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Abstract—Federated learning (FL) is a popular collaborative distributed machine learning paradigm across mobile devices. However,

practical FL over resource constrained mobile devices confronts multiple challenges, e.g., the local on-device training and model

updates in FL are power hungry and radio resource intensive for mobile devices. To address these challenges, in this paper, we

attempt to take FL into the design of future wireless networks and develop a novel joint design of wireless transmission and weight

quantization for energy efficient FL over mobile devices. Specifically, we develop flexible weight quantization schemes to facilitate

on-device local training over heterogeneous mobile devices. Based on the observation that the energy consumption of local computing

is comparable to that of model updates, we formulate the energy efficient FL problem into a mixed-integer programming problem where

the quantization and spectrum resource allocation strategies are jointly determined for heterogeneous mobile devices to minimize the

overall FL energy consumption (computation + transmissions) while guaranteeing model performance and training latency. Since the

optimization variables of the problem are strongly coupled, an efficient iterative algorithm is proposed, where the bandwidth allocation

and weight quantization levels are derived. Extensive simulations are conducted to verify the effectiveness of the proposed scheme.

Index Terms—Federated learning over mobile devices, Weight quantization, Device heterogeneity

F

1 INTRODUCTION

DUE to the incredible surge of mobile data and the growing
computing capabilities of mobile devices, it becomes a

trend to apply deep learning (DL) on these devices to support
fast responsive and customized intelligent applications. Recently,
federated learning (FL) has been regarded as a promising DL
solution to providing an efficient, flexible, and privacy-preserving
learning framework over a large number of mobile devices. Un-
der the FL framework [1], each mobile device executes model
training locally and then transmits the model updates, instead of
raw data, to an FL server. The server will then aggregate the
local models to obtain the global model and broadcast it to the
participating devices. Its potential has prompted wide applications
in various domains such as keyboard predictions [2], physical
hazards detection in smart home [3], health event detection [4],
and vehicular networks [5]. Unfortunately, it also faces many
significant challenges when deploying FL over mobile devices in
practice. First, although mobile devices are gradually equipped
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with artificial intelligence (AI) computing capabilities, the limited
resources (e.g., battery power, computing and storage capacity)
restrain them from training deep and complicated learning models
at scale. Second, it is unclear how to establish an effective wireless
network architecture to support FL over mobile devices. Finally,
the power-hungry local computing and wireless communications
during iterations in FL may be too much for the power-constrained
mobile devices to afford.

intermediate results and broadcast the updated model
The mismatch between the computing and storage require-

ments of DL models and the limited resources of mobile devices
becomes even more challenging due to the increasing complexity
of the state-of-art DL models. To address this issue, one of the
most popular solutions is to compress trained DL models [6]–
[8]. Han et al. [7] successfully applied multiple compression
methods, e.g., pruning and quantization, to several large-scale
neural networks (e.g., AlexNet and VGG-16). These compression
techniques help reduce model complexity by multiple orders of
magnitude and speed up model inference on mobile devices. How-
ever, on-device training is less explored and more complicated
than its inference counterpart. Some pioneering works [9], [10]
have made efforts on quantizing the model parameters to make it
possible to conduct computationally efficient on-device training.
Nevertheless, most existing compressed on-device learning frame-
works and the associated convergence analysis for the potential
on-device training only consider the case of a single mobile
device. A few works, such as [11], have considered quantized
on-device training in distributed learning settings. However, they
assign the same quantization strategy for different mobile devices.
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In practice, FL may encompass massively distributed mobile
devices that are highly heterogeneous in computing capability and
communication conditions. Thus, it is in dire need to develop a
flexible quantization scheme catering to the heterogeneous devices
and investigate the impacts of such heterogeneity on learning
performance.

Besides the on-device training for local computing, the energy
consumption for FL over mobile devices also includes the wireless
communications for the intermediate model updates. Particularly,
with the advance of computing hardware and future wireless
communication techniques, like 5G and beyond (5G+) [12], we
have observed that the energy consumption for local computing in
FL is comparable to that for the wireless transmissions on mobile
devices. For instance, the energy consumption of local computing
(e.g., 42.75J for one Tesla P100 GPU of one training iteration for
Alexnet with batch size of 128) is comparable to that of today’s
wireless communications (e.g., 38.4J for transmitting 240MB
Alexnet model parameters at 100 Mbps data rate [13]). Thus, a
viable design of the energy efficient FL over mobile devices has
to consider the energy consumption of both “working” (i.e., local
computing) and “talking” (i.e., wireless communications). How-
ever, most existing works in wireless communities have mainly
conducted the radio resource allocation under the FL convergence
constraints [14]–[16], while neglecting the energy consumption
during learning. Moreover, among the previous works, the targeted
learning models are either relatively simple (i.e., with convex loss
functions) or shallow networks [14]–[17], which is inconsistent
with the current trend of the overparameterized DL models. On
the other hand, most efforts in the machine learning communities
have focused on communication efficient FL algorithmic designs,
such as compressing the size of the model updates or reducing the
update frequency during the training phase. The basic assumption
is that the wireless transmission is slow, which results in the
bottleneck to support complicated learning models over mobile
devices. Therefore, the goal of such designs is to reduce the
number of communications in model updates without considering
the advance of wireless transmissions.

Fortunately, the future wireless transmissions (e.g., 5G/6G
cellular, WiFi-6 or future version of WiFi), featured by very high
data rate (1 Gbps or more [12]) with ultra low latency of 1 ms or
less for massive number of devices, can be leveraged to relieve the
communication bottleneck with proper design. Furthermore, the
multi-access edge computing in the future networks enhances the
computing capabilities at the edge, and hence provides an ideal
architecture to support viable FL.

Motivated by the aforementioned challenges (i.e., inefficient
on-device training and large overall energy consumption in FL
training), in this paper, we develop a wireless transmission and
on-device weight quantization co-design for energy efficient FL
over heterogeneous mobile devices. We aim to 1) facilitate ef-
ficient on-device training on heterogeneous local devices via a
flexible quantization scheme, and 2) minimize the overall energy
consumption during the FL learning process by considering the
learning performance and training latency. Based on the derived
convergence analysis, we formulate the energy minimization prob-
lem to determine the optimal strategy in term of local iterations,
quantization levels, and bandwidth allocations. Our major contri-
butions are summarized as follows.

• We propose a novel efficient FL scheme over mobile
devices to reduce the overall energy consumption in com-

munication and computing. Briefly, subject to their current
computing capacities, the participating mobile devices are
allowed to compress the model and compute the gradients
of the compressed version of the models. Meanwhile,
for a given training time threshold, the network resource
allocation is to minimize the total computing and commu-
nication energy cost during FL training.

• To facilitate on-device training for FL over heterogeneous
mobile devices, weight quantization is adapted to meet
the resource demands while maintaining the model per-
formance by representing model parameters with lower
bit-widths. We further provide the theoretical analysis of
the convergence rate of FL with quantization and obtain a
closed-form expression for the novel convergence bound
in order to explore the relationship between the weight
quantization error, and the performance of the FL algo-
rithm.

• Based on the obtained theoretical convergence bound, the
energy minimization during FL training is formulated as a
mixed-integer nonlinear problem to balance the computing
and communication costs by jointly determining the band-
width allocation and weight quantization levels for each
mobile device. An efficient iterative algorithm is proposed
with low complexity, in which we derive new closed-
form solutions to determining the bandwidth allocation
and weight quantization levels.

• We evaluate the performance of our proposed solution
via extensive simulations using various open datasets and
models to verify the effectiveness of our proposed scheme.
Compared with existing schemes, our proposed method
shows significant superiority in terms of energy efficiency
for FL over heterogeneous devices.

