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ON THE CONVERGENCE OF STOCHASTIC PRIMAL-DUAL
HYBRID GRADIENT⇤
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Abstract. In this paper, we analyze the recently proposed stochastic primal-dual hybrid gra-
dient (SPDHG) algorithm and provide new theoretical results. In particular, we prove almost sure
convergence of the iterates to a solution with convexity and linear convergence with further structure,
using standard step sizes independent of strong convexity or other regularity constants. In the gen-
eral convex case, we also prove the O(1/k) convergence rate for the ergodic sequence, on expected
primal-dual gap function. Our assumption for linear convergence is metric subregularity, which
is satisfied for strongly convex-strongly concave problems in addition to many nonsmooth and/or
nonstrongly convex problems, such as linear programs, Lasso, and support vector machines. We also
provide numerical evidence showing that SPDHG with standard step sizes shows a competitive prac-
tical performance against its specialized strongly convex variant SPDHG-µ and other state-of-the-art
algorithms, including variance reduction methods.
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1. Introduction. The stochastic primal-dual hybrid gradient (SPDHG) algo-
rithm is proposed by Chambolle et al. [6] for solving the optimization problem

(1.1) min
x2X

nX

i=1

fi(Aix) + g(x),

where fi : Yi ! R [ {+1} and g : X ! R [ {+1} are proper, lower semicontinuous
(l.s.c.), convex functions and f is defined as the separable function such that f(y) =Pn

i=1 fi(yi). Ai : X ! Yi is a linear mapping and A is defined such that (Ax)i = Aix.
The classical approaches provide numerical solutions to (1.1) via primal-dual

methods. In particular, a common strategy is to have coordinate-based updates for
the separable dual variable [6, 52]. These methods show competitive practical per-
formance and are proven to converge linearly under the assumption that f⇤

i 8i and g

are µi and µg-strongly convex functions, respectively. Step sizes of these methods in
turn depend on µi, µg to obtain linear convergence. SPDHG belongs to this class.

Chambolle et al. provide convergence analysis for SPDHG under various assump-
tions on the problem template [6]. Indeed, SPDHG is a variant of the celebrated
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primal-dual hybrid gradient (PDHG) method [7, 8], where the main di↵erence is
stochastic block updates for dual variables at each iteration. In the general convex
case, [6] proved that a particular Bregman distance between the iterates of SPDHG
and any primal-dual solution converges almost surely to 0 and the ergodic sequence
has a O(1/k) rate for this quantity. Note, however, that this result does not imply the
almost sure convergence of the sequence to a solution, in general. However, this result
does not give guarantees on the expected primal-dual gap function (see (4.28), (4.21)),
which is the standard optimality measure. If f⇤

i and g are strongly convex functions,
SPDHG-µ, which is a variant of SPDHG with step sizes depending on strong convex-
ity constants, is proven to converge linearly [6, Theorem 6.1]. Estimation of strong
convexity constants can be challenging in practice, restricting the use of SPDHG-µ.

Since its introduction, SPDHG has been popular in practice, especially in compu-
tational imaging, with implementations in di↵erent software packages [16, 26, 32, 38].
Despite the practical interest, fundamental theoretical results regarding the conver-
gence of SPDHG remained open, including almost sure convergence, O(1/k) conver-
gence rate for expected primal-dual gap, and adaptive a linear convergence.

In its most basic form, step sizes of SPDHG are determined using kAik and proba-
bilities of selecting coordinates [6]. It is often observed in practice that the last iterate
of PDHG or SPDHG with these step sizes has competitive practical performance. Yet,
only ergodic rates are known for this method with restrictive assumptions [6, 8]. In
this paper, we analyze SPDHG with standard step sizes and provide new theoretical
results, paving the way for explaining its fast convergence behavior in practice.

1.1. Our contributions. We prove the following results for SPDHG:
General convex case. We prove that the iterates of SPDHG converge almost surely

to a solution. For this purpose, we introduce a representation of SPDHG as a fixed
point operator in a duplicated space. For the ergodic sequence, we show that SPDHG
has O(1/k) rate of convergence for the expected primal-dual gap. To prove this
result, we introduce a generic technique that is applicable to other stochastic primal-
dual coordinate descent algorithms. Moreover, we prove the same rate for objective
residual and feasibility for linearly constrained problems.

Metrically subregular case. When the problem is metrically subregular (see sec-
tion 2.3), we prove that SPDHG has linear convergence with standard step sizes,
depending only on Ai and probabilities for selecting coordinates. Our result shows
that without any modification, basic SPDHG adapts to problem structure and attains
linear rate when the assumption holds.

Practical performance. We show that SPDHG shows a robust and competitive
practical performance compared to SPDHG-µ of [6] and other state-of-the-art meth-
ods, including variance reduction and primal-dual coordinate descent methods.

We summarize our results and compare with those of [6] in Table 2.

2. Preliminaries.

2.1. Notation. We assume that X and Y are Euclidean spaces and that Y =Qn
i=1 Yi. We define Z = X ⇥ Y and z = (x, y) 2 Z. For positive definite Q, we

use hx, yiQ = hQx, yi for denoting weighted inner product and kxk2Q = hQx, xi for
weighted Euclidean norm. We overload these notations to also write for a vector �

with �i > 0, kyk2� = hy, diag(�)yi. For a set C, and positive definite Q, the distance of
a point x to C, measured in k ·kQ, is defined as dist2Q(x, C) = miny2C kx� yk2Q = kx�
PQ
C (x)k2Q, where we have defined the projection operator P implicitly. When Q = I,

we drop the subscript and write dist(x, C). For � 2 Rn, we use the elementwise inverse
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1290 AHMET ALACAOGLU, OLIVIER FERCOQ, AND VOLKAN CEVHER

�
�1 = (��1

1 , . . . ,�
�1
n ). The domain of a function h is denoted as domh. We encode

constraints using the indicator function: �{b}(x) = 0 if x = b and �{b}(x) = +1 if
x 6= b.

Given a vector x, we access the ith element as xi. We define e(i) 2 Y such that
e(i)j = 1 if j = i and e(i)j = 0 if j 6= i. Moreover, we use E(i) = e(i)e(i)>. Unless
used with a subscript, 1 in Kronecker products denotes 1n 2 Rn, all-ones vector.

Given a vector x 2 X , we use a bold symbol x to denote the duplicated version
of this vector, which consists of n copies of x, and the corresponding space is denoted
by X = Xn. Similarly, the duplicated dual space is Y = Yn and Z = X ⇥ Y . The
copies might be the same, or di↵erent, depending on how x is set. To access ith copy,
we use the notation x(i) 2 X . For the operator T : Z ! Z, and a duplicated vector

q 2 Z, we denote the output as T (q) =
�Tx(q)
Ty(q)

�
. For example, the ith primal copy is

denoted as Tx(q)(i) 2 X . Similarly, for the ith primal copy in q, we use qx(i) 2 X .
To access ith primal and dual copies, we use q(i) 2 Z.

For example, when we pick one coordinate at a time, we can set X = Rd, Y = Rn,
which would result in the duplicated spaces X = Rdn, Y = Rn2

, and Z = Rdn+n2

.
The probability of selecting an index i 2 {1, . . . , n} is denoted as pi > 0, withPn

i=1 pi = 1. We define P = diag(p1, . . . , pn) and p = mini pi. Notation Fk defines the
filtration generated by randomly selected indices {i1, . . . , ik�1}. Let Ek [·] := E [· | Fk]
denote the conditional expectation with respect to Fk.

The proximal operator of a function h is defined as

(2.1) prox⌧,h(x) = argmin
u2X

h(u) +
1

2
ku � xk2⌧�1 .

The Fenchel conjugate of h is defined as h⇤(y) = supz2X hz, yi � h(z).

2.2. Solution. Using the Fenchel conjugate of f , (1.1) is cast as the saddle point
problem

(2.2) min
x2X

sup
y2Y

nX

i=1

hAix, yii � f
⇤
i (yi) + g(x).

A primal-dual solution (x?
, y

?) 2 Z? is characterized as

(2.3) 0 2

A

>
y
? + @g(x?)

Ax
? � @f

⇤(y?)

�
= F (x?

, y
?).

Given the functions g and f
⇤ as in (2.2), we define

Dg(x; z̄) = g(x) � g(x̄) + hA>
ȳ, x � x̄i,(2.4)

Df⇤(y; z̄) = f
⇤(y) � f

⇤(ȳ) � hAx̄, y � ȳi.(2.5)

When z̄ = z
? = (x?

, y
?), with z

? denoting a primal-dual solution as defined
in (2.3), we have that (2.4) and (2.5) are Bregman distances generated by functions
g(x) and f

⇤(y). In this case, these Bregman distances measure the distance between
x and x

?, and y and y
?, respectively. Given z, Dh(z; z?) is the Bregman distance

generated by h(z) = g(x)+f
⇤(y) to measure the distance between z and z

?. Moreover,
the primal-dual gap function can be written as G(z) = supz̄2Z Df⇤(x; z̄) +Dg(y; z̄).

2.3. Metric subregularity. For Euclidean spaces U ,V and a set valued map-
ping F : U ◆ V, we denote the graph of F by graF = {(u, v) 2 U ⇥ V : v 2 Fu}.
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We say that F is metrically subregular at ū for v̄, with (ū, v̄) 2 graF , if there exists
⌘0 > 0 with a neighborhood of subregularity N (ū) such that

(2.6) dist(u, F�1
v̄)  ⌘0 dist(v̄, Fu) 8u 2 N (ū).

If N (ū) = U , then F is globally metrically subregular [14]. An absence of metric
subregularity is signaled by ⌘0 = +1. This assumption is used in the context of
deterministic and stochastic primal-dual algorithms in [15, 29, 31].

In this paper we shall study how the metric subregularity of the Karush–Kuhn–
Tucker (KKT) operator F in (2.3) implies the linear convergence of SPDHG.

The metric subregularity of F holds in the following cases:
1. f

⇤
i and g are strongly convex functions, since N (z̄) = Z.

2. The problem (1.1) is defined with piecewise linear quadratic (PLQ) functions
and dom g and dom f

⇤ are compact sets, in which case N (z̄) = dom g ⇥
dom f

⇤. In particular the domain of a PLQ function can be represented as
the union of finitely many polyhedral sets and in each set, the function is a
quadratic (see [29, Definition IV.3]). Problems with PLQ functions include
Lasso, support vector machines, linear programs, etc.

Remark 2.1. In the first example above, compact domains are not needed since
metric subregularity holds globally for these problems. One can also relax strong
convexity in the first case to weaker conditions (see [30]). Importantly, compact
domain assumption is only needed in the second example mentioned above in this
paper, for PLQs. The reason, as we see in Theorem 4.6, is the lack of control on
the low probability event that the trajectory makes an excursion far away. The same
assumption for proving linear convergence of another primal-dual coordinate descent
method is also needed in [29].

3. Algorithm. The algorithm SPDHG is given as Algorithm 3.1.

Algorithm 3.1 Stochastic PDHG [6, Algorithm 1].

Input: Pick step sizes �i, ⌧ by (3.1) and x
0 2 X , y

0 = y
1 = ȳ

1 2 Y. Given
P = diag(p1, . . . , pn).
for k = 1, 2, . . . do
x
k = prox⌧,g(x

k�1 � ⌧A
>
ȳ
k)

Draw ik 2 {1, . . . , n} such that Pr(ik = i) = pi.
y
k+1
ik

= prox�ik
,f⇤

ik
(ykik + �ikAikx

k)

y
k+1
i = y

k
i 8i 6= ik

ȳ
k+1 = y

k+1 + P
�1(yk+1 � y

k),
end for

Remark 3.1. We use serial sampling of blocks in our analysis for the ease of no-
tation. We can extend our results with other samplings by using expected separable
overapproximation (ESO) inequality as in [6].

