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Abstract— Federated learning (FL) over mobile devices has
fostered numerous intriguing applications/services, many of
which are delay-sensitive. In this paper, we propose a service
delay efficient FL. (SDEFL) scheme over mobile devices. Unlike
traditional communication efficient FL, which regards wireless
communications as the bottleneck, we find that under many
situations, the local computing delay is comparable to the
communication delay during the FL training process, given
the development of high-speed wireless transmission techniques.
Thus, the service delay in FL should be computing delay +
communication delay over training rounds. To minimize the ser-
vice delay of FL, simply reducing local computing/communication
delay independently is not enough. The delay trade-off between
local computing and wireless communications must be con-
sidered. Besides, we empirically study the impacts of local
computing control and compression strategies (i.e., the number
of local updates, weight quantization, and gradient quantization)
on computing, communication and service delays. Based on
those trade-off observation and empirical studies, we develop
an optimization scheme to minimize the service delay of FL over
heterogeneous devices. We establish testbeds and conduct exten-
sive emulations/experiments to verify our theoretical analysis.
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The results show that SDEFL reduces notable service delay with
a small accuracy drop compared to peer designs.

Index Terms— Federated learning over mobile devices, weight
quantization, gradient quantization, device heterogeneity.

I. INTRODUCTION

ITH ever increasing computing and communication

capabilities, beyond learning inference, mobile devices
(Google Pixel 4a with Adreno GPU, Mac with M1 chip
and Wi-Fi 5, Nvidia Jetson devices with Wi-Fi 5, etc.) are
promising to execute on-device training of some sophisticated
deep learning (DL) models [1]. Meanwhile, federated learning
(FL) has evolved as a prospective distributed learning system
across numerous mobile devices. FL enables mobile devices to
learn DL models locally and then exchange the model updates
via FL aggregation without data privacy leakage [2]. FL over
mobile devices can provide a variety of services, including
Google’s next word prediction [3], cardiac event prediction [4],
mobile object detection [5], etc. Notably, many of those FL
inspired services over mobile devices are delay-sensitive. FL
service delays on mobile devices are primarily caused by two
factors: local computing delays and wireless communication
delays during training rounds. Because state-of-the-art DL
models are typically overparameterized, it takes a long time
to locally train those DL models on computational resource
restricted mobile devices. In term of wireless communication
delay, the size of gradients to exchange is relatively large
(e.g., ResNet50 with ImageNet dataset has 98M parameters).
This places a significant demand on wireless transmission and
may result in huge aggregated communication delays during
FL training. Such a service delay issue is more and more
severe as the contemporary DL models become deeper and
larger. As a result, it is vital to investigate how to develop a
service delay efficient FL over mobile devices.

One of the most prominent ways for reducing computa-
tional complexity for on-device training is weight quantization
[6], [7], [8]. Weight quantization, by shrinking the precision of
model parameters, may effectively reduce the storage sizes and
the computing delay of on-device training. Large-scale deep
neural networks (DNNs) (e.g., ResNet and MobileNet) might,
for example, be quantized to provide a foundation for fast on-
device training/inference, as described in [7] and [6]. Those
approaches, on the other hand, strive to increase learning
accuracy and primarily focus on centralized learning problem
with a single device. The weight quantization’s impacts on
computing delay or service delay in the FL with multiple
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devices have not been fully explored yet. Since FL encom-
passes massive devices with heterogeneous computing capa-
bilities and heterogeneous local datasets, it is worth further
investigating the impacts of weight quantization on the service
delay and FL performance.

For wireless transmission delay in FL, most existing works
in wireless communities have mainly conducted the radio
resource allocation under the FL convergence constraints
[9], [10], [11], [12], while neglecting how to inherently reduce
the communication payload and delay from the DL algorithms
themselves. By contrast, in machine learning communities,
assuming wireless transmissions are the bottleneck, there have
been two mainstream strategies proposed to improve commu-
nication efficiency of FL: (i) gradient quantization [13], [14],
which compresses the size of gradients to transmit and thus
reduces communication bandwidth consumption per round
in FL at the cost of precision; (ii) local computing control
strategy, e.g., local stochastic gradient descent (SGD) [2]),
which allows participating mobile devices to perform multiple
training iterations locally before updating to the FL edge
server, thereby avoiding communication after every local iter-
ation and reducing the update frequencies. In parallel with
those benefits, an aggressive gradient quantization strategy
may result in significant distortion on the gradients, and
thus require more communication rounds for compensation to
achieve FL convergence [13]. Besides, increasing the number
of local training iterations may lead to large discrepancies
between local models, which consequently incurs an infe-
rior error-convergence in FL. Intensive local training also
introduces large computing delay in FL. Therefore, existing
communication efficient FL designs [2], [13], [14], which
prefer aggressive compression strategy/intensive local training
to reduce the communication bandwidth consumption per
round/the total number of communication rounds in FL, may
not be optimal w.r.t. the service delay of FL over mobile
devices. First, most of them assign the identical quantiza-
tion strategy to all the participants, and don’t consider the
involved huge computing delay and heterogeneous computing
capabilities of those devices. Such designs cannot mitigate the
FL straggler problem and slow down the model aggregation.
Second, they ignore the recent advance of high-speed wireless
transmissions.

By embracing the high-speed wireless transmission era
(e.g., 5G, Wi-Fi 5, Wi-Fi 6 or 6G), the wireless communi-
cation bottleneck can be relieved for FL. over mobile devices.
Furthermore, we observe that local computing delay for on-
device training is comparable to wireless communication
delay, if the transmission rate is sufficiently high. For example,
transmitting a ResNet20 model via 100 Mbps Wi-Fi 5 links
takes 90ms, which is comparable to the time consumption of
executing one-step local training on a mobile device with a
modest GPU, e.g., 86ms for Jetson Xavier with 1.3TFLOPs
on Cifarl0 dataset. Thus, in order to optimize the service
delay of FL over mobile devices, simply minimizing local
computing/wireless transmission delay independently is not
good enough, and the delay trade-off between “working” (i.e.,
local computing) and “talking” (i.e., wireless communications)
has to be considered.

Motivated by the aforementioned observations and chal-
lenges, we develop in this paper a Service Delay Efficient
FL (SDEFL) over mobile devices, with the design goal of
minimizing the FL’s service delay (local computing delay +
wireless communication delay during FL training process)
without sacrificing the learning performance. The proposed
SDEFL jointly considers stochastic weight quantization and
local computing control for efficient on-device local training,
and gradient quantization for efficient local model update
communications. Briefly, we empirically study the impacts of
different quantization and control strategies on the learning
performance and the service delay in FL. Based on the
empirical observations and theoretical convergence analysis,
we formulate the service delay minimization to determine the
optimal quantization strategies and iteration number of local
training with considering heterogeneous computing and com-
munication conditions of mobile devices. We further establish
testbed and conduct experiments to evaluate the proposed
scheme and verify our findings. Our salient contributions are
summarized as follows.

o Inspired by the observation that computing and com-
munication delays are comparable under many situa-
tions, we empirically study how local computing control
(i.e., deciding the number of local training iterations),
weight quantization strategy, and gradient quantization
strategy affect the service delay of FL over mobile
devices, respectively. Insight from those studies is that the
local computing control and gradient quantization play
very important roles to determine the service delay.

e Based on our empirical observation, we develop an
SDEFL scheme over mobile devices by jointly selecting
the number of local training iterations, gradient quantiza-
tion levels, and weight quantization levels. Here, mobile
devices are allowed to quantize the model weights locally
to speed up the computing delay and then quantize
the local-update gradients to reduce the communication
delay. Besides, we provide the theoretical analysis of the
convergence upper bound of the proposed SDEFL scheme
with flexible quantization strategies.

o According to the derived theoretical convergence rate,
we formulate the SDEFL problem as an integer nonlinear
programming, where the number of local training itera-
tions, weight quantization level, and gradient quantization
level are decision variables. Geometric programming is
exploited to develop feasible solutions.

o We set up testbeds, and conduct extensive simulations and
experiments to verify the effectiveness of our proposed
SDEFL scheme under various learning models, different
data distributions across devices, and multiple wireless
environmental settings.

