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Abstract—Recent advancements in Convolution Neural Net-
works (CNNs) have achieved amazing success in numerous ap-
plications. The record-breaking performance of CNNs is usually
at the prohibitive training costs, thus all training data are
usually processed at the powerful centralized server side, which
rises privacy concerns. Federated learning (FL) is a distributed
machine learning method over mobile devices to train a global
model while keeping decentralized data on devices to preserve
the data privacy. However, there are two major limitations to
deploy FL on mobile clients. Firstly, on the client side, the
limited communication and computation resources on mobile
devices cannot well support the full training iterations. Secondly,
on the server side, conventional FL only aggregate a common
output for all the clients without personalizing the model to each
client, which is an important missing feature when clients have
heterogeneous data distributions. In this work, we aim to enable
low-cost personalized FL by focusing on the weight gradients
which are the most important exchanging parameters in FL. and
meanwhile, dominating the computation and communication cost.
We first observe that the client’s calculated weight gradients have
high sparsity, and the sparse pattern in weight gradients could
be predicted via very simple bit-wise operations on a sequence
of bits (named bit-stream) instead of conducting expensive high-
precision calculations to determine them. Furthermore, a unique
pattern is exhibited in each client’s uploaded weight gradients
according to the distribution of its local training data. Guided by
this pattern, each client can get a personalized aggregated model
to fit its own data. Hence, we leverage bit-streams to predict
weight gradients sparsity for low-cost training on each device, and
meanwhile, bit-streams are used to represent the unique sparse
pattern of the weight gradient for each client which will guide
the model personalization. From our experiments, our proposed
framework can improve the computation efficiency by 3.5x on
average (up to 4.2x) and reduce the communication cost by 23%
on average (up to 41%) while still achieving the state-of-the-art
personalized accuracy.

Index Terms—Personalized Federated Learning

I. INTRODUCTION

Deep learning based Al technology, especially, Convolution
Neural Networks (CNNs) have achieved amazing success in
numerous applications in recent years [16], [27]. However, the
record-breaking performance of CNNs is at the prohibitive
training cost due to the required massive training data and
iterations. Usually, training data are collected from different
users (i.e. clients) but training tasks are performed at the pow-
erful centralized server side, which rises data privacy concerns.
Federated learning (FL) is a distributed machine learning
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paradigm which allows each client training the network using
its own data, and the centralized server only aggregates those
models to obtain one final global model. Hence, local data
will be kept on each client to preserve the data privacy.
However, there are two major challenges to deploy FL on
mobile clients. Firstly, at the client side, unlike the powerful
centralized server, the clients are usually mobile devices with
limited computation and communication resources, it is very
challenging for them to perform the complex training iterations
which are needed for each training example. This challenge
is even exacerbated as the CNN models are becoming deeper
and the structures are becoming more complex. Secondly, at
the server side, conventional FL only develops a common
generalized model for all the clients without personalizing the
model to each client, which is an important missing feature
when clients have heterogeneous data distributions.

In this study, we aim to address these two challenges
and explore the low-cost personalized federated learning by
focusing on the weight gradients which are the most important
exchanging parameters in FL and meanwhile, dominating
the computation and communication cost during the model
training in mobile devices. Firstly, on each client, we observe
high sparsity exists in the weight gradients calculated by each
training example. Skipping the near-zero weight gradient could
dramatically reduce the training cost for FL without hurting
the accuracy. However, we need to first conduct expensive
high-precision calculations on each weight gradient to identify
near-zero gradients, and then skipping them could achieve
very limited time and energy saving. Fortunately, we find that
the weight gradient significance could be predicted without
calculating. This is because each weight gradient is a sum
of products (named partial sums) between forward activations
and back propagated errors, and the magnitude of one weight
gradient is highly related to the number of its significant
partial sums. In this work, we define significant weight gra-
dients/partial sums are those with large magnitudes. As can
be seen, one can predict the significance of a weight gradient
by simply counting the number of its significant partial sums.
Secondly, we further observe high sparsity exists in the weight
gradients uploaded by each client during aggregations, and
each client has its own unique sparse pattern in the uploaded
weight gradients according to its local training data. In other
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words, the distribution of each client’s local training data can
be well represented by that pattern. As a result, guided by
the sparse pattern, we can generate a personalized aggregated
model for each client to fit its own local data.