The rest of this paper is organized as follows. The related work
is discussed in Section 2. In Section 3, a detailed description of
the system model is presented and the convergence analysis of
the proposed FL with weight quantization is also discussed. The
energy minimization, joint quantization selection, and bandwidth
allocation algorithm are presented in Section 4. In Section 5, the
feasible solutions from the real datasets are analyzed. The paper
is concluded in Section 6.

2 RELATED WORK

2.1 Cost-efficient design for FL over wireless networks
Recognizing that training large-scale FL models over mo-

bile devices can be both time and energy consuming, several
research efforts have been made on decreasing these costs via
device scheduling [18], network optimization [17] and resource
utilization optimization [15], [19]–[24]. In particular, the resource
allocation for optimizing overall FL energy efficiency was studied
in [21]–[24]. Mo et al. in [23] have designed the computing
and communication resources allocation to minimize the energy
consumption while only considering the CPU models for mobile
devices. Zeng et al. [21] proposed to partition the computing
workload between CPU-GPU to improve the computing energy
efficiency. However, their resource allocation strategies are for
particular (non-optimal) model parameters (i.e., weight quantiza-
tion levels in this paper). Thus, they overlook the opportunities
to first reduce the costs in learning (i.e., model quantization in
this paper) before utilizing the available resources. Close to our
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Fig. 1. Federated learning framework with weight quantization.

work, Li et al. [24] considered to sparsify the model size before
transmission to improve communication efficiency and determine
heterogeneity-aware gradient sparsification strategies. However,
they neglect the mismatch between the computing/storage require-
ment for on-device training and the limited computing resources
on mobile devices. Based on the example illustrated in Section 1,
on-device computing consumes more energy than model update
transmission. Hence, different from [24], this paper leverages the
quantization method for on-device training instead of wireless
transmission only.

2.2 On-device training with low precision
Various works have been developed for on-device learning to

reduce the model complexities via low precision operation and
storage requirements [25]. In the extreme case, the weights and ac-
tivations are represented in one bit, called Binary Neural Networks
(BNN) [26], while the performance degrades significantly in large
DNNs. For weight quantization, the prior work such as “LQ-
Net” in [9] quantized weights and activations such that the inner
products can be computed efficiently with bit-wise operations,
performing in the case of single machine computation. Similar
to our work, Fu et al. [10] considered the weight quantization for
local devices in the distributed learning setting and proposed to
quantize activations via estimating Weibull distributions. However,
they did not consider optimization for energy efficiency during FL
training. Besides, they assigned the same quantization level on all
participating devices, which limited the performance when facing
the challenges of device heterogeneity. How the flexible quantiza-
tion impact the learning model accuracy remains an open problem,
which is addressed in this work. Unlike the existing works, a
mobile-compatible FL algorithm with flexible weight quantization
is introduced in our proposed model. By jointly considering
the heterogeneous computing and communication conditions, we
formulate the overall FL energy (computing + transmissions)
minimization to seek for the optimal strategy in term of local
iterations, quantization levels, and bandwidth allocations.

3 FL WITH FLEXIBLE WEIGHT QUANTIZATION

3.1 Preliminary of Weight Quantization
In this subsection, we introduce the related concepts about

weight quantization for on-device training. Quantization is an
attractive solution to implementing FL models on mobile devices
efficiently. It represents model parameters, including the weights,
feature maps, and even gradients, with low-precision arithmetic
(e.g., 8-bit fixed-point numbers). When the model parameters are

stored and computed with low-bitwidth, the computational units
and memory storage to perform the operations during on-device
training are much smaller than the full-precision counterparts,
leading to energy reduction during on-device training.

To train the FL model in low precision, we define a quantiza-
tion functionQ(·) to convert a real number w into a quantized ver-
sion ŵ = Q(w). We use the same notation for quantizing vectors
since Q acts on each dimension of the vector independently in the
same manner. Moreover, we employ stochastic rounding (SR) [8]
in our proposed model and analyze its convergence properties.
SR, also known as unbiased rounding, possesses the important
property: E[Q(w)] = w. This property avoids the negative effect
of quantization noise, which is useful for the theory of non-convex
setting [27]. For each component wn of a vector w, the function
Q(·) converts the data type from 32-bit into q-bit, defined as:

Q(wn) = s · sgn(wn) ·

(
Ia+1, w.p. |wn|

s�q

�
Ia

�q

Ia, w.p. Ia+1

�q

�
|wn|
s�q

, (1)

where sgn(·) represents the sign function, s = kwk1 denotes the
scaling factor, the index k satisfies Ia 

|wn|
s

 Ia+1, quantiza-
tion set Sw = {�IA, · · · , I0, · · · , IA} with A = 2q�1

� 1, 0 =
I0  I1  · · ·  IA are uniformly spaced, and �q denotes the
quantization resolution as �q = Ia+1 � Ia = 1/(2q � 1). Ac-
cording to the definition in (1), we have the following lemma [28].

Lemma 1 (Weight quantization error in SR [28]). For model
weightw 2 Rd satisfying kwk1 = s, letwr+1 = wr

�⌘ ef(wr)
be the SGD update for a single iteration r and Q(wr+1, q) be the
stochastic quantization scheme of wr+1 in (1), quantization level
q, and the learning rate ⌘. The weight quantization error on each
iteration can be bounded, in expectation, as follows,

EQ

h��Q
�
wr+1, q

�
�wr+1

��2
2

i
 ⌘

p

ds�q

��� ef(wr)
���
2
. (2)

In the above, smaller resolution results in a smaller gap and
keeps as much information as the original weight, while it has
higher memory requirements. In practice, the bit-width for the
weight quantization can be extremely small, like 2 or 3 bits
without notable performance degradation. Other parameters, such
as the weight gradient calculations and updates, are applied to
capture accumulated small changes in stochastic gradient descent
(SGD). In contrast, quantization makes them insensitive to such
information and may impede convergence performance during
training. Therefore, we keep a higher precision for the gradients
than the weights and inputs so that the edge server aggregates the
local gradients and updates the global model in full precision.

3.2 FL with flexible weight quantization
We consider a mobile edge network consisting of one edge

server and a set N = {1, 2, · · · , N} of distributed mobile
devices, collaboratively training a DNN model through FL frame-
work, which is depicted in Fig. 1. Each mobile device i is
equipped with a single antenna and has its own dataset Di

with data size |Di|. The data is collected locally by the mobile
device i itself. Generally, each learning model has a particular
loss function fj(w) with the parameter vector w for each data
sample j. The loss function represents the difference of the
model prediction and groundtruth of the training data. Thus, the
loss function on the local data of mobile devices i is given as
Fi(w) := 1

|Di|
P|Di|

j=1 fj(w). The training objective of the shared
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Algorithm 1 Flexible Weight Quantizated FL (FWQ-FL)
Input: ⌘ = learning rate; Q(·) = quantization function; initial

w̄0; a mini-batch size M ; a number of local SGD iterations
H ; a number of training iterations R

Output: w̄R

1: for r = 0, · · · , R� 1 do

2: Edge server sends w̄r to the set of participating mobile
devices N

3: for each mobile device i 2 N in parallel do
4: Sample a mini-batch of M training data points from Di

5: Compute the mini-batch stochastic gradient
gr

i
= 1

M

P
M

m=1 Ofm(wr

i
)

6: Update the model parameters
wr+1

i
 Q (wr

i
� ⌘igr

i
)

7: if ((r + 1) mod H) = 0 then

8: Send wr+1
i

to the FL server.
9: end if

10: end for

11: Edge server updates the global model w̄r+1 as follows
12: if ((r + 1) mod H) = 0 then

