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Abstract—The block-term tensor decomposition model with
multilinear rank-(L,, L,,1) terms (or, the “LL1 tensor decom-
position” in short) offers a valuable alternative formulation for
hyperspectral unmixing (HU), which ensures identifiability of the
endmembers/abudnaces in cases where classic matrix factoriza-
tion (MF) approaches cannot provide such guarantees. However,
existing LL1 tensor decomposition-based HU algorithms use a
three-factor parameterization of the tensor (i.e., the hyperspectral
image cube), which causes difficulties in incorporating structural
prior information arising in HU. Consequently, their algorithms
often exhibit high per-iteration complexity and slow convergence.
This work focuses on LL1 tensor decomposition under structural
constraints and regularization terms in HU. Our algorithm uses
a two-factor re-parameterization of the tensor model. Like in the
MF-based approaches, the factors correspond to the endmembers
and abundances in the context of HU. Thus, the proposed
framework is natural to incorporate physics-motivated priors in
HU. To tackle the formulated optimization problem, a two-block
alternating gradient projection (GP)-based algorithm is proposed.
Carefully designed projection solvers are proposed to implement
the GP algorithm with a relatively low per-iteration complexity.
An extrapolation-based acceleration strategy is proposed to expe-
dite the GP algorithm. Such extrapolated multi-block algorithm
only had asymptotic convergence assurances in the literature.
Our analysis shows that the algorithm converges to the vicinity
of a stationary point within finite iterations, under reasonable
conditions. Empirical study shows that the proposed algorithm
often attains orders-of-magnitude speedup and substantial HU
performance gains compared to the existing LL1 decomposition-
based HU algorithms.

Index Terms—Hyperspectral unmixing, structured block-term
tensor decomposition, alternating gradient projection.

I. INTRODUCTION

Remotely deployed hyperspectral sensors capture the re-
flected sunlight on the ground. The sensors then measure
the spectra of received sunlight over a large number of
wavelengths. The obtained pixels carry rich information about
the ground materials. Hence, hyperspectral images (HSIs) are
widely used in applications such as environment surveillance,
agriculture, wild fire analysis, and mineral detection. However,
hyperspectral sensors often have a limited spatial resolution
[1]. Therefore, the spectral pixels in HSIs are usually mixtures
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of the spectral signatures of several different materials (i.e.,
endmembers). Hyperspectral unmixing (HU) aims at esti-
mating the endmembers and their corresponding proportions
(abundances) in the pixels [1].

HU is in essence a blind source separation (BSS) task. The
linear mixture model (LMM) [1], [2] is the most commonly
used BSS model for HU. Under the LMM, a spectral pixel of
the HSI data is expressed as the convex combination of the
endmember signatures, in which the combination coefficients
represent the endmembers’ abundances. The LMM is succinct
and has proven effective for HU. In the past two decades,
a large number of HU algorithms were developed under the
LMM; see, e.g., [3]-[14]. In fact, numerical evidence shows
that the LMM can oftentimes explain the vast majority of
pixels with high accuracy; see, e.g., [15]. It is worth noting that
many nonlinear mixture models are also proposed for HU; see
[16] and recent developments using neural networks, e.g., [17].
Nonlinear models are used to capture the complex dynamics
and data generating mechanisms that could not be interpreted
by the LMM, which reduces modeling errors and enhances the
HU performance. However, using nonlinear models are not
without price—the computational problems under nonlinear
models are in general much harder to tackle (especially when
deep neural networks are involved); see, e.g., [17]. In fact,
the LMM often allows us to design algorithms that strike a
good balance between modeling accuracy and computational
convenience. Hence, we focus on the more classic and more
widely used LMM in this work.

One of the most important considerations in HU is the
identifiability of the endmembers and the abundances. Under
the LMM, the endmembers and abundances can be considered
as the two “latent factors” of a matrix factorization (MF)
model—which are non-identifiable in general. A remedy is to
exploit structural prior information of the latent factors. For
example, to establish model identifiability, an important line of
work in HU uses the convex geometry (CG) of the abundances,
e.g., the existence of the so-called “pure pixels” [3], [4], [12],
[13], [18] or the “sufficiently scattered condition” [7], [19],
[20]. CG-based identfibiaility analysis has also been used in
many machine learning tasks; see [21].

The CG and MF based HU algorithms have enjoyed many
successes. However, some challenges remain. In particular,
the CG-based identfiability conditions require the existence of
some special pixels, which may not always hold. Recently,
a line of work in [22]-[28] proposed an alternative HU
approach under the LMM. The work in [22] linked the so-
called block-term tensor decomposition model with multilinear
rank (L, L,,1)-block terms (or, in short, the LL1 tensor de-



composition model) [29]-[31] with LMM-based HU. Instead
of treating the HU problem as an MF problem, the LL1-
based approach takes a tensor decomposition perspective via
exploiting the spatial dependence of the abundances. The LL1
model-based HU framework is refreshing. The approach offers
complementary identifiability guarantees for HU in cases
where CG-based methods cannot provide such assurances.

A. Challenges of Structured LL1 Model-Based HU

In the context of HU, the LL1 tensor decomposition formu-
lations often have structural constraints and regularization on
the latent factors, which usually come from physical meaning
and prior information of hyperspectral images. However, de-
signing structured LL1 tensor decomposition algorithms that
are tailored for the HU problem is a nontrivial task.

The first challenge lies in efficiency. The speed of the
existing algorithms are often unsatisfactory. One reason is
that all the existing LL1-based HU algorithms (see [22]-
[28]) adopted a three-factor parameterization of the LL1
tensor. Consequently, the classic alternating least squares
(ALS) framework (see [30]) is employed as the backbone
of their tensor decomposition algorithms. The nonnegativity
constraints on the endmembers and abundances are often
handled by the classic multiplicative update (MU) algorithm
[32]. This ALS-MU combination often leads to a considerably
high per-iteration complexity under typical HU settings. The
MU algorithm is also prone to numerical issues in some cases,
e.g., when there are iterates that contain zero elements [33].
In addition, MU typically needs a relatively large number of
iterations to converge to a reasonable solution [34].

The second notable challenge is that the existing LL1-based
HU algorithms have difficulties in enforcing many physically
meaningful constraints on the abundances of the endmembers.
The reason is that the abundance map of any endmember
is represented by the product of two latent matrices under
the three-block parameterization in existing LL1 based HU
algorithms. This makes imposing prior information of the
abundance maps (e.g., sparsity and spatial smoothness) fairly
inconvenient and oftentimes leads to cumbersome reformula-
tions, multiple slack variables and over-loaded tuning parame-
ters (see, e.g., [23], [24], [26])—which may further complicate
and slow down the algorithms.