We propose a low-cost personalized FL framework (BS-
pFL) through exploring two levels of Bit-Streams: (1) Bit-
Stream at the weight gradient level for each training example
in a client (named BSeczampie) to predict the significant
weight gradients and significant partial sums, and (2) Bit-
Stream at the client level (named BS,,,.) that represents
the sparse pattern of weight gradients uploaded to the server.
BSezampie Will guide the client for substantial computation
and communication skipping on weight gradients for low-
cost FL. Especially, for each weight gradient, we transfer
its corresponding activations and errors into bit-streams, and
perform the simple bit-wise operations to identify the sig-
nificance in a lightweight way without the expensive calcu-
lations. Only the predicted significant weight gradients and
partial sums are calculated in full precision, while others are
either pruned or quantized, therefore, the computation costs
could be significantly reduced. The communication costs are
also reduced by skipping uploading pruned weight gradients.
Furthermore, a personalized model will be generated at the
server side for each client according to its BSsyn.. From
our experiments, our proposed framework can improve the
computation efficiency by 3.5x on average (up to 4.2x) and
reduce the communication cost by 23% on average (up to
41%) while still achieving the state-of-the-art personalized
accuracy.

II. RELATED WORK

Sparsity in Neural Networks: Network sparsity has been
widely studied and adopted as an acceleration technique that
can be applied during both the training and inference of
neural networks [2], [9], [19], [25]. For example, [24] has
proposed to prune the activation gradients during the back
propagation. [10] permanently removed the weights that have
negligible contributions towards the outputs and produced
excellent model compression. In a more extensive pruning
techniques such as [12], [15], [17], [21], [22], a complete
channel or filter is pruned to give better compression and
uniform structure to the network. Lottery Tickets [9] prunes
20% of the network every 50,000 training iterations and could
get 5-10x model size reduction. Weight gradients pruning is
proposed for training acceleration by reducing communication
cost of weight gradients exchanging in distributed learning
system. [1] prunes 99% weight gradients with the smallest
absolute value by a heuristic algorithm. But those pruned
weight gradients are still determined through calculation.

Personalized Federated Learning: The data heterogeneity
in federated learning makes it hard to learn a single shared
global model for all individual clients. To address this chal-
lenges, personalized Federated Learning (pFL) is proposed to
personalize the global model for each client in the federation.
Several different sets of techniques are proposed to implement
pFL. one set of techniques treat pFL as a model agnostic

meta-learning (MAML) problem [7], [8], [13], [28]. However,
MAML approaches will introduce tremendous computation
cost as they rely on the Hessian matrix. Another set of
techniques learn a mixture of the global and local models
[3], [5]. For example, [11] introduced a new mixed model
that the model is divided into the global base layers and
on top personalized layers. In pFedMe [6], a method uses
Moreau envelops as the client regularized loss to decouple the
personalized and global model optimizations. Finally, some
techniques learn from “closer” clients to implement pFL. The
clients are “closer” than others in terms of data distribution. In
[18], the close clients are grouped together and a centralized
model is trained per group. In pFedFOMO [26], each client
only federates with a subset of relevant clients.

III. BACKGROUND AND OPTIMIZATION GOALS

Fig. 1(a) shows the process of FL, a centralized server
will distribute an initialized CNN model to selected mobile
clients (step (D), who will then train the model using their
own data in step @) and 3). Table I shows the definitions
and notations in our BS-pFL, similar to regular CNN training,
there are four stages involved in training convolution (C'onv)
layers on each mobile device: Forward Pass (FP): O
= I x W, Back Propagation (BP): §; = WlT * 01413
Weight Gradients Calculation (WGC): AW, = §11*1;;
and Weight Updating (WU): Wy = W, - n - AW,. After a
predefined interval, which is defined as one communication
round, each mobile client will send its calculated weight
gradients back to the server in step @. In conventional FL,
in step (), the sever then will aggregate the weight gradients
from all the clients to produce one global model. This process
repeats until the training process finished. However, in pFL,
the server will generate a unique model for each client in step
®) to fit its own data.