13: w̄r+1
 

P
N

i=1 ⇡iw
r+1
i

14: else

15: w̄r+1
 w̄r

16: end if

17: end for

model is to collaboratively learn from all the participating mobile
devices, formulated as follows:

min
w2Rd

F (w) =
NX

i=1

⇡iFi(w), (3)

where d denotes the total number of the DNN model pa-
rameters and ⇡i is the weight of the n-th device such that
⇡i = |Di|/

P
N

i=1 |Di| and
P

N

i=1 ⇡i = 1.
Given the sensitive nature of the users’ data, each mobile

device keeps its data locally instead of uploading its data to the
edge server. An FL framework [1] is adopted to solve problem (3),
named FedAvg, that allows the users to update the model to the
edge server periodically. Let r be the r-th training iteration in FL.
In FedAvg, the edge server first broadcasts the latest model w̄r

to all the devices. Second, every device i 2 N performs H mini-
batch SGD steps in parallel, obtains and transmits its intermediate
local model wr+H

i
to the edge server. After that, the edge server

will update the model based on aggregated results from the mobile
devices, i.e., w̄r+H =

P
⇡iw

r+H

i
. This procedure repeats until

FL converges.
Targeting at the energy-efficient FL training over mobile de-

vices, we propose a flexible weight quantization (FWQ) scheme
for heterogeneous mobile devices. After mobile devices receive
the shard model from the edge server, they first quantize and store
the model to satisfy their current storage budget. Unlike the prior
works that maintain the same quantization strategy across all the
participating devices, FWQ considers device heterogeneity and
allows the mobile devices to perform weight quantization with
different bit-widths of qi during on-device training and transmit
the model updates in more bits. Note that the weights and gradients
at the server side remain in full precision operations to avoid
further model performance degradation. A pseudo-code of our
FWQ algorithm is presented in Alg. 1.

3.3 Convergence Analysis of FL with FWQ

Before we discuss the convergence of Alg. 1, we make the
following assumptions on the loss function, which are com-
monly used for the analysis of SGD approach under the dis-
tributed/federated learning settings [29], [30].

Assumption 1. All the loss functions fj are differentiable and
their gradients are L-Lipschitz continuous in the sense of l2-norm:
for any x and y 2 Rd, kOfj(x)� Ofj(y)k2  L kx� yk2.

Assumption 2. Assume that efi is randomly sampled from the
i-th mobile device local loss functions. For local device i, its
stochastic gradient is an unbiased estimator and its variance:
E||O efi(wr)� OFi(wr)||22  ⌧2

i
. Thus, the a mini-batch size M

of gradient variance is given as ⌧2
i
/M and its second moment

is E
���O efi(wr)

���
2

2
 G2

i
, for any i = 1, · · · , N and define

G = maxi{Gi}.

Assumption 1 indicates that the local loss functions Fi and the
aggregated loss function F are also L-smooth. The unbiasedness
and bounded variance of stochastic gradients in Assumption 2 are
customary for non-convex analysis of SGD [29]–[33].

For the case of non-convex loss function Fi, the algorithm may
have multiple stable fixed points. Hence, convergence to a global
minimum cannot in general be guaranteed. A reasonable substitute
is to study the convergence to local minima, or at the very
least, to stationary points [32], [34]. Hence, similar to previous
work [30], [35], we use the relationship between average expected
squared gradient norm and the iteration number to characterize the
convergence rate of FL with FWQ.

From the updating rule of Alg. 1, we use the following notation
to denote the stochastic gradient used to update the local model
and global model at the r-th iteration:

ur+1
i

= Qi (w
r

i
� ⌘gr

i
, qi) = wr

i
� ⌘gr

i
+ er

i
, (4)

w̄r+1 = r

NX

i=1

⇡iu
r+1
i

+ (1� r)w̄
r, (5)

where er
i
= Qi (wr

i
� ⌘gr

i
, qi)�(wr

i
� ⌘gr

i
) denotes the quanti-

zation error and the indicator r = 1 if (r+1) mod H = 0 and
r = 0 otherwise. ur+1

i
is introduced to represent the immediate

result of one step SGD update with quantization fromwr

i
. We can

access wr+1 only when (r + 1) mod H = 0. Thus, we have a
virtual sequence ūr+1 = w̄r

� ⌘ḡr and E[gr

i
] = OFi(wr

i
)1.

In the following, we establish the upper bound of the differ-
ential of loss values between two consecutive iterations. We first
derive the upper bounds of model weight differential between two
consecutive iterations and the model divergence in one iteration,
shown as the following two lemmas.

Lemma 2 (Bounding the model divergence). Let Assumption 1-2
hold and the learning rate ⌘ satisfying 1 � 3⌘2L2H2 > 0, we
have,

NX

i=1

⇡
2
i E

h
kw̄r �wr

i k22
i


⌘H

PN
i=1 ⇡

2
i

⇣
⌘H⌧

2
i /M +

p
dG�i + 3⌘H kOF (w̄r)k22

⌘

1� 3⌘2L2H2
. (6)

1. For convenience, we define ūr =
PN

i=1 ⇡iur
i , w̄

r =
PN

i=1 ⇡iwr
i , and

ḡr =
PN

i=1 ⇡i(gr
i � eri /⌘).
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Proof. Please refer to the detailed proof in Appendix A in the
separate supplemental file.

Lemma 3. If Assumptions 1 and 2 hold, then for any iteration r,
we have

L

2
E
h��w̄r+1 � w̄r

��2

2

i

 ⌘L

2

NX

i=1

⇡
2
i

✓
⌘⌧

2
i

M
+

p
d�iGi

◆
+

⌘
2
L

2
k

NX

i=1

⇡iOFi(w
r
i )k22. (7)

Proof. Please refer to the detailed proof in Appendix B in the
separate supplemental file.

Now we are ready to show the convergence property of FL
with FWQ.

Theorem 1. Let the learning rate ⌘ be
q

M

R
and ⌘L 

1
3H .

If Assumptions 1-2 hold, the average-squared gradient after R
iterations is bounded as follow,

1

R

R�1X

t=0

E kOF (w̄r)k22


4(E

⇥
F (w̄0)

⇤
� F ?)

p
MR

+
4HL⌧
p
MR

+ 4
p

dLG
NX

i=1

⇡2
i
�i, (8)

 O(
H + 1
p
MR

) +O(
p

d
NX

i=1

⇡2
i
�i), (9)

where �i = s�qi
, ⌧ =

P
N

i=1 ⇡
2
i
⌧2
i
, and F ? is the global

minimum of F.

Proof. According to the update rules in (5), we have

F
�
w̄r+1� = F

�
w̄r + r

�
ūr+1

� w̄r
��

. (10)

Under the Lipschitz gradient assumption on F , we have,

E
⇥
F (w̄r+1)

⇤
� E [F (w̄r)]

 E
⇥
hOF (w̄r), w̄r+1 � w̄ri

⇤
+

L

2
E
h��w̄r+1 � w̄r

��2

2

i

= E [hOF (w̄r),�⌘rḡ
ri] + L

2
E
h��w̄r+1 � w̄r

��2

2

i

(a)
= E

"
hOF (w̄r),�

NX

i=1

⇡iOFi(w
r
i )i+

L

2
E
h��w̄r+1 � w̄r

��2

2

i#
,

(11)

s where in (a) E⇠,Q[ḡr

i
] = E⇠,Q[

P
N

i=1 ⇡i(gr

i
� er

i
/⌘)] =P

N

i=1 ⇡iOFi(wr

i
) due to the unbiasedness of weight quantization

scheme and SGD. The second term of (11) is bounded by Lemma
3. Now, we need to derive the expectation of the first term in (11).

