical performance of the algorithm (see
section 6.1).

Some standard references for deterministic primal-dual algorithms are in [7, 8, 17,
22,46, 47]. As observed in [6], coordinate descent-based variants significantly increase
the practical performance of these deterministic methods.

Our results imply global linear convergence for PDHG when n = 1, answering the
question posed in [7]: “It would be interesting to understand whether the steps can be
estimated in Algorithm 1 without the a priori knowledge of p;, p14.” In the third part
of Assumption 2, compact domains are not needed for this case. We highlight that
such behavior of deterministic primal-dual methods is investigated before in [29, 31].

Linear programming. A related notion to metric subregularity for linear program-
ming is Hoffman’s lemma due to the classical result in [23], which is used to show
the linear convergence of ADMM-type methods for LPs [33, 50, 51]. The drawback
of these approaches is that the knowledge of the constant 7 is required to run the
algorithm, which is difficult to estimate. Our analysis recovers these results specific
to LPs with a simpler algorithm that does not need the knowledge of 7.

6. Numerical evidence. In this section, we support our theoretical findings by
showing that SPDHG with step sizes in (3.1) obtains linear convergence for problems
satisfying metric subregularity.

The problems we solve in this section satisfy metric subregularity (see section 2.3).
However, among these problems, only ridge regression is strongly convex-strongly
concave, thus this is the only problem where existing linear convergence results from [6]
apply by using the algorithm SPDHG-x [6, Theorem 6.1]. We show that even in
this case, when strong convexity constants are small, applying SPDHG can be more
beneficial for some datasets. SPDHG-p is not applicable for other problems due to
a lack of strong convexity or strong concavity. We also illustrate favorable behavior
of SPDHG against state-of-the-art methods SVRG [25], accelerated SVRG [53], and
PDCD algorithms using smaller step sizes with dense data, such as [19].

Due to limited space, we include results with one or two datasets for each problem.
For SPDHG, as suggested in [6], we use uniform sampling of coordinates and the step

sizes T = and o; = % for all problems. For the other methods, we use

nlna);i [l Al
the suggested theoretical step sizes in the respective papers and we do not fine tune

any of the methods.

6.1. Sparse recovery with basis pursuit. Basis pursuit is a fundamental
problem in signal processing [10] with applications in machine learning [3, 21]:

6.1 i . Az =b.
(6.1) min |z, : Az

Since basis pursuit is PLQ, metric subregularity holds. In this section, we aim to
illustrate the importance of step sizes, as mentioned in section 5 and Table 1, and
to verify linear convergence of SPDHG. We compare SPDHG with the coordinate
descent version of the Vu—Condat algorithm from [19], which we refer to as FB-VC-
CD. Since [29] requires duplication for an efficient implementation for this problem,
it uses the same step sizes as [19]. Thus, we only compare with FB-VC-CD and note
that the practical performance of [29] is expected to be similar to FB-VC-CD since it
uses similar step sizes.
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)
10 10Oc
a =
x |
O 5
= =
10710 1070
- sPpHG
-©-FB-VC-CD
0 500 1000 0 500 1000
epoch epoch

F1c. 1. Linear convergence of SPDHG for basis pursuit problem.

We generate the data matrix A with n = 500 and d = 1000, and entries follow
a standard normal distribution. We generate a covariance matrix ¥; ; = pl*=7l with
p = 0.5 and a sparse solution z* with 100 nonzero entries. We then compute b = Ax*.

The analysis of SPDHG by [6] shows the O (1/k) rate on the Bregman distance to
the solution on the ergodic sequence whereas our analysis proves linear convergence
on the last iterate. On the other hand, FB-VC-CD is proven to have the O(1/vk)
rate for this problem [19]. FB-VC-CD is tailored specifically to exploit sparsity in the
data. However, the data is dense in this problem, which causes FB-VC-CD to use n
times smaller step sizes as shown in Figure 1. Because of this, FB-VC-CD exhibits a
slow rate whereas SPDHG gets a fast rate as predicted by our theoretical results.