Optimization Goals: Similar to FL, pFL can be divided
into two stages: the regular training on mobile clients using
the their local data (step @) to (@) and the personalized
aggregation on the server side using uploaded weight gradients
(step ). Each stage has different optimization goals. In the
first stage (i.e., step @ to (@), the main goal is to reduce
the computation cost on the client side without sacrificing the
training accuracy. Hence, we propose to use BSczampie in
step @ and 3 to predict the significant weight gradients and
significant partial sums and prune/quantize the insignificant
ones. In the second stage (step ), the main goal is to aggregate
personalized models on the server side for individual clients.
We propose to use BSsync in step O to represent the sparse
pattern of weight gradients, and meanwhile achieving person-
alized aggregation Overall, We propose BS-pFL to achieve
low-cost personalized federated learning.

IV. REDUCE COMPUTATION ON INDIVIDUAL CLIENTS

A. Motivations and Challenges

Existing works [4], [14], [20], [24] show that there are
numerous insignificant parameters in neural networks, remov-
ing them during the calculation stage can effectively reduce
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Personalized Aggregation on the Server.

Notation Definitions

I input of layer [ at Forward Pass

O output of layer [ at Forward Pass

W, weight of C'onv layer [

0141 layer {+1’s back-propagated error, the gradient
of O;

AW, weight gradient of C'onv layer [

* 2-D convolution

n learning rate

Wil reversed matrix of W,

BSeczampie | Bit-Stream at the weight gradient level for each
training example

BSsync Bit-Stream that represents the sparse pattern of
weight gradients

bit_stream | reference bit streams produced according to
corresponding operations

Duwg /0 pruned percentage of weight gradients

Pps J0 pruned percentage of partial sums

TABLE I
DEFINITIONS AND NOTATIONS

computation complexity without sacrificing accuracy. On each
client, we observe that during the WU stage, many weight
gradients’ absolute values are very small. It is intuitive that
skipping the updatings of those close-to-zero weight gradients
(defined as insignificant weight gradients) will not affect the
training accuracy. Furthermore, the convolution operations can
be decomposed into a series of Multiply—Accumulate (MAC)
operations, thus, the remaining significant weight gradients can
be represented as the summation of multiple products between
forward activations and back propagated errors. We define a
single product as a partial sum for a certain weight gradient.
It is well-known there are a large amount of extremely close-
to-zero parameters in side CNNs, For example, there are a
large amount of extremely close-to-zero values in the d;s
and I;s, leading to many zero or close-to-zero partial sums
(defined as insignificant partial sums) in those significant
weight gradients. It is reasonable that the WGC' stage will
not be impacted by pruning those insignificant partial sums.
Since most computation operations during WGC' stage are
the massive high-precision MAC operations, we propose to
skip MAC operations related to insignificant weight gradients
and insignificant partial sums in significant weight gradients,
therefore, efficiently accelerating the training process. For
simplicity purposes, we define these two kinds of sparsity (i.e.,

Overview of BS-pFL. (a) Training Flow in BS-pFL; (b) Weight Gradient Significance Prediction based Pruning and Quantization on the Clients; (c)
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Fig. 2. (a) Inconsistency of Significant Weight Gradients; (b) Weight Gradient
Distribution of VGG-16 During Sparse Training.

insignificant weight gradients, and insignificant partial sums in
significant weight gradients) as the gradient sparsity.

However, we are facing two major challenges to leverage the
gradient sparsity for training acceleration. The significance of
each weight gradient varies across the training process. Fig. 2
(a) shows the consistency of weight gradients’ significance
during the training process of VGG-16 on Cifar100. We select
the largest 20% (in absolute value) weight gradients from
10 different training periods and record their overlapping in
percentages from every two training periods. The horizon
axis and vertical axis represent different training periods. As
the figure shows, on average, there are only 18% weight
gradients remaining significant in any two different training
periods, which implies the low consistency of weight gra-
dients’ significance across the training procedure. Therefore,
the one-time significant identification and one-time pruning
schemes used in weight sparsity cannot be naturally adapted
to gradient sparsity. The significance identification per weight
gradient needs to be conducted at each training example. The
second challenge is that the insignificant weight gradients are
irrelevant to the weight sparsity. In other words, one cannot
use insignificant weights to predict the insignificant weights
gradients. Fig. 2 (b) presents the weight gradient distribution
of VGG-16 during training when a weight pruning method is
applied. The columns represent different selected Conv layers
from VGG-16, while the rows represent weight distributions
sampled at different training periods (from the beginning
to the end). We prune 20% of the network weights every
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100,000 training iterations, thus the model’s sparsity iteratively
increases from row 1 to row 4. As it shows, with near-zero
weights are pruned iteratively during the training, there is no
noticeable changing in the distribution of weight gradients and
most of them are still located at the near-zero range in all
Conv layers. This implies the insignificant weight gradients
cannot be identified according to the weights, they need to be
calculated first for the identification. Since weight gradients are
produced at every training example and the major delay and
energy bottleneck in WGC' is the high-cost computation on
MAC operations to obtain weight gradients, identifying and
pruning the insignificant weight gradients and partial sums
after that expensive computation have trivial improvement on
training efficiency.