B. Contributions

In [22]-[28], the lack of efficient LL1 decomposition al-
gorithms under structural constraints/regularization stands as
the computational bottleneck. In this work, we propose a
structured LL1 tensor decomposition algorithm that is tailored
for LMM-based HU. Our detailed contributions are as follows:
e A Two-block Optimization Framework for Structured
LL1 Tensor Decomposition-based HU. We propose to em-
ploy the idea in [35] to recast the three-factor tensor de-
composition problem into a rank-constrained two-factor MF
formulation. Under the context of HU, the two factors ex-
plicitly represent the endmembers and their abundances—as
in the classic MF approaches [2]. Hence, it is flexible and
convenient to impose constraints and regularization based on

their structural prior information (e.g., spatial smoothness of
the abundances). Based on the reformulation, we develop
an inexact and accelerated alternating gradient projection
(GP) algorithm that admits substantially lower per-iteration
complexity compared to the ALS-MU based structured LL1
approaches as in [22]-[28].

e Fast Solvers for Structural Constraints. A notable chal-
lenge of our two-block re-parameterization is that a number
of complex constraints are imposed on the latent factors.
This makes the subproblems in our two-block GP framework
nontrivial to solve. In particular, the nonnegativity, sum-to-one,
and low-rank constraints are all imposed on the abundance
factor to reflect its physical properties. In addition, the low
matrix rank constraint is added to the abundance maps under
the tensor model. Simultaneously enforcing these constraints
under our GP framework requires efficient and effective non-
convex set projection solvers. In this work, we propose two
alternating projection (AP)-based algorithms to handle the
projection problem of interest in a fast and accurate manner.
This serves as a critical integrating component to flesh out the
efficiency and effectiveness of the overall alternating GP-based
LL1 decomposition algorithm.

e Characterization and Validation. Unlike the existing LL1-
based HU algorithms (e.g., those in [22]-[28]) that often lack
convergence understanding, we characterize the convergence
behavior of the proposed two-block GP algorithmic frame-
work. Note that asymptotic convergence of alternating two-
block GP with acceleration was studied in [36]. Our analysis
takes a step further and offers a finite iteration characterization.
We test the proposed algorithm using a number of synthetic,
semi-real, and real datasets under a variety of performance
metrics. We compare our algorithms with a suite of existing
ALS-MU over various datasets for numerical validation, and
observe substantial efficiency and accuracy improvements at-
tained by the proposed approach.

Part of the work appeared as a conference paper in [37].
In this journal version, we additionally include 1) a faster
AP algorithm based on a convex approximation for the low-
rank constraint, 2) the consideration of incorporating the total
variation regularization on the abundance maps (to showcase
the flexibility of the proposed framework), 3) convergence
characterizations of the algorithm, and 4) extensive experi-
ments on semi-real and real datasets.

Notation. The symbols = (or X), x, X, and X denote the
scalar, the vector, the matrix, and the tensor, respectively. The
i-th, (i, )-th, and (i, j, k)-th element of € R!, X € RI*/,
and X € RIXJ*K are represented by [z];, [X];;, and
[X]:.j,x» respectively. The symbols X (7, :) and X (:, j) (or ;)
denote the i-th row and j-th column of a matrix X € RIxJ
respectively. X (¢, 7,:) denotes the (7,j)-th tube of X, and

X(:,:, k) denotes its k-th slab. || X|[|r = />, ;[ X7,

| X[|F = /22, ; x[X]7, 1 represent the Frobenius norms of

X and X, respectively. Given a matrix X € R/ and a
vector y € RX, the outer product X oy yields an I x J x K
tensor such that [ X oy]; j x = X (4, j)y(k). The nuclear norm
of X is denoted as the sum of singular values o;(X), i.e.,
I X« = >2;0i(X). omax(X) denotes the largest singular

and



value of X.

II. PRELIMINARY

We briefly introduce the pertinent background of the LMM
and the LL1 tensor decomposition model.

A. LMM-Based HU

Denote an HSI as Y € RIX/*K where I and J are
the dimensions of the vertical and horizontal spatial modes,
respectively, and K is the number of wavelengths. Here,
Y (:,:,k) € RI*/ represents the I x J spatial image captured
at the k-th wavelength. A pixel y, := Y (4,7,:) € RX is a
K -dimensional vector with ¢ = i+ (j — 1)I. Consider a noise-
free case, under the LMM, a spectral pixel y, is modeled as a
convex combination of several endmembers contained in the
pixel [2]. To be specific, we have

yo = Csy, (D
where ¢, € RX forr = 1,...,Rin C = [e1,...,cg] €
REXR denote the R materials’ spectral signatures (i.e., end-
members), and s, € R is the corresponding abundance vector
satisfying the following simplex constraint [1], [2]:

1's,=1, s, >0, ¢=1,...,1J. )
The constraints stem from the physical interpretation of the
LMM, where s, , is the proportion of endmember 7 in the
pixel £.

Putting the pixels together to form a matrix, we have

Y =CS, 3)
where Y = [y, ...,yss] obtained by setting y, = Y (4, 5, :),
and S = [s1,..., srs]. The LMM in (3) can also be expressed

using the following tensor notations:

R
Y =) S.0C(r), (4a)
r=1

(4b)

where C(:,r) = ¢, € RE, 1 is an all-1 vector with a proper
length, and o denotes the outer product. The matrix S, €
R*7is obtained by reshaping the row vector S(r,:) € R!/;
specifically, we have

S(r,:) = vec(S,)".

The matrix .S, can be interpreted as the abundance map of the
r-th endmember in the context of HU; see Fig. 1. LMM-based
HU aims at finding S, for r = 1,..., R (or, equivalently, the
matrix S) and C' simultaneously.

Fig. 1. Illustration of the LMM with R = 5 endmembers.
/ Ci

y || = 4B

Fig. 2. Illustration of the LL1 model.

B. CG-based MF, Ildentifiability

Under the matrix factorization model in (3), a large number
of MF-based methods have been proposed for HU; see the
overviews in [1], [2]. As a BSS problem, the effectiveness of
these MF-based HU methods heavily depends on the identifi-
ability of C and S from Y. Generally speaking, without any
constraints on the factors C' and S, the MF model in (3) is
not identifiable, even without noise, as one can easily find an
invertible @ such that

C=CQ>0 §=Q's>o,

but Y = 6’§ still holds; see more discussions on the
identifiability issues in [2], [20], [21].

The identifiability problem has been studied extensively,
primarily from a CG-based simplex-structured MF (SSMF)
viewpoint [21]. In a nutshell, it has been established that if
the abundance matrix S satisfies certain geometric conditions,
namely, the pure pixel condition [3], [4], [12], [13] and the suf-
ficiently scattered condition [7], [20], [21], then C and S can
be identified up to column and row permutations, respectively.
These important results reflect the long postulations in the
HU community, i.e., the Winter’s and Craig’s beliefs [9], [11].
Nonetheless, despite of the elegance of SSMF’s identifiability
research, these geometric conditions can still be stringent in
some cases, as they both assume the existence of some special
pixels. Hence, these conditions may not always hold in real
data; see, e.g., the “highly mixed cases” in [38].