6.2. Lasso and ridge regression. In this section we solve ridge regression and
Lasso problems, formulated as

1 A 1
(62)  min oAz — b+ Jlal?, and, min 2]z = 5| + Ala.

respectively. In terms of structure, (6.2) is smooth and strongly convex, or equiva-
lently, its Lagrangian is strongly convex-strongly concave. For this problem class, [6]
showed linear convergence for the method SPDHG-u, which is a modified version of
SPDHG using strong convexity and strong concavity constants for step sizes. In addi-
tion, SVRG and accelerated SVRG have linear convergence for this problem [2, 48, 53].

We use regression datasets from libsvm [9], perform row normalization, and use
three different regularization parameters for each case. We compile the results in Fig-
ure 2 along with information on datasets and regularization parameters.

The aim in this experiment is not to argue that SPDHG gets the best performance
in all cases since this is a very specific instance where most algorithms can get linear
convergence. Our goal is rather to show that even though our linear convergence
results apply to a broad class of problems and SPDHG can apply to more general
problems, it can still be competitive when compared to methods which are designed
to exploit the structure of this specific setting.

When n > d, in Figure 2, we see that for large regularization parameters, or
equivalently, large strong convexity constants, SPDHG-y is faster than SPDHG. This
is expected since SPDHG-p is designed to use strong convexity as well as possi-
ble, whereas our result holds generically without any modifications on the algorithm.
Next, when the strong convexity constant is small, SPDHG gets a faster linear rate
than SPDHG-u, which suggests the robustness of SPDHG over SPDHG-x in this
regime. SPDHG also shows a more favorable performance than SVRG and accelerated
SVRG.
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> SPDHG

= Acc-SVRG
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epoch epoch epoch

A=10" =10 A=1

SPDHG
-©-SPDHG-4
-3-SVRG
=} Acc-SVRG

o .
50 100
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F1a. 2. Ridge regression, first row: w8a, n = 49,749,d = 300; second row: sector, n = 6,412,
d = 55,197; third row: YearPredictionMSD, n = 463,715,d = 90.

When n < d, in Figure 2, we see that SPDHG-p shows faster convergence with
small p. This seems intuitive, since in this case the strong convexity purely comes
from the regularization term. In this case, SPDHG-u directly exploits this knowledge
and shows a better performance.

We then solve Lasso (6.2), for which SPDHG-u does not apply and accelerated
SVRG cannot get linear rates in general. We compare with SVRG for varying reg-
ularization parameters and datasets with n < d and n > d and compile the results
in Figure 3. We observe that SPDHG converges linearly for this problem and exhibits
a better practical performance than SVRG.

7. Conclusions and open questions. In this section, we focus on the theory-
practice gap mentioned in section 4.2, before Remark 4.7. In particular, the main aim
of section 4.2 was to show that SPDHG obtains a linear rate of convergence under
general assumptions that hold for a large body of problems, with an agnostic step size
selection. A natural question here would be about how well this rate translates to
practice. For this purpose, we perform a controlled experiment on a simple problem

min H\|x||2 Az =0
zeRd 2
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Fic. 3. Lasso, top: mnist scale, n = 60,000,d = 780; bottom: rcvl.binary, n = 20,242, d = 47,236.
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F1a. 4. left: empirical and theoretical linear rates, right: empirical rates with different p.

ul AT
A 0
metric subregularity constant 7 is the smallest eigenvalue of F' in absolute value.

For simplicity, we run PDHG, which is a specific case of SPDHG, and plot the
predicted rate and the empirical rate in Figure 4.

The resulting empirical rate is significantly faster than the worst case rate pre-
dicted by theory. We point out several possible explanations for this:

e Metric subregularity is too general to capture structures observed in practice.
e Our step size choice is independent of the metric subregularity constant, pre-
venting optimizing the theoretical rate with respect to these quantities.

In fact, this phenomenon is not specific to our analysis and seems to be a common
drawback of the existing analyses utilizing metric subregularity [29]. On this front, we
observe that in our example, as p increases, metric subregularity constant n degrades.
However, as we see in the plot, the practical performance degrades when p is either
too big or too small (see Figure 4). This observation suggests that there might exist
better regularity measures beyond metric subregularity that would help us derive
better rates. We believe that this is a promising future direction.

with d = n = 10. After writing the KKT conditions, we obtain F = , and
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Appendix A.

A.1. Proof of Theorem 4.4.