The rest of this paper is organized as follows. The related
work is provided in Section II In Section III, the system
model and problem setting are introduced. The empirical stud-
ies are discussed in Sections IV. The SDEFL’s formulation,
convergence analysis and feasible solutions are illustrated in
Sections V. In Section VI, the experimental and simulation
results are presented and analyzed. The paper is concluded in
Section VIIL.
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II. RELATED WORK

There are several research efforts made on the FL resource
utilization optimization in wireless networks in both com-
puting and communications [9], [11], [15], [16]. Particularly,
Shi et al. in [15] proposed a client scheduling scheme for
FL training under targeted training delay budget. Others like
Fu et al. in [9] and Vu et al. in [11] studied the tradeoffs
between FL training delay and energy and conducted radio
resource allocation for specific (non-optimal) design parame-
ters, which is set based on human heuristics. Luo et al. in [16]
proposed cost-efficient design and study how to determine
the design parameters (i.e., H). However, among the previous
works, the targeted learning models are either relatively simple
(i.e., with convex assumptions) or shallow networks, which is
inconsistent with the state-of-art DL models, and neglect to
reduce the payloads from learning algorithms. A few pioneer
works, such as Li et al. in [17] and Shi et al. in [18] have made
efforts on energy-efficient FL design on how to determine
the learning parameters (e.g., sparsity ratio of model updates).
However, they do not consider the mismatch between the huge
computing burden on resource limited mobile devices.

Various works in machine learning literature have been
developed to design efficient quantization schemes to facilitate
on-device learning and communication efficient distributed
learning. For on-device learning, “LQ-Net” in Zhang et al. [7]
quantized model weights such that the inner products can
be computed efficiently on devices. Nevertheless, most of
the weight quantization schemes only consider the case of
a single device. A few works like Fu et al. [19] proposed a
variance-reduced weight quantization scheme in the distributed
learning setting to improve the model accuracy but lacks of
the discussion about its impact of how to accelerate the service
delay. Different from those existing works, we study and
implemented the quantization schemes on real-world mobile
devices to verify their actual speedup w.r.t computing/service
delay for on-device training.

For distributed learning with gradient quantization, recent
theoretical works [14], [20], [21] introduced variance-reduced
methods and error-feedback schemes to improve the model
prediction accuracy and their corresponding convergence anal-
ysis assume identical quantization strategies across all the
mobile devices, which is not appropriate in the FL setting.
Moreover, the effect of precision scaling on both model
accuracy and service delay is an open problem that we aim
to address in this work. Note that our proposed scheme can
be easily incorporated with the resource allocation to further
improve the delay efficiency.

III. FEDERATED LEARNING WITH WEIGHT AND
GRADIENT QUANTIZATIONS

A. FL Framework With Weight and Gradient Quantization

We consider a wireless FL system consisting of one mobile
edge server (e.g., base station or gNodeB) and a set N' =
{1,2,---, N} of mobile devices, shown in Fig 1. Each device
n has its private dataset D,, with D,, = |D,,| training data
samples. All devices collaboratively train a global DNN model
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Fig. 1. Federated edge learning system with quantization.

under the coordination of an mobile edge server.! The goal
is to find the optimal model w € R? to minimize a global
empirical risk F'(w) as follows

N
nin, F(w) = ;pnFn (w), (1)
where d denotes the total number of model parameters and p,,
is the weight of device n such that Zﬁ;lpn =1 F,(w) =
- Yiep, folw;x),yl) is the local training loss of device
n, where (z%,y¢) is the i-th training sample in D,,. Thus,
we have p, = DTL/ZZL1 D,,.

To achieve high efficient FL over mobile devices, in this
paper, we propose the FL with Weight and Gradient Quan-
tization (FL-QuWG) algorithm by considering multi-facet
techniques, including local computing control (i.e., H), gradi-
ent quantization (i.e., g4), and on-device weight quantization
(i.e., qy) during local model updates. Local computing control
allows mobile devices to perform multiple local training
iterations between every two sequential global aggregations,
which reduces the total number of FL. communication rounds.
Gradient quantization enables devices to reduce the transmis-
sion bits of the updated gradients. Weight quantization allows
mobile devices to store the model parameters and conduct
local training with low-precision values to save the memory
access and computing delay.

Despite that weight quantizators and gradient quantizators
are applied at different FL training stages, their mathematical
definitions are the same. Here, we consider an unbiased
stochastic quantization scheme, defined as follows.

Definition 1 (Unbiased Quantization Scheme [8]): A ran-
domized mapping Q@ : R? — R? is an unbiased quanti-
zation scheme if there exists ¢ such that E[Q(w)] = w,
E[IIQ(w) - wl3] <4 lwlf, vw e B

In general, each element in w € R will be indepen-
dently quantized between argminw and argmaxw with
the data precision of ¢ < 32 bits. Let g, and g, be
the quantization strategy of weight quantization and gradient
quantization, respectively. Then § can be defined as § =
(1++v2d—1)/(2(2% — 1)) [8]. We note that a smaller ¢ leads

IFor simplicity, this paper only considers synchronous FL settings. We left
the asynchronous FL setting as future work.
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Algorithm 1 FL With Weight and Gradient Quantization

Input: initial point w® = w?, learning rate 7, number of
training iterations K

Output: w’

1: for k=0,--- ,K—1do

2:  for mobile device n € N in parallel do

3: Computing stochastic gradient
an (wﬁ) = an (wﬁ>a’:nagn) for f}fn>ﬂn € Dy
4 Update the model parameters

wﬁ—H — Qw,n (wﬁ — MV fn (wﬁ))
if (k4 1) mod H) =0 then
Send Qg ,, (whT1=H — wk+1) (o the FL server
Receive Ag’l_H from the FL sever
Set wﬁ+1 - wz+17H _ AnglfH
end if
10:  end for
11:  The FL server aggregates
AS S paQyn(wh T — wht)
12: end for

0O 2 W

to a higher variance (i.e., a larger §).> We denote ¢, and
gy be the quantization strategy to represent the weights and
gradients, respectively. The coefficients , and ¢, for gradient
quantization and weight quantization schemes, respectively.

The pseudocode of the FL-QuWG algorithm is presented in
Alg. 1. Mathematically, all mobile devices start at the same
initial point wy. Each device n first quantizes the global
model w with gy, bits (g, < 32) locally and runs H
local training iterations with quantized weights and their local
datasets (Line 3-4). After completing local on-device training,
each device n compresses the updated gradients with ¢4,
bits (gg,» < 32) and transmits the quantized gradients to the
edge server (Line 6). The edge server then aggregates the
gradient information (Line 11) and broadcasts the updated
global gradient to the mobile devices (Line 7). Device then
update the global model simultaneously using aggregated
gradient information and start the local training for next round
(Line 8). The above procedure iterates until FL terminates. Let
K be the total training iterations, and then the total number
of FL rounds is K/H.

B. The Service Delay of FL

Given the training procedure in Alg. 1, the service delay
of FL involves computing delay for local training (Line 3-4)
and wireless communication delay (Line 6) in each round.?
We assume the communication/computing delay of a mobile

2We observe that commonly used quantization schemes stochastic rotated
quantization scheme [20] share similar trend and hence we consider the
stochastic quantization scheme as an example in this paper to analyze the
effect of quantization due to the space limit.

3We neglect the costs of the model broadcasting (Line 7) and the model
aggregation (Line 11), which are taken by the powerful FL server and
whose delay is much smaller than that of model updates. In typical wireless
transmission environments (e.g., cellular network), downlink bandwidth is
much larger than uplink bandwidth [22]. Therefore, the delay of global model
broadcasting using downlink is much shorter than that of local model updates
using uplink transmission at mobile devices and can be neglected.

device for every round during FL training is the same, but
varies among devices due to device heterogeneity. Therefore,
we can neglect the indices for the FL. communication rounds.
Let T,, denote the per-round service delay of device n to
perform on-device training and model updates. We have

T & TP (qun, H) + T (dg,n) 2)

where T°P(qy n, H) denotes the computing delay related to
weight quantization ¢, , and local computing control H, and
T°"(gq.n) represents the communication delay per FL round
with gradient quantization g . Given straggler issues in syn-
chronized FL systems, the per-round service delay 7" is deter-
mined by the slowest participant, i.e., T = max,ea{Tn}
Suppose the FL. model converges in K iterations using Alg. 1,
and the corresponding service delay is

Tir 2 7 ma (T, 3)

Our objective is to minimize the service delay of FL
over mobile devices while guaranteeing FL convergence.
We employ the expected gradient norm as an indicator
of convergence [23] due to the non-convexity of F(-),
where the algorithm achieves an e-suboptimal solution,
if E [% kK;OlE MVF(wk)H;” < e. When ¢ is arbitrarily
small, this condition can guarantee the algorithm converges to
a stationary point after K training iterations.

