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Abstract—Federated learning (FL) is a promising distributed
learning paradigm, which can effectively avoid the privacy
leakage and communication issues compared with the centralized
learning. Specifically, in each training iteration, FL. nodes only
upload the local training results to the centralized server without
disclosure of their raw training dataset and the centralized
server will aggregate the local results of all FL nodes and
update the global model. To this end, the performance of the
global model is highly dependent on the nodes’ cooperation.
However, it is challenging to motivate mobile edge devices to
involve themselves in the FL process without a desired incentive.
Another significant concern of the mobile edge devices is the
communication and computational energy cost of participation.
Therefore, considering the high cost and weak communication
channel with the centralized server specially for the distant nodes,
in this paper, we propose a relay-assisted energy efficient scheme
for federated learning, where each FL computational node is
not only motivated by monetary awards based on their local
dataset, but also further motivated to function as a relay node to
assist distant nodes on local results uploading due to its locality
advantage. To achieve a stable pairing solution between FL
computational nodes and assisted relays in a distributive fashion,
a many-to-one matching algorithm is applied, where each the
computational node and relay is unable to deviate with current
pairing unilaterally for higher revenue. Extensive simulations are
conducted to illustrate the correctness and effectiveness of our
proposed scheme.

Index Terms—federated learning, optimization, matching, re-
lay

I. INTRODUCTION

From autonomous vehicles to smart cities, from virtual
reality to modern factories, the Internet of Things (IoT) has
opened its curtains for an imaginative golden age with the
advent of the 5G adoption. Thanks to 5G’s ultra high-speed
network, mobile edge devices are capable to transmit data
at a faster rate, which enables a potential breakthrough of
the machine learning technologies [1]. The past few decades
have witnessed a soaring number of devices connected to the
network, resulting in a significant growth in the amount of data
generated as well as the network complexity. Machine learning
models can be trained, deployed, as well as interact with
each other at multiple levels, such as edge devices, compu-
tational machines and cloud servers [2]. With the proliferation
of machine learning based applications, there are increasing
concerns about privacy leakage from the data owners, since
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Fig. 1: System overview.

in order to enjoy benefits from the application, the raw data
will leave the local devices and be used for training machine
learning model on the server’s side [3].

With the advancement of technology, it is critical to balance
the privacy risk versus the communication efficiency. Feder-
ated learning (FL) [4] was proposed as an emerging distributed
learning framework, which is one of the best solutions to
the exacerbated privacy issue. As a game breaker, FL. comes
into play as it parts with the criticized privacy concerns
while maintaining all the benefits from a distributed learning
system. In this novel framework of distributed learning, the
mobile edge devices jointly train a shared model locally in
a cooperative manner. To be specific, the centralized server
first broadcasts the global model to all the FL. edge nodes.
Then, the participating nodes can engage in the FL process by
training the local model with their own local dataset. The raw
data is kept on the edge devices while only the intermediate
training results are shared with the centralized server.

Despite the advantages of FL, there is still need for more
efforts on motivating nodes participation in order to achieve
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better global model performance. Since the edge nodes and
the centralized server are supposed to exchange the trained
model in each training epoch, the communication and energy
cost are the main concerns of the potential participating edge
mobile devices. Therefore, it is necessary to have a novel
incentive mechanism to compensate for the cost of each
participant and motivate individuals to engage in cooperation
during the FL process. In [5], the authors proposed an auction-
based incentive mechanism for FL. with the consideration of
the learning quality of each participating node. In [6], the
authors designed a data trading mechanism in FL to motivate
participants to share their private data. By leveraging the
game theory, the server can select nodes that can provide a
reliable dataset with a high probability. However, in these
proposed incentive mechanisms, the authors didn’t consider
the energy consumption of each FL node during training and
local updates.

Moreover, in FL, direct communication channels between
nodes and centralized server are always inefficient, or even
unavailable, when the nodes are distant, since the transmission
cost is expensive. The cooperative relay-assisted wireless net-
works [7] are an effective solution to enhance the communica-
tion reliability. In [8], the authors proposed a synchronization
scheme which can transmit models and updates simultaneously
via a relay base station by utilizing the relay-assisted wireless
network. In [9], the authors leveraged over-the-air computation
technique on relays to assist local updates transmission and
further reduced the communication cost in FL. However, these
papers involved one or several relay base stations and they
consider that the FL nodes can only upload local updates
via relays. Additionally, it takes extra efforts to establish
relays in pre-determined locations. In the scenarios where FL
nodes are flexibly distributed, we expect each node to be self-
motivated to function as a relay in a distributive way, and
the computational node also prefers to upload to the closest
optimal relay nearby with higher revenues.