We use the standard step size rules for primal and dual step sizes [6]:

(3.1) p
�1
i ⌧�ikAik2  �

2
< 1.

Assumption 1. We have the following assumptions concerning (1.1).
1. fi and g are proper, l.s.c., convex functions.
2. The set of solutions to (1.1) is nonempty.
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3. Slater’s condition holds, namely, 0 2 ri(dom f �A dom g), where ri stands for
relative interior [4].

Slater’s condition is a standard su�cient assumption for strong duality, used
frequently for primal-dual methods [4, 6, 7, 19, 29, 47]. Strong duality ensures that
a dual solution exists in (2.2) and the set of primal-dual solutions is characterized
by (2.3).

4. Convergence. We start with a lemma analyzing one iteration behavior of
the algorithm. This lemma is essentially the same as [6, Lemma 4.4] up to minor
modifications and is included for completeness, with its proof in section A.3. We first
introduce some notation.

(4.1)

V (z) =
1

2
kxk2⌧�1 +

1

2
kyk2��1P�1 + hAx, P

�1
yi,

Vk(x, y) =
1

2
kxk2⌧�1 � hAx, P

�1(yk � y
k�1)i + 1

2
kyk � y

k�1k2��1P�1

+
1

2
kyk2��1P�1 .

We also define the full dimensional dual update

(4.2) ŷ
k+1
i = prox�i,f⇤

i
(yki + �iAix

k) 8i 2 {1, . . . , n}.

Lemma 4.1. Let Assumption 1 hold. It holds for SPDHG that, 8x 2 X , 8y 2 Y,

(4.3) Dg(x
k; z) +Df⇤(ŷk+1; z)  Vk(x

k�1 � x, y
k � y)

� Ek

⇥
Vk+1(x

k � x, y
k+1 � y)

⇤
� V (zk � z

k�1).

Moreover, with C1 = 1 � �, under the step size rules in (3.1), we have

V (zk � z
k�1) � C1

✓
1

2
kxk � x

k�1k2⌧�1 +
1

2
kyk � y

k�1k2��1P�1

◆
,(4.4)

Vk(x, y) � C1

✓
1

2
kxk2⌧�1 +

1

2
kyk � y

k�1k2��1P�1

◆
+

1

2
kyk2��1P�1 .(4.5)

4.1. Almost sure convergence. In this section, we present the almost sure
convergence of the iterates of SPDHG to a solution of (1.1).

We start by introducing an equivalent representation of SPDHG that is instru-
mental in our proofs. The motivation of this representation can be seen as similar
to [22], where the focus was on PDHG. In particular, this representation shifts the
primal update so that the algorithm can be written as a fixed point operator. Since
ȳ
k+1 depends on the selected index ik at iteration k, the operator T is defined such

that all the possible values of ȳk+1, and consequently, of xk+1, are captured.

Lemma 4.2. Let us define T : Z ! Z that to (x,y) associates (x̂, ŷ) such that

8i 2 {1, . . . , n},

ŷ(i) = prox�,f⇤(y(i) + diag(�)Ax(i)),

ȳ(i) = y(i) + (1 + p
�1
i )(ŷ(i)i � y(i)i)e(i),

x̂(i) = prox⌧,g(x(i) � ⌧A
>
ȳ(i)),

where x(i) 2 X , y(i) 2 Y.
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The fixed points of T are of the form (x(i),y(i)) such that (x(i),y(i)) 2 Z?

8i 2 {1, . . . , n}. Moreover,

�
x
k+1

, ŷ
k+1

�
=
�
Tx(1 ⌦ x

k
, 1 ⌦ y

k)(ik), Ty(1 ⌦ x
k
, 1 ⌦ y

k)(1)
�
.

We also denote

S̄ = blkdiag(⌧�1
Idn⇥dn, In⇥n ⌦ �

�1),

P̄ = blkdiag(p1Id⇥d, . . . , pnId⇥d, p1In⇥n, . . . , pnIn⇥n).

We then have

kT (1⌦x
k
, 1⌦ y

k)� (1⌦x
k
, 1⌦ y

k)k2S̄P̄ = Ek

⇥
kxk+1 � x

kk2⌧�1 + kyk+1 � y
kk2��1P�1

⇤
.

Before presenting the proof of the lemma, we use an example to illustrate the
notation and the main idea behind it.

Example 4.3. Let d = 1, n = 2, then x =
�x(1)
x(2)

�
2 R2, y =

�y(1)
y(2)

�
2 R4, and

S̄ = diag(⌧�1
, ⌧

�1
,�

�1
1 ,�

�1
2 ,�

�1
1 ,�

�1
2 ) 2 R6⇥6

,

P̄ = diag(p1, p2, p1, p1, p2, p2) 2 R6⇥6
.

Then, we have by letting x = 1 ⌦ x
k, y = 1 ⌦ y

k,

ŷ(1) = prox�,f⇤(yk + diag(�)Ax
k), ŷ(2) = prox�,f⇤(yk + diag(�)Ax

k),

ȳ(1) = y
k + (1 + p

�1
1 )


ŷ(1)1 � y

k
1

0

�
, ȳ(2) = y

k + (1 + p
�1
2 )


0

ŷ(2)2 � y
k
2

�
,

x̂(1) = prox⌧,g(x
k � ⌧A

>
ȳ(1)), x̂(2) = prox⌧,g(x

k � ⌧A
>
ȳ(2)).

We have T (1 ⌦ x
k
, 1 ⌦ y

k) =

✓
x̂(1)
x̂(2)

�
,


ŷ(1)
ŷ(2)

�◆
. By using the definition of ŷ

k+1

in Lemma 4.1, we see that (xk+1
, ŷ

k+1) = (x̂(1), ŷ(1)) if ik = 1 and (xk+1
, ŷ

k+1) =
(x̂(2), ŷ(1)) if ik = 2. Note that we can take any copy of ŷ as ŷ(1) = ŷ(2). Moreover,
depending on ik, one obtains yk+1 from ŷ

k+1 with a coordinatewise update, as given
in SPDHG (see Algorithm 3.1).

Proof of Lemma 4.2. Let (x,y) be a fixed point of T . Then it follows that
y(i) = prox�,f⇤(y(i) + diag(�)Ax(i)) 8i, ȳ(i) = y(i), 8i and x(i) = prox⌧,g(x(i) �
⌧A

>
y(i)), 8i. Hence, optimality conditions for each i are the same as (2.3). Therefore,

fixed points of T are such that (x(i),y(i)) 2 Z? 8i.
The equality (xk+1

, ŷ
k+1) = (Tx(1 ⌦ x

k
, 1 ⌦ y

k)(ik), Ty(1 ⌦ x
k
, 1 ⌦ y

k)(1)) is just
another way to write the algorithm. Since when inputted (1⌦ x

k
, 1⌦ y

k), T outputs
(1 ⌦ ŷ

k+1) for the dual variable, we can simply take first copy for ŷk+1.
For the last result, we use kŷk+1 � y

kk2��1 = Ek

⇥
kyk+1 � y

kk2��1P�1

⇤
to show

kT (1 ⌦ x
k
, 1 ⌦ y

k) � (1 ⌦ x
k
, 1 ⌦ y

k)k2S̄P̄

=
nX

i=1

�
kTx(1 ⌦ x

k
, 1 ⌦ y

k)(i) � x
kk2⌧�1pi + kTy(1 ⌦ x

k
, 1 ⌦ y

k)(i) � y
kk2��1pi

�

=
nX

i=1

�
kTx(1 ⌦ x

k
, 1 ⌦ y

k)(i) � x
kk2⌧�1pi

�
+ kŷk+1 � y

kk2��1

� nX

i=1

pi

�

= Ek

⇥
kxk+1 � x

kk2⌧�1 + kyk+1 � y
kk2��1P�1

⇤
,

where we also used that
Pn

i=1 pi = 1.
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We proceed with the main theorem of this section. We present the main ideas and
ingredients that make the proof possible in the following proof sketch. The details of
the proof using classical arguments from [5, 11, 24] are deferred to section A.1. Let
us define

(4.6) �k = Vk+1(x
k � x

?
, y

k+1 � y
?).

Theorem 4.4. Let Assumption 1 hold. Then, it holds that E[Vk(xk�1 � x
?
, y

k �
y
?)]  �0

,
P1

k=1 E[V (zk � z
k�1)]  �0

. Moreover, almost surely, there exists

(x?
, y

?) 2 Z?
, such that the iterates of SPDHG satisfy (xk

, y
k) ! (x?

, y
?).

Proof sketch. On (4.3), we pick (x, y) = (x?
, y

?) and by convexity, Dg(xk; z?) � 0,
Df⇤(ŷk+1; z?) � 0. Next, by using the definition of �k, we write (4.3) as

Ek

⇥
�k

⇤
 �k�1 � V (zk � z

k�1).

We apply Robbins–Siegmund lemma [43, Theorem 1] to get that, almost surely, �k

converges to a finite valued random variable and V (zk � z
k�1) ! 0. Consequently,

by (4.4), kyk �y
k�1k converges to 0 almost surely. Since, almost surely, �k converges

and kyk � y
k�1k converges to 0, we have that kzk � z

?k converges almost surely.
Next, we denote q

k = (1 ⌦ x
k
, 1 ⌦ y

k) and use the arguments in [11, Proposition
2.3], [19, Theorem 1] to argue that there exists a probability 1 set ⌦ such that for every
z
? 2 Z? and for every ! 2 ⌦, kzk(!) � z

?k converges and kT (qk(!)) � q
k(!)k ! 0.

As for every ! 2 ⌦, (zk(!))k is bounded, we denote by z̃ = (x̃, ỹ) one of its cluster
points. Then, we denote q̃ = (1 ⌦ x̃, 1 ⌦ ỹ) and have that q̃ is a cluster point of
(qk(!))k.

The key step in our proof that enables the result is the fixed point characterization
of T in Lemma 4.2. With this result, we derive z̃ 2 Z? as q̃ is a fixed point of T .

To sum up, we have shown that at least on some subsequence z
k(!) converges

to z̃ 2 Z?. As for every ! 2 ⌦ and z
? 2 Z?, kzk(!) � z

?k converges, the result
follows.

4.2. Linear convergence. The standard approach for showing linear conver-
gence with metric subregularity is to obtain a Fejer-type inequality of the form [29]

(4.7) Ek

⇥
d(zk+1 � z

?)
⇤

 d(zk � z
?) � V (T (zk) � z

k)

for suitably defined distance functions d, V and operator T . However, as evident
from (4.3) and the definition of Vk+1, one iteration result of SPDHG does not fit into
this form. When x = x

?
, y = y

?, Vk+1(xk � x
?
, y

k+1 � y
?) does not only measure

distance to solution, but also the distance of subsequent iterates y
k+1 and y

k. In
addition, Vk+1 includes xk � x

? and y
k+1 � y

? rather than x
k+1 � x

? and y
k+1 � y

?,
which further presents a challenge due to asymmetry, for using metric subregularity.
Therefore, an intricate analysis is needed to control the additional terms and handle
the asymmetry in Vk+1. In addition, Lemma 4.2 is a necessary tool to identify T .