E
"*

OF (w̄r),�
NX

i=1

⇡iOFi(w
r

i
)

+#

(a)
= �

⌘

2
E
h
kOF (w̄r)k22

i
�

⌘

2
E

2

4
�����

NX

i=1

⇡iOFi(w
r

i
)

�����

2

2

3

5

+
⌘

2
E

2

4
�����OF (w̄r)�

NX

i=1

⇡iOFi(w
r

i
)

�����

2

2

3

5

(b)
 �

⌘

2
E
h
kOF (w̄r)k22

i
�

⌘

2
E

2

4
�����

NX

i=1

⇡iOFi(w
r

i
)

�����

2

2

3

5

+
⌘L2

2

NX

i=1

⇡2
i
E⇠,Q

h
kw̄r

�wr

i
k
2
2

i
, (12)

where (a) is due to 2ha, bi = ||a||2 + ||b||2 � ||a� b||2 and (b)
follows from L-smoothness assumption. The last part of (12) is
bounded, as shown in Lemma 2.

By associating (11) and (12), the expectation of the objective
change in one step is given below

E
⇥
F (w̄r+1)

⇤
� E [F (w̄r)]

 �⌘

2
E
h
kOF (w̄r)k22

i
+

✓
�⌘

2
+

⌘
2
L

2

◆�����

NX

i=1

⇡iOFi(w
r
i )

�����

2

2

+
⌘L

2

2

NX

i=1

⇡
2
i E⇠,Q kw̄r �wr

i k22 +
⌘L

2

NX

i=1

⇡
2
i

⇣
⌘⌧i

M
+

p
d�iGi

⌘

(a)

 �⌘

2
E
h
kOF (w̄r)k22

i
+

⌘L
2

2

NX

i=1

⇡
2
i E⇠,Q

h
kw̄r �wr

i k22
i

+
⌘L

2

NX

i=1

⇡
2
i

⇣
⌘⌧i

M
+

p
d�iGi

⌘
. (13)

By replacing
P

N

i=1 ⇡
2
i
E⇠,Q

h
kw̄r

�wr

i
k
2
2

i
with the bound de-

rived in Lemma 2, we can get

E
⇥
F (w̄r+1)

⇤
� E [F (w̄r)]

 �(
⌘

2
�

⌘L2

2

3⌘2H2 PN

i=1 ⇡
2
i

1� 3⌘2L2H2
)E

h
kOF (w̄r)k22

i

+

✓
⌘2L

2
+

⌘L2

2

⌘2H2

1� 3⌘2L2H2

◆ NX

i=1

⇡2
i

⌧2
i

M

+

✓
⌘L

2
+

⌘L2

2

⌘H

1� 3⌘2L2H2

◆
p

d
NX

i=1

⇡2
i
�iGi. (14)

Here, (a) holds if the learning rate ⌘L  1. Summing up for all R
iterations, we have:

E
h
F (w̄R)

i
� E

⇥
F (w̄0)

⇤

 �
⌘

2
(1�

3⌘2L2H2 PN

i=1 ⇡
2
i

1� 3⌘2L2H2
)
R�1X

r=0

E
h
kOF (w̄r)k22

i

+R
⌘2LC1

2M

NX

i=1

⇡2
i
⌧2
i
+R

⌘LC1

p
d

2

NX

i=1

⇡2
i
�iGi, (15)

where C1 = 1+⌘LH
2�3⌘2

L
2
H

2

1�3⌘2L2H2 and C2 = 1+⌘LH�3⌘2
L

2
H

2

1�3⌘2L2H2 and
rearranging the terms, we have

⌘

2
C

0
1

R�1X

r=0

kOF (w̄r)k22

 E
h
F (w̄0)� F (w̄R)

i
+R

LC1

2

NX

i=1

⇡
2
i (

⌘
2
⌧
2
i

M
+ ⌘

p
d�iGi),

(16)
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where C 0
1 = 1 �

3⌘2
L

2
H

2 P
N

i=1 ⇡
2
i

1�3⌘2L2H2 . If we set ⌘ =
q

M

R
and

3⌘2
L

2
H

2

1�3⌘2L2H2 
1
2 , we can get 1/C 0

1  2, C1/C 0
1  4H , and

C2/C 0
1  4. Thus,

1
R

R�1X

r=0

kOF (w̄r)k22

 2
⌘RC

0
1

(E
⇥
F (w̄0)

⇤
� F

?) +
⌘LC1

C
0
1M

⌧ +

p
dLC2

C
0
1

NX

i=1

⇡
2
i �iGi


4(E

⇥
F (w̄0)

⇤
� F

?)
p
MR

+
4HL⌧p
MR

+ 4
p
dLG

NX

i=1

⇡
2
i �i, (17)

where ⌧ =
P

N

i=1 ⇡
2
i
⌧2
i
and the proof is completed.

From Theorem 1, we observe that the proposed model admits
the same convergence rate as parallel SGD in the sense that
both of them attain the asymptotic convergence rate O( 1p

MR
).

Weight quantization makes FL converge to the neighborhood of
the optimal solution without affecting the convergence rate. The
limit point of the iterates is related to the quantization noise �i. If
the quantization becomes more fine-grained (i.e., by increasing the
number of bits), the model performance will approach the model
with full precision floating point.

4 OPTIMIZATION FOR ENERGY EFFICIENT FWQ
Motivated by the above discussion, the quantization levels

{qi}Ni=1 and the numbers of local SGD iterations, H , act as
critical parameters of FL training performance (i.e., model con-
vergence rate). Besides, these strategies also greatly impact the
energy consumption of mobile devices since they affect the total
communication rounds and computing workload per round. In this
section, we formulate the energy efficient FWQ problem (EE-
FWQ) under model convergence and training delay guarantee. We
develop flexible weight quantization and bandwidth allocation to
make the trade-off between computing and communication energy
of mobile devices in FL training. We start with discussion on
the computing and communication energy model, followed by
problem formulation and solution.

4.1 Energy Model
4.1.1 Computing Model

Here, we consider the GPU computing model instead of
the CPU model, for two reasons. First, CPUs cannot support
relatively large and complicated model training tasks. Second,
GPUs are more energy efficient than CPUs for on-device training
and are increasingly integrated into today’s mobile devices (e.g.,
Google Pixel). The GPU based training makes computing energy
consumption comparable to that of communications in FL. Noted
that the local computing of mobile device i involves the data
fetching in GPU memory modules and the arithmetic in GPU
core modules, where the voltage and frequency of each module
are independent and configurable:

1) GPU runtime power model of mobile device i is modeled
as a function of the core/memory voltage/frequency [36],

pcp
i

= pG0
i

+ ⇣mem

i
fmem

i
+ ⇣core

i
(V core

i
)2f core

i
, (18)

where pG0
i

is the summation of the power consumption unrelated
to the GPU voltage/frequency scaling; V core

i
, f core

i
, fmem

i
denote

the GPU core voltage, GPU core frequency, and GPU memory

frequency, respectively; ⇣mem

i
and ⇣core

i
are the constant coeffi-

cients that depend on the hardware and arithmetic for one training
iteration, respectively.

2) GPU execution time model of mobile device i with quanti-
zation level qi is formulated as

T cp

i
(qi) = t0

i
+

c1(qi)✓mem

i

fmem

i

+
c2(qi)✓corei

f core

i

, (19)

where t0
i
represents the other component unrelated to training task;

✓mem

i
and ✓core

i
denote the number of cycles to access data from

the memory and to compute one mini-batch size of data samples,
respectively, which are measured on a platform-based experiment
in this paper. Due to the weight quantization, the number of
cycles for data fetching and computing are reduced with scaling
c1(qi) and c2(qi), respectively. For simplicity, we assume that the
number of cycles for data fetching and computing scales, c1(qi)
and c2(qi), are linear functions of data bit-width qi, respectively.
This is reasonable since the quantization reduces the bit-widths,
and the data size scales linearly to the bit representation [37].