Proof. On (4.3), we pick (z,y) = (2*,y*) and by convexity, D,(z*;z*) > 0,
D (9%F1; 2%) > 0. Next, by using A* = Vi (2% — 2%, y*! — y*), we write (4.3)

(A1) Ey, [AF] < APTL V(2R — 2R,

We denote ¢ = (1 ® 2%,1 ® y*). By taking total expectation, summing (A.1),
and using Lemma 4.2, we have Y 2 E[||T(¢" ") — ¢" !||%5] < 400. We use
the Fubini—Tonelli theorem to exchange the infinite sum and the expectation to ob-
tain E [Y27 0 IT(g"1) — ¢* 1|3 5] < oo. Here, since Y07 [T(g"1) — " 11%5 is
nonnegative, we conclude that 32 [|T(g" ) — ¢"~!||%; is finite almost everywhere,
which implies that || T(g*~') — ¢" 71|35 converges to 0 almost surely. Thus we have
established Q7 with P(Q7) = 1 such that Vw € Qr, we have T(q*(w)) — ¢*(w) — 0.

We apply the Robbins—Siegmund lemma [43, Theorem 1] on (A.1) to get that a.s.,
AF converges to a finite valued random variable and V(2% — 2¥~1) — 0. Consequently,
by (4.4), ||y* — y*~1|| converges to 0 a.s. Since a.s., A¥ converges and ||y* — y*~1||
converges to 0, we have that ||z* — 2*|| converges a.s.

In particular, we have shown that

(A.2) P(w e Q: lim |[25(w) — 2*]| exists.) = 1.
k—oo

The probability 1 set from which we select the trajectories is defined via z*. Let us
denote the set

(A.3) 0. = {w € 2z (w) — 2| exists}.

lim
k—o0
Thus our statement is actually as follows: for each z* € Z*, there exists a set ).«
with probability 1, such that Vw € Q.+, limy_,o0 [|2x(w) — 2*|| exists.

We now follow the arguments in [11, Proposition 2.3], [5, Proposition 9], [24,
Theorem 2], and [19, Theorem 1] to strengthen this result.

Let us pick a set C which is a countable subset of ri(Z*) that is dense in Z*. Let
us denote the elements of C as v; for i € N.

We just proved that Vv; € Z*, 3Q,, with P(Q,,) = 1, such that Yw € §,,,
limg 00 |26 (w) — v;]| exists. Let us denote Q¢ = Nien$y,. As ¢ is the intersection
of a countable number of sets of probability 1, P(2¢) = 1.

Next, we set Z € Z*. As C is dense in ri(Z*), there exists a subsequence v;),
where ¢: N — N is an increasing function, such that vy — 2.

We now pick w € Q¢ and study the existence of limg_, o ||2x(w) — Z||. By the
triangle inequality, Vi € N,

26 (w) = vyl = lvgey — 2l < llzu(w) = 2| < [lzi(w) — voo)ll + lvge — ZI1-
Rearranging gives
gty — 2l < () — 2l — l2(w) — vggol < gy — 211

As w is chosen from (¢, and any element of (¢ is also an element of €2,,, we know
that limg o0 [|2k(w) — ve()|| exists. Moreover, recall that vy — Z.
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We take the limit as kK — oo,

ooy — 2l < Tmn inf lz4(w) — 2 — lim [lz4(w) = vgco

<lim sup [|zx(w) = Z|| = lIm [Jzx(w) — vl
k—o00 k—o0

< lve) — ZlI-

As we take the limit along the subsequence defined by ¢(i), we have lim;_, o ||vg) —
Z|| = 0, which gives the equality of liminf and lim sup.

Thus, Vw € Q¢ with P(Q¢) = 1 and VZ € Z*, we have that limg_, ||z (w) — Z||
exists.

We now pick w € Q¢ N Qr and then as we have that (2*(w))y is bounded, we
denote by Z = (Z,¢) one of its cluster points. Then, we denote ¢ = (1® #,1 ® ) and
say that q is a cluster point of (¢*(w))s.

As T(g"(w)) — ¢ (w) — 0, by continuity of T we have T(g) —q — 0, and therefore
q is a fixed point of T. We now use Lemma 4.2 to argue that fixed points of 7" which
we denote as (z(7), ys(j))j=q1,...,n} are such that (z;(j),ys(j)) € 2*Vj e {1,...,n}.
Since q is a fixed point of T, we conclude that Z € Z*.