We need the following notation and lemma, which builds on Lemma 4.2, for
easier computations with metric subregularity. For the operators, we adopt the con-
vention in [29]. Operator C is the concatenation of subdi↵erentials, and M is the
skew symmetric matrix that is formed using matrix A. Operator F is the KKT oper-
ator and H is the “metric” that helps us write the algorithm in proximal point form
(see Lemma 4.2). Due to duplication in Lemma 4.2, we need duplicated versions of
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C and M . Consistent with the notation of Lemma 4.2 (also see section 2.1), we use
boldface to denote operators in the duplicated space.

Lemma 4.5. Under the notation of Lemma 4.2, to write compactly the operation

of T , let us define the operators

C : (x, y) 7! (@g(x), @f⇤(y)),

M : (x, y) 7! (A>
y,�Ax),

C : (x,y) 7! (@g(x(1)), . . . , @g(x(n)), @f⇤(y(1)), . . . , @f⇤(y(n))),

M : (x,y) 7! (A>
y(1), . . . , A>

y(n),�Ax(1), . . . ,�Ax(n)),

F = C +M

and

H : (x,y) 7!
�
⌧
�1

x(1) +A
>(1 + p

�1
1 )E(1)y(1), . . . ,

⌧
�1

x(n) +A
>(1 + p

�1
n )E(n)y(n),��1

y(1), . . . ,��1
y(n)

�
.

Let q
k=(1⌦x

k
, 1⌦y

k), q̂k+1 = T (qk) and ẑ
k+1 = (xk+1

, ŷ
k+1) = (q̂k+1

x (ik), q̂
k+1
y (1)).

Then, we have (H �M)qk 2 (C +H)q̂k+1
, (M �H)(q̂k+1 � q

k) 2 (C +M)q̂k+1
,

Ek

⇥
dist2(0, F ẑ

k+1)
⇤
= Ek

⇥
dist2(0, (C +M)ẑk+1)

⇤
= dist2P̄ (0, (C +M)q̂k+1).

Proof. We start by the representation in Lemma 4.2 by incorporating the update
of ȳk+1 and recalling the definition of E(i) = e(i)e(i)> 8i 2 {1, . . . , n}

ŷ(i) = prox�,f⇤(y(i) + diag(�)Ax(i)),

x̂(i) = prox⌧,g(x(i) � ⌧A
> ⇥

y(i) + (1 + p
�1
i )E(i)(ŷ(i) � y(i))

⇤
)

= prox⌧,g(x(i) � ⌧A
>(1 + p

�1
i )E(i)ŷ(i) + ⌧A

>(�In⇥n + (1 + p
�1
i )E(i))y(i)).

We now use the definition of proximal operator to obtain

�
�1

y(i) +Ax(i) 2 @f
⇤(ŷ(i)) + �

�1
ŷ(i),

⌧
�1

x(i) � A
>
y(i) +A

>(1+p
�1
i )E(i)y(i) 2 @g(x̂(i)) + ⌧

�1
x̂(i) +A

>(1+p
�1
i )E(i)ŷ(i).

We identify

Hq=

2

666666664

⌧
�1

x(1) +A
>(1 + p

�1
1 )E(1)y(1)

...
⌧
�1

x(n) +A
>(1 + p

�1
n )E(n)y(n)

�
�1

y(1)
...

�
�1

y(n)

3

777777775

,Mq =

2

666666664

A
>
y(1)
...

A
>
y(n)

�Ax(1)
...

�Ax(n)

3

777777775

,Cq =

2

666666664

@g(x(1))
...

@g(x(n))
@f

⇤(y(1))
...

@f
⇤(y(n))

3

777777775

.

We set q = q
k and q̂ = q̂

k+1 and use the definition of T in Lemma 4.2 to obtain the
first inclusion.

The second inclusion follows by adding to both sides Mq̂
k+1 and rearranging.
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For the equality, we write

Ek

⇥
dist2(0, (C +M)ẑk+1)

⇤
=

nX

i=1

dist2(0, (C +M)q̂k+1(i))pi

= dist2P̄ (0, (C +M)q̂k+1),

where the first equality follows by ẑ
k+1 = (xk+1

, ŷ
k+1) = (q̂k+1

x (ik), q̂
k+1
y (1)) and the

second equality is by the definitions of C, M , C, and M and q̂
k+1
y (i) =

q̂
k+1
y (1) 8i.

We continue with our assumption for linear convergence (see section 2.3).

Assumption 2. Metric subregularity holds for F (see (2.3) and section 2.3) at all
z
? 2 Z? for 0 with constant ⌘ > 0 using k · kS with S = diag(⌧�11p,�

�1
1 , . . . ,�

�1
n ),

and the neighborhood of regularity N (z?) contains ẑk 8k.
We present our main theoretical development in the next theorem, which states

that SPDHG with step sizes in (3.1) attains linear convergence with Assumption 2.
The proof idea is to utilize the term �V (zk �z

k�1) in (4.3) to obtain contraction. For
this, we have to use the results of Lemmas 4.2 and 4.5 to write this term with the fixed
point characterization given in Lemma 4.2, which allows using metric subregularity.

We denote

(xk�1
? , y

k
? ) = arg min

(x,y)2Z?
Vk(x

k�1 � x, y
k � y),

which exists since Vk is a nonnegative quadratic function. We define (cf. (4.6))

�k = Vk+1(x
k � x

k
?, y

k+1 � y
k+1
? ),

�k = �k � C1

4⇣
kyk � y

k
?k2��1 � 0.

Theorem 4.6. Let Assumptions 1 and 2 hold. Then it holds that

(4.8) Ek

⇥
�k

⇤
 �k�1 � V (zk � z

k�1)

and

E

C1

2
kxk � x

k
?k2⌧�1 +

1

2
kyk+1 � y

k+1
? k2��1P�1

�
 (1 � ⇢)k2�0

,

where, ⇢ =
C1p

2⇣ , ⇣ = 2 + 2⌘2kH � Mk2, C1 = 1 � �.

Proof. Starting from the result of Lemma 4.1, we have

Dg(x
k; z) +Df⇤(ŷk+1; z)  �Ek

⇥
Vk+1(x

k � x, y
k+1 � y)

⇤

+ Vk(x
k�1 � x, y

k � y) � V (zk � z
k�1).(4.9)

We pick x = x
k�1
? , y = y

k
? with z

k
? = (xk�1

? , y
k
? ) and use convexity to get Dg(xk; zk? ) �

0 and Df⇤(ŷk+1; zk? ) � 0. In addition, we define

�k�1 = Vk(x
k�1 � x

k�1
? , y

k � y
k
? ),

�̃k = Vk+1(x
k � x

k�1
? , y

k+1 � y
k
? ).
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We use these definitions in (4.9) to write

Ek

h
�̃k

i
 �k�1 � V (zk � z

k�1).

By definition of (xk
?, y

k+1
? ), we have �k  �̃k, which implies that

Ek

⇥
�k

⇤
 �k�1 � V (zk � z

k�1).

Recursion of this inequality gives the boundedness of the iterates xk and yk, in ex-
pectation. However, it is not possible to derive sure boundedness of the sequence.
Without sure boundedness, the set that includes xk, yk depends on the specific tra-
jectory of the algorithm, and it is not possible to find a set independent of these. As
metric subregularity holds for PLQs with a bounded neighborhood (see section 2.3),
we cannot utilize this result and this is the main reason for the need for bounded do-
mains in this case. This assumption would ensure sure boundedness of the sequence,
which gives us a suitable set to use for using metric subregularity assumption for
PLQs.

We recall S = diag(⌧�11p,�
�1
1 , . . . ,�

�1
n ); S̄ and P̄ are as defined in Lemma 4.2,

and dist2S(z
k
,Z?) = kzk � PS

Z?(zk)k2S = kxk � x̃
k
?k2⌧�1 + kyk � y

k
?k2��1 , where x̃

k
? is

the projection of xk onto the set of solutions with respect to norm k · k⌧�1 . We now
use Assumption 2, stating that F = C +M is metrically subregular at PS

Z?(ẑk+1) for
0. We recall, qk = (1 ⌦ x

k
, 1 ⌦ y

k) and q̂
k+1 = T (qk) and estimate as

kxk � x̃
k
?k2⌧�1 + kyk � y

k
?k2��1 = dist2S(z

k
,Z?)  Ek

⇥
kzk � PS

Z?(ẑk+1)k2S
⇤

 2Ek

⇥
kzk � ẑ

k+1k2S
⇤
+ 2Ek

⇥
kẑk+1 � PS

Z?(ẑk+1)k2S
⇤
,(4.10)

where the first inequality is due to the definition of dist2S(z
k
,Z?). Next, we estimate

the second term on the right-hand side

(4.11) 2Ek

⇥
kẑk+1 � PS

Z?(ẑk+1)k2S
⇤

 2⌘2Ek

⇥
dist2S(0, (C +M)ẑk+1)

⇤

= 2⌘2 dist2S̄P̄ (0, (C +M)q̂k+1)  2⌘2kM � Hk2kq̂k+1 � q
kk2S̄P̄

with the first inequality being due to metric subregularity of C+M (see Remark 4.7)
since dist2S(ẑ

k+1
,Z?) = kẑk+1�PS

Z?(ẑk+1)k2S . The first equality and second inequality
are by Lemma 4.5 and the Cauchy–Schwarz inequality. Joining the estimates gives

(4.12) kxk � x̃
k
?k2⌧�1 + kyk � y

k
?k2��1  2Ek

⇥
kzk � ẑ

k+1k2S
⇤

+ 2⌘2kM � Hk2kq̂k+1 � q
kk2S̄P̄ .

First, we use kŷk+1 � y
kk2��1 = Ek

⇥
kyk+1 � y

kk2��1P�1

⇤
to estimate

Ek

⇥
kzk � ẑ

k+1k2S
⇤
= Ek

⇥
kxk+1 � x

kk2⌧�1

⇤
+ kŷk+1 � y

kk2��1

= Ek

⇥
kxk+1 � x

kk2⌧�1 + kyk+1 � y
kk2��1P�1

⇤
.(4.13)

Second, we use Lemma 4.2 to obtain

kq̂k+1 � q
kk2S̄P̄ = kT (1 ⌦ x

k
, 1 ⌦ y

k) � (1 ⌦ x
k
, 1 ⌦ y

k)k2S̄P̄

= Ek

⇥
kxk+1 � x

kk2⌧�1 + kyk+1 � y
kk2��1P�1

⇤
.(4.14)D
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We combine (4.13) and (4.14) in (4.10) to get

1

2
kxk�x̃

k
?k2⌧�1 +

1

2
kyk � y

k
?k2��1

 (2 + 2⌘2kN � Hk2)Ek


1

2
kxk+1 � x

kk2⌧�1 +
1

2
kyk+1 � y

kk2��1P�1

�
.(4.15)

Herein, we denote ⇣ = 2 + 2⌘2kH � Mk2.
By using (4.4), we have that, 8↵ 2 [0, 1],

Ek�1

⇥
V (zk � z

k�1)
⇤

� C1Ek�1


1

2
kxk � x

k�1k2⌧�1 +
1

2
kyk � y

k�1k2��1P�1

�

� C1

⇣

✓
↵

2
kxk�1 � x̃

k�1
? k2⌧�1 +

1

2
kyk�1 � y

k�1
? k2��1

◆
,(4.16)

where the second inequality is due to (4.15) and ↵ � 1.
We have, by the definition of x?

k�1, that

�k�1  Vk(x
k�1 � x̃

k�1
? , y

k � y
k
? )

=
1

2
kxk�1 � x̃

k�1
? k2⌧�1 +

1

2
kyk � y

k
?k2��1P�1 +

1

2
kyk � y

k�1k2��1P�1

� hP�1
A(xk�1 � x̃

k�1
? ), yk � y

k�1i.