C. LL1 Tensor Decomposition-Based HU

The work in [22] proposed a tensor decomposition method
for HU under the LMM. The employed LL1 model is similar
to the tensor expression of LMM in (4a)—but has an extra
low-rank assumption on the abundance maps. To be specific,
assume that each abundance map S, is a low-rank matrix such
that rank(S,) = L, < min{/, J}, then the expression in (4a)
can be re-written as follows:

R
Y => (A.B])oC(,1), (5)
r=1
where A, € R™*L+ B, € R/*Lr and S, = ATBTT. The
model in (5) is the LL1 tensor model [29], which is illustrated



in Fig. 2. It admits an important identifiability property [29]
as follows:

Theorem 1 (Identifiability of LL1). Assume that the latent
factors (A,., B,., C) in (5) are drawn from any joint absolutely
continuous distributions. Assume L, = L, IJ > L?>R, and

1
min ({LJ ,R) + min ({iJ ,R> + min(K, R) > 2R + 2.
Then, the LL1 decomposition of Y is essentially unique almost
surely.

The “essential uniqueness” means that if there exists
(A,,B,,C) satisfying Y = Zle(AT(BT)T) o C(:,7),
we must have § = STIA, C = CIIA~', where II is
a permutation matrix, A is a nonsingular diagonal matrix,
S = [vec(Sy),. Vec(SR)] , S, = A, (BT)T, S =
[vec(S1),. .. ,vec(SR)} ,S,. = A, B, and the vec(-) denotes
the “vectorization” operator. Note that if S has known column
norms as in hyperspectral imaging [cf. Eq. (2)], then the
scaling ambiguity A is automatically removed.

Theorem 1 asserts that the abundance maps (S,’s) and
the endmembers (C) are identifiable up to a permutation
ambiguity if the abundance maps have a relatively low rank.
In the context of HU, because of the smoothness and con-
tinuity of the materials’ spread over the spatial domain, the
abundance maps are often approximately low rank matrices;
see an example in Sec. V-B. The identifiability conditions
in Theorem 1 are different from those geometric conditions
(e.g., the pure pixel condition and the sufficiently scattered
condition) used in CG-based SSMF [21], and thus the LL1-
based approach is a valuable complement to existing SSMF-
based HU methods. In addition, the identifiability under the
LL1 decomposition model can even hold when C' does not
have linearly independent columns, but rank(C) = R is often
needed in SSMF [2], [21].

D. Challenges of Existing LL1-based HU Algorithms

Directly applying the vanilla LL1 tensor model to LMM-
based HU without considering important physical constraints
in HU (e.g., nonnegativity of the endmembers) may be
undesirable—as using such priors are often vital when fend-
ing against noise. The work in [22] proposed the following
criterion:

2

min =

R
{AB}02 X:ABT o C(:,r)

2

F
R
> AB]-117|| | (6)
r=1 F

st. A, >0, B, >0, C>0.

The nonnegativity constraints on the latent factors are added
per the endmembers’ and abundances’ physical meaning. The
second penalty term in the objective function is for approxi-
. L R
mating the abundance sum-to-one constraint, i.e., > ", S, =
117 in (4). Similar formulations are also used in a number
of follow-up works; see, e.g., [23]-[28]. This line of work
encounters a number of challenges:

e High Per-iteration Complexity. The work in [22] and
its variants in [23]-[28] adopt the ALS-MU algorithms, i.e.,
alternately update A = [A4,..., ARg], B=[By,...,Bg]and
C using matrix unfoldings of Y, and use MU to enforce the
non-negative constraints. The first challenge of ALS-MU lies
in computational complexity. Because of using A € RIXLE,
B ¢ R/*ER and C € RE*T a5 factors of the parameteri-
zation and the ALS framework, the ALS-MU algorithm costs
O(IJKLR+IKL?*R? + JKL?R?) flops at each iteration—
which is fairly expensive since LR can easily reach the level
of 102 ~ 10% in many cases of HU. This scheme essentially
treats the LL1 decomposition problem as a canonical polyadic
decomposition problem [39], [40] with a fensor rank of LR,
which is very hard when LR is large.

e Slow Convergence and Numerical Issues of MU. All the
algorithms in [22]-[28] employed the MU algorithm for han-
dling nonnegativity constraints on A, B and C'. Essentially,
MU updates one factor using the majorization minimization
method but with a very conservative step-size such that the
nonnegativity is satisfied; see [32]. Thus, MU often takes
a large number of iterations to attain a sensible result and
perhaps worsens the efficiency [34]. In addition, as shown in
[33], the MU algorithm is prone to numerical issue if there is a
zero element in any iterates of A, B or C. This is problematic
in the context of HU, as S, = A, B] may contain many zeros
due to the spatial sparsity of the abundance maps

o Difficulty in Incorporating More Priors. The existing LL1-
based HU methods adopted the three-factor parameterization
using A = [Ay,...,AR], B = [By,...,Bg| and C as
in (5). However, the parameters A, and B, do not have
physical meaning, and the abundance map of material 7 is
represented as ATBI, i.e., the product of two matrices. This
introduces extra difficulties in incorporating prior information
of the abundance maps—but using prior information is often
critical for performance enhancement. The works in [22]-[28]
used the following optimization criterion (and some variants):

2

R
- T
{Arr%n}c 5 2:: (A.B)oC(,r) (7)

2

F

R
Z A,«B—,,r —11" + )\Zreg (ATB:)

r=1 F r=1

st. A, >0, B, >0, C>0,

where reg(A, B,) represents different regularization terms,
e.g., sparsity ||A,B/|; and low-rank ||A,B]/]. in [27], to-
tal variation (A,B])rv in [23], and the weighted sparsity
regularization terms in [24], [25]. From an optimization per-
spective, handling the term reg (A,,BTT ) is nontrivial. Hence,



the work in [23] further recasts the problem in (7) as follows:
2

R
1
AR QHY—Z(ATB:)OC(:J) (8)
{E,.}, U,V r=1 r
5| & ? R
+ 3 ;ATBI— 11" F+>\;reg (ET)

w 2
+= (IB, - v V][l + U - Al%.+ |V - BI)
st. A, >0, B,>0, C>0,

where FE, is introduced to replace the product AT,BI, ie.,
E, =~ ATB;,r is desired, so that the regularization on the
abundances could be handled. In addition, the U and V
variables are introduced to avoid constraints when optimizing
E,.. A number of works, e.g., [26]-[28], used similar ideas
to reformulate their respective problems. Such reformulations
make sense, but the many added extra regularization terms,
new auxiliary variables and hyperparameters make the op-
timization procedure and parameter tuning even more com-
plicated. Furthermore, the backbone of the algorithm is still
ALS-MU, which means that these algorithms share the high
per-iteration complexity and slow convergence challenges as
the plain-vanilla ALS-MU algorithm in [22].