With the above GPU power and performance model, the
local energy consumed to pass a single mini-batch SGD with
quantization strategy qi of the i-th mobile device is the product
of the runtime power and the execution time, i.e.,

Ecomp

i
(qi, H) = H · pcp

i
· T cp

i
(qi). (20)

4.1.2 Communication Model
We consider orthogonal frequency-division multiple access

(OFDMA) protocol for devices to upload their local results to
the edge server. The total channel bandwidth is bounded by
Bmax and Bi is denoted as the bandwidth allocated to device i
where Bi satisfies

P
N

i=1 Bi  Bmax. As a result, the achievable
transmission rate (bit/s) of mobile device i can be calculated as

�i = Bi ln

✓
1 +

hipcmi
N0

◆
, (21)

where N0 represents the noise power, and pcm
i

is the transmission
power. Here, hi denotes the average channel gain of the mobile
device i to the edge server during the training task of FWQ-FL.
The dimension of the gradient vector gi is fixed for a given model
so that the overall data size to transmit the gradient vector is the
same for all the mobile devices, which is denoted by Dg . Here,
we only consider the energy consumption of uplink transmission2.
Then, the communication time to transmit Dg for mobile device i
is

T cm

i
(Bi) =

Dg

�i
=

Dg

Bi ln
⇣
1 + hip

cm

i

N0

⌘ . (22)

Thus, the communication energy consumption at mobile device i
can be derived as

Ecomm

i
(Bi) =

Dgpcmi

Bi ln
⇣
1 + hip

cm

i

N0

⌘ . (23)

2. First, the downlink transmission energy at the edge server side is less
concerned. Seconds, during the FL training process, the mobile edge server
broadcasts the global model parameters to all devices in downlinks. In
typical wireless transmission environments (e.g., cellular network), downlink
bandwidth is much larger than uplink bandwidth [13]. The time of global
model broadcasting using downlink is much shorter than that of local model
updates using uplink. Besides, the receiving power is smaller than transmission
power at mobile devices [38]. Hence, the downlink energy consumption is
much smaller compared with the uplink one and can be neglected.
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4.2 Problem Formulation
Considering the computing capabilities of different mobile

devices vary, we formulate the problem as minimizing the total
energy consumption during the training process as

min
H,K,✏q,

q,B

NX

i=1

K (Ecomm

i
(Bi) + Ecomp

i
(qi, H)) (24a)

s.t. c3(qi)Ui  Ci, 8i 2 N , (24b)

A3

NX

i=1

⇡2
i
�i  ✏q, (24c)

A1H +A2
p
MHK

+A3

NX

i=1

⇡2
i
�i  ✏, (24d)

max
i

K (HT cp

i
+ T comm

i
)  Tmax, (24e)

NX

i=1

Bi  Bmax, (24f)

Bi > 0, qi 2 Q, 8i 2 N , (24g)
H 2 Z+, 0  ✏q  ✏, (24h)

where K represents the total number of communication rounds,
Ui, and Ci represent the learning model size (MB) stored in
full precision and the memory capacity in mobile device i,
respectively. c3(qi) is the ratio of the bit-width to full precision.
q = [q1, · · · , qN ] and B = [B1, · · · , BN ] are the quantization
and bandwidth allocation strategies of mobile devices, respec-
tively. Constraint (24b) states the model size stored on mobile
device i does not exceed its storage capacity. The constraint (24c)
controls the average quantization error over participating devices
as small as possible. The constraints in (24e) ensures the entire
training time can be completed within predefined deadline Tmax.
In constraint (24f), the bandwidth allocation to the mobile devices
must not exceed the channel bandwidth available to the edge
server. Constraints (24g) and (24h) indicate that variables take the
values from a set of non-negative numbers. Bit representation set
Q is defined as a power of 2, ranging from 8 to 32 bits, which
is a standard-setting and hardware friendly [39]. The number
of communication rounds K is determined by the FL model
convergence. Based on the results in Theorem 1, we set upper
bound to satisfy the convergence constraint as in (24d), where A1,
A2 and A3 are coefficients3 used to approximate the big-O in
Eqn. (8). Furthermore, given the constraint (24c), we can rewrite
the (24d) as

A1H +A2
p
MHK

+ ✏q  ✏. (25)

For the relaxed problem, if any feasible solution H , ✏q , and K
satisfies constraint (25) with inequality, we note that the objective
function is a decreasing function of K . Thus, for optimal K , the
constraint (25) is always satisfied with equality, and we can derive
K from this equality as

K(H, ✏q) =
(A1H +A2)2

MH(✏� ✏q)2
, (26)

From (26), we observe that K(H, ✏q) is a function of H that first
decreases and then increases, which implies that too small and too
large H all lead to high communication cost and that there exists

3. These coefficients can be estimated by using a small sampling set of
training experimental results.

an optimal H . Besides, a large ✏q , which results from aggressive
quantization levels (small bit-widths), also hinders the learning
efficiency since it requires more communication rounds to recover
the learning accuracy. In light of this, local update and weight
quantization levels should be carefully determined to minimize
the overall energy consumption for FWQ-FL.

For the ease of analysis, we simplify the description of the
GPU time model as a linear function of qi, i.e., T

cp

i
(qi) = c2

i
qi +

c1
i
. By substituting (26) into its expression, we obtain

min
H,✏q,

q,B

NX

i=1

(A1H +A2)2

MH(✏� ✏q)2

✓
pcm
i

Dg

�i
+Hpcp

i
(c2

i
qi + c1

i
)

◆

s.t. (24b)� (24h).
(27)

The relaxed problem above is a mixed-integer non-linear pro-
gramming. It is intractable due to the multiplicative form of the
integer variables (H and q) and continuous variables (✏q and B)
in both the objective function and constraints. In what follows,
we develop an iterative algorithm with low complexity to seek
feasible solutions.

4.3 Iterative algorithm for EE-FWQ
The proposed iterative algorithm divides the original problem

(27) into two sub-problems: 1) Local update and quantization error
optimization (forH and ✏q); 2) Joint weight quantization selection
and bandwidth allocation (for q andB), which can be solved in an
iterative manner. For the two sub-problems, we are able to derive
the closed-form solutions for local updates, bandwidth allocation
and weight quantization levels. The details are presented in the
following subsections.

4.3.1 Local update and quantization error optimization
To obtain the optimal strategies for FWQ, we first relaxH as a

continuous variable for theoretical analysis, which is later rounded
back to the nearest integer. GivenB and q, problem (27) is written
as follows

min
H,✏q

(A1H +A2)2

MH(✏� ✏q)2
(Ecm(B) +HEcp(q)) (28a)

s.t.
(A1H +A2)2

MH(✏� ✏q)2


Tmax

T cm

i
(Bi) +HT cp

i
(q

i
)
, 8i 2 N ,

(28b)

✏q � ✏min
q

, (28c)
0  ✏q  ✏, H � 0, (28d)

where ✏min
q

=
P

N

i=1
A3⇡

2
i
s

2qi�1
, Ecm(B) =

P
N

i=1 E
cm

i
(Bi), and

Ecp(q) =
P

N

i=1 E
cp

i
(q

i
).

Theorem 2. The optimal ✏?
q
in problem (27) satisfies

✏?
q
= ✏min

q
, (29)

and the optimal H? is given by

min
H

 (H) ,
(A1H +A2)2(Ecm(B) +HEcp(q))

MH(✏� ✏min
q

)2
(30a)

s.t. Hmin  H  Hmax, (30b)

where ⇢(Hmin) = ⇢(Hmax) = MN(✏� ✏min
q

)2Tmax and ⇢(H)
is defined in (49b).
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Proof. Please refer to the detailed proof in Appendix C in the
separate supplemental file.