To tackle the issues discussed above, in this paper, we
proposed a relay-assisted energy efficient scheme for FL,
where each computational node or relay is self-motivated to
join FL based on its own utilities. Our salient contributions
are listed as follows.

« The proposed relay-assisted energy efficient scheme mo-
tivates large volume of edge devices to function as com-
putational nodes and relays, resulting in high revenues
for FL in a distributive fashion.

e A many-to-one matching algorithm is applied in the
proposed scheme to achieve stable pairing results between
computational nodes and relays, where no computational
nodes or relays are able to unilaterally deviate from
current pairing with higher revenues.

« Extensive simulations are conducted with high perfor-
mance of the proposed scheme, compared with scenarios
without relays.

The rest of paper is organized as follows. In Section II,
we describe the overview of our system, and discuss the

energy consumption of each FL node. In Section III, we
formulate the utility function and optimization problem for
both computational nodes and relays with the consideration
of the participation reward and the energy consumption of
training and transmission. We provide further analysis on the
formulated problem and propose a matching algorithm for
the stable pairing mechanism between computational nodes
and relays in the distributive fashion in Section IV. In Sec-
tion V, we provide extensive simulation results and evaluate
the performance of our proposed scheme. Finally, we draw
conclusions in Section VI.

II. SYSTEM MODEL

The overview of our proposed method is shown in Figure 1.
We consider that there is one centralized server with a global
learning model and multiple mobile edge devices as potential
participating FL. nodes. Since edge devices located far from
the centralized server may exist, we expect that some of the
FL nodes can also work as relays to help other distant nodes
with model data transmission based on local updates so as
to improve the data transmission reliability. Therefore, the FL
nodes are expected to optionally function as two roles in the
proposed scheme. The first one is working as a normal compu-
tational node that can do the model training based on the local
dataset and send the local updates directly to the centralized
server or via the nearby relay node. The second kind is to
function as a relay so as to assist distant computational nodes
for data transmission. In order to motivate mobile edge devices
to cooperate in the training process, the centralized server
provides incentive to each participating FL. node based on the
size of the local dataset applied in local model training. If a FL
node decides to select another FL node to assist with the local
update’s transmission, this node is supposed to provide partial
incentive as a reward to the relay. Each relay can optionally
assist with the data communication according to the evaluation
of energy consumption. The objective of each FL node is to
maximize its own utility based on the incentive and energy
consumption.

In our system scenario, we consider a set of FL nodes
K ={l,---,k,--- ,N}. The energy consumption of each
node k consists of three parts, including the computational
energy from local training E;°"”, data transmission energy
due to local update E7°%, and corresponding transmission
energy E,:p‘lay if the node functions as a relay. Given the
local training dataset size Dy, and the energy consumed for
one training data sample on the edge size pg, the energy
consumption of each node & for local training is,

E"™ = piDy,. (1

Note that py is dependent on the computing architecture and
hardware of each edge node k. We consider the allocated
bandwidth of each node k for transmitting local update is
B, the variance of white Gaussian channel noise is Ny, and
the channel state of from each node k to relay ¢ is hy;. We
also assume that M (in bit) denotes the size of the applied
machine learning model in federated learning and the total
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time for uploading the machine learning model is no more
than 7. Hence, the transmission energy consumption of each
node k for local updates can be denoted as [10], which is
shown as follows

E}?ode _ Z ag Enode (2)
node _ %NOB ;1”—1 o
B = G (1) @

where ag; is a binary variable indicating if the computational
node k communicates with the relay 4, satisfying >, al, <
1,k € K,i € KU{0}. When i € K, a relay node i helps
the computational node k& for the local update transmission.
When ¢ = 0, we assume the node communicates with the
centralized server directly. If one FL node works as a relay,
there will be additional energy consumption for assisting
other computational nodes to transmit their local updates. The
additional energy consumption of edge node ¢ as a relay can
be denoted as

ol

Efelay _ TNoB (2

(hi)?
Based on the energy consumption evaluation, each FL node
tries to maximize its own revenue and minimize its energy
consumption cost in the FL process. The utility function of
each FL node k£ is formulated and analyzed in Section III.

_ 1) . (4)

III. PROBLEM FORMULATION

Under the system scenario, each node behaves distributively
and aims to maximize its own utility. In this section, we
formulate the utility function of each FL node according to its
serving role as computational node and relay, respectively. We
assume each FL node is able to serve as computational node
and as a relay for other computational nodes simultaneously,
and it optimizes its own utilities as a computational node and
as a relay based on the behavior of others in the FL process.