III. STRUCTURED LL1 DECOMPOSITION FOR HU

To tackle the aforementioned challenges in Sec. II-D, this
work aims at providing an alternative LL1-based HU algo-
rithmic framework. To be specific, we propose to employ
a constrained two-block parameterization of the LL1 tensor
model. Under this parameterization, a two-block alternating
optimization strategy is proposed. The new algorithm empir-
ically exhibits a much faster convergence speed, perhaps be-
cause two-block alternating optimization often converges un-
der milder conditions relative to the multi-block counterparts
[41]. More importantly, the two-block structure circumvents
the large-scale subproblems under the three-block based ALS
frameworks in prior works. The new formulation also admits
the flexibility to add regularization and structural constraints
on the abundance maps. Moreover, the new formulation al-
lows us to propose efficient alternating gradient projection
algorithms to deal with the block optimization subproblems—
which further improves effieciency and accuracy.

A. LL1 via Constrained Matrix Factorization

Our idea starts from a two-block parameterization of the
LL1 model in (5). To be specific, the following equivalence is
readily seen:

{S, e R™*/|S, = A, B}, A, ¢ R B, ¢ R7*1}

= {8, € R’ |rank(S,) < L}. )
The above equivalence allows us to re-express the LL1 model
in (5) as follows [35]:

R

Y = Z S, o ¢, rank(S,) < L. (10)
r=1

By (9), the two-block tensor representation in (10) is equiv-
alent to the three-block representation in (5). Using (10), we
propose the following criterion for LL1-based HU:

R
1 2

(11a)
r=1

st. S, € Aig, 7=1,..., R, (11b)

§>0,1S=1", C>o0, (11c)

where S, = mat(S(r,:)) is the abundance map of endmember
r, mat(-) denotes the “matricization” operator that reshapes
the row vector S(r,:) to an [ x J matrix, 6, > 0 is a
regularization parameter, ¢(-) is a regularization term added
on the abundance map (e.g., sparsity, weighted sparsity, and
total variation as used in [22]-[28]), and the set Apg is for
adding a low-rank (or approximate low-rank) constraint onto
S, which will be specified later.

The motivation for using this reformulation is as follows.
First, using the two-factor representation of LL1 model can
effectively avoid large-size subproblems as in the ALS frame-
work (in particular, the subproblems for updating A and B),
and thus could substantially reduce the complexity of each
iteration. Second, we have replaced A, B,’ by S, under the
low-rank constraint, that makes it conveniently to add the prior
information on S, (the abundance map). Third, the works in
[22]-[28] used a quadratic algproximation to enforce sum-to-
one constraint, i.e., 6/2|| > A, B] — 117||%, which does
not necessarily output abundance maps that satisfy the sum-
to-one constraint. We keep the sum-to-one requirement as a
hard constraint, which spares the tuning of § and can always
have the sum-to-one property satisfied. In addition, compared
to reformulations like (8), our formulation has avoided using
auxiliary variables and additional tuning parameters, which
may be easier to implement by practitioners.

Remark 1. The formulation in (11) can be understood as
a constrained matrix factorization-based re-expression of the
LL1 tensor decomposition problem. We stress that the refor-
mulation is the means for realizing the LL1 tensor decompo-
sition objective (i.e., to find the factorization model in (5)),
but the theoretical foundation for using this formulation still
lies in the identifiability of LL1 tensor decomposition model
(cf. Theorem 1). The key ingredient for linking (11) with (5)
is the low rank constraint on S,..

B. Proposed Approach: Alternating Gradient Projection

In this section, we propose a first-order optimization al-
gorithm to handle (11). To demonstrate its convenience of
incorporating structural constraints, we consider a 2D spatial
TV regularizer (see the definition in (16) and details in Sec.
II-B1) to exploit the spatial similarity between the neighbor-
ing abundance pixels.

Our idea is to deal with C' and S in an alternating manner.
In iteration ¢, we use the following gradient projection (GP)
step to update C":

CY  max {C(t) - a(t)G(é), 0} , (12)



where max {-, 0} is the orthogonal projector onto the nonneg-
ativity orthant, a(*) and Gg) are the pre-designed step size and
gradient w.r.t. C, respectively, where we have

GY) = c8M (ST _ y(§M)T, (13)

For the S-subproblem, assume that o(-) is differentiable.
Then, the GP step w.r.t., S can be expressed as follows:

S+ Projg (s“) - 5<t>Gg)) : (14)

where the notation Projg(Q) means finding the projection of
Q on the set S, ) and Gg) (shown in Appendix A) are the
step size and the gradient w.r.t. S, respectively, and the set
S C REXIJ ig defined as

S={S5|§>0,1'8=1",8, € Aig, r=1,...,R}. (15)

The GP step in (14) is conceptually simple. However, to
implement (14), there are two challenges that need to be
carefully addressed. First, the TV regularization ¢(-) should
be designed to have a gradient. Second, the projection onto
Apr should be easy to compute. Our designs are detailed in
the following:

1) £y Function-Based TV Regularization: To address the
first challenge, we employ the ¢, function-based smoothed TV
regularization in [42], which is defined as follows:

@(Sr) = Sﬁq,s(Hach) + @q,s(HyQT)a (16)

where q, = S(r,:)" and ¢, .(x) = S ([z]? + )% with 0 <
g <1ande > 0. The matrices H, = H®I and Hy, = I®Q H
are the horizontal and vertical gradient matrices, where I €

R/*7 is an identity matrix and
1 -1 0 -~ 0 O
o 1 -1 0 0
H= : : : : c RIXI,
o o0 -~ 0 1 -1
-1 0 -~ 0 0 1

In the design of ¢(S,) function, the ¢, function is an effective
tool to promote the sparsity when ¢ < 2 [7], [8]. Meanwhile,
we set the parameter € > 0 to make the function smooth and
the objective function in (11) continuously differentiable.

2) Low-rank Constraints: Some options of (11b) include

ALr = {S, € RP>|rank(S,) < L} (17)
and the nuclear norm-based approximation
Arr = {S, € RS, ||, < L}, (18)

where L € R4+ is a tunable parameter related to the rank of
S, as the value of the nuclear norm is not exactly the rank.
The expression in (17) is an exact low-rank constraint as in
the LL1 model, but it presents a nonconvex combinitorial con-
straint in the criterion in (11). The latter is often used in data
analytics (e.g., recommender systems) to promote low rank. It
serves as a convex approximation for the low-rank constraint
and often helps design convergence guaranteed algorithms. In
this work, we will design an algorithmic framework that can
effectively work with both (17) and (18).

3) Projection Algorithm for (14): To solve (14), one needs
a solver to project a matrix onto the set

S = Asplx NALR-

where Agpp := {S € REXIJ | 17§ = 1T, § > 0}. To this
end, we propose an alternating projection (AP)-based method.
More specifically, the projection uses the following iterations:

FD  Proj, (W), (19)

WD o Proj, (F<k+1>) , (19b)
where W(©) = gt _ B(t)Gg) and k is used as the it-
eration index of the AP updates. The second subproblem,
i.e., (19b), admits an efficient solver. That is, projecting a
column of F(*+1) onto the probability simplex can be solved
in O(Rlog R) flops in the worst case by a water-filling type
algorithm; see [7] and the references therein. The subproblem
in (19a) also admits simple solutions. To be specific,

1) if (17) is used, then projecting W (¥) onto the exact low-

rank constraint is computed via

FO) B ns®a: 01 v e1:0)7,
(20)
where (U, =8 vy svd(W®), which is
based on the Eckart—Young-Mirsky theorem [43]; and
2) if (18) is used, then the projection is computed by

where (U 58 Vi) « svd(W®) and
i]g;,) — argmin ||§3 - E%}H%, (22)

>>0,17diag(Z)=L
which is again a projection onto simplex problem that
costs at most O(min{I, J}log min{I, J}) flops (if I <
J)—see more discussions in [44].
Note that only relatively simple matrix operations are involved
in the above procedure. Hence, when using both (17) and (18),
the AP algorithm in (19) can be carried out efficiently.