B. Observations and Implementation

To address the aforementioned challenges, we first made
two key observations related to gradient sparsity: 1) In FL,
insignificant weight gradients and partial sums could be pruned
without affecting training accuracy, the remaining significant
weight gradients could be further approximated via quantizing
the middle-range partial sums. 2) the significance of a weight
gradient is related to the number of significant partial sums
it contains. Then we implement a light-weight Bit-stream
based Significance Prediction Scheme (BSPS) to locate the
insignificant weight gradients and partial sums.

1) Observation Validation: Observation 1: Table II verifies
observation 1. We train three networks (LeNet (MNIST),
VGG-16 (Cifar10), and ResNetl18 (Cifar10)) with 10 clients:
we adopt four kinds of pruning/quantizing techniques: a)
pruning smallest ' p,,;% of all the weight gradients; b) pruning
the smallest p,,% partial sums in each weight gradient; c) a
combination of a) and b); and d) quantizing mid-range partial
sums based on c¢). Table II shows our experimental results. We
observe that network achieves a relatively high accuracy even
50% of the weight gradients are pruned while comparing to
the baseline (i.e., the model obtained through regular FL). For
the partial sums, we have similar observation that the network
maintain comparable accuracy when 30% of the partial sums
are pruned. Our results prove that both the insignificant weight
gradients and partial sums could be pruned without sacrificing
the training quality. While combining a) and b) together, we
find weight gradient pruning and partial sum pruning can be
conducted concurrently without causing further accuracy drop.
This indicates that the significant partial sums in significant
weight gradients are the main contributors in FL training. We
also observe that the significant weight gradients could be
further approximated by quantizing some mid-range partial
sums: with smallest 30% of partial sums and 50% of weight
gradients pruned, we further randomly quantize another 30%
partial sums in mid-range (the partial sums with their absolute
values between smallest 30% and largest 30% partial sums) to
8bit FP. No accuracy drop was observed. The accuracy results
are shown in the last column of Table II. All these results

I'This paper uses absolute values for comparisons.

show we can speed up the training process by first pruning
the insignificant weight gradients, then prune the insignificant
partials sums and quantize the mid-ranged partial sums in
significant gradients.

Observation 2: We investigate the relationship between weight
gradient’s significance and the number of partial sums by
analyzing the weight gradients on clients with various datasets.
We record each weight gradient with the number of significant
partial sums it contains. The top 50% (measured in absolute
value) of the partial sums from each layer are defined as
significant partial sums. For illustration purpose, we pick a
typical client as an example, and Fig. 3 depicts each weight
gradient from VGG-16 in that client by plotting the number of
significant partial sums it contains at the horizon axis and its
significance at the vertical axis. The significance of a weight
gradient is calculated by normalizing its absolute value to (0,
1). The horizon axis is also normalized to (0, 1) because the
number of partial sums is different in different layers. As Fig. 3
shows, there is a linear relationship between the significance of
a weight gradient and the number of significant partial sums it
contains. Hence we can use the number of significant partial
sums to predict the significance of weight gradients. Since
each partial sum is the product between an activation and an
error. Large activations and errors will produce large partial
sums. Instead of actually calculating the real partial sums,
we can obtain their significance from their corresponding
activations and errors.

2) Methodology: Achieving Low-Cost Weight Gradient Ap-
proximation via Bit-stream based Significance Prediction
Scheme (BSPS): Innovated by these observations, we propose
the bit-stream based significance prediction method to predict
all the significant/insignificant partial sums and weight gradi-
ents.