Next, by the Cauchy–Schwarz and Young’s inequalities with (3.1), we have

�hP�1
A(xk�1 � x̃

k�1
? ), yk � y

k�1i  �

2
kyk � y

k�1k2��1P�1 +
�

2
kxk�1 � x̃

k�1
? k2⌧�1 .

Using the final estimate and adding and subtracting 1+�
2↵ kyk�1 � y

k�1
? k2��1 gives

(4.17) �k�1  1 + �

2
kxk�1 � x̃

k�1
? k2⌧�1 +

1 + �

2↵
kyk�1 � y

k�1
? k2��1

+
1 + �

2
kyk � y

k�1k2��1P�1 � 1 + �

2↵
kyk�1 � y

k�1
? k2��1 .

We now take conditional expectation of both sides and use (4.16) to get

Ek�1

⇥
�k�1

⇤
 (1 + �)⇣

C1↵
Ek�1

⇥
V (zk � z

k�1)
⇤
+

1 + �

2
Ek�1

⇥
kyk � y

k�1k2��1P�1

⇤

+
1

2
Ek�1

⇥
kyk � y

k
?k2��1P�1

⇤
� 1 + �

2↵
kyk�1 � y

k�1
? k2��1 .

By using (4.4) and requiring that (1+�)
C1

 (1+�)⇣
C1↵

, or equivalently ⇣ � ↵, which is not
restrictive since ↵ is finite, and one can increase ⌘ as in (2.6) to satisfy the requirement,
we can combine the first two terms in the right hand side to get

Ek�1

⇥
�k�1

⇤
 2(1 + �)⇣

C1↵
Ek�1

⇥
V (zk � z

k�1)
⇤
+

1

2
Ek�1

⇥
kyk � y

k
?k2��1P�1

⇤

� 1 + �

2↵
kyk�1 � y

k�1
? k2��1 .

We now insert this inequality into (4.8) and use that Ek�1

⇥
Ek

⇥
�k

⇤⇤
= Ek�1

⇥
�k

⇤

Ek�1

⇥
�k

⇤
 Ek�1

⇥
�k�1

⇤
� C1↵

2(1 + �)⇣
Ek�1

⇥
�k�1

⇤

+
C1↵

4(1 + �)⇣
Ek�1

⇥
kyk � y

k
?k2��1P�1

⇤
� C1

4⇣
kyk�1 � y

k�1
? k2��1 .
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We take full expectation and rearrange to get

(4.18) E
h
�k � C1↵

4(1 + �)⇣
kyk � y

k
?k2��1P�1

i


✓
1 � C1↵

2(1 + �)⇣

◆
E
h
�k�1 � C1

4⇣(1 � C1↵
2(1+�)⇣ )

kyk�1 � y
k�1
? k2��1

i
.

We require

(4.19) C2 =
C1↵

4p(1 + �)⇣
 C1

4⇣
 C1

4⇣(1 � C1↵
2(1+�)⇣ )

() ↵  (1 + �)p.

Let us pick ↵ = (1 + �)p so that C2 = C1
4⇣ and define

�k = �k � C2kyk � y
k
?k2��1 .

We note (4.16) and (4.8) to have

kyk � y
k
?k2��1  2⇣

C1
Ek

⇥
V (zk+1 � z

k)
⇤

 2⇣

C1
Ek

⇥
�k

⇤
.

Then, we can lower bound �k as

(4.20) E
⇥
�k

⇤
�
✓
1 � C2

2⇣

C1

◆
E
⇥
�k

⇤
=

1

2
E
⇥
�k

⇤
.

Therefore, it follows that E
⇥
�k

⇤
is nonnegative, by the definition of �k and (4.5).

We can now rewrite (4.18) as

E
⇥
�k

⇤
 (1 � ⇢)E

⇥
�k�1

⇤
,

where ⇢ =
C1p

2⇣ . We have shown that �k converges linearly to 0 in expectation.

By (4.20), it immediately follows that �k converges linearly to 0.
To conclude, we note �k = Vk+1(xk �x

k
?, y

k+1 � y
k+1
? ), and (4.5), from which we

conclude the linear convergence of kxk � x
k
?k2⌧�1 and kyk+1 � y

k+1
? k2��1P�1 .

It is obvious to see that 0 < ⇢ follows by the fact that ⌘ is finite by metric
subregularity and ⇢ < 1 follows since � < 1 and p  1.

One important remark about Theorem 4.6 is that the knowledge of the metric
subregularity constant ⌘ is not needed for running the algorithm. Step sizes are chosen
as (3.1) and linear convergence follows directly when Assumption 2 holds. Important
examples where Assumption 2 holds are given in section 2.3.

Even though Assumption 2 is more general than prior assumptions for linear
convergence and our result is agnostic to the choice of the step size, we observe in
practice that SPDHG can be much faster than the rate derived in Theorem 4.6. We
reflect on this issue more in section 7 and present some open questions in this context.

Remark 4.7. Strictly speaking, metric subregularity is used in Theorem 4.6 in the
weighted norm, i.e.,

distS(z,Z?)  ⌘ distS(0, Fz),

where S = diag(⌧�11p,�
�1
1 , . . . ,�

�1
n ). In terms of the definition in (2.6) if ⌘0 is the

constant using the standard Euclidean norm, it is obvious that ⌘  kSkkS�1k⌘0, but
we use ⌘ in Theorem 4.6 since it can be smaller, resulting in a better rate.
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4.3. Sublinear convergence. In this section, we prove O(1/k) convergence
rates for the ergodic sequence with di↵erent optimality measures.

4.3.1. Convergence of expected primal-dual gap. We recall the definition
of the primal-dual gap function,

G(x̄, ȳ) = sup
z2Z

H(x̄, ȳ;x, y)

:= sup
z2Z

g(x̄) + hAx̄, yi � f
⇤(y) � g(x) � hAx, ȳi + f

⇤(ȳ).(4.21)

It is also possible to consider the restricted primal-dual gap in the sense of [6, 7],
which for any set B = Bx ⇥ By ✓ Z would correspond to

(4.22) GB(x̄, ȳ) = sup
z2B

H(x̄, ȳ;x, y).

The main quantity of interest for randomized algorithms is the expected restricted
primal-dual gap E [GB(x̄, ȳ)]. As also mentioned in [13], showing the convergence rate
for this quantity is not straightforward, as the interplay of supremum and expectation
can be problematic. In [13], the convergence rate is shown in a weaker measure named
the perturbed gap function. We show in what follows that obtaining the guarantee in
the expected primal-dual gap is also possible, however, with a more involved analysis.

The expected primal-dual gap proof in [6] has a technical issue, near the end of
the proof in [6, Theorem 4.3]. Since the supremum of expectation is upper bounded
by the expectation of the supremum, which is in the definition of the expected primal-
dual gap (4.22), the order of expectation in the proof is incorrect. As we could not
find a simple way of fixing the issue using the existing techniques, we introduce a new
technique and provide a proof to show that the conclusions of [6, Theorem 4.3], for
the primal-dual gap, are still correct, with di↵erent constants in the bound.

Our technique in the following proof is inspired by the stochastic approximation
literature of variational inequalities and saddle point problems (see [36, Lemmas 3.1,
6.1] for a reference), where such an analysis is used to obtain O(1/

p
k) rates. In the

new proof, we adapt this idea by using the structure of primal-dual coordinate descent
to obtain the optimal O(1/k) rate of convergence. Our technique uses the Euclidean
structure of the dual update of SPDHG and therefore might not be directly applicable
to cases where general Bregman distances are used for the proximal operator, such as
in [27, 28].

We start with a lemma to decouple supremum and expectation in the proof.

Lemma 4.8. Given a point ỹ
1 2 Y, for k � 1, we define the sequences

(4.23) v
k+1 = y

k � ŷ
k+1 � P

�1(yk � y
k+1) and ỹ

k+1 = ỹ
k � Pv

k+1
.

Then, we have for any y 2 Y,

KX

k=1

hỹk � y, v
k+1i��1  1

2
kỹ1 � yk2��1P�1 +

KX

k=1

1

2
kvk+1k2��1P ,(4.24)

E
"

KX

k=1

1

2
kvk+1k2��1P

#
 1

C1
�0

.(4.25)

Moreover, v
k
and ỹ

k
are Fk-measurable and Ek

⇥
v
k+1

⇤
= 0.
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Proof. For brevity in this proof, we denote ⌥ = �
�1

P
�1. We have 8y 2 Y,

1

2
kỹk+1 � yk2⌥ =

1

2
kỹk � yk2⌥ � hPv

k+1
, ỹ

k � yi⌥ +
1

2
kPv

k+1k2⌥

=
1

2
kỹk � yk2��1P�1 � hvk+1

, ỹ
k � yi��1 +

1

2
kvk+1k2��1P .

Summing this equality gives the first result.
For the second result, we use Ek

⇥
P

�1(yk � y
k+1)

⇤
= y

k � ŷ
k+1, the tower prop-

erty, and the definition of variance,

E
"

KX

k=1

1

2
kvk+1k2��1P

#
=

KX

k=1

1

2
E
⇥
Ek

⇥
kvk+1k2��1P

⇤⇤


KX

k=1

1

2
E
⇥
Ek

⇥
kP�1(yk+1 � y

k)k2��1P

⇤⇤

=
KX

k=1

1

2
E
⇥
kyk+1 � y

kk2��1P�1

⇤
 1

C1
�0

,

where the last inequality follows by
P1

k=1 E
⇥
V (zk+1 � z

k)
⇤

 �0 from Theorem 4.4
and 1

2kyk+1 � y
kk2��1P�1  1

C1
V (zk+1 � z

k) from Lemma 4.1.
Other results follow immediately by the definition of the sequences and the equal-

ity Ek

⇥
y
k+1 � y

k
⇤
= P (ŷk+1 � y

k).

A direct proof of Lemma 4.1 would proceed by developing terms involving ran-
dom quantities, by utilizing conditional expectations (see [6]). In this case, however,
our approach is to proceed without using conditional expectation since the quantity
of interest requires us to take first the supremum and then the expectation of the
estimates. Our proof strategy is to characterize the error term and then utilize the
results of Lemma 4.8 to decouple and bound this term. First, we give the variant
of Lemma 4.1 without taking expectations, with its proof given in section A.2.

Lemma 4.9. We define f
⇤
P (y) =

Pn
i=1 pif

⇤
i (yi), and similar to (2.5), DP

f⇤(ȳ; z) =Pn
i=1 pif

⇤
i (ȳi) � pif

⇤
i (yi) � h(Ax)i, pi(ȳ � y)ii, and recall the definitions of V and Vk

from Lemma 4.1 and H from (4.21). Then, it holds that

H(xk
, y

k+1;x, y)  Vk(x
k�1 � x, y

k � y) � Vk+1(x
k � x, y

k+1 � y) � V (zk � z
k�1)

+ Ek +D
P�1�I
f⇤ (yk; z) � D

P�1�I
f⇤ (yk+1; z) � hy, vk+1i��1 ,(4.26)

where v
k+1 = y

k � ŷ
k+1 � P

�1(yk � y
k+1) and

Ek =
1

2

⇥
kykk2��1 � kŷk+1k2��1 �

�
kykk2��1P�1 � kyk+1k2��1P�1

�⇤

+
1

2
kyk+1 � y

kk2��1P�1 � 1

2
kŷk+1 � y

kk2��1 + f
⇤(yk) � f

⇤(ŷk+1)

� (f⇤
P�1(yk) � f

⇤
P�1(yk+1)) � hAx

k
, y

k � ŷ
k+1 � P

�1(yk � y
k+1)i,(4.27)

and also Ek

⇥
Ek
⇤
= 0.