C. Extrapolation-Based Acceleration

As a first-order optimization algorithm, the proposed al-
ternating gradient projection algorithm in (12)-(14) may take
many iterations to get a reasonably “good” result in practice.
Hence, in our implementation, the extrapolation technique
is employed to accelerate the proposed algorithm without
increasing the complexity of each iteration. To be specific,
in each iteration, we compute the partial gradients w.r.t. some
extrapolated points C*+1) and §(**1  instead of the gradients
of C**1) and S(*+Y . For example, the extrapolated point of
C® is defined as follows:

ct) — o+ 4 (et _ o)y,
where ugt) is a parameter that combines the the current iterate
and the previous iterate to form an “extrapolation”. Using the
extrapolated point, the update rule in (12) is replaced by

CY  max {C'(t) — a(t)Gg;), 0} .

(23)

(24)
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Fig. 3. The acceleration attained by extrapolation of GradPAPA.

Similarly, the S-update is replaced by

S““J«fmqs(s®gfﬂﬂag), (25)

where S® is defined in the same way as in (23) with its own
sequence ugt). The extrapolation technique has been proven
powerful in first-order convex optimization. Algorithms like
gradient projection and proximal gradient typically need ¢
iterations to reach an O(1/t)-optimal solution (i.e., a solution
that is O(1/t) away from the optimal solution by some
distance metric) in the absence of strong convexity. The
extrapolation can provably reach O(1/t?)-optimal solutions
with the same number of iterations—yet the additional flops
are nearly negligible; see [45]. For nonconvex and multiblock
problems, extrapolation was also shown useful [46].

Fig. 3 compares the objective value curves of the original
alternating GP algorithm and the accelerated one. The results
are obtained by averaging from 10 random trials, and the
experiment aims at unmixing an HSI (size 500 x 307 x 166)
with 40 dB additive Gaussian noise; please find more details
in Section IV. The noise at each trial is generated randomly,
and the corresponding initialization is obtained by applying
successive projection algorithm [47] on the observed HSIL
One can see that the accelerated algorithm takes about 100
iterations to get a fairly low objective value (i.e., where the
objective value = 120), while the unaccelerated version uses
more than 800 iterations to reach the same level. Therefore,
throughout the experiment section, we adopt the accelerated
version.

The proposed algorithm for (11) is summarized in Algo-
rithm 1, which is referred to as the gradient projection alter-
nating projection algorithm (GradPAPA). The two versions of
algorithm for handling low-rank (LR) and nuclear norm (NN)
constraints in (17) and (18) are termed as GradPAPA-LR and
GradPAPA-NN, respectively.

D. Convergence Properties

Unlike the ALS-MU algorithms in [22]-[28] that may
have convergence issues, the proposed GradPAPA algorithm’s
convergence properties are better understood. Indeed, the
GradPAPA algorithm falls under the umbrella of inexact and
extrapolated block coordinate descent (BCD) [46], [48]. The
works in [46], [48] showed such algorithms asymptotically
converge to a stationary point, under some conditions—but
the finite iteration complexity was not shown. In this work,
we show that, with properly pre-defined parameters o(*) and

Algorithm 1: GradPAPA for solving (11).

Input: HSI Y'; starting points C© and S pre-defined
sequences of ,ug’f), ,A;), a®, and g®.

1: Parameters: ﬂ/io) = véo) =1,0,,4q, ¢, Ly, and L.
2: CO =, §O =80 —q.

3: repeat

4: %% update C %%

5. CUtD max{é(t) — a(t)Gg>, 0};

6. Ot — ot+1) + Ngt)(c(tﬂ) _ C(t));
7: %% update S %%

g WO = §g® _ ﬂ(”G’g);

9

: repeat
10: if choosing cons. (17) do
11: update F*V by (20);
12: if choosing cons. (18) do
13: update F¢+D by (21);
14: WD Proja_ . (F(k+1));

15: until satisfying the stopping rule;
16: U = Wk+b),
17: §0HD = gD 4 (S _ g,

18: t=1t+1;
19: until satisfying the stopping criterion.

Output: C = C® and S = S®.

), GradPAPA is guaranteed to find a stationary point in a
sublinear rate, if the projections in (17) and (18) are solved.

To see our result, we define Z = (C,S). Let J(Z) and
C(Z) be the objective function of (11) and the indicator func-
tion of its constraints, respectively. This way, the optimization
problem is written as

mZin J(Z)+C(Z). (26)

According to [49, Lemma 2.1], the gradient of the objective
function in (26) is:

AT (Z2)+C(Z))
=[(0cI(C,8) +dCc(C)), (95T (C,8) +dCs(S))']',

where Cc(C') and Cg(S) are indicator functions of the con-
straints on C' and S, respectively.

We adopt the definition of e-stationary point in [50]:
Definition 1. A point Z is an e-stationary point of the
optimization problem in (26) if

dist (O,azj(Z) + E)ZC(Z)) <e,

where 0z denotes the subgradient with respect to Z.

It is readily seen that when € is small, the definition covers
a vicinity of any stationary point of Problem (11). We also



define
L = 0% (S9)
LY = 02 (CHV) + qmax b, (HI UV H, )
+ g Oy (HyT Wt)Hy) ,

where U and V,\*) are diagonal matrices with [Ur(t)]l i =
([qu% +)% and [V = ((H,a"? + o),
r =1,..., R. Using these notations, we present the following
convergence guarantee:

Proposition 1. Assume that J* = min (26) is finite, that 0 <
inf, o < sup, a¥ < 0o and 0 < inf, 3 < sup, B < oo
for all t, that there exist cq, . . ., ¢4 such that CQL(th) < 1/04(” <
clL(ct) and C4Lgf) < 1/6(” < 03Lg) in all iterations, and that
the projection in (25) is solved exactly. Then, it holds that

s (0007 (709 s (7)) < &
where

Z(O) j*) /027

C= Cl\/4

Cy = max{fiy, fiz, 1} max {(c; + 1) sup oW (¢34 1) sup ﬂ(t)},
¢ ¢

Co =min {(1 - Tf)/Sgp a® (1- T%)/Sltlp B,

in which the constants satisfy

) < n\/ (&™) / (L) < i, (27a)
) < 72\/ (CBLS*”) / (C4L(t)) < fia, (27b)

and m < 1, 75 < 1 for all ¢.