Locating Significant Partial Sums and Weight Gradi-
ents: The significant partial sum is defined as a partial sum
with large absolute value, which is the product between a
large absolute-valued activation and a large absolute-valued
activation error. Fig. 1 (b) depicts our bit-stream based in-
significance prediction for partial sums and weight gradients.
As it shows, for each weight gradient, its I; and §;4; are
transferred into bit-streams where activations/errors over a
threshold are marked as 1’s while others are 0’s. These on-
client bit streams are produced for each training example, thus
named as BSczqmple- By conducting AND logic operations
between the activation bit stream and the corresponding error
bit stream, a reference bit stream (i.e., bit_streamfN Dy s
produced. “0” in the stream implies a small product while
“1” indicates a relatively large product, which is the predicted
significant partial sums. For example, P, (marked as”1”) in
Fig. 1 plays a more important role to Aw; comparing to P
which is marked as ”0”. As shown in Observation 2, more
significant partial sums a weight gradient contains, the higher
significance it exhibits. We then can predict the significance of
a weight gradient via counting the number of 1’s in the refer-
ence bit stream. A weight gradient with higher number (above
a certain threshold) of 1’s will have higher probability being
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kept for further computing, while a small number implies
an insignificant weight gradient whose computation can be
skipped. We use Distribution Based Threshold Determination
(DBTD) scheme introduced in [23], [24] to set the thresholds
according to the pruning rate, which is determined through
our experiences.

Locating Insignificant and Middle-Range Partial Sums:
With the identification and pruning of insignificant weight
gradients, we then predict and prune/quantize the insignificant
and middle-range partial sums inside the remaining significant
weight gradients. The insignificant partial sums are defined
as products between close-to-zero activations and close-to-
zero errors. To predict insignificant partial sums, we regen-
erate a new bit stream bit_stream{T for each significant
weight gradient via conducting OR operations between its
activation and error bit-streams. 0’s in bit_stream{ ¥ indicate
the insignificant products while 1’s in the aforementioned
bit_streamf‘N D represent the significant products, and the
remaining products are at the significant-insignificant margin,
named as mid-range partial sums. We employ three different
approximation levels to partial sums which have different
contributions to the significant weight gradient: (1) eliminating
the insignificant partial sums; (2) high-precision computing for
the significant partial sums; and (3) quantizing computing for
the partial sums that are in the significant-insignificant margin.
Note that the activations produced during FP stage are stored
in memory for future use in WGC stage, the insignificant
activations (marked as O’s in the activation bit-stream) are
stored in a low-precision format to relief both the memory
access and computation stress.
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V. PERSONALIZED AGGREGATION ON SERVER
A. Motivation and Challenge

Conventional FL outputs a global generalized model on
the server side by aggregating the weight gradients from
all clients without considering each client’s personalization,
which is an important missing feature when given clients
have the heterogeneous data distributions. For each client, a
personalized aggregated model is necessary to fit its own data.
In FL, a individual client cannot be generalized well according
to the limited local training data. For pFL, a client should
learn more from adjacent clients with similar data distribution
but ignore the knowledge from those clients with unrelated

datasets. Thus, each client has unique contributions to other
clients based on the similarity of their training data. This
motivates us to aggregate a personalized model for each client
by using a unique contribution coefficient \,,, to estimate
the contribution between any two mobile clients m and n.
The A, is defined as the similarity of local data distribution
between client m and n. However, the main challenge is each
client’s local data is protected and cannot be accessed by
others, hence, preventing us from getting A,,,, directly.

B. Observations and Implementation

To get A\, we observe each client has its own unique
sparse pattern in their uploaded weight gradients according to
its local training data, and the distribution of each client’s local
training data can be reflected by that pattern.

1) Observation Validation: We train two networks, LeNet
(MNIST) (in upper right of Fig. 4) and ResNet18 (Cifarl0) (in
bottom left of Fig. 4) with 10 clients. We adopt the learning
setup and the evaluation protocol described in [6] to generate
heterogeneous clients in terms of the classes and sizes of local
training data. Two clients (e.g., clienty and client, client,
and clients, and etc.,) share the training data with similar
distributions. We select the largest 25% (in absolute value)
weight gradients from each client and plot the overlapping in
percentages between any two clients in Fig 4. The horizon
axis and vertical axis represent different mobile clients. As
the figure shows, on average, there are about 61% weight
gradients are simultaneously selected in two different clients
sharing similar training data, while only 18% weight gradients
are simultaneously selected in any two different clients with
different training data.