Noted that it can be verified that the objective function  (H)
in (30) is convex. The optimal H? can be obtained by setting the
following first-order derivative to zero,

d (H)
dH

= 2A2
1HE

cp(q) +A
2
1E

cm(B) + 2A1A2E
cp(q)

� A
2
2E

cm(B)
H2

. (31)

It is a cubic equation of H and can be solved analytically via
Cardano formula [40]. Therefore, for the fixed values of q and B,
we have a unique real solution of H in the closed form as follows

H =
3

sr
↵3�

27
+

�2

4
� ↵3

27
� �

2
+

3

s

�
r

↵3�

27
+

�2

4
� ↵3

27
� �

2

+
↵

3
, (32)

with ↵ = A1E
cm(B)+2A2E

cp(q)
2A1E

cp(q) , and � = �
A

2
2E

cm(B)
2A2

1E
cp(q) .

4.3.2 Joint weight quantization selection and bandwidth
allocation

Given the updated H , ✏q , the optimal quantization levels q?

and the bandwidth allocation B? can be obtained by solving the
following problem,

min
q,B

K(H, ✏q)
NX

i=1

pcm
i

↵1
i

Bi

+Hpcp
i

· (c2
i
qi + c1

i
) (33a)

s.t. (24b), (24c), (24f), (24g), (33b)
↵1
i

Bi

+H(c2
i
qi + c1

i
) 

Tmax

K(H, ✏q)
, 8i 2 N . (33c)

Based on the observation of problem (33), it is clear that
problem (33) is a mixed-integer non-linear problem. Besides, the
integer variable qi and a fractional form of continuous variable
Bi are linearly coupled in constraint (33c), which makes the
optimization problem difficult to tackle. To address the above
issues, we first introduce a new variable eq = log2(q) and its
finite set can be defined as eQ = {1, 2, 3, 4, 5}. We then relax eqi
to be continuous and then round the solution. Since eq = log2(q) is
monotonously increasing function, we can transform an equivalent
formulation as follows

min
eq,B

K(H, ✏q)
NX

i=1

pcm
i

↵1
i

Bi

+Hpcp
i
(c2

i
2eqi + c1

i
) (34a)

s.t. (24f), (34b)

�(eq1, · · · , eqN ) ,
NX

i=1

A3⇡2
i
s

22
eqi
� 1

 ✏q, (34c)

c3(2
eqi)Ui  Ci, 8i 2 N , (34d)

↵1
i

Bi

+H(c2
i
2eqi + c1

i
) 

Tmax

K(H, ✏q)
, 8i 2 N , (34e)

Bi > 0, qmin
 eqi  qmax, 8i 2 N . (34f)

For objective function in (34), K(H,✏q)↵
1
i

Bi

and pcp
i
c2
i
2eqi are convex

functions in Bi and eqi, respectively. The affine combination of
convex functions preserves convexity. Similarly, we can easily
verify the convexity of the constraints.

Next, we propose an efficient iterative algorithm to reduce
the computational complexity. The main idea of the proposed

Algorithm 2 The proposed iterative algorithm for (34)
1: Input: Given H , ✏q , two small constants, ◆1, ◆2, and a large

positive number µ̂.
2: Output: Optimal 2eq?

i , B?

i

3: Initialization: µ1
LB

= !LB = 0; µ1
UB

= µ̂; !UB = !̂;
4: Choose a feasible �0  (B(0), eq(0))
5: repeat

6: Set µ1 = (µ1
UB

+ µ1
LB

)/2 and ! = (!UB + !LB)/2
7: repeat

8: Calculate eq(z)
i

via (37)
9: if �(eq(z)1 , · · · , eq(z)

N
) > ✏q then

10: Set µ1
UB

= µ1

11: else

12: Set µ1
LB

= µ1

13: end if

14: until µ1
UB

� µ1
LB

 ◆1
15: repeat

16: Set ! = (!UB + !LB)/2
17: Calculate B(z)

i
via (38)

18: if
P

B(z)
i

> B then

19: Set !UB = !
20: else

21: Set !LB = !
22: end if

23: until !UB � !LB  ◆2
24: �z  (B(z), eq(z)) and z  z + 1
25: until |�z+1 � �z|  ◆3

iterative algorithm as follows. In the (z)-th iteration, we first fix
the bandwidth in the (z � 1)-th iteration, denoted as B(z�1), to
solve problem (34) to obtain quantization strategy eq; then, with
the updated eq(z), we can get the optimalB(z). In the intermediate
steps, we attempt to derive some analytical solutions to reduce the
computation load.

In the (z)-th iteration, we can decompose problem (34) into
two convex subproblems as

min
eq(z)

R
NX

i=1

pcp
i
(c2

i
2eq(z)

i + c1
i
) (35a)

s.t. (34c), (34d), (34f), (35b)
↵1
i

HB(z�1)
i

+ (c2
i
2eq(z)

i + c1
i
) 

Tmax

R
, 8i 2 N , (35c)

where R = HK(H, ✏q) and

min
B(z)

K(H, ✏q)
NX

i=1

pcm
i

↵1
i

B(z)
i

(36a)

s.t. (24f), (34f), (36b)
K(H, ✏q)↵1

i

B(z)
i

 Tmax �RT cp

i
(2eq(z)

i ), 8i 2 N . (36c)

In the above, the objective function in (35) is a monotonically
increasing function w.r.t eq, and the objective function in (36)
monotonically decreasing function w.r.t B. Hence, we have the
unique solutions of eq, B as follows

Theorem 3. The optimal quantization levels eq?
i
and bandwidth

allocation B?

i
for the i-th device are given by

eq(z)?
i

= min{eqmax
i

, eqi(µ1?)}, (37)
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and

B(z)?
i

= max{B(z)
i,min(eq

(z)?
i

), B(z)
i

(!?)}, (38)

where

eqi = log2

✓
log2(�i +

q
�2
i
+ 4)� 1

◆
, (39)

�i =
ln(2)µ1?A3⇡2

i
s2

c2
i
R(pcp

i
+ µ2

i
(µ1?))

, (40)

B(z)
i,min(eq

(z)?
i

) =
K(H, ✏q)

Tmax �RT cp

i
(2eq(z)?

i )
, (41)

B(z)
i

(!?) =

q
pcm
i

↵1
i
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p
MH(✏� ✏q)

, (42)

µ1? and !? are the optimal Lagrange multipliers to satisfy the
quantization error constraint �(eq(z)?1 , · · · , eq(z)?

N
) = ✏q and band-

width capacity constraint
P

N

i=1 B
(z)?
i

= Bmax, respectively.

Proof. Please refer to the detailed proof in Appendix D in the
separate supplemental file.

Theorem 3 suggests that eq?
i
is determined by local computing

capabilities. Specifically, small quantization levels can be allo-
cated to devices with weaker computing capabilities for the benefit
of sum computing energy reduction. Given the overall quantization
error constraint, the devices with higher computing capabilities
may use a higher quantization level to maintain the model ac-
curacy. It also indicates that the optimal bandwidth allocation B
depends not only on the channel conditions (hi) but also on the
quantization levels eq?

i
. Concisely, assigned bandwidth increases

with the poor channel condition to avoid the straggler issues. In
addition, when the devices use a higher quantization level for local
training (higher computing energy), the device should be assigned
more bandwidth to reduce total energy consumption.

The algorithm that solves problem (27) is summarized in
Alg 3, by iteratively solving problem (28) and problem (34). We
first solve problem (28) to determine (H, ✏q) in the closed form.
Then, with Alg. 2 we iteratively calculate (37) and (38) which
keeps decreasing the objective function in (33) until we achieve the
converged solutions (eq,B). In Alg. 3, since the optimal solution
of problem (28) or (34) can be obtained in each loop, the objective
value of the problem (27) keeps decreasing in the loop. Moreover,
the objective value of problem (27) is lower bounded by zero.
Thus, Alg. 3, will finally converges.