To sum up, we have shown that at least on some subsequence z*(w) converges to
z € Z*. Then, the result follows due to existence of the limit, proven earlier. 0

A.2. Proof of Lemma 4.9.

Proof. Asin [6], we use (4.2) to denote full dimensional updates. By the definition
of the proximal operator (2.1) along with the convexity of f* and g, we get, Vo € X,
Yy €Y, and Vi ={1,...,n}

1 1
g(a) = g(a¥) + (@ — 2, ATP) + e - o 2+ 5ot — al2s
2

1 _
- 5”37 - 'rk 1”7‘*1)

BN ~ 1 ~ 1 ~k
F2 () 2 S @) = (G = e )+ 195 = B2+ S -l
1
- 5”3/1: - yf”i—%
We sum the second inequality from i = 1 to n and add to the first inequality to obtain

02> g(a") - g(a) + (" — 2, ATg") + FA @) = [ (y) — (9 —y, Az®)

+ 5 (Sl T =l 4 et = o+ 2t = 2t

| — DN~

(Ad) (= = ylim + 17 = yl5— + 17" =y 15-).

2

We next note

H(a®, 95 2, y) = g(ah) + (42", y) — £ (y) — g(@) — (Az, g™ + £ (5",

Ay

N = N

(= 2%t = a2 + la* — ] + [l — 2 2),

Ap =S (=l = yl3— + 18" = yli- + 19" = FlI5-0).
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Then, we can write (A.4) as
(A.5) 0> H (", g 2,y) + (Alz — 2%), " — %) + AL+ As.
We estimate by simple manipulations

H(z" 9" 2, y) = H", " a,y) + (Az, g = 5 + £ @05 = £
- (fpfl—f(ykﬂ) - f;fl—l(yk)) + (ff:fl—l(ykﬂ) - fP*l—I(yk))
+ (Az, (P71 — I)(y’“+1 — ") — (Az, (P7' = D)(y* = ¢¥))
=H(",y" 5z y) + O - W) - (e T = fi ()
+ (Az,y* — " = PNy —yMh)
+ (o W) = Fhoa () — (Az, (PT = Dy = ¢b))
=H@" " e y) + @) - R - (fp LY = )
(A6)  +(Az,yF — g — PP — ) + DY (ygasy) — DF (ki)

By the definition of 4* in SPDHG, we have for the bilinear term in (A.5) that

(Al —2®), 9" = g") = (A(w — 2"), " —oF = P71 (" =)
= (A(z — "), 9" —¢*) — (Al — 2" 1), P =y h)
(A"t —2b), Py =)
= (A(z — "), P (" — ") — (A(x = 2"1), PN (" =)
— (AP =2b), P =)
(A7) + (A — 2®), 9" —yF = P =),

k+1

On A, we add and subtract [[y* — y[|2_, p_i — [[y* T — y[|2_1 p-1 to get

(A8) — Do =~ |y g2 aps Ll —pl2aps — 7 2+
where
= LI —ylZ 19 = s — (19 = 92y — I =yl )]
= %[”y [ e A ATy
(A9) =2y = = P =),

We use (A.6)—(A.8) in (A.5), add and subtract [y* — ¢*~![|2_,, ., and use the
definition v**! = y* — gh+l — p=1(yF — y*+1) from Lemma 4.8 to obtain
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1 1
H(z"y i, y) < —§||9’3lC —z|?. + §||9’3k_1

— (Al =), P = ") + (A = 2, PPN - M)

1 1
Sl =2 2 = Syt — 2

o - 1
—<A($’“—x’“ D P =y ) = Sl =il

-

o-lp-1

1
A

+§ [y 12 = 19512 = (I 12 pr = W2 p)]
+ W) = @Y = (Fpa ) = Fha @) = (g oM,

A~ j— 71— —
(A.10) — <Amk,yk — yk"'1 - P 1(yk — yk+1)> + D}D* (yk; z) — Dji I(yk_,_l; 2).

o—1p-1

The first result follows by the definitions of Vj, and V from (4.1) and the definition of
EF from (4.27).
On &%, we use By, [P~ (y* — ka)] =y

b L By [ (8) — S (5F)] =
FAWR) = @Y, and By [y — gH 2 p] =

[ 7

1. 1
Er [€5] = =195 =y 12+ 5B [l = ¥)120 o]

1 1
+ 5 (9115 = 19" H15) = 5Bk (11522 = 5151 p1]
+ 1 (°) - f*(@kH) —Ex [fp2(4) = fpa (y™)]
— (A" g —Ex [P (" -] =0. 0

A.3. Proof of Lemma 4.1.