2) Methodology: Achieving Personalized Model Aggrega-
tion via Exploring Similarity of Uploaded Bit Streams:
Innovated by above observation, we propose using weight
gradient bit-stream to determine the value of \,,,. As shown
in Fig. 1(c), We transfer the uploaded weight gradients into
bit-streams (named BS,y,.) where the uploaded weight gra-
dients over a threshold are marked as 1s while others are
marked as 0Os. This transferring process can be done at the
server side. By conducting XOR logic operations between two
BSgynes from client,, and client,, a reference bit stream
(i.e., bit_stream:X9F) is produced. Then \,,, is determined
according to Eq. 1. Note here, A, is clipped to 1 and « (>
1) is a pre-defined coefficient represents the trade-off between
personalization and generalization. A larger o will set A,
to 1, which is the same as conventional FL for a generalized
common model.

b 20" g in bit st XOR
Ny Tmber of s in bit_streamy,, 0
length of bit_streamXOR

For each personalized model w™ for client,,, we have:
N
)\mn

N
m=1 Zm:l )\mn

Where 7 stands for learning rate and NV stands for total number
of clients.

Vwm 2

w'—w'—ng
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Network | Baseline | (a) Prune p.,,% Weight Gradients | (b) Prune p,s% Partial Sums | (c) Prune Both | (d) Quantizing
Pwg=50 | Puy=60 Puwg=10 Pps=30 | pps=40 | pps=50 | puwg,pps=50,30
LeNet 95.90% | 95.70% | 95.67% 95.60% 95.82% | 95.65% | 95.57% 95.73% 95.75%
VGG-16 83.02% | 82.83% | 82.56% 81.89% 82.85% | 82.42% | 80.72% 82.32% 82.27%
ResNetl8 | 84.03% | 83.67% | 83.51% 82.15% 83.57% | 83.52% | 81.41% 83.55% 83.48%
TABLE 11
ACCURACY VALIDATION ON WEIGHT GRADIENT PRUNING AND QUANTIZATION
Method MNIST Cifar-10
VI. BS-PFL LeNet LeNet | AlexNet | VGG-16 | ResNet-18
: : _ _ FedAVG 95.45% | 40.17% | 50.11% 82.19% 83.01%
Alg.orlthm I shows  the algont}_lm of BS pFL.. BS P FL FedAVG-FT | 97.65% | 43.52% | 61.45% 85.92% 86.21%
optimized the FL from two aspects: 1)BS-pFL achieves low- FedPer 9757% | 4424% | 6122% | 85.02% 36.45%
cost computation on mobile clients by skipping insignificant BS-FL 9540% | 40.15% | 51.02% | 82.11% 82.55%
weight gradients and partial sums; 2)BS-pFL aggregates a BS-pFL 97.45% | 4444% | 61.07% | 84.87% 86.23%
personalized model at the server side for each client. TABLE I

Algorithm 1: BS-pFL Algorithm

Input: Learning Rate: n, Communication Round: 7',
Initialize Model: w

Output: w; to w,

procedure Client-Side Optimization

for each communication round t €T do

for each client n in parallel do

forall Aw,, do
Significance Prediction by BSPS

if predict Aw,, is small then
| prune the current Aw,

end

else
prune the insignificant partial sums

quantize mid-ranged partial sums
calculate significant partial sums

calculate Aw,,
end

end

end

end

procedure Server-Side Aggregation
calculate ),,,, based on bit_stream:XOF
return personalized w,, according to Eq 2

VII. EVALUATION

A. Experimental Setup

Model Selection and Dataset: We adopt four different
neural network models from light-weight to large-scale in
our experiments: LeNet, AlexNet, VGG-16 and ResNet18. We
evaluate our pFL training framework on two different image
classification tasks: MNIST and CIFARI10. LeNET is trained
on MNIST and Cifar-10; others are trained on Cifar-10. For
each dataset, we adopt [6] for generating heterogeneous clients
in terms of classes and sizes of local training data. On each
client, examples are randomly split into training set (80%) and
testing set (20%), with the same distribution.

Compared Methods: We evaluate and compare the fol-
lowing approaches: (1) BS-pFL, our proposed pFL training
framework; (2) BS-FL, our proposed pFL framework without
personalized aggregation; (3) FedAvg, one of the most widely

ACCURACY RESULTS OVER 10 CLIENTS ON MNIST AND CIFAR-10

used FL algorithms; (4) FedAvg-FT, fine-tune the model with
local data at last round; (5) FedPer, a pFL approach that
learns per-client personal classifier on top of a shared feature
extractor. We record the average test accuracy of all local
models for evaluation on their own testing set.