Thus, when the FL-QuWG achieves an e-suboptimal solu-
tion in K training iterations, the service delay 7T}, is

(4a)

min Ttot

K-1
1 2
st.E|= Y E[|vrh);]| <e (4b)

k=0
Next, we conduct a series of empirical studies to analyze
how service delay in (3) and FL convergence in (4b) are
affected by different strategies (i.e., H, qu.n, Gg,n)-

IV. EMPIRICAL UNDERSTANDING OF DIFFERENT
STRATEGIES’ IMPACTS ON FL’S SERVICE DELAY

In this section, we empirically study and present the impacts
of the local computing control and compression techniques
(i.e., gradient quantization and weight quantization) on both
learning model accuracy and service delay.

Our experiments use the ResNet20 model on the CIFAR-10
dataset. The computing delay is acquired on two representative
mobile devices, Jetson Xavier and Nvidia RTX 8000. Note
that the RTX (16.5 TFLOPS) has more computing capabilities
than Xavier (1.3 TFLOPS). We set a laptop computer as an
FL server and measure the transmission delay of ResNet20
and MobileNetV2 in the Wi-Fi environment. The Wi-Fi uplink
transmission rate achieves 102 Mbps on average. More details
of the experimental setup can be found in Section VI.

Let p = T°P(32,1)/T°™(32) be the ratio of the computing
delay per local iteration and the communication delay in
full precision. p indicates whether the FL task is computing
dominant or communication dominant for mobile devices
given their computing capabilities and wireless conditions.
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Fig. 2. The service delay vs local computing control using ResNet20 when
qw = 32 and g4 = 32. The model stops training when the accuracy achieves
98.8%. (a) RTX8000 (p = 0.14); (b) Xavier (p = 0.61).

A. Impacts of Local Computing Control on the Service Delay

Local computing control strategies reduce the total number
of communication rounds and communication costs by push-
ing more local computing burdens on the local devices. It has
an important influence on model convergence and service
delay. Fig. 2 depicts the performance (i.e., service delay to
reach the target accuracy) on different  and p. It is easily
observed that selecting a large number of H is not always
effective. The service delay first degrades and then quickly
increases once H is larger than a certain threshold. With
today’s wireless transmission rate, the transmission delay of
mobile devices is comparable with its computing delay, that
is, p = 0.14 and p = 0.61 on average for RTX and Xavier,
respectively. In this case, increasing H can only reduce the
communication time but not necessarily save the service delay.
Moreover, the optimal local iteration is related to the ratio p.
For example, when p decreases (e.g., low communication
delay or high computing delay), the optimal strategy of
minimizing the service delay is to conduct fewer local training
iterations and to update the model more frequently.

B. Impacts of Gradient Quantization on the Service Delay

Similar to the local computing control strategy, gradient
quantization reduces the data transmission bits to save commu-
nication delay. Unlike the broad discussion on local computing
control strategy, the impact of different gradient quantization
levels on the service delay is less investigated.

Gradient quantization has a critical influence on both the
overall training iterations (/) and communication delay per
round (7°“™). For T°™, it scales linearly with the quantization
level. The extreme case of quantizing data into ternary levels
{=1,0,1} can ideally reduce 32x communication delay per
round than full-precision ones. The impact on K is more
complicated than its on 7°"*. We show the impact of the gra-
dient quantization on the communication rounds in Fig. 3 (a)
and the corresponding service delay in Fig. 3 (b). In this
subsection, for simplicity, we assign the same gradient quan-
tization level to all the devices. It shows that the extreme
reduction in precision (i.e., g4 less than 4 bits) requires more
communication rounds to recover the model performance, and
thus, the service delay significantly increases. As g, increases,
both the communication rounds and service delay decrease
sharply. Surprisingly, we discover that moderate quantization

o

1600
8 | —estimation curve m —estimation curve
£1400 g9
e )
51200 x8
g z
<1000 g7
£ 8
g 800 256
(2]
600 5
2 4 6 8g 10 12 14 16
9
(b)
Fig. 3. Impact of gradient quantization level using ResNet20 when

qw = 32 and H = 10. The model stops training when the accuracy achieves
98.8%: (a) The number of communication rounds vs gradient quantization
level; (b) The service delay vs gradient quantization level.

TABLE I
IMPACT OF WEIGHT QUANTIZATION

(H, 4 (10,3) [ (10,8) [ (10,16)

round radio 0.99 0.98 0.99

speed up of the service delay 1.64x 1.59x 1.5x
(H. 49) (25,3) | (25,8) | (25,16)

round radio 0.99 0.97 0.98

speed up of the service delay 1.68x 1.65x 1.61x

levels (e.g., 5-8 bits) converge faster than the higher-precision
counterparts (e.g., 16 bits). The benefit of using moderate
quantization levels can be explained by the recent findings on
the gradient diversity in distributed learning settings. Gradient
diversity measures the difference between the local model
gradients and aggregated gradients, and a large gradient diver-
sity encourages active exploration of parameter space [24].
As such, the noise of moderate quantization properly enlarges
the diversity that helps the model converge in lower training
loss than the full precision. Hence, by choosing quantization
levels judiciously, we can guarantee that model converges fast
and accurately.

C. Impacts of Weight Quantization on the Service Delay

Weight quantization reduces data precision to save the data
size for memory access of mobile devices. It allows low
precision operations to speed up the local computing delay
on mobile devices. We investigate the speed-up performance
of local training with low precision over the full precision
counterparts.* We perform FL training with different com-
binations of (H,qq,qw = 16) and (H,qg,q, = 32). The
comparison results are shown in Table I. The “round ratio”
denotes the ratio of “Communication rounds for local training
with (H, gy, ¢ = 16)” and “Communication rounds for local
training with (H, ¢4, g, = 32).” This “round ratio” indicates
that 16-bit is sufficient precision for most network training.
More importantly, the models with the weight quantization of
16 bits can save up to 1.6x computing delay with almost the
same rate as the full precision case.

“4Jetson Xavier NX features a Volta GPU with 48 Tensor Cores that can
accelerate large matrix operations in 16-bits format. Since Tensor Cores only
supports FP16 training, we show the speed-up of the service delay when
quw = 16.
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Fig. 4. Service delay vs hetergeneous devices.

D. Impacts of Device Heterogeneity on the Service Delay

We choose different working modes> of Xaviers to represent
the device heterogeneity w.r.t. the local computing capabilities.
Fig. 4 reports the service delay of a subset of participating
devices when they perform FL training of ResNet20. Hence,
we find that: (1) stragglers greatly slow down model updates
in practical FL; and (2) optimized quantization strategies
should adapt to heterogeneous computing and communication
conditions. Here, optimizing the communication delay can
greatly benefit Device D, but it has limited improvement for
the service delay of Device B, since it is bottlenecked by the
computation delay.

In summary, the empirical results above show that the
service delay of FL over mobile devices is affected by multiple
factors such as the number of local iterations, weight quantiza-
tion level, gradient quantization level, devices’ heterogeneous
computing capabilities, different wireless transmission rates
of mobile devices for local model updates. In particular,
to effectively reduce the service delay, only reducing the
computing/communication delay is not good enough, and
the trade-off between computing delay and communication
delay has to be taken into consideration. Those empirical
observations above urge us to jointly consider local computing
control, weight quantization strategy, gradient quantization
strategy, and device heterogeneity, characterize computing,
communications and FL convergence, and develop a optimized
solution to minimize the service delay.

V. MINIMIZING THE SERVICE DELAY OF
FL OVER MOBILE DEVICES

The experimental observations above reveal that local com-
puting control H, gradient quantization levels, g4, and weight
quantization levels, ¢,, play a vital role in the service delay
of FL over mobile devices. In this section, we start with
discussion on the computing and communication delay model,
followed by an approximate analytical relationship between
the convergence constraint and the control variables (q., qq,
and H). Then, we develop the heterogeneity-aware algorithm
to tune ¢q,, q4, and H to balance the trade-off between
computing and communication delay of mobile devices in FL
training under model convergence.

SFor different working modes, the devices operates at different clock
frequencies and different activate CPU cores, which would affect computing
delay. In particular, Device A represents Xavier with working power of 10 W
with 4 cores; Device B of 10 W with 2 cores; Device C of 15 W with 4 cores;
and Device D of 15 W with 6 cores.