A. Utility Analysis of Computational Node

With the updated model based on computation and training
with local preserved data set, each computational node seeks
the centralized server or a nearby relay for the communication
on model parameters. For each computational node k, we
consider the total utility for each computational node as the
revenue obtained from the local preserved data Dy minus
energy cost due to the transmission and computation.

Accordingly, if the computational node k communicates
with the centralized server directly, the utility for the com-
putational node sending to the centralized server directly is
max{¢Dy — BEJ§Y — vE""",0},  (5)

Unodefserver
k

If the utility is less than 0, we assume the node is unwilling
to join the federated learning network due to high costs.

On the other hand, we suppose the computational node &
can also select one relay for the data transmission. In order to
motivate node to relay the data communication, we suppose
each computational node rewards the relay « ratio of its own
revenue, « € (0,1). Therefore, the utility for computational
node k on each relay (Vi € {1,2,...,N},i # k), is

Ungde—'r'elay max{(l Oé)¢Dk ﬁEnOdP Ev;omlo7 0} (6)

which is revenue gained from the local dataset owned by
computational node Dy, minus the motivation cost to the relay
a¢pDy, together with the subtraction of the communication
cost from the computational node k to relay ¢ E""de and the
computation cost £,

Based on the above options, the optimization problem for
computational node k, Vk € {1,2,..., N}, can be shown as

max

node server node relay
- Z aiU b
ak;,Vie{1,2,...,N}

<
s.t. Z aki < 1,

a,ﬂ e{0,1}, Vie{l,2,...,N}, i#k,

)
where each computational node selects relay optimally, with
observation of the behaviors of other nodes. With the op-
timized potential solution, the computational node further
compares the utilities of communicating directly with the
centralized server and sending the data via the most optimal
relay chosen as the option with highest utility. We assume each
computational node can pair with, at most, one relay for data

transmission.

B. Utility Analysis of Relay Node

Motivated by the reward from other computational nodes,
each node evaluates its own capacity and communication cost
to the centralized server and optionally functions as relay for
other nodes to gain revenue. We suppose each node ¢ can relay
data transmission for, at most, C; other nodes. The utility of
relay ¢ when assisting data transmission of computational node
k is denoted as

Ure™y = max{a¢Dy, — BE;'Y, 0}, ®)

which is the reward from computational node k a¢Dj mi-
nus the communication cost of relay E;°'*Y. Similar as the
computational node, if the utility of relay is less than 0, we
suppose the relay is unwilling to help on data transmission
due to high cost.

Accordingly, the optimization problem for relay i, Vi €

{1,2,...,N}is

which is the revenue gained from the local dataset owned by
computational node Dy minus the communication cost from max Z aR U™,
the computational node k to centralized server E}'¢%. The ki VRE{L2, N} T
computation cost of the node k E.”"". ¢ is the weight of N ©)
reward on private dataset in monetary value. 8 and +y are the s.t. kzl ari < Gy,
weights of each type of cost to evaluate in monetary values. ar; € {0,1}, Vke{l,2,....N}, k#i,
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where each relay optimizes its selections on the computational
nodes based on its own capacity C; and the behavior of other
relays and computational nodes. If there are more than C
computational nodes requesting to be served, the relay k can
only choose the top Cj, ones and reject the rest to achieve
highest utility.

IV. SYSTEM ANALYSIS

According to the formulated problem, each node functions
as a computational node k, Vk € {1,2,..., N} and each node
functions as a relay 4, Vi € {1,2,..., N} seeks the pairing
ak;i, SO as to optimize its own utility based on the behavior
of others. In order to achieve an optimal and stable result
in a distributive fashion, matching theory is introduced as a
powerful tool [11], [12], where computational nodes and relays
try to be matched with each other and achieve stable pairing
solutions.

Following the formulated optimization problems, in the
distributive relay-assisted federated learning network, compu-
tational nodes and relays try to pair with each other to gain
a high and stable utility. Based on the utilities, the preference
list of each computational node %k can be denoted as follows

Vie {1,2,...,N}},

s.t. U&odefr’elay > U]?odefserver

Pcomp _ Un‘ode—relay’
which is composed of the list of relays that can bring higher
utility for the computational node, compared with communi-
cating with the centralized server directly.

Similarly, we consider the preference list of each relay ¢ as

relay __ relay
P =A{U ",
l
st UTE™ >0,

which is composed of the list of computational nodes candi-
dates that can bring revenues.