With this lemma, we identify the problematic inner product for deriving the
rate for the expected gap: hy, vk+1i (see (4.26)). This is the only term coupling the
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free variable z and random term v
k+1. In the next theorem, we use Lemma 4.8 to

manipulate this inner product. For the rest, we can observe in (4.26) that the terms

of the form Vk and D
P�1�1
f⇤ (yk) will form a telescoping sum. Moreover, the term Ek

has expectation 0 and is independent of free variable z.

Theorem 4.10. Let Assumption 1 hold. Define the sequences x
K
av = 1

K

PK
k=1 x

k

and y
K+1
av = 1

K

PK
k=1 y

k+1
. Then, for any set B = Bx ⇥ By ✓ Z, the following result

holds for the expected restricted primal dual gap defined in (4.21):

E

sup
z2B

H(xK
av, y

K+1
av ;x, y)

�
= E

⇥
GB(x

K
av, y

K+1
av )

⇤
 CB

K
,(4.28)

where

CB =
1 + 2c

2
sup
x2Bx

kx0 � xk2⌧�1 + sup
y2By

ky1 � yk2��1P�1 + f
⇤
P�1�I(y

1) � f
⇤
P�1�I(y

?)

+

✓
1

C1
+ 2c+ c1

◆
�0 + ckx0k2⌧�1 + cky1 � y

?k2��1P�1 +
k�1/2

A⌧
1/2k2

2c1p
kx?k2⌧�1 ,

where c1 = k⌧1/2A>
�
1/2

P
�1/2k, c = k⌧1/2A>(P�1 � I)�1/2

P
1/2k, C1 = 1 � �.

Proof. We start from the result of Lemma 4.9. We have for the last term in (4.26)

�hy, vk+1i��1 = hỹk � y, v
k+1i��1 � hỹk, vk+1i��1 ,(4.29)

where ỹ
k is the random sequence defined in Lemma 4.8.

We sum (4.26) after using (4.29) and Lemma 4.1

KX

k=1

H(xk
, y

k+1;x, y)  �VK+1(x
K � x, y

K+1 � y) + V1(x
0 � x, y

1 � y)

+D
P�1�I
f⇤ (y1; z) � D

P�1�I
f⇤ (yK+1; z)

+
KX

k=1

�
hỹk � y, v

k+1i��1 � hỹk, vk+1i��1 + Ek
�
.(4.30)

Next, by Young’s inequality (see also (A.17))

(4.31) � hA(x � x
K), P�1(yK+1 � y

K)i  �

2
kx � x

Kk2⌧�1 +
�

2
kyK+1 � y

Kk2��1P�1 .

On (4.30), we use (4.24) from Lemma 4.8 with ỹ
1=y

1=y
0, (4.31) with the definition

of VK+1(xK�x, yK+1�y) from Lemma 4.1 (see also (4.5), (A.17)), and �<1 from (3.1)

KX

k=1

H(xk
, y

k+1;x, y)  1

2
kx0 � xk2⌧�1 + ky1 � yk2��1P�1

+ f
⇤
P�1�I(y

1) � f
⇤
P�1�I(y

K+1) + hAx, (P�1 � I)(yK+1 � y
1)i

+
KX

k=1

⇣1
2
kvk+1k2��1P � hỹk, vk+1i��1 + Ek

⌘
.(4.32)

We have hAx, (P�1 � I)(yK+1 � y
1)i  c

�
1
2kxk2⌧�1 + 1

2kyK+1 � y
1k2��1P�1

�
, where

c = k⌧1/2A>(P�1 � I)�1/2
P

1/2k and 1
2kxk2⌧�1  kx � x

0k2⌧�1 + kx0k2⌧�1 .
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We use these inequalities, arrange (4.32), and divide both sides by K:

1

K

KX

k=1

H(xk
, y

k+1;x, y)  1

K

⇢
1 + 2c

2
kx0 � xk2⌧�1 + ky1 � yk2��1P�1 + ckx0k2⌧�1

+
c

2
kyK+1 � y

1k2��1P�1 + f
⇤
P�1�I(y

1) � f
⇤
P�1�I(y

K+1)

+
KX

k=1

✓
1

2
kvk+1k2��1P � hỹk, vk+1i��1 + Ek

◆�
.(4.33)

We now take the supremum of (4.33) with respect to z, noting that only the first two
terms on the right hand side depend on z = (x, y), and x

0, y1 are deterministic. Then
we take the expectation of both sides of (4.33):

E

sup
z2B

1

K

KX

k=1

H(xk
, y

k+1;x, y)

�
 1

K

(
sup
z2B

⇢
1 + 2c

2
kx0 � xk2⌧�1 + ky1 � yk2��1P�1

�

+ E
h
c

2
kyK+1 � y

1k2��1P�1 + f
⇤
P�1�I(y

1) � f
⇤
P�1�I(y

K+1)
i
+ ckx0k2⌧�1

+
KX

k=1

1

2
E
⇥
kvk+1k2��1P

⇤
�

KX

k=1

E
⇥
hỹk, vk+1i��1

⇤
+

KX

k=1

E
⇥
Ek
⇤
)
.(4.34)

As ỹk is Fk-measurable and Ek

⇥
v
k+1

⇤
= 0, by Lemma 4.8 and by the tower property,

E
"

KX

k=1

hỹk, vk+1i��1

#
=

KX

k=1

E
⇥
Ek

⇥
hỹk, vk+1i��1

⇤⇤

=
KX

k=1

E
⇥
hỹk,Ek[v

k+1]i��1

⇤
= 0.(4.35)

On (4.34), we use (4.25) from Lemma 4.8, (4.35), and
PK

k=1 E[Ek] =
PK

k=1 E
⇥
Ek

⇥
Ek
⇤⇤

=
0, which follows from Lemma 4.9 along with the tower property, to obtain

E

sup
z2B

1

K

KX

k=1

H(xk
, y

k+1;x, y)

�
 sup

z2B

⇢
1 + 2c

2K
kx0 � xk2⌧�1 +

1

K
ky1 � yk2��1P�1

�

+
c

2K
E
⇥
kyK+1 � y

1k2��1P�1

⇤
+

c

K
kx0k2⌧�1

+
1

K
E
⇥
f
⇤
P�1�I(y

1) � f
⇤
P�1�I(y

K+1)
⇤
+

1

C1K
�0

.(4.36)

By Theorem 4.4 and Lemma 4.1, E
⇥
kyK+1 � y

?k2��1P�1

⇤
 2�0, and by Jensen’s

inequality, E
⇥
kyK+1 � y

?k��1P�1

⇤


p
2�0. With these estimations we have

(4.37) E
⇥
kyK+1 � y

1k2��1P�1

⇤
 2ky1 � y

?k2��1P�1 + 4�0
.

As fi is proper, l.s.c., and convex and Aix
? 2 @f

⇤
i (y

?
i ), we additionally note that

f
⇤
i (y

K+1
i ) � f

⇤
i (y

?
i ) + hAix

?
, y

K+1
i � y

?
i i

� f
⇤
i (y

?
i ) � kAix

?k�ikyK+1
i � y

?
i k��1

i
,
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and by substitution, Young’s inequality, and defining c1 = k⌧1/2A>
�
1/2

P
�1/2k,

E
⇥
f
⇤
P�1�I(y

K+1)
⇤
=

nX

i=1

✓
1

pi
� 1

◆
E
⇥
f
⇤
i (y

K+1
i )

⇤

�
nX

i=1

✓
1

pi
� 1

◆⇣
f
⇤
i (y

?
i ) � 1

2c1
kAix

?k2�i
� c1

2
E
h
kyK+1

i � y
?
i k2��1

i

i ⌘

�
nX

i=1

✓
1

pi
� 1

◆
f
⇤
i (y

?
i ) � 1

2c1p
kAx

?k2� � c1

2
EkyK+1 � y

?k2��1P�1 .(4.38)

We now use (4.37) and (4.38) in (4.36), use E
⇥
kyK+1 � y

?k2��1P�1

⇤
 2�0, and use

definition of c1 to obtain

E
"
sup
z2B

1

K

KX

k=1

H(xk
, y

k+1;x, y)

#
 1 + 2c

2K
sup
x2Bx

kx0 � xk2⌧�1 +
1

K
sup
y2By

ky1 � yk2��1P�1

+
c

K
ky1 � y

?k2��1P�1 +
2c

K
�0 +

c

K
kx0k2⌧�1 +

1

K

�
f
⇤
P�1�I(y

1) � f
⇤
P�1�I(y

?)
�

+
k�1/2

A⌧
1/2k2

2c1pK
kx?k2⌧�1 +

c1

K
�0 +

1

C1K
�0 =:

CB
K

.

We define as CB the constant of the right-hand side and use Jensen’s inequality on
the left-hand side with definitions of xK

av and y
K+1
av to get the result.

Remark 4.11. In Theorem 4.10, when pi = 1
n , setting scalar step sizes ⌧ =

1
nmaxi kAik , � = 1

maxi kAik in view of (3.1) gives O(n[kAk+f
⇤(y1)�f

⇤(y?)]·maxz2B[kxk2+
kyk2]) as the worst case order for CB.

4.3.2. Convergence of objective values. The guarantee for the expected
global primal-dual gap (see (4.28)) requires bounded primal and dual domains.

In this section, we show that the O(1/k) rate of convergence in terms of objective
values and/or feasibility can be shown with possibly unbounded primal and dual
domains. The case f(·) = �b(·) is studied in [34] and a similar result was derived. The
rate in [34] has a di↵erent nature in the sense that it is an almost sure rate where
the constant depends on trajectory, whereas our rate is in expectation. We use the
smoothed gap function introduced in [47], which, for (1.1), is defined as

(4.39) G↵,�(x, y; ẋ, ẏ) = sup
u,v

g(x) + hAx, vi � f
⇤(v)

� g(u) � hAu, yi + f
⇤(y) � ↵

2
ku � ẋk2 � �

2
kv � ẏk2.

Theorem 4.12. Let Assumption 1 hold. We recall x
K
av = 1

K

PK
k=1 x

k
.

• If f is L(f)-Lipschitz continuous and y
1 2 dom f

⇤
,

E
⇥
f(Ax

K
av) + g(xK

av) � f(Ax
?) � g(x?)

⇤
 Ce,1

K
.