A. Computation and Transmission Modeling

1) Computation Model: GPUs are the most commonly
used accelerators for DNN computations. We consider the
GPUs instead of CPUs in this work for two reasons. First,
CPUs cannot support relatively large and complicated model
training tasks. Second, GPUs are more efficient than CPUs
for on-device DNN training and are increasingly integrated
into today’s mobile devices. Hence, the computing delay of
GPU-based training is comparable to the communication delay
of transmitting FL models in high-speed networks (See the
example we use in Section III). The local computing of
device n involves data fetching from memory and operating
arithmetic in core processors. In Section IV-C, we have
observed empirically that weight quantization does speedup
the on-device training. Hence, we modify the GPU model
in [25] and propose the following delay function to capture
the relation among 7P, H and gq,,

c core a2(q U, ezzem
T (s H) 2 H <a1<qw,n)tn + 2(fm)m> o,
%)

where t2°7¢ is the delay coefficient of one training iteration
performed in full precision (g, = 32), determined by the
specific DNN structure (e.g., layer configuration and batch
size); a1 (qw,) denotes the accelerator factor when the model
parameter is represented by ¢, bits. 0™ and fy,cn, denote
the number of cycles for device n to fetch data and memory
frequency, respectively; asa(qw,n) denotes the scaling factor.
t0 represents the other component unrelated to training task.

Here we define function «i(qy,,) in accordance with
NVIDIA documentation [26] as

(32/¢uwm)’

where m denotes the fraction of matrix multiplication and
convolution operations that can be accelerated by Tensor Core
given a DNN configuration and (32/¢,, ,,) represents the ideal
speed-up for those operations when quantization level g, .,
is selected [27]. Then the speedup of using Tensor Core is
m [26]. In term of memory access time, we assume
that scaling factor ay(qy,») are linear functions of data bit-
width gy, . This is reasonable since the dataflow (i.e., how
data moves in the memory hierarchy) of memory access
is fixed given a DNN configuration and hence the number
of bits accessed scales linearly with the corresponding bit-
widths [28].

To validate the results in Eqn. (5), we implement two DL
models, i.e., ResNet20 and MobileNetv2, on a Xavier NX and
RTX with Volta GPU. Table II shows a comparison between
the estimation in Eqn. (5) and the actual computing delay
measured by Jetson stats [29]. The result shows that the
estimated delay is close to the actual computing delay.

2) Communication Model: Let S denote the total number
of bits transmitted from devices to the edge server. Given the
gradient quantization ¢4, we have

a1(Guwn) =1 —m) + (6)

S(Qg,n) = Sldqg,n =+ So, @)
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TABLE I

ESTIMATION OF ONE PASS COMPUTING DELAY
ON RESNET20 AND MOBILENETV2

Model ResNet20 Mobilnetv2
measured | estimated | measured | estimated

Xavier NX | 74.6 (ms) | 77.3 (ms) | 375 (ms) 401.3 (ms)

RTX 8000 14 (ms) 15.2 (ms) | 131 (ms) 144.6 (ms)

where sg and s; are coefficients determined by additional com-
munication overhead involved in wireless transmission [30].
We consider the transmission rate with orthogonal frequency-
division multiple access (OFDMA) scheme with total band-
width . The expected transmission rate® of mobile device n
is given by,

|: < Ptran|hn2>:|
(M) = MWEy |logy [ 14+ —2—— ]|, (8)
No

where )\, represents the resource allocation ratio that satisfied
0< A\, <1 and 22;1 An = 1; The expectation is taken
over channel fading h, between mobile device n and the
edge server, [Ny is white Gaussian noise, and Pf]’a" denotes
the transmitting power. Thus, the communication delay for
transmitting the quantized gradients of the quantized model
from device n to the edge server is calculated as

S(qun) (9)

T (ggns An) = )

B. Relationship Between Convergence and Different
Control Variables

In this subsection, we present the convergence analysis
of our proposed FL with local computing control, weight
quantization and gradient quantization, and the derived con-
vergence result is used to approximate the effect of different
strategies (H, g, and g4) to the number of training iterations
in constraint (11b).

We make the following assumptions on the non-convex
function Fj,,Vn, in (1), which are commonly used for non-
convex analysis of SGD [31], [32].

Assumption 1: All the loss functions F,,,Vn, are differen-
tiable and their gradients are L-Lipschitz continuous: for all x
and y € RY, ||VF, () — VE,(y)ll, < Lllz —yll,,Vn € N

Assumption 2: Assume that f, is randomly sampled from
device n’s local loss functions. The stochastic gradient is
unbiased estimator and its variance with a mini-batch of size

M.'E"vﬁ(wk) _VE,(wh)

2 2
< % and its second moment
2

~ 2
is E van(wk)H <72 VnenN.
2

Assumption 3: For heterogeneous data distribution it satis-
fies: E||VF,(w) — VF(w)|3 < G, ¥n € N.

Theorem 1 (Convergence of SDEFL): For SDEFL, under
MN
K
the convergence rate of the proposed scheme satisfies, with

certain assumptions, if the step size satisfies n =

%We do not consider the effect of header information since most deep
learning models include a massive number of training parameters (e.g., ResNet
has more than 2 x 107 bits), indicating that these effects can be ignored.

the quantization strategies, qq, ¢, and local computing control
strategy H,

= ZE (177 )|

_AE [F(w®) — F(w’)]

N 2 Lo?(2Hd, + p)

MNK MNK
12M LH§,G? al
09T L oLVar S pR (S0 + Dup, (10
MNK ;p %, Jum (1)
where Sg = Zfl\f:lpiég’n, p = Zf:[:lp% and 6, =
Zvlyzl p?z(sw,n-
Proof: See Appendix. O

Theorem 1 implies that the convergence rate of SDEFL is
O((1 + 0,H)/vVNK). It converges at the same rate as the
full-precision SGD, but only to a non-zero error (the last term)
associated with the quantization resolution dg, d,,, and model
dimension d. Hence, weight quantization makes FL converge
to a neighborhood of the optimal solution without affecting
the convergence rate. The 16-bit weight quantization does not
impede down convergence performance, which is consistent
with our empirical observations of weight quantization. Fur-
thermore, 16-bit weight quantization has little effect on model
learning performance. While gradient quantization and local
iterations would affect the convergence by a factor of O(HJ,).
Given a target model accuracy, a higher value H and a lower
value ¢4 ,, result in a higher bound of training iterations. On the
other hands, A higher H may lead to fewer communication
rounds % Based on our key observation that the computing
delay for on-device training and communication delay are on
the same scale, we can use [ to trade-off computing and
communication delays to optimize the service delay as shown
in Section III-A. Similarly, a smaller value of g, , (i.e., less
than 8 bits) leads to less communication delay per round
and more training iterations. It also demonstrates a trade-off
computing and communication delay to optimize the service
delay as shown in Section III-B.

C. Problem Formulation

Given the computing model and the communication model
above, we reformulate the problem in (4a) as follows

T 1
ml}? tot (11a)
dg,nqw,n
AL+ AgH SN 26,0 N
A — + AoH 3 ey Prdy, +Cozp1%6w7n
VNK ]
N
+ BoH Y p2Ognbun < €, (11b)
n=1
He H’ qg.n S an quw,n S Qw, Vn € N
(11c)

Here, we leverage the convergence upper bound as an approx-
imation of constraint (4b) to achieve e-global model con-
vergence. Constraint (11b) represents that after K training
iterations, the training loss should be smaller than a pre-set
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threshold e. For simplicity, we use the coefficients Ay, Ag, By,
and Cj to characterize the loss function related properties and
statistical heterogeneity of non-i.i.d. data in Theorem 1. With
the proper values of A;, Ay, By, and Cj, we can characterize
the nonlinear relationship between % and g4, as shown in
Section III-B. The coefficients can be estimated by using a
sampling set of experimental training results. Constraints (11c)
indicate that optimization variables take the values from a set
of non-negative integers. We relax K, q,,, and g4 as continuous
variables for theoretical analysis, which later are rounded back
to the nearest integer. For the relaxed problem, we observe that
the variable K is monotonously decreased with the objective
function. Hence, for optimal K, constraint (11b) is always
satisfied with equality, and we can obtain K as

(A1 + AoH 30 pdgn)?