The proposition asserts that the solution sequence produced
by Algorithm 1 converges to an e-stationary point in O(1/€?)
iterations. The proof of Proposition 1 is relegated to Appendix
B. Our convergence analysis is reminiscent of the technique in
[50]. However, the work in [50] is concerned with single block
optimization with convex constraints. Our proof generalizes
the results to cover multiple block cases with nonconvex
constraints.

Remark 2. We hope to remark that the result in Proposition 1
is built upon the premise that (14) can be solved to optimality.
When the nuclear norm based constrained is employed (i.e.,
in the GradPAPA-NN version), this assumption is not hard
to be met, since S = Agpix N Apr is a convex set if Arg
is from (18). If Apr is from (17), then S = Agpix N Arr is
nonconvex. Projection onto this set is not guaranteed in theory
using the proposed AP algorithm. Interestingly, our empirical
study shows that AP almost always finds a feasible solution in
S = Aspix N Arr. We leave theoretical underpinning of this
nonconvex projection step to a future work.

Remark 3. It is important to note that the sequences {p(lt)}
and {ug)} need to be specified for GradPAPA. By Proposi-
tion 1, the sequences should be selected so that (27a) and
(27b) are satisfied. This is nontrivial, since four constants

TABLE I
COMPLEXITY OF EACH TERM OF GRADPAPA.
Terms Complexity
CcHsO (ST _y(§®)T O(IJKR))
(€N TctHs®) — (ct) Ty O(IJKR)
H UV H.q", BV H,q" O(I2JR)
Computation of ") and 3() O(R?)
Projection of (19b) O(IJRlog R)
Projection of (20) O(IJLR)
Projection of (21) O(IJ min{l, J}R + min{I, J}logmin{/, J})

TABLE 11
COMPARISON OF THE COMPLEXITY BETWEEN ALS-MU ALGORITHMS
AND GRADPAPA.

Methods
ALS-MU algorithms
GradPAPA-LR (no TV)
GradPAPA-NN (no TV)
GradPAPA-LR (with TV)
GradPAPA-NN (with TV)

Complexity
O(IJKLR+IKL?’R? + JKL?’R?)
OUJRE+mlJR(og R+ L))
O(IJKR+ m{IJR(min{I, J} + log R) + min{I, J} log min{7, J}))
O(JR({ + K) + mIJR(og R+ L))
O(IJR(I + K) + m(IJR(min{I, J} + log R) + min{7, J} log min{7, J}))

c1,...,cq are involved. Nonetheless, in practice, we find that
using Nesterov s extra ;)olation sequence [45] as a heuristic to
select {M1 } and {MQ } works fairly well—and spares us the
computations to determine the two sequences. Hence, in this

work, we simply set
2
1 4( (t))
= 1 =1 ey T\

Hi = 7(t+1)’ i - 9 ’

K2

with %(0) = 1 for ¢« = 1,2. In addition, we choose the step
sizes a® and ™) as a®) = 1/Lg)7 B = 1/Lg) as often
done in the unextrapolated alternating gradient descent-based
algorithms, which also works well in practice.

E. Computational Complexity

The detailed complexity analysis of the proposed A]gorlthm
1 is listed in Table I. The computation of the gradients G(
and G( takes O(IJKR) and O(IJR(I + K)) flops, respec-
tively. In the computation of the stey size ), computing
Omax (H," Ur(t)Hz) and o (H, v, i H,) may increase the
computational flops at each 1teratlon In this work, instead
of computing the exact values, we just compute their upper
bound. For example, we have

Omax (H UV H,) < 0o (H, )0 (U 0 (H),

where amax(U,Et)) is simply chosen to be the largest value
of the diagonal matrix Ur(t) and the other two terms are pre-
computed. Therefore, computing o) and S takes O(R?)
flops, but R is normally small. In the AP solver, (19b) costs
O(IJRlog R) flops via the water-filling type algorithm, the
SVD in (20) takes O(IJLR), and the projection in (21) takes
O(IJ min{I, J}R + min{/, J} log min{I, J}).

The complexity of each iteration of the proposed algorithms
are summarized in Table II. To be specific, the proposed
algorithms take at most O(I JR(I+K)+m(IJR(min{I, J}+
log R) + min{I, J}logmin{I,J})) flops at each iteration,
where m is the number of AP iterations—usually only 3 to 6
(see Table IV). In addition, L is a tunable parameter related
to the nuclear norm of S, and admits the same magnitude as
the size of HSI data in the numerical experiments.



It is worth noting that the proposed algorithm can be
much more lightweight relative to the ALS-MU algorithms in
[22]-[28]. Even the vanilla ALS-MU algorithm in [22] takes
O(IJKLR + IKL?*R? + JKL?R?) flops in each iteration.
To see how much our algorithm could save in terms of per-
iteration complexity, consider an example where LR ~ LR ~
I = J = K. In this example, one can see that ALS-MU
takes O(I*) flops per-iteration, but our algorithms only cost
O(I3R) flops in each iteration—no matter with or without
the TV regularization. Note that I is often not small, thus
saving an order-of-magnitude complexity w.r.t. I can be quite
significant, as one will see in the experiments.

IV. EXPERIMENTS

In this section, we showcase the effectiveness and efficiency
of the proposed GradPAPA methods using experiments on
synthetic data, semi-real data, and real data.

A. Experiment Settings

1) Baselines: We use a number of relevant baselines.
These include SISAL [5], MVCNMF [6], MVNTF [22],
MVNTFTV [23], SSWNTF [26], and SPLRTF [27]. Note that
the first two methods are classic low-rank matrix factorization-
based HU algorithms—considering the minimum volume con-
straint on the spectral signatures; the remaining four methods
are ALS-MU based LL1 algorithms that MVNTF [22] handled
the formulation shown in (6), MVNTFTYV [23], SSWNTF [26],
and SPLRTF [27] worked with different regularization terms,
e.g., total variation in [23], weighted sparsity in [26], and
sparsity and low rank in [27].

2) Algorithm Settings: The proposed GradPAPA involves a
set of parameters, i.e., the endmember number R, the param-
eters L and L related to S.., and the regularization parameter
{6,}. The number of endmember R can be selected by the
existing estimation algorithms, e.g., [12], [51]. The rank L is
selected as the maximal number which satisfies the condition
shown in Theorem 1. The parameter L is chosen by a heuristic,
namely, L = 1.5 x max{I, J, K}. The parameter 6 is selected
from one of values in {z x 107*} where z = 1,3,5,7,9 in the
synthetic and semi-real experiment. We present the best result
in terms of the estimation accuracy over the z’s, but one will
see that there is a wide range of 6 that gives similar results
(cf. Fig. 14); that is, the algorithm seems not to be sensitive
to this hyperparameter. In the real experiments, we set 6 as
10~* in the real-data experiment. For the parameters in the TV
regularization (16), we fix ¢ = 0.5 and € = 1073, In addition,
when the relative change of the iterates of the latent factors
is smaller than 10~3, we stop the AP solver in the proposed
algorithms.