• If f(·) = �{b}(·) with b 2 Y,

E
⇥
g(xK

av) � g(x?)
⇤

 Ce,2

K
, E

⇥
kAx

K
av � bkdiag(�)P

⇤
 Ce,3

K
,
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where (see Theorem 4.10)

Ce = f
⇤
P�1�I(y

1) � f
⇤
P�1�I(y

?) +

✓
1

C1
+ 2c+ c1

◆
�0

+ ckx0k2⌧�1 + cky1 � y
?k2��1P�1 +

k�1/2
A⌧

1/2k2
2c1p

kx?k2⌧�1 ,

Ce,1 = Ce +
2
pL(f)

2 + 1+2�
2 kx0 � x

?k2⌧�1 ,

Ce,3 = 1
2

�
ky? � y

1k��1P�1 +
�
ky? � y

1k2��1P�1 + 4Ce + 6kx? � x
0k⌧�1

�1/2 
,

Ce,2 = Ce +
1
2ky? � y

1k2��1P�1 +
1+2�

2 kx0 � x
?k2⌧�1 + ky?k��1P�1Ce,3.

Proof. For the smoothed gap (see (4.39)), from Theorem 4.10, we have

E
h
G 1+2�

2K , 1
2K

(xK
av, y

K+1
av ;x0

, y
1)
i

 Ce

K
.

To see this, we proceed the same as in the proof of Theorem 4.10 until (4.33). Then,
we move the terms 1+2�

2K kx0 � xk2⌧�1 and 1
K ky1 � yk2��1P�1 to the left hand side, take

the supremum, use the definition of smoothed gap, and then take expectations of both
sides and use the same estimations as in the first part to conclude.

• When f is Lipschitz continuous in the norm k · k�, we will argue as in [19,
Theorem 11]. On (4.39), with the parameters used in this theorem, we make the
following observations. By [4, Corollary 17.19], when f is L(f)-Lipschitz continuous
in the norm k · kdiag(�), it follows that ky1 � yk2��1  4L(f)2. By Lipschitzness
and the definition of conjugate function, we can pick y 2 @f(Ax

K
av) 6= ; such that

hAxK
av, yi � f

⇤(y) = f(Ax
K
av). Next, by the Fenchel–Young inequality, f⇤(yK+1

av ) �
hA>

y
K+1
av , x

?i � �f(Ax
?). We also use p = mini pi to obtain (see (4.39))

E

G 1+2�

K , 1
K
(xK

av, y
K+1
av ;x0

, y
1)

�
� E

⇥
f(Ax

K
av) + g(xK

av) � f(Ax
?) � g(x?)

⇤

� 2

pK
L(f)2 � 1 + 2�

2K
kx0 � x

?k2⌧�1 ,

where the result directly follows.
• When f(·) = �b(·), we use [47, Lemma 1] to obtain the bounds

E
⇥
g(xK

av) � g(x?)
⇤

 E
h
G 1+2�

2K , 1
2K

(xK
av, y

K+1
av ;x0

, y
1)
i

+
1 + 2�

2K
kx0 � x

?k2⌧�1 � E
⇥
hy?, Ax

K
av � bi

⇤
+

1

2K
ky? � y

1k2��1P�1 ,

E
⇥
kAx

K
av � bkdiag(�)P

⇤
 1

2K

⇢
ky? � y

1k��1P�1 +

✓
ky? � y

1k2��1P�1

+ 4KE
h
G 1+2�

2K , 1
2K

(xK
av, y

K+1
av ;x0

, y
1)
i
+ 2(1 + 2�)kx0 � x

?k2⌧�1

◆1/2�
.

We use the Cauchy–Schwarz inequality and the bound of E
⇥
kAx

K
av � bkdiag(�)P

⇤

on hy?, AxK
av � bi to conclude.

5. Related works. We summarize the comparison of the most related primal-
dual coordinate descent methods (PDCD) in Table 1.

Primal camp. Stochastic gradient based (SGD) methods can be applied to solve
(1.1) [36, 42]. SGD cannot get linear convergence except in special cases [35]. Variance
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reduction based methods obtain linear convergence when the functions fi are smooth
and g is strongly convex or fi are smooth and strongly convex [2, 25, 48]. The
smoothness of fi is equivalent to the strong convexity of f⇤

i . Therefore, the linear
convergence results of these methods require similar assumptions as in [6]. Moreover,
as in [6], variance reduction based methods require knowing the constants µi and µg

to set the algorithmic parameters accordingly, for obtaining linear convergence.
When fi(·) = �{bi}(·), SGD-type methods are proposed in [18, 39, 49]. However,

these methods only obtain the O(1/k) rate with the strong convexity of g, since
they focus on the general problem where the objective can be given in expectation
form. Even though this rate is optimal for the given template, it is suboptimal
for (1.1).vskip2mm

Primal-dual camp. This line of research uses coordinate descent-type schemes
for solving (1.1). Coordinate descent with random sampling for unconstrained opti-
mization was proposed in [37] and later generalized and improved in [20, 41]. These
methods apply coordinate descent in the primal and obtain linear convergence rates
with smooth and strongly convex fi or smooth fi and strongly convex g.

Another approach is to apply coordinate ascent in the dual to exploit the sep-
arability of the dual in (1.1). Stochastic dual coordinate ascent and its accelerated
variant are proposed in [44, 45]. These methods require the smoothness of fi and
strong convexity of g for linear convergence and the strong convexity constants are
used in the algorithms for setting the parameters.

The algorithm we analyzed in this paper is SPDHG, proposed in [6]. The authors
proved the linear convergence of the modified method SPDHG-µ [6, Theorem 6.1] by
assuming strong convexity of f⇤

i , g and special step sizes depending on strong convexity
constants. The iterate convergence and ergodic O(1/k) rate results in [6, Theorem
4.3] are given in terms of Bregman distances, which is not a valid optimality measure
in general. Our analysis for SPDHG shows linear convergence with standard step sizes
in (3.1) and with weaker metric subregularity assumption (see section 2.3). Moreover,
in the general convex case, we prove almost sure convergence of the iterates to a
solution, which is stronger than Bregman distance based almost sure convergence
in [6]. Finally, we prove the O(1/k) rate for the ergodic sequence, with possibly
unbounded domains, for optimality measures stronger than Bregman distances, such
as the expected primal-dual gap. The comparison of the results is also summarized
in Table 2.

PDCD schemes similar to SPDHG are proposed in [13, 19, 52]. These variants
assume the strong convexity of f

⇤
i , g for the linear rate of convergence. Only [19]

proved linear convergence with step sizes independent of strong convexity constants,
to provide a partial answer for the adaptivity of PDCD methods to strong convexity.
However, as detailed in Table 1, with dense A matrix and uniform sampling, this
method requires step sizes n times smaller than (3.1), which can be problematic in
practice (see section 6.1). For sublinear convergence, [19] proved the O(1/

p
k) rate on

a randomly selected iterate, under similar assumptions to ours, whereas [52] requires
boundedness of the dual domain, setting a horizon and proves primal-only rates.

PDCD algorithms are also studied in [11, 12, 40]. As mentioned in [6, 19], operator
theory-based proofs of these methods require using step sizes depending on global
constants about the problem, causing slow performance in practice. PDCD methods
for linearly constrained problems are studied in [1, 13, 34], with sublinear rates.

Latafat, Freris, and Patrinos [29] proposed TriPD-BC and proved linear con-
vergence for this method under metric subregularity. There are two drawbacks of
TriPD-BC for our setting. First, when A is not of special structure, such as block
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diagonal, one needs to use duplication for an e�cient implementation (see [19]). The
second issue is that as in [19], this method needs to use n times smaller step sizes with
dense A. For the details of duplication and small step sizes, we refer to [19]. The need
to use small step sizes seriously a↵ects the practical performance of the algorithm (see
section 6.1).

Some standard references for deterministic primal-dual algorithms are in [7, 8, 17,
22, 46, 47]. As observed in [6], coordinate descent-based variants significantly increase
the practical performance of these deterministic methods.

Our results imply global linear convergence for PDHG when n = 1, answering the
question posed in [7]: “It would be interesting to understand whether the steps can be
estimated in Algorithm 1 without the a priori knowledge of µi, µg.” In the third part
of Assumption 2, compact domains are not needed for this case. We highlight that
such behavior of deterministic primal-dual methods is investigated before in [29, 31].

Linear programming. A related notion to metric subregularity for linear program-
ming is Ho↵man’s lemma due to the classical result in [23], which is used to show
the linear convergence of ADMM-type methods for LPs [33, 50, 51]. The drawback
of these approaches is that the knowledge of the constant ⌘ is required to run the
algorithm, which is di�cult to estimate. Our analysis recovers these results specific
to LPs with a simpler algorithm that does not need the knowledge of ⌘.

6. Numerical evidence. In this section, we support our theoretical findings by
showing that SPDHG with step sizes in (3.1) obtains linear convergence for problems
satisfying metric subregularity.

The problems we solve in this section satisfy metric subregularity (see section 2.3).
However, among these problems, only ridge regression is strongly convex-strongly
concave, thus this is the only problem where existing linear convergence results from [6]
apply by using the algorithm SPDHG-µ [6, Theorem 6.1]. We show that even in
this case, when strong convexity constants are small, applying SPDHG can be more
beneficial for some datasets. SPDHG-µ is not applicable for other problems due to
a lack of strong convexity or strong concavity. We also illustrate favorable behavior
of SPDHG against state-of-the-art methods SVRG [25], accelerated SVRG [53], and
PDCD algorithms using smaller step sizes with dense data, such as [19].

Due to limited space, we include results with one or two datasets for each problem.
For SPDHG, as suggested in [6], we use uniform sampling of coordinates and the step
sizes ⌧ = 0.99

nmaxi kAik and �i =
0.99
kAik for all problems. For the other methods, we use

the suggested theoretical step sizes in the respective papers and we do not fine tune
any of the methods.

6.1. Sparse recovery with basis pursuit. Basis pursuit is a fundamental
problem in signal processing [10] with applications in machine learning [3, 21]:

(6.1) min
x2Rd

kxk1 : Ax = b.

Since basis pursuit is PLQ, metric subregularity holds. In this section, we aim to
illustrate the importance of step sizes, as mentioned in section 5 and Table 1, and
to verify linear convergence of SPDHG. We compare SPDHG with the coordinate
descent version of the Vu–Condat algorithm from [19], which we refer to as FB-VC-
CD. Since [29] requires duplication for an e�cient implementation for this problem,
it uses the same step sizes as [19]. Thus, we only compare with FB-VC-CD and note
that the practical performance of [29] is expected to be similar to FB-VC-CD since it
uses similar step sizes.
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Fig. 1. Linear convergence of SPDHG for basis pursuit problem.

We generate the data matrix A with n = 500 and d = 1000, and entries follow
a standard normal distribution. We generate a covariance matrix ⌃i,j = ⇢

|i�j| with
⇢ = 0.5 and a sparse solution x

? with 100 nonzero entries. We then compute b = Ax
?.

The analysis of SPDHG by [6] shows the O (1/k) rate on the Bregman distance to
the solution on the ergodic sequence whereas our analysis proves linear convergence
on the last iterate. On the other hand, FB-VC-CD is proven to have the O(1/

p
k)

rate for this problem [19]. FB-VC-CD is tailored specifically to exploit sparsity in the
data. However, the data is dense in this problem, which causes FB-VC-CD to use n

times smaller step sizes as shown in Figure 1. Because of this, FB-VC-CD exhibits a
slow rate whereas SPDHG gets a fast rate as predicted by our theoretical results.

6.2. Lasso and ridge regression. In this section we solve ridge regression and
Lasso problems, formulated as

(6.2) min
x2Rd

1

2
kAx � bk2 + �

2
kxk2, and, min

x2Rd

1

2
kAx � bk2 + �kxk1,

respectively. In terms of structure, (6.2) is smooth and strongly convex, or equiva-
lently, its Lagrangian is strongly convex-strongly concave. For this problem class, [6]
showed linear convergence for the method SPDHG-µ, which is a modified version of
SPDHG using strong convexity and strong concavity constants for step sizes. In addi-
tion, SVRG and accelerated SVRG have linear convergence for this problem [2, 48, 53].