Co Yoy P0wn)?
(12)

N(E — BoH Zn:l pn(sg,n(sw,n

For notation simplicity, we further simplify the description
of GPU time model as TP = H(B.qw.n + %) + t9, where
2 — CLO + (1 _ m)tcore and ﬂl — 19mem/ mem |
mtc°r¢ /32 and communication model as ul = ds; /rn and
u?2 = so/r,. By substituting the (12) into its expression,
we reformulate the problem (11a) as follows,

in (A + AgH 300 p20gm)?
H,q9,n:qw,n HN( Zn 1pn6w n(BOHégn +CO))
. max{uﬂqgn +u JrH(ﬂ Qu,n + O)th(]}

(13a)

st. HeEH, dgn € ég, qun € Qu, Yn €N,

(13b)

where H and ég are the relaxed set. The problem (13) is
non-convex problem. The non-convexity arises from (1) the
min-max formulation; and (2) multiplicative form of gy n,
dgn,Yn € N and H in both the objective function and
constraints, which makes the optimization NP-hard to solve.

D. Solutions to the Optimal SDEFL

To reduce the computational complexity, we convert the
optimization problem in (13) to a geometric programming
problem, which is then converted into a standard convex
problem via log-sum-exp forms [33]. Then we introduce two
slack variables, ¥ > 0 and ¢ > 0, such that

min ¥, (14a)
v,¢,H,
qdg,nq9w,n
s.t. ﬁ( g+ + H(BhGuwn
HN n g, n n 3
+82) +19) < W, VneN, (14b)
0< A+ AgH Zrljzl piég,n
B €— ZnNzl p%(sw,n(BOH(sg,n + CO) B
(14¢)

The problem (14) is equivalent to the original standard form
problem (13). Indeed, since the objective function in (14) is

a increasing function of W and ¢, the constraints (14b) and
(14c) always hold with equality for the optimal solution.

According to the Definition 1, we can assume that d, ,, and
dw,n decrease monotonically with g4, and gy n, Vn, respec-
tively. Without loss of generality, we consider the coefficient
function of ¢ in term of g as log(d) = a—blog(29 — 1) where
a > 0,b > 0 (See Figure 5 in [19]) to characterize the
relationship between ¢ and § in SQ schemes.” We consider
the following coefficient functions, for £ € {g, w},

Sen =10"/(2%" — 1), neN.

We then introduce additional auxiliary variables vg ,, where

Gen = 10gy(1 +1/ven) ~ 10g(2)/ve,n and d¢.n = 1090¢ .
Further since ¢ is a constant and we know that ¢ >

BoH Zn 1 pnég nOw n, then constraint (14c) is equivalent to

15)

Ay +AIHZn 1pn gn
e
N
b, (ByHVE,, + C
+Zn 117 (By 0) <1, (16)
€
where Af, = A¢10%, B} = By10%?, and C} = C10%. With

auxiliary variables vy, and v, n,¥n € N, we can observe
that the objective function in (17) is monomial and all the
inequality constraints are posynomials [33], which satisfies
geometric programming (GP) in standard form. Then we make
a logarithmic change of all the variables and multiplicative
constants and equivalently transform the following GP prob-
lem in convex form [33]:

min W,
V,¢,H,

Vg, Ow,n

s.t. log (exp (2q~5 —H-— Vgn + log(ﬁ;))

~  ~ w2 60
+ exp (2(;5 — HJrlog(A?)) +exp <2¢ + log(=2 )>

(17a)

L 0
+ exp (2(;5 —H+ log(tN")>

+ exp (25— Vwon + log(@ll)>> <U, VYneWnN,

(17b)
N ~ ~
log (Z exp (log(A()pi/e) +H +bvg, — gb)
n=1
N ~
+ Z exp (log(Bépr/e) + H + bug,, + bﬁwﬂn)
n=1
N
+ Z exp (log(Cp2 /€) + biw,n)
n=1
+ exp (1og(A Je) — )) <o, (17¢)
where @, = log(2)u,,/N and 3L =log(2)B3L/N. Through the
change ¢ = log(¢), H = log(H), Vg = 10g(vgn), Vwn =

log(vy,n), ¥n, we get the convex form, which can be con-
firmed to be convex optimization because of the convexity

"We can set different values of a and b for different SQ schemes. For

example, a = log((1 + v2d — 1)/2) and b =1 in QSGD [8].
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Algorithm 2 GP-Based Local Computing Control and Quan-
tization Selection for SDEFL in (13)

1: Input: N, r,,tcore, fmem 10 - estimated model conver-
gence parameters (A, A1, By, Cp), model training loss e,
and parameters of the SQ scheme (a, b)

2: Output: H*, {qy . }3 1, {a5 . 01

3: Substitute N, 7, tom¢, fmem 49 " Aq, A1, By, Co, €, a, and

b into (13) and reformulate problem (13) into GP in (17)

4: Solve GP in (17) via primal-dual interior point meth-
ods [34] to obtain the optimal H*, {0} ., 0% ,}0_,

5: Compute H = exp (H*), qgn = logy(1+1/exp (v ,)),
and quw,n = log2(1 + 1/exp (:J;ku,n))

6: Round |H, |gg,n], and |guw ], and set the combination
of weight and gradient quantization strategies and local
computing control that has the minimum objective value

in (13a) as (q; ,, and qy, ,,, H").

of log-sum-exp function [33]. Hence, it can be efficiently
solved optimally by the edge server through the interior
point primal dual method [34], with polynomial running
times that are O(v/2N +3), where 2N + 3 is the total
number of optimization variables in our proposed service
delay minimization and N is the total number of participating
devices. Once the optimal vector (¥*,¢*, H*, vy, vy, ) is
determined, we can compute the strategy of (H*, q;,n, q;'j},n),
that is H* = exp (I;T*), qgn = logy(1 + 1/exp (V5 ,,)),
and G, = logy(1+ 1/ exp (v}, ,,)), for each device n. The
overall algorithm for obtaining (H*, q; ,, g, ,,) is summarized
in Alg. 2

The edge server is in charge of solving the optimization
in (14). It is practical because in the FL protocol in [35]
requires mobile devices to check in with the FL server first.
Hence, the FL server can collect the information from mobile
devices and find the optimal strategy (H, gy, and g4 ,,) for
each device via an optimization algorithm.

VI. SDEFL PERFORMANCE EVALUATION

In this section, we illustrate the setup of testbeds, and con-
duct extensive experiments/simulations using different learn-
ing models and wireless transmission techniques (i.e., Wi-Fi
5 and 5G) to evaluate the performance of the proposed SDEFL
in terms of service delay and learning accuracy.

A. Experimental Setup

1) System Configurations: We evaluate the SDEFL’s per-
formance in both testbeds (for mobile devices with Wi-Fi 5
transmission capability) and a simulated environment (for
mobile devices with 5G transmission capability). Our SDEFL
testbed consists of an NVIDIA RTX 8000 as the edge server
and several Jeston Xavier kits as mobile devices, as shown
in Fig. 5(a). Each Xavier has a Volta architecture, with 384
NVIDIA CUDA cores and 48 Tensor cores, and 8GB GPU
memory. All devices are wirelessly connected via Wi-Fi 5
according to the WebSocket [36] communication protocol.
We also adopt the iPerf3 network speed test tool to measure

* WIFi 5 Router

- r ‘\Tw r -

-
| FL aggregator | _ ;- interface

Fig. 5. The SDEFL system configuration: (a) The SDEFL testbed with RTX
8000 (FL aggregator) and Jetson Xavier kits (FL clients) in our lab; (b) The
5G emulation platform in the Purple Mountain Laboratories, Nanjing, China.

the achievable bandwidth of the wireless transmissions. As for
the simulated environment, since Jeston Xavier doesn’t support
5G transmissions,® we have to separately test the computing
delay and 5G transmission delay of SDEFL. Here, we mea-
sure the computing delay using Xaviers in our lab, measure
the transmission delay using a 5G emulation platform, and
combine the results to evaluate the service delay of SDEFL.
The system configuration is shown in Fig. 5.

2) Learning Datasets and Models: We evaluate our results
on the CIFAR-10 dataset, which consists of 50000 training
images and 10000 test images in 10 classes. Without loss of
generality, we choose to train deep neural networks ResNet20
and MobileNetv2 from the scratch, since these two DNN mod-
els have different architectures and numbers of model param-
eters. For all experiments, we set the batch size M = 128.
In each round of FL, we consider 10 participating mobile
devices, which run H steps of SGD in parallel. We employ an
initial learning rate 7 = 0.1 with a fixed decay rate of 0.996.
Each result is averaged over 5 experiments.