For the parameter settings of baselines, we mainly follow
the respective papers’ suggestions and make proper adjust-
ments to enhance their performance under our settings. The
baselines and proposed algorithms are terminated when the
relative change of the objective value is smaller than 10~°
Since when handling large-scale problems, the ALS-MU based
algorithms typically run with extra lengthy time but do not
reach this stopping criterion, we also set the maximal number

= = = MVNTF (Gau)
MVNTF (SPA)
= = = GradPAPA-LR (Gau)) 10
——— GradPAPA-LR (SPA)
GradPAPA-NN (Gau.)
GradPAPA-NN (SPA) |~ = o _ 10

= = = MVNTF (Gau)
——— MVNTE (SPA)

MSE of C
MSE of C

10°¢ - ‘---- 0° k """" S oo
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Time (seconds) Time (seconds)
@R=5 (b) R=10
Fig. 4. The average MSE values against time of MVNTF and GradPAPA.
TABLE IIT =N
FEASIBILITY PERCENTAGE OF ESTIMATED S.
Initialization Gaussian Init. SPA Tnit.
Constraints Methods R=5 R=10 R=5 R=10
MVNTEF (p = 10~2) 10.38%  12.69% 10.09%  11.72%
STO MVNTEF (p = 10?) 0.010% 0.014% | 0.011%  0.006%
GradPAPA-LR (p = 107°) 100% 100% 100% 100%
GradPAPA-NN (p = 10~5) 100% 100% 100% 100%
MVNTF 100% 100% 100% 100%
LR GradPAPA-LR 99.88%  99.90% | 99.88%  99.90%
GradPAPA-NN 97.94%  97.02% | 97.94% 97.22%

of iterations to be 1,200 (resp. 2,500) for the synthetic data
experiments (resp. semi-real and real data experiments).

3) Metrics: In the synthetic and semi-real experiments, we
mainly use _ the spectral angle distance (SAD) [22] of the
estimated C’ and the mean squared error (MSE) [7] of the
estimated C and S as the performance metrics. The SAD of
the estimated C is defined as follows:

1R e eT
SAD = min — Z arccos | — 2 )
mell R llerllzllexr, |2

r=1

and the MSE of the estimated C is defined as follows:

~ 2
Cr

"

MSE = mln —
lex, |2

IICTIIz 2
where II is the set of all permutation of {1,...,R}, ¢, and
Cr, are the ground truth of the r-th column of C and the
corresponding estimate, respectively. The MSE of S is defined
in an identical way using its transpose.

For the real data experiment, it is hard to measure the
performance quantaitively due to the absence of ground-truth.
Therefore, we qualitatively comment on the performance of
the estimated factors using visual inspection. In addition, we
use the pure pixels manually extracted from HSI data to
measure the quality of the estimated endmembers.

B. Synthetic Data Experiments

We first use a set of experiments to test the basic proper-
ties of GradPAPA, e.g., accuracy, sensitivity to initialization,
convergence speed, and feasibility enforcing. In these exper-
iments, we set § = 0 and compare the GradPAPA algorithm
with the plain-vanilla ALS-MU algorithm, namely, MVNTF in
[22], that also does not have any structural regularization on
the abundances except for the nonnegativity and sum-to-one
constraints.



TABLE IV
THE AVERAGE NUMBER OF AP ITERATIONS () UNDER DIFFERENT R’S
AND INITIALIZATION SCHEMES.

Initialization Gaussian Init. SPA Init.
R=5 R=10| R=5 R=10
Ave. AP iterations (LR (17)) 6 6 3 4
Ave. AP iterations (LR (18)) 2 2 2 2

1) Synthetic Data Generation: The procedures of gener-

ating C and S are detailed as follows: 1) we generate two
matrices E; € RE*E and E; € RF*!/ following the i.i.d.
Gaussian distribution with unit variance and zero mean; 2) we
use the AP algorithm in (19) on the matrix E5 to produce
S satisfying the low-rank structure (i.e., S € Apg in (17));
similarly, we threshold the negative values of E; to obtain the
nonnegative matrix C'; 3) finally, we synthesize the LL1 tensor
Y < CS. In addition, the i.i.d. zero-mean Gaussian noise is
added to the synthetic tensors. The size of the synthetic tensor
issettobe ] =J =K =100, L = 30, and R = 5 or 10.
We test two initialization strategies, including i.i.d. Gaussian
initialization and successive projection algorithm (SPA)-based
[47] initialization. The details of SPA-based initialization are
as follows: 1) we use the spectral pixel extraction method
SPA to generate C and threshold its negative values to get the
initial endmembers C(©); 2) we generate the initial abundance
maps by S = ((C(O))TC(O))Jr (CONTY, where (CO)T is
the pseudo-inverse of C(*); 3) we use the nonnegative matrix
factorization method by hierarchical alternating least squares
method [52] to get the latent factors {A,, B} |; 4) finally,
we obtain the initial abundance maps ST0 = ATB: .
__2) Results: Fig. 4 shows the MSE curves of the estimated
C against time by the algorithms. The results are averaged
from 20 independent trials under SNR=25dB. A number of
observations are in order. First, for both R = 5 and R = 10,
the proposed GradPAPA algorithm performs much better than
the ALS-MU based MVNTF algorithm in terms of accuracy
and speed. Second, using the same Gaussian initialization,
GradPAPA-NN converges faster than GradPAPA-LR to reach
the same MSE level. In particular, when R = 10, GradPAPA-
NN converges to an MSE level close to 10~° using less than
5 seconds, but GradPAPA-LR needs 40 seconds to reach a
similar level. Third, using SPA can help both GradPAPA-NN
and GradPAPA-NN to converge even faster. In particular, the
SPA initialization further speeds up GradPAPA-LR by about
75%. Although MVNTF works to a certain extent, its MSE
is more than three orders of magnitude higher than those of
GradPAPA-NN and GradPAPA-LR in all cases.

Table III shows how often the solutions obtained by the
algorithms satisfying the structural constraints on latent factors
in the context HU—i.e., the nonnegativity of S and C,
the sum-to-one constraint of the abundances, and the low-
rank constraint on S,. Note that nonnegativity is relatively
easy to enforce. Hence, we look into the satisfaction of
two harder to enforce constraints, namely, the sum-to-one
(STO) constraint on the columns of S and the low-rank (LR)
constraint on S,.. To measure the STO feasibility, we calculate
the percentage of the estimated abundance vectors (i.e., Sy)
satisfying |17s, — 1| < p, where p is specified in Table III.

TABLE V
SAD, MSE, AND TIME PERFORMANCE ON THE TERRAIN DATA
(SNR=40DB) BY THE ALGORITHMS.