We use regression datasets from libsvm [9], perform row normalization, and use
three di↵erent regularization parameters for each case. We compile the results in Fig-
ure 2 along with information on datasets and regularization parameters.

The aim in this experiment is not to argue that SPDHG gets the best performance
in all cases since this is a very specific instance where most algorithms can get linear
convergence. Our goal is rather to show that even though our linear convergence
results apply to a broad class of problems and SPDHG can apply to more general
problems, it can still be competitive when compared to methods which are designed
to exploit the structure of this specific setting.

When n � d, in Figure 2, we see that for large regularization parameters, or
equivalently, large strong convexity constants, SPDHG-µ is faster than SPDHG. This
is expected since SPDHG-µ is designed to use strong convexity as well as possi-
ble, whereas our result holds generically without any modifications on the algorithm.
Next, when the strong convexity constant is small, SPDHG gets a faster linear rate
than SPDHG-µ, which suggests the robustness of SPDHG over SPDHG-µ in this
regime. SPDHG also shows a more favorable performance than SVRG and accelerated
SVRG.
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Fig. 2. Ridge regression, first row: w8a, n = 49, 749, d = 300; second row: sector, n = 6, 412,
d = 55, 197; third row: YearPredictionMSD, n = 463, 715, d = 90.

When n  d, in Figure 2, we see that SPDHG-µ shows faster convergence with
small µ. This seems intuitive, since in this case the strong convexity purely comes
from the regularization term. In this case, SPDHG-µ directly exploits this knowledge
and shows a better performance.

We then solve Lasso (6.2), for which SPDHG-µ does not apply and accelerated
SVRG cannot get linear rates in general. We compare with SVRG for varying reg-
ularization parameters and datasets with n  d and n � d and compile the results
in Figure 3. We observe that SPDHG converges linearly for this problem and exhibits
a better practical performance than SVRG.

7. Conclusions and open questions. In this section, we focus on the theory-
practice gap mentioned in section 4.2, before Remark 4.7. In particular, the main aim
of section 4.2 was to show that SPDHG obtains a linear rate of convergence under
general assumptions that hold for a large body of problems, with an agnostic step size
selection. A natural question here would be about how well this rate translates to
practice. For this purpose, we perform a controlled experiment on a simple problem

min
x2Rd

µ

2
kxk2 : Ax = b

D
ow

nl
oa

de
d 

08
/1

4/
23

 to
 1

28
.1

04
.1

53
.4

2 
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1310 AHMET ALACAOGLU, OLIVIER FERCOQ, AND VOLKAN CEVHER

0 100 200 300

epoch

10
-10

10
-5

10
0

|f
(x
)−

f
!

f
!

|

λ = 100

0 50 100

epoch

10
-10

10
-5

10
0

|f
(x
)−

f
!

f
!

|

λ = 101

0 10 20 30 40 50

epoch

10
-10

10
-5

10
0

|f
(x
)−

f
!

f
!

|

λ = 102

SPDHG
SVRG

0 50 100 150

epoch

10
-10

10
-5

10
0

|f
(x
)−

f
!

f
!

|

λ = 100

0 10 20 30 40 50

epoch

10
-10

10
-5

10
0

|f
(x
)−

f
!

f
!

|

λ = 101

0 10 20 30 40 50

epoch

10
-10

10
-5

10
0

|f
(x
)−

f
!

f
!

|

λ = 102

SPDHG
SVRG

Fig. 3. Lasso, top: mnist scale, n = 60, 000, d = 780; bottom: rcv1.binary, n = 20, 242, d = 47, 236.
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Fig. 4. left: empirical and theoretical linear rates, right: empirical rates with di↵erent µ.

with d = n = 10. After writing the KKT conditions, we obtain F =


µI A

>

A 0

�
, and

metric subregularity constant ⌘ is the smallest eigenvalue of F in absolute value.
For simplicity, we run PDHG, which is a specific case of SPDHG, and plot the

predicted rate and the empirical rate in Figure 4.
The resulting empirical rate is significantly faster than the worst case rate pre-

dicted by theory. We point out several possible explanations for this:
• Metric subregularity is too general to capture structures observed in practice.
• Our step size choice is independent of the metric subregularity constant, pre-
venting optimizing the theoretical rate with respect to these quantities.

In fact, this phenomenon is not specific to our analysis and seems to be a common
drawback of the existing analyses utilizing metric subregularity [29]. On this front, we
observe that in our example, as µ increases, metric subregularity constant ⌘ degrades.
However, as we see in the plot, the practical performance degrades when µ is either
too big or too small (see Figure 4). This observation suggests that there might exist
better regularity measures beyond metric subregularity that would help us derive
better rates. We believe that this is a promising future direction.
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Appendix A.

A.1. Proof of Theorem 4.4.

Proof. On (4.3), we pick (x, y) = (x?
, y

?) and by convexity, Dg(xk; z?) � 0,
Df⇤(ŷk+1; z?) � 0. Next, by using �k = Vk+1(xk � x

?
, y

k+1 � y
?), we write (4.3)

(A.1) Ek

⇥
�k

⇤
 �k�1 � V (zk � z

k�1).

We denote q
k = (1 ⌦ x

k
, 1 ⌦ y

k). By taking total expectation, summing (A.1),
and using Lemma 4.2, we have

P1
k=1 E

⇥
kT (qk�1) � q

k�1k2
S̄P̄

⇤
< +1. We use

the Fubini–Tonelli theorem to exchange the infinite sum and the expectation to ob-
tain E

⇥P1
k=0 kT (qk�1) � q

k�1k2
S̄P̄

⇤
< 1. Here, since

P1
k=0 kT (qk�1) � q

k�1k2
S̄P̄

is
nonnegative, we conclude that

P1
k=0 kT (qk�1)�q

k�1k2
S̄P̄

is finite almost everywhere,
which implies that kT (qk�1) � q

k�1k2
S̄P̄

converges to 0 almost surely. Thus we have
established 9⌦T with P(⌦T ) = 1 such that 8! 2 ⌦T , we have T (qk(!))� q

k(!) ! 0.
We apply the Robbins–Siegmund lemma [43, Theorem 1] on (A.1) to get that a.s.,

�k converges to a finite valued random variable and V (zk�z
k�1) ! 0. Consequently,

by (4.4), kyk � y
k�1k converges to 0 a.s. Since a.s., �k converges and kyk � y

k�1k
converges to 0, we have that kzk � z

?k converges a.s.
In particular, we have shown that

(A.2) P
�
! 2 ⌦ : lim

k!1
kzk(!) � z

?k exists.
�
= 1.

The probability 1 set from which we select the trajectories is defined via z
?. Let us

denote the set

(A.3) ⌦z? =
n
! 2 ⌦ : lim

k!1
kzk(!) � z

?k exists
o
.

Thus our statement is actually as follows: for each z
? 2 Z?, there exists a set ⌦z?

with probability 1, such that 8! 2 ⌦z? , limk!1 kzk(!) � z
?k exists.

We now follow the arguments in [11, Proposition 2.3], [5, Proposition 9], [24,
Theorem 2], and [19, Theorem 1] to strengthen this result.

Let us pick a set C which is a countable subset of ri(Z?) that is dense in Z?. Let
us denote the elements of C as vi for i 2 N.

We just proved that 8vi 2 Z?, 9⌦vi with P(⌦vi) = 1, such that 8! 2 ⌦vi ,
limk!1 kzk(!) � vik exists. Let us denote ⌦C = \i2N⌦vi . As ⌦C is the intersection
of a countable number of sets of probability 1, P(⌦C) = 1.

Next, we set z̃ 2 Z?. As C is dense in ri(Z?), there exists a subsequence v�(i),
where � : N ! N is an increasing function, such that v�(i) ! z̃.

We now pick ! 2 ⌦C and study the existence of limk!1 kzk(!) � z̃k. By the
triangle inequality, 8i 2 N,

kzk(!) � v�(i)k � kv�(i) � z̃k  kzk(!) � z̃k  kzk(!) � v�(i)k + kv�(i) � z̃k.

Rearranging gives

�kv�(i) � z̃k  kzk(!) � z̃k � kzk(!) � v�(i)k  kv�(i) � z̃k.

As ! is chosen from ⌦C , and any element of ⌦C is also an element of ⌦vi , we know
that limk!1 kzk(!) � v�(i)k exists. Moreover, recall that v�(i) ! z̃.
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We take the limit as k ! 1,

�kv�(i) � z̃k  lim inf
k!1

kzk(!) � z̃k � lim
k!1

kzk(!) � v�(i)k

 lim sup
k!1

kzk(!) � z̃k � lim
k!1

kzk(!) � v�(i)k

 kv�(i) � z̃k.

As we take the limit along the subsequence defined by �(i), we have limi!1 kv�(i) �
z̃k = 0, which gives the equality of lim inf and lim sup.

Thus, 8! 2 ⌦C with P(⌦C) = 1 and 8z̃ 2 Z?, we have that limk!1 kzk(!) � z̃k
exists.

We now pick ! 2 ⌦C \ ⌦T and then as we have that (zk(!))k is bounded, we
denote by z̃ = (x̃, ỹ) one of its cluster points. Then, we denote q̃ = (1⌦ x̃, 1⌦ ỹ) and
say that q̃ is a cluster point of (qk(!))k.

As T (qk(!))�q
k(!) ! 0, by continuity of T we have T (q̃)� q̃ ! 0, and therefore

q̃ is a fixed point of T . We now use Lemma 4.2 to argue that fixed points of T which
we denote as (xf (j), yf (j))j={1,...,n} are such that (xf (j), yf (j)) 2 Z? 8j 2 {1, . . . , n}.
Since q̃ is a fixed point of T , we conclude that z̃ 2 Z?.

To sum up, we have shown that at least on some subsequence z
k(!) converges to

z̃ 2 Z?. Then, the result follows due to existence of the limit, proven earlier.

A.2. Proof of Lemma 4.9.

Proof. As in [6], we use (4.2) to denote full dimensional updates. By the definition
of the proximal operator (2.1) along with the convexity of f⇤

i and g, we get, 8x 2 X ,
8y 2 Y, and 8i = {1, . . . , n}

g(x) � g(xk) + hxk � x,A
>
ȳ
ki + 1

2
kxk � x

k�1k2⌧�1 +
1

2
kxk � xk2⌧�1

� 1

2
kx � x

k�1k2⌧�1 ,

f
⇤
i (yi) � f

⇤(ŷk+1
i ) � hŷk+1

i � yi, Aix
ki + 1

2
kŷk+1

i � y
k
i k2

��1
i

+
1

2
kŷk+1

i � yik2��1
i

� 1

2
kyi � y

k
i k2

��1
i

.