3) Implementation: We implement SDEFL and the other
baselines by building on top of Flower [37]. In total, we add
400 lines to perform weight and gradient quantization. In par-
ticular, we use NVIDIA’s APEX library for quantization
implementation. The optimal local computing control, weight
quantization, and gradient quantization strategies are obtained
by solving the SDEFL optimization problem in (13). The
values of teore, 10, a2(qy), ™™, 51 and so used in SDEFL
optimization are derived from platform-based experiments by
measuring the average computing delay and communication
delay using Nvidia profiling tools [38] on Jetson Xaiver in our
testbed. The average t2 = 4.69 ms and as(q,) = 0.003q,, +
0.3. The average s; = 0.0000166 and sg = 0.2 MB. Besides,
teore and m, 0™ depend on DNN configurations. Here,
we take ResNet-18 as example. The average t.,.. = 76 ms,
0me™ = 939706055, and m = 0.32. For the traditional SQ
scheme, a = log((1++v2d—1)/2) and b = 1 [8]. The
SDEFL optimization is conducted using “fmincom-geometric”
solver. It takes 30 ms to solve the proposed optimization by
using MATLAB, which is definitely affordable for the FL edge
server. Besides quantization implementation, there are some
other implementation details as follows.

Experiments with i.i.d data: We set up the testbed and
conduct the first series of experiments using ResNet20 and

8The NVIDIA Jetson Xavier NX developer kits we have in the lab don’t
support Wi-Fi 6 or 5G transmission.
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(c) Service delay vs H. (d) Testing accuracy vs service delay.

Training performance of ResNet20. The estimation of Ag = 0.35, A1 = 32.3, Bp = 0.001, and Cp = 0.06. (a)-(b): Experimental Results (Wi-Fi

5: 88 Mbps); (c)-(d): Emulation Results (5G: 14 Mbps). The dots show that the optimal H in different schemes.

MobilenetV2 with CIFAR10 dataset with N = 10 participat-
ing devices with homogeneous data distribution. In particular,
we uniformly distribute 6,000 data samples and 10 classes
among the participating devices.

Experiments with non-i.i.d data: With the same testbed,
we conduct the second series of experiments using ResNet20
and CIFARI10 dataset with heterogeneous data distribution.
To generate unbalanced data, we sample the number of data
samples via a lognormal distribution with a standard deviation
from {0.3,0.6}, and each device contains only 4 digits labels.

Implementation of wireless transmissions: Using the 5G
emulation platform with the configuration of a frequency
of 2.6GHz and a bandwidth of 100MHz, we measure the
achievable 5G uplink transmission rate, which is 14 Mbps on
average with standard deviation (SD) 3.85 Mbps. Using the
SDEFL testbed in our lab, we measure Wi-Fi 5’s achievable
uploading transmission rate from Xaviers to the RTX server,
which is 88 Mbps on average with SD 16 Mbps.

4) Peer Schemes for Comparison: We compare our pro-
posed SDEFL scheme with the following FL schemes:
(1) iFedAvg: Similar to the work in [16],° all the devices
follows FedAvg algorithm with the optimal value of H and do
not consider weight and gradient quantization. (2) FedPAQ: In
FedPAQ [21], all the devices perform local training with full
precision weight and transmit the quantized version of model
updates to the edge server. In this scheme, all clients are assign
with the same gradient quantization level. (3) AdaH: Similar
to the work in [39], all the devices follow the same dynamic
H policy. The dynamic H policy gradually decreases H-value

as Ht = ,/%HO, and we set H° = 30. (4) FL-QuWG-pro:
We assign different gradient quantization levels proportionally
according to the allocated bandwidth of each mobile device.

B. Results and Analysis

1) Service Delay and Learning Accuracy: Fig. 6 shows
the service delay for reaching the target loss of 0.15 under
different numbers of local iterations H using our testbed
with Wi-Fi 5 transmissions. In Fig. 6(a) and Fig. 6(c), where
the communication and computing delay is comparable, the
optimal H exists (not extremely big/small), which further

91n this work, Luo et al consider the client selection and the optimal number
of participant is full participants when we only consider the service delay.
Hence, we only consider the optimal value of H.

confirms our empirical and theoretical analysis. Besides, from
Fig. 6(b) and Fig. 6(d), we observe that AdaH, FedPAQ, FL-
QuWG-pro, and SDEFL can effectively reduce the service
delay. Moreover, our proposed SDEFL scheme outperforms
the others: 1) It is because SDEFL is more flexible than
FedPAQ in terms of quantization decision making, which can
better fit the heterogeneous communication conditions across
participants. 2) SDEFL outperforms AdaH since the dynamic
policy in AdaH only depends on the training loss and does
not consider the trade-off between communication and com-
puting delay. It also ignores the heterogeneous resource across
participants. Different from it, the proposed SDEFL focuses
on the trade-off between communication and computing delay
and device heterogeneity to further reduce the service delay.
3) Compared with FL-QuWG-pro, it demonstrates the effec-
tiveness of the proposed optimization that can find the optimal
strategies for different mobile devices. It shows when reaching
FL convergence, SDEFL can reduce 56% service delay with
0.3% accuracy loss compared with FedAvg, and reduce round
50% service delay with 0.23% accuracy loss compared with
FedPAQ.

2) Impacts of Wireless Transmission Rates: As the mea-
sured transmission rate of 5G is slower than that of Wi-Fi 5,
the SDEFL with 5G transmissions has larger service delay
as shown in Fig. 6. Actually, different transmission rates
yield different workload allocations between “working” and
“talking” to achieve the minimum service delay, which is
reflected by the computing delay/communication delay ratio
p defined in Sec. IV. Here, p equals to 0.9 for SDEFL with
Wi-Fi 5 transmission, and p equals to 0.1 for SDEFL with 5G
transmission. In Fig. 6 (a) and (c), we find that the optimal
value of H decreases as p increases (from 0.1 to 0.9). The
reason is that SDEFL prefers to reduce the service delay
by “talking” more in the case of the high wireless transmis-
sion rate, i.e., the accumulated wireless transmission delay is
comparable or smaller than the accumulated local computing
delay for mobile devices during FL training. It further verify
our observation and theoretical analysis about the trade-off
between communication and computation in FL. over mobile
devices. Besides, for different p values, the proposed SDEFL
scheme outperforms other schemes.

3) Impacts of Learning Model Dimensions: We evaluate the
proposed SDEFL with different learning models. In particular,
the model sizes (i.e., d) of ResNet20 and MobileNetv2 are
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Fig. 7. Service delay with different heterogeneous settings.
TABLE III
TESTING ACCURACY WITH DIFFERENT FL SCHEMES

Service delay Measured
Model Methods Acc.(%) in (13) (ms) delay (ms)

iFedAvg [16] 89.98 776435 714653

FedPAQ [21] 87.15 632118 655170

ResNet20 FL-QuWG-pro 87.15 415864 362726
SDEFL 88.64 340273 316819

iFedAvg [16] 88.19 1933978 1765978

FedPAQ [21] 82.62 1808992 1704431

MobileNetv2 | FL-QuWG-pro 87.15 1109046 1011043
SDEFL 83.47 931106 871240

0.27M and 3.4M, respectively. From Table III, we observe that
the service delay of MobileNetv?2 training is larger than that of
ResNet20 since a more complex learning model requires more
communication and computing delay. Besides, the proposed
SDEFL can save more service delay in MobileNetv2 than
that in ResNet20. In the case of MobileNetv2, it shows that
when reaching FL convergence, SDEFL can reduce 46%
service delay compared with FedAvg, reduce 38% delay
compared with FedPAQ, and reduce 15% delay compared
with FL-QuWG-pro. We also calculate the p in Section IV
of the system straggler: p = 0.61 in the case of ResNet
and p = 4.21 in the case of MobileNetv2. The computing
delay has more profound impact than communication delay in
MobileNetv2. Hence, the FedPAQ can only consume 6% less
than FedAvg. Since SDEFL can leverage weight quantization
to reduce the heavy computing workload incurred in large
networks, it can effectively reduce the service delay. However,
the accuracy of SDEFL drops by 6% in MobileNetv2, which
is higher than the 3% drop in ResNet20. A larger d leads to
a larger loss upon convergence. Those results are consistent
with the analysis in Theorems 1. Besides, we apply the optimal
solution derived by Alg. 2 to perform the FL training in our
testbed and measure the corresponding service delay using
Pytorch. The measured delay is presented in Table III. It shows
that our approach has the maximum error of 12% and an
average error of 8%.