Proof. At step k of SPDHG in Algorithm 3.1, we select an index i € {1,...,n}
randomly with probability p;, and perform the following step on the dual variable:

(A.11) yitt = gttt and yit =yl i £ iy

TABLE 1
Comparison of primal dual coordinate descent methods. s.c. denotes strongly convexr, MS
denotes metrically subreqular. Please see section 5 for a thorough comparison. Please see section 2
for a comparison of MS and s.c. assumptions. *Step sizes are for optimization with a potentially
dense A matriz and uniform sampling: p; = 1/n.

. Rates with Step sizes for
Linear convergence . . *
only convexity linear convergence
* 1 pg-s.c. Ergodic O (1)for
6 | e godic O (3 )for VAdl 1
g Hg-s.C. Bregman distance to solution
*: pg-s.c. Nonergodic O with
B2 | I godic O (;) Al
g : Hg-S.C. bounded dual domain and fixed horizon
£ pi-s.c. : < 1 ) 2 A2
[19] 9+ Hg-s.c. Randomly selected iterate O NG nro;||Ai]? <1
[29] |F is MS (see (2.3)) X n’ro;[A][* <1
. . 1 .
This Fis MS (see (2.3)) Ergoldlc 'O(E) for prlmal—d%lau'l.gap7 o Ag|? < 1
paper objective values and feasibility
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Comparison of our results and previous results on SPDHG. * Step size condition is for uniform
sampling: p; = 1/n. YIn this case P(x) := f(Az) + g(x).

A.s. convergence Linear Ergodic rates
convergence
Dp(2%;2*) = 0 Assumption:
for any z* where fr,gs.c
[6] |D, is Bregman step sizes E[Dy (25 ,;2%)] = O(1/k)
distance generated by|depending

h(z) = [*(y) + g(x) |on His kg

e Restricted primal-dual gap
E [Gs(x’émyﬁv)l = O(1/k)

Assumption: Y :
. . . e f is Lipschitz
This | , N , |Fin (2.3) is MS 5 N
paper 2" — z* for some z*. Step sizes: E[|P(zk,) — P(z*)|] = O(1/k)

AR < 1% |*F() = 06()
AT <17\ llg(at,) = g(an)] = 0(1/k)
E [[|Azg, — bl] = O(1/k)

For any Y € Y that is measurable with respect to F, (A.11) immediately gives

(A.12) Ely* '] = P§* 4+ (I - P)y",
(A.13) By, [y = Y[2-] = 185 = Y[2-ap + v = Y21 py-

A simple manipulation of (A.12) and plugging in Y =y and Y = y;, in (A.13) gives

(A.14) gk+1 _ PflE [ k+1] _ (Pfl _ I)yk,
(A.15) 154 = yllz - =B [ly" " = wl5-ap] = 1" = yl5-2 iy,
(A.16) 15 = o115 =B [l =¥ [17 - p] -

The first result follows by taking expectation of the result of Lemma 4.9, after using
the tower property and the above estimations. On deriving the conclusion, we also
use Dy(zy;2) + Dy (rt1; 2) = H(zk, Grt15 2, y) and (A.6).

It is straightforward to prove (4.4) and (4.5). Since y;? = y;?_l Vi # ig_1,

_ k—
Byt = (A pnt G —yETh)
< HAZk 1$||p’bk 1||ylk 1 _ylk 11||
1/2 —1/2 — -1/2 —1 2
= (P A ) 7 Pl o et i

[(Az, P~ (y

Tk — 1plk 1 Tk—1 Zk 1

- 1/2 —1/2
<y (7 2lallp o P, — k)

y
2 (el o, -2 )
k—1 tk—1

gl _
B} (IlZ-2 + lly" =y Mo ps) s

IN

(A.17)

where the last step is due to yf = y;“l Vj # ix—1. Plugging (A.17) into the definitions
of V(2F — 2¥=1) and V() is sufficient to prove (4.4) and (4.5). 0
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