We sum the second inequality from i = 1 to n and add to the first inequality to obtain

0 � g(xk) � g(x) + hxk � x,A
>
ȳ
ki + f

⇤(ŷk+1) � f
⇤(y) � hŷk+1 � y,Ax

ki

+
1

2

�
�kxk�1 � xk2⌧�1 + kxk � xk2⌧�1 + kxk � x

k�1k2⌧�1

�

+
1

2

�
� kyk � yk2��1 + kŷk+1 � yk2��1 + kŷk+1 � y

kk2��1

�
.(A.4)

We next note

H(xk
, ŷ

k+1;x, y) = g(xk) + hAx
k
, yi � f

⇤(y) � g(x) � hAx, ŷ
k+1i + f

⇤(ŷk+1),

�1 =
1

2

�
� kxk�1 � xk2⌧�1 + kxk � xk2⌧�1 + kxk � x

k�1k2⌧�1

�
,

�2 =
1

2

�
� kyk � yk2��1 + kŷk+1 � yk2��1 + kŷk+1 � y

kk2��1

�
.

D
ow

nl
oa

de
d 

08
/1

4/
23

 to
 1

28
.1

04
.1

53
.4

2 
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ON THE CONVERGENCE OF STOCHASTIC PDHG 1313

Then, we can write (A.4) as

0 � H(xk
, ŷ

k+1;x, y) + hA(x � x
k), ŷk+1 � ȳ

ki +�1 +�2.(A.5)

We estimate by simple manipulations

H(xk
,ŷ

k+1;x, y) = H(xk
, y

k+1;x, y) + hAx, y
k+1 � ŷ

k+1i + f
⇤(ŷk+1) � f

⇤(yk+1)

�
�
f
⇤
P�1�I(y

k+1) � f
⇤
P�1�I(y

k)
�
+
�
f
⇤
P�1�I(y

k+1) � f
⇤
P�1�I(y

k)
�

+ hAx, (P�1 � I)(yk+1 � y
k)i � hAx, (P�1 � I)(yk+1 � y

k)i
= H(xk

, y
k+1;x, y) + f

⇤(ŷk+1) � f
⇤(yk) � (f⇤

P�1(yk+1) � f
⇤
P�1(yk))

+ hAx, yk � ŷ
k+1 � P

�1(yk � y
k+1)i

+
�
f
⇤
P�1�I(y

k+1) � f
⇤
P�1�I(y

k)
�

� hAx, (P�1 � I)(yk+1 � y
k)i

= H(xk
, y

k+1;x, y) + f
⇤(ŷk+1) � f

⇤(yk) � (f⇤
P�1(yk+1) � f

⇤
P�1(yk))

+ hAx, yk � ŷ
k+1 � P

�1(yk � y
k+1)i +D

P�1�I
f⇤ (yk+1; y) � D

P�1�I
f⇤ (yk; y).(A.6)

By the definition of ȳk in SPDHG, we have for the bilinear term in (A.5) that

hA(x � x
k), ŷk+1 � ȳ

ki = hA(x � x
k), ŷk+1 � y

k � P
�1(yk � y

k�1)i
= hA(x � x

k), ŷk+1 � y
ki � hA(x � x

k�1), P�1(yk � y
k�1)i

� hA(xk�1 � x
k), P�1(yk � y

k�1)i
= hA(x � x

k), P�1(yk+1 � y
k)i � hA(x � x

k�1), P�1(yk � y
k�1)i

� hA(xk�1 � x
k), P�1(yk � y

k�1)i
+ hA(x � x

k), ŷk+1 � y
k � P

�1(yk+1 � y
k)i.(A.7)

On �2, we add and subtract kyk � yk2��1P�1 � kyk+1 � yk2��1P�1 to get

(A.8) � �2 = �1

2
kyk+1 � yk2��1P�1 +

1

2
kyk � yk2��1P�1 � 1

2
kŷk+1 � y

kk2��1 + ✏
k
,

where

✏
k =

1

2

h
kyk � yk2��1 � kŷk+1 � yk2��1 �

�
kyk � yk2��1P�1 � kyk+1 � yk2��1P�1

�i

=
1

2

h
kykk2��1 � kŷk+1k2��1 �

�
kykk2��1P�1 � kyk+1k2��1P�1

�

� 2hy, yk � ŷ
k+1 � P

�1(yk � y
k+1)i��1

i
.(A.9)

We use (A.6)–(A.8) in (A.5), add and subtract 1
2kyk � y

k�1k2��1P�1 , and use the
definition v

k+1 = y
k � ŷ

k+1 � P
�1(yk � y

k+1) from Lemma 4.8 to obtain
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H(xk
,y

k+1;x, y)  �1

2
kxk � xk2⌧�1 +

1

2
kxk�1 � xk2⌧�1

� hA(x � x
k), P�1(yk+1 � y

k)i + hA(x � x
k�1), P�1(yk � y

k�1)i

� 1

2
kxk � x

k�1k2⌧�1 � 1

2
kyk � y

k�1k2��1P�1

� hA(xk � x
k�1), P�1(yk � y

k�1)i � 1

2
kyk+1 � yk2��1P�1

+
1

2
kyk � yk2��1P�1 � 1

2
kŷk+1 � y

kk2��1 +
1

2
kyk � y

k�1k2��1P�1

+
1

2

⇥
kykk2��1 � kŷk+1k2��1 �

�
kykk2��1P�1 � kyk+1k2��1P�1

�⇤

+ f
⇤(yk) � f

⇤(ŷk+1) � (f⇤
P�1(yk) � f

⇤
P�1(yk+1)) � hy, vk+1i��1

� hAxk
, y

k � ŷ
k+1 � P

�1(yk � y
k+1)i +D

P�1�I
f⇤ (yk; z) � D

P�1�I
f⇤ (yk+1; z).(A.10)

The first result follows by the definitions of Vk and V from (4.1) and the definition of
Ek from (4.27).

On Ek, we use Ek

⇥
P

�1(yk � y
k+1)

⇤
= y

k � ŷ
k+1, Ek

⇥
f
⇤
P�1(yk) � f

⇤
P�1(yk+1)

⇤
=

f
⇤(yk) � f

⇤(ŷk+1), and Ek

⇥
kyk+1 � y

kk2��1P�1

⇤
= kŷk+1 � ykk2��1

Ek

⇥
Ek
⇤
= �1

2
kŷk+1 � y

kk2��1 +
1

2
Ek

⇥
kyk+1 � y

kk2��1P�1

⇤

+
1

2

�
kykk2��1 � kŷk+1k2��1

�
� 1

2
Ek

⇥
kykk2��1P�1 � kyk+1k2��1P�1

⇤

+ f
⇤(yk) � f

⇤(ŷk+1) � Ek

⇥
f
⇤
P�1(yk) � f

⇤
P�1(yk+1)

⇤

� hAx
k
, y

k � ŷ
k+1 � Ek

⇥
P

�1
�
y
k � y

k+1
�⇤

i = 0.

A.3. Proof of Lemma 4.1.

Proof. At step k of SPDHG in Algorithm 3.1, we select an index ik 2 {1, . . . , n}
randomly with probability pik and perform the following step on the dual variable:

(A.11) y
k+1
ik

= ŷ
k+1
ik

and y
k+1
i = y

k
i 8i 6= ik.

Table 1
Comparison of primal dual coordinate descent methods. s.c. denotes strongly convex, MS

denotes metrically subregular. Please see section 5 for a thorough comparison. Please see section 2
for a comparison of MS and s.c. assumptions. ⇤Step sizes are for optimization with a potentially
dense A matrix and uniform sampling: pi = 1/n.

Linear convergence
Rates with

only convexity
Step sizes for

linear convergence*

[6]
f⇤
i : µi-s.c.
g : µg-s.c.

Ergodic O
�
1

k

�
for

Bregman distance to solution
kAik, µi, µg

[52]
f⇤
i : µi-s.c.
g : µg-s.c.

Nonergodic O
�
1

k

�
with

bounded dual domain and fixed horizon
kAik, µi, µg

[19]
f⇤
i : µi-s.c.
g : µg-s.c.

Randomly selected iterate O

⇣
1p
k

⌘
n2⌧�ikAik

2 < 1

[29] F is MS (see (2.3)) ⇥ n2⌧�ikAik
2 < 1

This
paper

F is MS (see (2.3))
Ergodic O( 1k ) for primal-dual gap,

objective values and feasibility
n⌧�ikAik

2 < 1
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Table 2
Comparison of our results and previous results on SPDHG. ⇤Step size condition is for uniform

sampling: pi = 1/n. †In this case P (x) := f(Ax) + g(x).

A.s. convergence
Linear
convergence

Ergodic rates

[6]

Dh(zk; z?) ! 0
for any z

? where
Dh is Bregman
distance generated by
h(z) = f

⇤(y) + g(x)

Assumption:
f
⇤
i , g s.c.
step sizes
depending
on µi, µg

E[Dh(zkav; z
?)] = O(1/k)

This
paper

z
k ! z

? for some z
?.

Assumption:
F in (2.3) is MS
Step sizes:
n⌧�ikAik2 < 1⇤

• Restricted primal-dual gap
E
⇥
GB(xk

av, y
k
av)

⇤
= O(1/k)

• f is Lipschitz†

E
⇥
|P (xk

av) � P (x?)|
⇤
= O(1/k)

•f(·) = �b(·)
E
⇥
|g(xk

av) � g(x?)|
⇤
= O(1/k)

E
⇥
kAx

k
av � bk

⇤
= O(1/k)

For any Y 2 Y that is measurable with respect to Fk, (A.11) immediately gives

Ek[y
k+1] = P ŷ

k+1 + (I � P ) yk,(A.12)

Ek

⇥
kyk+1 � Y k2��1

⇤
= kŷk+1 � Y k2��1P + kyk � Y k2��1(I�P ).(A.13)

A simple manipulation of (A.12) and plugging in Y = y and Y = yk in (A.13) gives

ŷ
k+1 = P

�1Ek[y
k+1] � (P�1 � I)yk,(A.14)

kŷk+1 � yk2��1 = Ek

⇥
kyk+1 � yk2��1P�1

⇤
� kyk � yk2��1(P�1�I),(A.15)

kŷk+1 � y
kk2��1 = Ek

⇥
kyk+1 � y

kk2��1P�1

⇤
.(A.16)

The first result follows by taking expectation of the result of Lemma 4.9, after using
the tower property and the above estimations. On deriving the conclusion, we also
use Dg(xk; z) +Df⇤(ŷk+1; z) = H(xk, ŷk+1;x, y) and (A.6).

It is straightforward to prove (4.4) and (4.5). Since y
k
j = y

k�1
j 8j 6= ik�1,

|hAx,P�1(yk � y
k�1)i| = |hAik�1x, p

�1
ik�1

(ykik�1
� y

k�1
ik�1

)i|

 kAik�1xkp�1
ik�1

kykik�1
� y

k�1
ik�1

k

=
⇣
⌧
1/2

�
1/2
ik�1

p
�1/2
ik�1

kAik�1k
⌘
⌧
�1/2kxkp�1/2

ik�1
�
�1/2
ik�1

kykik�1
� y

k�1
ik�1

k

 �

⇣
⌧
�1/2kxkp�1/2

ik�1
�
�1/2
ik�1

kykik�1
� y

k�1
ik�1

k
⌘

 �

2

✓
kxk2⌧�1 + kykik�1

� y
k�1
ik�1

k2
p�1
ik�1

��1
ik�1

◆

=
�

2

�
kxk2⌧�1 + kyk � y

k�1k2��1P�1

�
,(A.17)

where the last step is due to y
k
j = y

k�1
j 8j 6= ik�1. Plugging (A.17) into the definitions

of V (zk � z
k�1) and Vk(z) is su�cient to prove (4.4) and (4.5).

Acknowledgments. We are grateful to Panayotis Mertikopoulos, Ya-Ping Hsieh,
and Yura Malitsky for discussions.
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