Next, we analyze the computational complexity of
Alg. 3. To solve the EE-FWQ problem by using Alg. 3,
two subproblems (28) and (34) need to be solved. For
the subproblem (28), we can obtain a unique real solution
of H from (31) in closed form, which does not resort to
any iterative solver. For the subproblem (34), it requires
O

�
log2

��
µ1
UB

� µ1
LB

�
/◆1

�
+ log2 ((!UB � !LB) /◆2)

�

inner-loop iterations for the bisection method [41] to determine
the optimal µ1 and ! and �1 outer-loop iterations (as shown in
simulations, �1 is usually no more than 3). Hence, it requires
O

�
�1

�
log2

��
µ1
UB

� µ1
LB

�
/◆1

�
+ log2 (!UB � !LB) /◆2

��

iterations to converge in Alg. 2. The complexity is
O(N�1 log2(1/◆1) log2(1/◆2)) with accuracy ◆1 and
◆2. As a result, the total complexity of Alg. 3 is
O(N�1�2 log2(1/◆1) log2(1/◆2)) where �2 is the number
of iterations required in Alg 3 (as shown in simulations, �2 is
usually no more than 4). The complexity of Alg. 3 is low since

Algorithm 3 Joint design of flexible weight quantization and
bandwidth allocation for EE-FWQ
1: Input: Initialize H(0), ✏q(0), qi(0), Bi(0) of problem (27)

and set l = 0.
2: Output: H?, ✏?

q
, q?, B?

3: repeat

4: With given q(l), B(l), compute ✏q(l + 1) and H(l + 1)
via (29) and (32), respectively

5: With given ✏q(l+1) and H(l+1), compute qi(l+1) and
bi(l + 1) by Alg. 2

6: until objective value (27) converges
7: Rounding q̂i = beq?

i
e and bH?

e and obtain the quantization
strategy q?

i
= 2q̂i with the minimum objective value.

O(NL log2(1/◆1) log2(1/◆2)) grows linearly with the total
number of participating devices.

It should be noted that the FL server is in charge of solving
the optimization in (24). It is practical because the FL protocol in
[42] requires mobile devices to check in with the FL server first
before the FL training begins. Hence, the FL server can collect the
information (c1(qi), c2(qi), Ci, pcmi and hi) from mobile devices,
determine the optimal strategies (qi, Bi) of each device via Alg. 3,
and inform the strategies to the participating devices. It only needs
to be solved once if the network information remains unchanged.
That is absolutely affordable for the FL server.

5 PERFORMANCE EVALUATION
5.1 Data and settings

1) Learning Model and Dataset: To test the model perfor-
mance, we consider two types of learning tasks: image classi-
fication and next-character prediction. For the image classifica-
tion task, we choose two commonly-used deep learning models:
ResNet-34 [43], and MobileNet [44]. The well-known datasets,
CIFAR-10 and CIFAR-100, are used to train FL models for image
classification tasks. The CIFAR-10 dataset consists of 60000
32x32 color images in 10 classes with 5000 training images per
class. The CIFAR-100 dataset has 100 classes and each class has
500 32x32 training images and 100 testing images. To generated
heterogeneous data partition, we consider the label distribution of
devices are different. Then, each device only has data samples of
J different labels. Without specific explanation, for the CIFAR-
10 dataset, we consider the number of device, N = 10, and
each device contains a total number of 30000/N training samples
with only J = 6 classes. For the CIFAR-100, each device
contains a total number of 20000/N training samples with only
J = 40 classes. We use Shakespeare [45] dataset for the next
character prediction task. This dataset is built on The Complete
Works of William Shakespeare by separately extracting different
roles’ dialogues. We employ a two LSTM [46] layers, each with
256 nodes and a softmax layer (with dropout rate of 0.1). The
heterogeneous dataset is the natural split of Shakespeare where
each device corresponds to a role and the local dataset contains
this role’s sentences.

2) Communication and Computing Models: For the communi-
cation model, we assume the noise power is N0 = �174 dBm.
The transmitting power of each device is uniformly selected from
{19, 20, 21, 22, 23} dBm. Unless specified otherwise, we set the
bandwidth Bmax = 100MHz and the channel gains hi are mod-
eled as i.i.d. Rayleigh fading with average path loss set to 10�3.
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(a) Testing accuracy vs energy cost. (b) Testing accuracy vs energy cost. (c) Testing accuracy vs energy cost.

Fig. 2. Convergence analysis for diferent learning tasks. (a): ResNet-34 on CIFAR-10 with the estimated parameters A1 = 13.765, A2 =
1.023, A3 = 0.0435. (b): MobileNet on CIFAR-100 with the estimated parameters A1 = 16.655, A2 = 1.013, A3 = 0.0795. (c): LSTM on

Shakespeare with the estimated parameters A1 = 6.34, A2 = 2.003, A3 = 0.039.

Fig. 3. Convergence of the inner loop of Alg. 2. Fig. 4. Convergence of Alg. 2. Fig. 5. Convergence of Alg. 3.

Furthermore, we assume that model parameter is quantized into
16 bits before transmission. For the GPU computing model, the
scaling factors of quantization are measured by Nvidia profiling
tools on Jetson Xavier NX. We use ResNet-34 model with CIFAR-
10 multiple times and obtain the simulated function c1(q) =
7.12 ⇥ 10�3q + 0.274 and c2(q) = 4.24 ⇥ 10�4q + 1.035.
The GPU core frequency f core

i
, 8i is uniformly selected from

{1050, 1100, 1150, 1200}MHz and memory frequency fmem

i
, 8i

is uniformly selected from {1450, 1500, 1550, 1600}MHz.
3) Peer Schemes for Comparison: We compare our proposed

FWQ scheme with the following two different energy efficient FL
schemes:

• FL FDMA [22]: All mobile devices train their local mod-
els with full precision, i.e., without quantization. Their
scheme optimizes the computing and communication re-
sources (i.e., CPU frequency and wireless bandwidth) to
minimize the energy consumption in FL training. For a
fair comparison, we change the CPU model in FL FDMA
to GPU model and set q = 32.

• FlexibleSpar [24]: All mobile devices train their local
models with the full precision and sparsity of their model
updates before transmitting to the FL server. Their scheme
optimizes the frequency of model updates and gradient
sparsity ratio to minimize the energy consumption in FL
training. Here, we set q = 32 in the GPU model.

Beside, we also consider two different quantization levels for our
evaluation:

• Unified Q: All the devices are set to use the same quanti-
zation strategy regardless of resource budgets for different
mobile devices.

• Rand Q: All mobile devices choose a quantization level
randomly without considering the learning performance.

• FWQ-pro: We assign different weight quantization levels
based on their GPU core and memory frequencies. Given
the available combination of GPU core and memory fre-
quencies, we divide devices into slow, medium, and fast
groups. We set three different quantization levels, i.e., a
small quantization level (q = 8), a medium quantization
level (q = 16), a large quantization level (q = 32). Then,
we assign the small quantization level to the slow group
of devices. The rest can be done in the same manner.

The resource allocation strategies for Unified Q, Rand Q, and
FWQ-pro are optimized by solving a simplified version of the
problem (27).