4) Impacts of Data & Device Heterogeneity: We further
evaluate the performance of SDEFL with different data dis-
tributions in the context of skew class distribution and unbal-
anced number of training data samples. The model is trained
by ResNet20. Sample distributions become skewer as the
standard deviation (STD) goes from 0, 0.3 to 0.6. As shown
in Fig. 7(a), we find that training with non-IID data incurs

IMiFedAvg
EFedPAQ]
ElAdaH

[ESDEFL

MiFedAvg
10} [I@FedPAQ)
[EAdaH
[ENSEDFL

w

25

o N

Relative service delay

Service delay (><1[)5 ms)

o
o

A A »

AR

(c) Relative service delay w.r.t v¢p (d) Service delay w.r.t Yem

a longer service delay than that of the IID case. From the
results in Fig. 7(a), we observe that a large value of G requires
more training iterations to converge, which verifies the analysis
in Theorem 1. Compared with FedAvg The proposed SDEFL
can efficiently reduced the service delay by 0.42, 0.72 and
0.6 in the case of “STD = 0,” “STD = 0.3,” “STD = 0.6,”
respectively.

We now examine the impact of device heterogeneity (DH)
w.r.t computing capacities and wireless bandwidth on the
service delay. Here, we divide ten participating devices into
four groups, corresponding to four capacity levels. Assume
that mobile devices belonging to the same group are allocated
with proportional wireless bandwidth for gradient exchanges.
To vary r,, we use Linux fc, gdisc, and iptables to limit
the upload bandwidth of the connected devices with a tun-
able parameter .., such as A\, — 0.05V¢m, An — 0.03vem,
An + 0.03v¢, and A, + 0.057.y,, respectively. The values
of Yem € {0,2,4,6,8}. On the other hand, to vary 5™,
we set v, € {1,2,3,4} to control the total types of working
modes. For instance, 7., = 3 represents that mobile devices
perform with three different kinds of working power and
GPU cores. Higher values of .., and ., mean that devices
have more diverse computing and communication conditions.
In the following, we fix v, = 3 when varying <., and
fix Y = 6 when varying v,,. From Fig. 7(b), we observe
that the service delay grows with the device heterogeneity,
indicating a negative impact of heterogeneous mobile devices
on FL training. Further, Fig. 7(c) and Fig. 7(d) show that
our proposed scheme SDEFL can greatly reduce the service
delay when the device capabilities are highly diverse since we
consider the differences among mobile devices to the gradient
quantization strategy and optimize the local computing control
selection.

5) Numerical Illustration of Optimal (H, qg n,quwn) Strate-
gies: Due to the fact that the Tensor cores in Xaiver NX
only support hardware acceleration for training with FP16,
we only consider the feasible set of weight quantization level
as g, € {16, 32} in the testbed experiments above.

In the following, we conduct simulations with the extended
feasible set of weight quantization level, and further examine
the impacts of available bandwidth on the optimal values of
(H,qg.n,Gw,n). Here, we set the number of mobile devices
40 and the FL task is ResNet-20 with Cifar10. The expanded
feasible set of weight quantization level ¢, € {4,8,16,32},
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Fig. 8.  Optimal strategies of different devices. Here, the relationship of
computing capabilities of four devices is Tg¥ < T < Tg < TP
and the relationship of communication conditions of four devices is
Tyt < rgt < rg" < rg". For straggler device and Device C, they
are bottlenecked by the computing delays. For Devices A and B, they are
bottlenecked by the communication delays.

2
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o
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(a) i.i.d distribution. (b) non-i.i.d distribution.

Fig. 9. Service delay with numbers of devices.

which is a standard-setting and hardware friendly.
Eqn. (5) and Eqn. (9) are used to calculate the computing and
communication delays, respectively. The optimal values of
(H, qg.n> qu.n) are obtained by Alg. 2. Let 6, = SN | p24,
and 0, = 22[21 P20, 5 be the average quantization error of
gradient and weight, respectively.

In Fig. 8, we show the optimal quantization levels of the
straggler device and three other mobile devices. We see that
SDEFL prefers “working” more and “talking” less in the
case of small wireless bandwidth, as expected. Furthermore,
we see that the tradeoffs between “working” and “talking”
among devices vary. Rather surprisingly, we find that, as the
available bandwidth increases, for the devices with small
computing capabilities, the optimal weight quantization levels
(¢, and g;,, ) increase while their optimal gradient quantiza-
tion levels decrease; for the devices with slow communication
rates, the optimal weight quantization level of Device B
(qy,, p) decreases while his optimal gradient quantization level
increases. In fact, the per-round computing delay of the strag-
gler is not increased due to a small value of H 10 Besides, with
smaller value of &,, and d, (the bottom of Figs. 8(a) and 8(b))
in the case of the large available bandwidth (e.g., 90 and 100),
the number of training iteration to converge (i.e., K in Eqn. 12)
is smaller. Thus the service delay can be efficiently reduced.

1010 this case, the estimated per-round computing delay of (quw,n = 8,
H = 5) is 247ms while the estimated per-round computing delay of
(qw,n = 4, H = 5) is 207ms.

1001

It demonstrates that our SDEFL fully consider the device
heterogeneity and allows devices to balance the workload
between “working” and “talking” in saving their service delay
during FL training.

6) Impact of the Number of Users: We evaluate the impact
of the number of users in the simulated settings. Fig. 9 demon-
strates that bring more participating devices helps reduce
the overall service delay in both i.i.d and non-i.i.d cases.
The reason is that increasing the number of users can help
speed up the convergence rate, and thereby reduce the service
delay, which is also consistent with the sub-linear speedup in
Theorem 1. In i.i.d case, as N keeps growing, the marginal
service delay reduction becomes smaller and smaller. Beside,
among different settings, the proposed SDEFL is superior to
other schemes in terms of the service delay.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have studied the service delay efficient
FL (SDEFL) over mobile devices via joint design of local
computing control, weight quantization and gradient quanti-
zation. We have empirically investigated the impacts of the
weight quantization, gradient quantization and local computing
control strategies on the service delay, and provided the
convergence rate of FL. with compression from a theoretical
perspective. Guided by the derived theoretical convergence
rate, we have investigated the tradeoff between “working”
(i.e., computing delay) and ‘“talking” (i.e., communication
delay), and formulated the SDEFL training problem into
a mixed integer programming optimization. We have con-
verted it to the equivalent convex programming optimization,
and developed feasible solutions. Extensive experimental and
emulation results have demonstrated the effectiveness and
efficiency of our proposed SDEFL scheme, and its advantages
over peer designs in various learning and wireless transmission
settings.

Note that current commercial off-the-shelf mobile Volta and
Tuning GPUs can only support the speedup for FP16 training
(i.e., 16-bit weight quantization). Therefore, to implement
fast local model training with lower precision than 16-bit
(in particular lower than 8-bit), we should jointly consider the
algorithm development with the hardware/architecture design.
As a possible future extension of our work, we would like
to expand our existing SDEFL testbed with FPGA based
Xilinx Zynq [40] via hardware and software co-designs to
support lower level weight quantization (e.g., 8-bit or 4-bit
quantization) and show its advantages.

APPENDIX
PROOF OF THEOREM 1

A. Additional Notation

For simplicity of notations, we denote the error of weight
quantization r¥ £ Q,, (wk*1) — wk!, and the local “gra-
dient” with weight quantization as fq'fb = an(w’fl) —rk/n,
VYn € N. Since the quantization scheme @, we used is an
unbiased scheme, Eq [rk] = 0.
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Inspired by the iterate analysis framework in we define the
following virtual sequences:

k+1

upt = wh — gy, (18)
uyt, ((k+1) mod H)
whtt = #0,
’ N !
ull =3 paQua(AY), otherwise.
19)

Here, k' = k+1—H is the last synchronization step and Aﬁ, =
u® — uF*t1 s the differences since the last synchronization.
The following short-hand notation will be found useful in the

convergence analysis of the proposed FL framework:

N N
= paub, wh=> pw (20)
n=1 n=1
N N
gk = pngfw gk = ZPHVFn(wk 21
n=1 =

Thus, u*+! = w* — ng". Note that we can only obtain w*

when ((k + 1) mod H) = 0. Further, due to the unbiased
gradient quantization scheme, Q,, no matter whether ((k +
1) mod H) =0 or ((k+ 1) mod H) # 0, we always have

E[Eq, [w]] = E[u"*!].

B. Key Lemmas

Now, we give four important lemmas to convey our proof.
Lemma 1 (Bounding the Weight Quantization Error [8]):

Bq. [[Irk ] < nVdbunr

Lemma 2: According to the proposed algorithm the
expected inner product between stochastic gradient and full
batch gradient can be bounded with:

E [EQ [(VF(wk),uk+1 — wk>]]
< & [Jorwh)?] - 1& [lo*|]

nL? < k k(|2
+TZ:1PHE [EQ [Hw w”HZH .