Based on preference lists, a many-to-one matching algo-
rithm is proposed between computational nodes and relays,
with details illustrated in Algorithm 1 [13]. At the beginning
stage, each computational node k keeps a preference list for
all potential relays nearby, and is initially set as active status
with s = 1. Each relay ¢ also keeps a preference list for
all computational nodes and initializes a priority queue g;
to record the top most promising computational nodes based
on its capacity Cj. During the matching process, for each
round R, each active computational node first proposes to
the most favourable relays according to its pointer 7 in the
preference list. If there are no more relays to propose to,
the computational node is set as deactivated and regarded
as no longer available for matching. Receiving the proposal
from computational nodes, each relay i’ temporally added
the computational node into its queue ¢;;. Next, each relay
1 evaluates all of its potential candidates in the queue ¢;, and
select the top C; computational nodes based on its preference
list, due to the capacity. The computational node %k gets popped
out and will keep active for next round of proposals with
sy = 1, and computational node k is kept in the queue ¢;

Vk e {1,2,...,N}}, an

of relay 7, Vi € {1,2,..., N} updates its status as deactivated
with s = 0. The round of proposals and selections continues
until all computational nodes are deactivated, meaning the
computational nodes are either matched with a preferred relay
or there are no available relays to match with. Meanwhile, the
relay k& with empty queue g, is not to function as a relay for
other computational nodes, while the others are matched with
all computational nodes in its queue and serve as a relay for
the data transmission.

Algorithm 1 Matching Algorithm for Relay-Assisted Feder-
ated Learning Network.

1: for Computational node k do

Sort the preference list P,°""” in (10) from high to low;
Initialize pointer 74 at the first relay in P,°""" with
highest utility value;

4:  Initialize status s; = 1 as actively seeking relays;
5: end for

6: for Relay 7 do
7

8

Sort the preference list P/'* in (11) from high to low;
Initialize priority queue g; for matched computational
nodes.

9: end for

10: Initialize Round R = 0;

11: while Zk s >0 do

122 R++;

13:  Section: Active computational nodes propose to relays;

14:  for Computational node k do

15: if s, = 1 then

16: if Pointer r; already points to last one in the
preference list then

17: Set s = 0;

18: continue;

19: end if

20: Pointer r; + +;

21: q;» appends k;

22: Set s = 0;

23: end if

24:  end for

25:  Section: Relays determine which computational node to
choose based on its capacity;

26:  for Relay ¢ do

27: while Size of ¢; > Capacity C; do
28: q; pops k' with lowest value;

29: Set s,y = 1;

30: end while

31:  end for
32: end while

Lemma 1. For each computational node in the algorithm, the
pointer 1, of the computational node k in its sorted preference
list moves in one direction.

Proof. As depicted in the proposed matching algorithm, the
relay 4, Vi € {1,2,..., N}, maintains the priority queue ¢;

182

Authorized licensed use limited to: University of Houston. Downloaded on August 15,2023 at 01:50:44 UTC from IEEE Xplore. Restrictions apply.



2022 IEEE Global Communications Conference: Cognitive Radio and Al-Enabled Network Symposium

—#*— proposed
—*— no relay

17500

15000 4

12500 A

ity

10000 +

Total util

~
ul
o
o

5000 -

2500

50 100 150 200 250 300 350 400 450
Number of nodes

Fig. 2: Total utility with different number of nodes

and keep the highest C}, proposed computational nodes if it
is out of the capacity. Therefore, for any two rounds R = x
and R = y in the proposal and selection loops, where = < y,
we get

N N
> anU ™| (@) < D aUpd™ | (v),  (12)
k=1 k=1

where the utility of the relay ¢ at round y should be no less
than the utility at round .

Accordingly, if we assume the relay ¢ rejects the proposal of
the computational node & at round z, at round y there should
be C; computational nodes in the priority queue ¢; and each
of the matching computational nodes brings higher revenues
for the relay ¢ than computational node k. Therefore, each
computational node k& should propose in one direction based
on its sorted preference list, and cannot propose to the relay
previously rejected and get accepted in a later round. O

Lemma 2. All computational nodes and relays will achieve a
stable matching result.