Implementation: All the experiments are conducted us-
ing tensorflow framework. We replace the auto-differentiation
technique in tensorflow by customized back-propagation meth-
ods. Models are using the Categorical —cross —entropy loss
function. The calculated weight gradients are updated with
the help of Adam optimizer function, with default settings
of beta_l = 0.9,beta_2 = 0.999, epsilon = le — 07.
The learning rate has been appropriately selected. We set
Puwg %0=50%, pps%=30% for all benchmarks if not noted. The
personalized aggregation is performed at last two communi-
cation rounds to ensure convergence. The local epoch is set to
20 and the maximum communication round is set to 100. We
simulate a centralized server with 10 clients on our workstation
(Intel-Xeon E5-2650 CPU and Tesla P100 GPUs).

Threshold Determination: At the client side, two thresh-
olds (sth, and sth.) are used to generate the bit-streams from
activation and error maps, another two (sth.g and sthp,)
are used to determine the percentage of significant weight
gradients to be calculated and the percentage of partial sums to
be pruned. The pruning rate of insignificant weight gradients
and partial sums are selected manually based on experimental
experiences. Once the pruning rate is determined, sth,, is
determined as the bit-stream length is determined. The values
of sthy,, can be calculated by DBTD proposed in [23],
[24]. Then sth, and sth. are adjusted automatically during
training. If too many partial sums are defined as insignificant
partial sums based on our desired pruning rate, the values
of sth, and sth. decrease and vise versa. Therefore, only
two hyperparameters need to be predefined (pruning rate for
weight gradients and partial sums) on the client side while the
thresholds can be auto-tuned. On the server side, we use a
threshold sthypiodeq to transfer the uploaded weight gradients
into corresponding bit streams, which is set to select the largest
25% weight gradients.
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Fig. 5. Accuracy Curves on Different Datasets
B. Experimental Results and Analysis

1) Accuracy Validation and Model Convergence: Accuracy
Improvement through Personalized Aggregation: The ac-
curacy results are shown in Table. III. Our BS-pFL shows
better accuracy on personalized tasks than conventional FL
framework FedAVG. While comparing to personalized FL
framework, our BS-pFL maintains comparable accuracy but
can achieve dramatically computation and communication re-
ductions. Note here, although BS-pFL is designed for effective
personalized FL, it can also be applied to conventional FL for
generalized aggregation by just conducting the low-cost weight
gradient approximation on individual clients, which actually
becomes BS-FL.

Convergence Guarantee: To validate the convergence of
BS-pFL, we compare the training performance of FedAVG,
BS-pFL and our scheme without on-client weight gradient
approximation(i.e. personalized aggregation only). We track
the learning process from selected models of all commu-
nication rounds. Fig. 5 shows our personalized aggregation
scheme converges to higher accuracy compared to FedAVG
after personalized steps. Fig. 5 also shows the learning curve
for BS-pFL is similar to the one with personalized aggregation
only, proving that our proposed algorithm at the client side has
negligible impact on the convergence of the network.

2) Computation Reduction: To measure the impact of our
proposed algorithm on the computational cost, we collect the
number of floating point operations (FLOPs) per epoch re-
quired on Cifar-10 and MNIST of the conventional parameter-
based pFL method (e.g. FedAVG-FT) and our BS-pFL method.
Then, the computation reduction is evaluated in the reduction
of FLOPs, which is a universal metric for all platforms.
The computation reductions obtained by BS-pFL over the
conventional pFL method are listed in Table IV where LeNeT
is trained on MNIST while others are trained on Cifar-10.
As it shows, our BS-pFL has reduced the computational cost
up to 4.2x and 3.5x on average. The FLOPs reductions are
similar across different networks because they are determined
by the desired pruning rate. Since we use a similar pruning rate
(Pug %=50%, pps%=30%) for all benchmarks, the reductions
are similar as well. For LeNet, we use a much aggressive
pruning rate py,g%=70%, p,s%=50%, hence we can get more
FLOPs reductions. Our bit-stream based schemes only use 1-
bit to record the significance and performs bit-wise operations,
thus the overhead is negligible to the overall training FLOPs.