(22)

Proof:
E [EQ [<VF('wk ktl _ wk>]]

= —iE [(VF(w") Eq(g"])]

), u

< e [(VF(w"), g")]
®) 7 2 2 2
2 2B |- |[vE@; - [lg ] + v F ") - g 3]
@9 p 21 7 2
2 g [Jor] - 1 [lo*)]
nL? . 2 k k)2
+ 23T B2E [Eq [t — wh)]] (24)
n=1
where (a) is due to E[gF] = VE,(wk) and E [ M o= g*
and (b) is due to —2(a,b) = [a—b]* — [la|* — [b],
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and (c) follows from L-smoothness assumption. The proof
is completed. O

Lemma 3: According to the proposed algorithm the
expected inner product between stochastic gradient and full
batch gradient can be bounded with:

2 [Eq [|lwt —w[3]]
2 Lpo? 77 2L nL ol
< rln o1+ % Vr 3
L& ,
+3 2Ptk [k, — w*[13] (25)

where k' = k+1—H
step.

Proof: According to the update rule defined in (19), when
(k+1) mod H = 0, we have,

(k' < k) is the nearest synchronization

k+1 k

w —w
— wFtl _ gkt +uk+1 wh
N
_ Z Z k' k+1 k+1
— Pn ang n u,, ) —-—u
n=1
+uk+1 _wk
N
_ k' k+1 E’ k+1
= pn (un = Qgn(ul —upth)
n=1

+ (u - wh))

N
n=1

Here, (a) is due to the short-hand notation defined in (20)-(21)
and ¥’ = k+ 1 — H is the last synchronization step. We then

have,
2
wt[3]]

L
(Qun(B5) -

— Qun(BY)) +ng*. (26)

£ [ra It
2

%
Xy
2

Zpiég,nE {”“ﬁ - uk/H%}a 27
n:l

—E Eo

2 [H*H ]

where (a) is due to Definition 1. The first term in (27) can be
bounded by

2
~k
+ ],

2

2 N -
TLE |2 pu(9Futawk) — k)
n=1 2
Lo || § 7 2
n=1 2

t3 an i1l

- n?Lpo?
- 2M

L k12 77L N 2
5 llg"[l; + 5 vdr 3 pidun. (28)
n=1
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Replacing the first term in (27) with the result in (28), we have

o [ [[lwt — wh]

2752 N
n-Lpo Lo w2, nk 2
< T+ TR+ i Yo
N
L 2 k k|2
+§;pn5ng Uu u H2 . (29)
The proof is completed. O
Lemma 4 (Bounding the Divergence): Suppose
1 —3n2L%H? > 0, we have,
K-1 N )
> > 9 [Eo [u ~wh]]]
k=0 n=1
n?K Hpo? N nvd KHT SN P20wn
M(1—3n2L2H?) — 3n2L2H?
K—1
3 H?p
1_ 3772L2H2 HVF (30)
=0
and
N 2
> s fuk -]
n=1 2
5,0 &
2 2
<t 5,y |9 F)|
=k’
k/
+30°LH Y Al +nVdH anag B N 1)
=k’ n=1

where p = Z _,p2 and 6, = 22;1 P28y .
Proof: Recalling that at the synchronization step where

(K mod H = 0), w’fLI = w" for all n € N. Therefore, for
any k > 0, such that ¥’ < k < k' + H, we get,

N [ 2
=Y B [ [[w* —wil)|
n=1

N
= D _PE
n=1

Al Eo

n=1 -
N k koo 2
= ZP%E vafn( )_ZT:L
n—1 i=k' i=k' g
» N koo 2
=02 piE ||| Via(wl)
n=1 i=k’ 2

+ZmZMMm}

n=1 i=k’

1003
N Ky B ‘ 2
<Y PR || Vnlw))
n=1 =k’
2
N
+H)VA Y prbunT, (32)
n=1

where k), = k' + H — 1, (a) results from .Y p,, (wh —

wt') = wh — W, w = w’, and E|z - Ez]|3

E||z|/3. (b) holds due to the unbiased quantization scheme,
ie., Eg [rﬂ =0.

We generalize the result from [32] to upper-bound the first
term in RHS of (32), (see the of Theorem 3 and its proof in

appendix for the special case of p, = %):
N kg 2
7S RE || S (v Fawi) — VEL(w)) + Y Fy ()
n=1 i=k

2

Ky
H —|—3 2LQHZ Zpi ||w — wnH2

i=k’' n=1
k,
+30*pH?G? + 30%pH > ||VF(w)|;
i=k’

(33)

PR

where p = 25:1 p2. It follows that

K—1
2 o’ 2
ZAI <n KHp(M +3HG )+KHn\/aTan wn

1=0 n=1

K-1
+3°H Y <L2A1i —s—p”vF(W)Hi) . (34)
i=0
Suppose 1 — 3n2L2H? > 0, we have
n?KHp(o?/M HG?
Z Al < p(o?/M +3HG?)
(1 — 32 L2H?)
ndKHT Zn L P20wn
1— 3n2L2H2
3n Hp
T Z (2ACDT ER
Similarly, v;e denote A2y, = 22;1 P20y
E { ﬁ—ule }, and have
2
N kg ‘ 2
A2 < ? Zpiéng Z V fn(wy,)
n=1 i=k’ 2
N
+VAH Y plogndunT
n=1
5,0 i
2 2
L L 0 D] Pl
i=k’
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Ky N
+30°L°H Y Aly +nVdH Y plgndun
i=k n=1
(36)
and the proof is completed. O

C. Main Results

Under the L-smooth assumption of F', we have,
E [F(w**!) — F(w")]
L
< E[(vF (") w' ! — b)) + B [|lwt ! - wt]
- E [(VF(wk), wk-i-l _ ulc-‘rl + uk-i-l _ wk>]

L 2
L [l - ]

R EY)

We use Lemma 1-4 to upper bound the RHS of (37) and set
nL <1, which gets,

E [F(w’”l) - F(wk)]

< E[(VF(w"), u"tt — w") +

U w2l | nL? L n’Lo®
< —§E [HVF(w )Hz] + TAlk - §A2k + 2M
nL al n 2
+ VAT Y phSua — 5 (L-nL) |g*],
n=1
@ g 2 nL? I n?Lo?
< —§E[HVF(w 2] AL+ 5 A%+ T

nL ZN
2
+ 7\/&7’ P pnéw,n

—
INes

0 1 3n2Ls,  on -
—3E [|vF@h] + T52H Y E[||[vEw)];)]
i=k/
L G )+ "LﬂTng 2(§gn +1)0
2M g p 2 n:1pn g,m w,n
K
nL? 273
+ Al + 3" L H ;Au.
where (a) holds due to the setting, i.e., nL. < 1, and (b)
follows the second result in Lemma 4.
Summing up for all K communication rounds and rearrang-
ing the terms gives,

E [F(w") — F(w?)]

K K-1
<19 SE [||vF(w’“)H§] L > A,
k=0

(38)

2

- ~ nL\/dr N
(59H +p) + ]TH szz((sgyn + 1)5w,n7
n=1

(39)
where C; =1 —3nLH6, and Co = 1+ 3nLH.
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Plugging Lemma 4 into (39), if C; = C; —

3n2H2p(L2+3nL3 H)
=32 L2 112 > 0, we have,

1= 2
= Y E[||vF@h)}]
k=0

- 2E [F(w) — F(w™)]
- nCr K

n2L2Cy Hpo>
CTM(1 = 32L2H?)

nL2CyHV/d7é, L\/&THiv: )

n 1 w,n
Ci(1—3n2L2H?) + c! Prn(0g.n +1)0u,

n=1
302 L2Cy H2G?
Ci(1—3°L2H?)

nLaz(SgH +p)
M

; (40)

where 5, = u Zﬁ;l P20 -
If we set n = \/MN/K and
2 H2p(L? + 3nL3H)
1- 3p2L2H2
we can get the 1/C{ < 2. Thus,

1 = 2
= Y E[|vFh);]
k=0
_4E [F(w®) — F(w)] N 2 Lo*(2H6, + p)
- MNK MNK

12M LH$,G?
MNK

nLHb, > 41

N
+2LVAr Y Pl (Sgm + Down.  (42)

n=1

and the proof is completed.
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