Proof. According to Lemma 1, after each computational node
proposes based on its preference list and gets deactivated with
s = 0, each computational node cannot propose to other
relays unilaterally to get matched and higher utility. Therefore,
following the same proof as in [14], all computational nodes
and relays achieve a stable matching result. O

V. PERFORMANCE EVALUATION

In this section, simulation results are presented to evaluate
our proposed framework. In the simulated scenario of relay-
assistant federated learning network, without specific explana-
tion, there are 50 nodes allocated randomly in a square urban
area with an edge of 100 meters, and the centralized server is
located at the left bottom corner of area. The neural network’s
model size is M = 3.4 x 10 bits. The local dataset size

D is uniformly distributed for all the computational nodes
from 10 Gigabytes to 100 Gigabytes. In the simulations, we
assume that all of the nodes will participate in the training.
The proposed scheme can be easily extended in the case of
FL with partial participation where only a subset of compu-
tational nodes need to transmit their models. For the wireless
communication network, we consider an OFDMA system with
bandwidth B = 10 MHz. The variance of the complex white
Gaussian channel noise is Ng = 107'2. We suppose that
the uploading time for each round of model training will be
7 = 300ms. We set 2 as the capacity of each relay. The ratio
of motivated award is a = 0.3. The weight factors § and ~
are set as 0.1 and 0.1, respectively.

In Fig.2, we evaluate the total utility based on the number
of nodes. In comparison with the proposed relay-assistant
scenario, we also consider the scenario where each computa-
tional node communicates with the centralized server directly.
As shown in the figure, generally, the total utility for both
scenarios increases as the number of nodes increase, and the
proposed relay-assistant scenario keeps in higher total utility
than the no relay scenario. Thus, in the proposed scenario, each
computational node is able to communicate with the a nearby
relay to reduce the energy cost from data transmission, and
the relays are also motivated to help on the data transmission
to the centralized server. Furthermore, we also notice as the
number of nodes increases, the difference gap between the
proposed relay-assistant scenario and the no-relay scenario
also increases. With more relay candidates located nearby, the
computational nodes are able to propose and be matched for
higher revenue.

To evaluate how many relays are actually motivated to serve
in the proposed scenario, we evaluate the number of active
relays based on the number of nodes. We suppose the capacity
of each relay as 1, 2, 3, 5, 8, respectively. With the number
of nodes increasing, as shown in Fig. 3, more computational
nodes are able to be matched with nearby relays and the
number of active relays increases. When the number of nodes
is small, each relay will not achieve its maximum capacity
in the stable matching status. Thus, for the scenarios with
different capacities on the relay, the total number of active
ones are similar. However, when the number of nodes is large,
more relays will be motivated and active when the capacity
of relays is small, since the computational node would have
to seek and pair with other relays due to the low capacity of
each of them. Accordingly, we can conclude the relays are
able to help increase the general performance of the federated
learning network and when increasing the capacity of each
relay, some relays will be more popular and can bring high
benefits for the network due to each relay’s advantage.

Furthermore, we evaluate the average utility of each node
based on the value of the motivation reward ratio « in Fig.
4. With 10, 50 and 500 nodes distributed in the simulated
scenarios, we observe the average utility of each node behaves
differently with different o values. When the total volume
of nodes is small, the computational nodes are still able to
motivate and be matched with relays for the data transmission
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with small o values. However, with the ratio of « increasing,
considering the high cost to motivate relays, the revenue
gained for the computational node is less than the energy
cost itself. Thus, the computational nodes are less likely to
join as the edge node in federated learning. In the scenario
of 10 nodes, when a > 0.5, we notice the average utility
achieves 0, which means there are no computational nodes
willing to join in the federated learning network. From the O
utility, we also discover that the 10 nodes are unwilling to join
in federated learning and communicate with centralized server
directly. However, with a small ratio of « values, they are able
to join with the assistant of matched relays.

As the total volume of nodes increases, in Fig. 4, we notice
the average utility increases when « is large since each com-
putational node has better chance to match and communicate
with relays nearby with lower transmission power, even though
high ratio of revenues are applied for the motivation. In the
scenario with 50 nodes, we notice the average utility for each
node is similar with different o values. In the scenario with
500 nodes, as the « increases, the average utility increases
since more nodes are motivated to serve as a relay and help by
reducing the transmission cost for more computational nodes.

VI. CONCLUSION

In this paper, a relay-assisted energy efficient scheme for
federated learning has been proposed, where FL nodes are self-
motivated to join into the network as computational nodes and
relays to achieve high monetary awards. With the application
of the many-to-one matching algorithm, the computational
nodes and relays achieve stable matching results, where no
computational node or relay is able to deviate from the current
matching results unilaterally for higher revenue. Extensive
simulations are conducted to show the correctness and effec-
tiveness of our proposed scheme.
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