Network |conventional pFL|BS-pFL|Computation Reduction
LeNet 1.44T 343G 4.19%
AlexNet 2.58T 775G 3.32%
VGG-16 56.1T 16.97 3.31x
ResNet-18 7.28T 2.19T 3.31x
TABLE IV

COMPUTATION REDUCTION BY FLOPS COUNT
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Fig. 6. Communication Efficiency

3) Communication Reduction: We evaluate the communi-
cation overhead in the size of the uploaded data, results are
shown in Fig. 6. Compared with conventional pFL methods,
BS-pFL can achieve communication reduction by around 23%
through pruning the uploaded weight gradients.

C. Sensitivity Analysis on Hyperparameters

Table. V shows the accuracy on different selections of
hyperparameters.

Impact of a: As mentioned in Eq. 2, o controls the
trade-off between personalization and generalization ability.
For example, larger value of o means that the knowledge
coefficient should approach to 1, and more generalization
ability should be gained. Table. V shows the results of BS-
pFL with different as. In most settings a significantly large
value v will hurt the performance of BS-pFL. In this study,
we set « as 1.5.

Impact of Personalized Step R: R stands for the number
of our personalized aggregation rounds performed at the end
of FL communication rounds. We compare the performance
of BS-pFL under different setting of personalize steps (e.g.,
R =1, 2, 3, o0). oo means the personalized aggregation is
performed from the first communication round. The results
in Table. V show that larger value of R cannot always lead
to better performance, or even cause convergence issues.
Usually, the personalized aggregation step can help to improve
the knowledge transfer between clients when the clients are
sharing similar models. In this study, we set R as 2.

Impact of Local Epochs F: E stands for the number
of epochs trained on aggregation rounds. We select different
values of E' to see the impact on accuracy, demonstrated in
Table. V. The results show that a relatively larger value of
E can improve the performance of personalized aggregation.
Hence we chose E = 30 in aggregation rounds.

VIII. DI1SCUSSION AND FUTURE WORK

The Pruning Rate Determination for BS-pFL. We deter-
mine the pruning rate through our experiences in this study.
However, we also find the pruning rate could be varies from
layers and different training epochs. How to dynamically tune
the thresholds is remained in our future work.The hardware
support for BS-pFL. It is hard to transfer potential FLOPs
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Dataset Network E
1 1.5 4 8 1 2 8 [ 10 20 30 40
MNIST LeNet 97.44% | 97.45% | 96.92% | 96.02% | 97.47% | 97.45% | 96.42% | 92.12% | 96.11% | 97.41% | 97.45% | 97.46%
Cifar-10 LeNet 4442% | 44.44% | 43.85% | 41.57% | 44.22% | 44.44% | 40.29% | 38.19% | 41.21% | 44.22% | 44.44% | 44.42%
AlexNet 61.09% | 61.07% | 60.98% | 54.88% | 61.17% | 61.07% | 56.57% | 49.99% | 55.17% | 57.45% | 61.07% | 61.05%
VGG-16 83.92% | 84.87% | 82.25% | 82.18% | 84.77% | 84.87% | 81.15% | 76.45% | 82.44% | 84.09% | 84.87% | 84.89%
ResNet-18 | 86.22% | 86.23% | 85.45% | 83.11% | 86.21% | 86.23% | 83.15% | 75.44% | 83.11% | 85.51% | 86.23% | 86.24%
TABLE V

ACCURACY RESULTS ON DIFFERENT SETTINGS OF HYPERPARAMETERS

reductions into actual speedup while using our BS-pFL on
current computing platforms. We need extra hardware support
to generate the reference bits and perform bit-wise operations
in a low-cost and high-efficient way. We leave the design of
specific hardware as our future work.

IX. CONCLUSION

In this work, we study the weight gradient related sparsity
during the training process of FL. We found the sparsity can
not only be leveraged to reduce the computation cost of FL on
mobile clients but also can represent the data distribution of
individual clients’ local data. Hence to guide the personalized
aggregation for each individual clients, We propose BS-pFL,
which can achieve low cost personalized federated learning
through using bit-streams to predict the significant weight
gradients/partial sums and also to represent the sparse weight
gradient pattern of each client. From our experiments, our pro-
posed framework can improve the computation efficiency by
3.5x on average (up to 4.2x) and reduce the communication
cost by 23% on average (up to 41%) while still achieving the
state-of-the-art personalized accuracy.
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