5.2 Convergence analysis
First, we conduct convergence analysis. We implement the

above learning models and choose a unified quantization strategy
q1 = · · · = qN = 16 in the Unified Q scheme. Fig. 2 shows the
comparison of different FL schemes in terms of testing accuracy
and corresponding energy consumption, when FL models are
trained for a given epoch number4. We observe that the models

4. We set different epoch numbers for different learning tasks: 200 epoch
for CIFAR10, 300 epoches for CIFAR100, and 50 epoches for Shakespeare.
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Fig. 6. Energy vs the numbers of devices. Fig. 7. Energy vs device heterogeneity. Fig. 8. Quantization vs bandwidth.

trained by FWQ, Unified Q, Rand Q, and FWQ-pro are inferior to
the FL FDMA scheme, and the Rand Q has the worst performance.
That is consistent with our convergence analysis that the dis-
cretization error induced by the quantization is unavoidable. This
error is accumulated by all the participating mobile devices, which
indicates some mobile devices take aggressive quantization levels
(e.g., 8 bit) due to their resource limitation. As for our proposed
FWQ scheme, since it considers this error in the quantization
selection, the degradation is well controlled and relatively small.
Compared with FWQ-pro, it demonstrates the effectiveness of
the proposed optimization that can find the optimal strategies for
different mobile devices. It shows when reaching FL convergence
in the learning task of CIFAR10 with ResNet34, FWQ can reduce
62% energy consumption with 0.26% accuracy loss compared
with FL FDMA, and reduce round 28% energy consumption with
0.16% accuracy loss compared with FlexibleSpar. For language
task in Fig. 2(c), FWQ can reduce 52% energy with 0.18%
accuracy loss compared with FL FDMA, and reduce 23% energy
with 0.06% accuracy loss compared with FlexibleSpar. The FWQ
scheme is superior to the other three schemes in terms of the
trade-off between the overall energy efficiency for FL training and
training accuracy, which is essential for battery-limited mobile
devices.

Next, we show the convergence behavior of the proposed
iterative algorithms, i.e., Algs. 2 and 3. The convergence results
of Alg. 2 are shown in Fig. 3 and 4, and the convergence results
of Alg. 3 is shown in Fig. 5. As observed from Figs. 3 and 4,
the proposed iterative algorithm requires approximately seventeen
inner iterations and 3 outer iterations. Hence, it takes total thirty to
forty iterations to reach convergence, which indicates that Alg. 2
holds a desirable convergence rate. From Fig. 4, for different
non-i.i.d levels (i.e., different values of (A1, A2, A3), they require
approximately four iterations to reach convergence, which can be
concluded that Alg. 3 is robust to the parameters (A1, A2, A3) in
term of convergence rate.

5.3 Impacts of data heterogeneity

We evaluate the performance of FWQ with different data dis-
tributions in the context of skew class distribution. We set different
J values as J 2 {2, 4, 6, 8}. Sample distributions become skewer
as J becomes small. The model is trained by ResNet34. As
shown in Fig. 9, we find that training with small J consumes
more training energy compared with large J values. In the case
of J = 2, the proposed FWQ can efficiently reduce the energy
consumption by 68% and 27%, compared with FL FDMA and

Fig. 9. Energy vs Test accuracy under fixed training iterations. Different

colors represent different values of J .

FlexibleSpar, respectively. From the results in Fig. 9, the proposed
FWQ achieves better trade-off between the energy consumption
and model performance, compared to the peer schemes.

5.4 Impact of the number of users
We now evaluate how the number of users affects the total

energy consumption for FL training. Fig. 6 shows that the average
energy consumption decreases as the number of mobile devices
participating in FL increases. The average energy consumption
per device does not experience too much change even after
more devices participate in FL training under all the schemes.
The reason is that bringing more devices to train the FL model
helps speed up the model convergence and thus reduce energy
consumption, which is consistent with the sub-linear speedup in
Theorem 1. However, as N continues increasing, the marginal re-
duction of the total number of training iterations becomes smaller
and smaller. Besides, our proposed FWQ scheme outperforms FL
FDMA and FlexibleSpar. For example, the proposed FWQ scheme
saves the energy of FL FDMA by 56% and of FlexibleSpar by
35%, respectively. The reason is that the proposed FWQ leverages
weight quantization to reduce the workload for on-device training
and optimize the weight quantization levels for heterogeneous
devices, while the computing workload is not optimized and fixed
for all the devices in both FL FDMA and FlexibleSpar scheme.
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TABLE 1

Computation overhead vs the numbers of devices.

N=10 N=50 N=100 N=500
Computation overhead (s) 0.04 0.31 1.02 7.07

Moreover, the proposed FWQ scheme reduces the energy in the
Unified Q strategy by 20%, the Rand Q strategy by 38.7%, and
the FWQ-pro strategy by 13%, respectively, when the number of
users is equal to ten. These results demonstrate the effectiveness
of our proposed weight quantization scheme.

Next, we show the conputation overhead of the proposed
iterative algorithms in Table 1. It shows the computation overhead
of Alg. 3 under varying number of devices. The computation
overhead increases with the increase of the number of devices.

5.5 Impact of computing capacities
We evaluate the impact of device heterogeneity concerning

computing capability. Here, we keep the number of mobile devices
as ten and divide them into four groups. Fixing the minimum
capacity as 1800MB, we set different capacities into 4 groups:
CMB, (C + 50L)MB, (C + 150L)MB, and (C + 200L)MB,
respectively. The values of L range from 0 to 10. A larger
value of L means mobile devices have more diverse computing
conditions, implying that the optimized quantization strategy has
more diverse values. From Fig. 7, we observe that the total energy
consumption grows as the value of L increases. It indicates that
device heterogeneity does impact the energy efficiency in FL
training. Besides, it is observed that the gap between FWQ-pro
and FWQ increases as the UE heterogeneity level grows. This
indicates the effectiveness of the proposed FWQ under high UE
heterogenity. Since the proposed FWQ scheme jointly optimizes
the quantization levels and bandwidth allocation for heterogeneous
devices, the FWQ scheme is superior to all other schemes in terms
of high levels of computing heterogeneity across participating
devices.

5.6 Impact of communication capacities
Figure 8 shows the impacts of the wireless conditions on

the optimal quantization selection. We vary the total available
bandwidth from 80 MHz to 98 MHz and divide the mobile devices
into 4 different groups, denoted as {g1, g2, g3, g4}, where the
channel gain h(g1)  h(g2)  h(gd3)  h(g4). From Fig. 8,
we observe that, as the overall bandwidth becomes small, the
ratio of the communication energy consumption to the overall
energy consumption grows, which means wireless communica-
tions have a larger impact on the total energy consumption than
local computing. As a result, the mobile devices in group 1,
with small channel gain, become the stragglers in FL training
and could slow down the gradient update time for one iteration.
To avoid the update delay for the next iteration and reduce the
overall energy consumption, they have to take aggressive actions
to compress their local models into the smallest number of bits.
However this results in large discretization noise and degrades
the performance, as stated in Theorem 1. To compensate for that,
those who have better channel gain need to “work” more by
using a higher precision model to perform local training. Similarly,
when the available bandwidth increases, the computing contributes
more to the overall energy consumption. Those mobile devices

with smaller local computing capacities choose to compress their
models more to save computing energy.

6 CONCLUSION

In this paper, we have studied the energy efficiency of FL
training via joint design of wireless transmission and weight
quantization. We have jointly exploited the flexible weight quanti-
zation selection and the bandwidth allocation to develop an energy
efficient FL training algorithm over heterogeneous mobile devices,
constrained by the training delay and learning performance. The
weight quantization approach has been leveraged to deal with the
mismatch between high model computing complexity and limited
computing capacities of mobile devices. The convergence rate of
FL with local quantization has been analyzed. Guided by the
derived theoretical convergence bound, we have formulated the
energy efficient FL training problem as a mixed-integer nonlinear
programming. Since the optimization variables of the problem
are strongly coupled, we have proposed an efficient iterative
algorithm, where the closed-form solution of the bandwidth
allocation and weight quantization levels are derived in each
iteration. By comparing with different quantization levels through
extensive simulations, we have demonstrated the effectiveness
of our proposed scheme in handling device heterogeneity and
reducing overall energy consumption in FL over heterogeneous
mobile devices.
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