Methods SAD of C MSE of C MSE of S Time (min.)
SPA 0.1468 £ 0.0008 | 0.0318 £ 0.0005 | 0.0701 £ 0.0025 —
MVCNMF 0.1240 £ 0.0003 | 0.0251 £ 0.0001 0.0162 £ 0.0001 —
SISAL 0.0897 £ 0.0041 0.0134 £ 0.0016 | 0.0077 £ 0.0016 —
MVNTF 0.1437 £ 0.0107 | 0.0292 £ 0.0044 | 0.0475 £ 0.0143 | 79.85 £ 0.92
MVNTFTV 0.1495 £ 0.0094 | 0.0285 £ 0.0036 | 0.0504 + 0.0130 101.80 + 4.98
SSWNTF 0.1479 £ 0.0088 | 0.0290 £ 0.0035 | 0.0463 £ 0.0122 82.00 + 1.04
SPLRTF 0.1507 £ 0.0145 | 0.0300 £ 0.0040 | 0.0571 £ 0.0163 | 142.68 &+ 1.23
GradPAPA-LR | 0.0819 4+ 0.0016 | 0.0094 + 0.0004 | 0.0046 + 0.0002 6.32 £ 0.38
GradPAPA-NN | 0.0727 +£ 0.0005 | 0.0069 + 0.0001 | 0.0039 + 0.0001 5.09 + 0.05
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Fig. 5. The estimated SAD of C and MSE of C and S for Terrain under
different noises.

The LR constraint satisfaction is measured by averaging
(L o7/ SommtT} 1y 5 100% over = 1..., R, where
o7 is the ¢-th singular value of the estimated .S,.. One can see
that MVNTF has difficulties in satisfying the STO constraint,
maybe because it uses a “soft” reglularization to enforce
this requirement [cf. Eq. (6)]. However, GradPAPA-NN and
GradPAPA-LR almost achieve 100% feasibility for STO and
LR. More notably, such feasibility can be performed at a
relatively small cost: Table IV shows that for the S projection
problem, GradPAPA-LR only needs about 6 AP iterations and
GradPAPA-NN needs about 2 AP iterations.

C. Semi-Real Data Experiments

1) Semi-Real Data: These datasets are “semi-real” because
the pixels are synthesized exactly following the LMM model
using abundance maps and endmembers extracted from real
datasets. This type of semi-real data helps validate the effec-
tiveness of our algorithms under controlled (yet realistic) data
generating processes and noise levels.

The first experiment uses the Terrain data. This dataset
is acquired by the HYDICE sensor. After removing water
absorption-corrupted bands, we obtain an HSI data that has
a size of 500 x 307 x 166. This data contains 5 prominent
materials, namely, Soill, So0il2, Tree, Shadow, and
Grass, so the number of endmembers is set to be R = 5.

TABLE VI
SAD, MSE, AND TIME PERFORMANCE ON THE TERRAIN DATA
(SNR=10DB) BY THE ALGORITHMS.

Methods MSE of C MSE of C MSE of S Time (min.)
SPA 0.4184 £ 0.0087 | 0.2169 £ 0.0738 | 0.2300 £ 0.0396 —
MVCNMF 0.3813 + 0.0481 0.1782 £ 0.0497 | 0.2053 £ 0.0558 —
SISAL 0.5461 + 0.0449 | 0.3298 £ 0.0900 | 0.1500 + 0.0236 —
MVNTF 0.2879 £ 0.0337 | 0.1104 £+ 0.0619 | 0.1769 + 0.0960 | 59.02 + 21.20
MVNTFTV 0.3180 £ 0.0437 | 0.1312 £ 0.0626 | 0.1815 + 0.0807 13593 + 3.18
SSWNTF 0.3100 £ 0.0292 | 0.1469 £ 0.0496 | 0.2061 £ 0.0459 109.40 + 2.47
SPLRTF 0.2866 £ 0.0638 | 0.1066 £ 0.0425 | 0.1862 £ 0.0663 176.88 £ 4.05
GradPAPA-LR | 0.2631 + 0.0367 | 0.0965 + 0.0270 | 0.1318 + 0.0263 12.85 + 0.43
GradPAPA-NN | 0.3287 £ 0.0797 | 0.1352 £ 0.0634 | 0.1375 £ 0.0349 7.82 + 1.01

The second dataset we used is a subscene of the Urban data
with a size of 307 x 307 x 162. This dataset is obtained by
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Fig. 6. The estimated abundance maps of Terrain data (SNR=40dB) by different methods. From top to bottom: Soill, Soil2, Tree, Shadow, and Grass.

TABLE VII
SAD, MSE, AND TIME PERFORMANCE ON THE URBAN DATA
(SNR=30DB) BY THE ALGORITHMS.

Methods MSE of C MSE of C MSE of S Time (min.)
SPA 0.1120 £ 0.0006 | 0.0166 £ 0.0002 | 0.0497 £ 0.0043 —
MVCNMF 0.0963 £ 0.0020 | 0.0106 £ 0.0006 | 0.0355 £ 0.0010 —
SISAL 0.0911 £ 0.0019 | 0.0095 £ 0.0005 | 0.0358 £ 0.0011 —
MVNTF 0.0815 £ 0.0230 | 0.0085 £ 0.0016 | 0.0356 £ 0.0093 | 42.21 £ 1.55
MVNTFTV 0.0915 £ 0.0263 | 0.0105 £ 0.0042 | 0.0372 £ 0.0093 | 46.66 £ 0.57
SSWNTF 0.0661 £ 0.0199 | 0.0051 £ 0.0010 | 0.0316 £ 0.0075 | 43.18 £+ 1.17
SPLRTF 0.1009 £ 0.0237 | 0.0127 £ 0.0039 | 0.0418 £ 0.0088 | 72.60 £ 0.86
GradPAPA-LR | 0.0431 £ 0.0003 | 0.0020 £ 0.0001 | 0.0246 + 0.0004 | 5.38 + 0.10
GradPAPA-NN | 0.0537 £ 0.0012 | 0.0033 £ 0.0002 | 0.0272 £ 0.0009 | 0.90 + 0.04

the HYDICE sensor. The number of endmembers is set as 4,
including Asphalt, Grass, Tree, and Roof. The ground-
truth of abundance maps and spectral signatures are available
online (https://rslab.ut.ac.ir/data). The details of generating the
semi-real dataset can be found in [53].

2) Baselines: In addition to MVNTF [22] that does not
have structural regularization on latent factors, we com-
pare GradPAPA with another five baselines, i.e., MVC-
NMF [6], SISAL [5], MVNTFTV [23], SSWNTF [26], and
SPLRTF [27].

3) Results: Table V shows the SAD and MSE performance
of the algorithms on the Terrain data under SNR=40dB. One
can see that the two versions of GradPAPA achieve an order
of magnitude improvement over SPA in terms of SAD and
MSE. The table also includes the runtime performance of all
the LL1 algorithms. In terms of running time, the two versions
of GradPAPA use about 6 minutes for this task, while the
four ALS-MU based LL1 baselines (i.e., MVNTF, MVNTFTYV,
SSWNTF, and SPLRTF) use more than 1 hour. We should
mention that SISAL and SPA are in general faster than the
other baselines because they do not work with the LL1 model
but a computationally more convenient MF model. But as we
mentioned, their identifiability has a nontrivial unoverlapped
“regime” with that of the LL1 model.

Fig. 5 shows the SADs and MSEs of the algorithms on
the Terrain data under different SNRs. One can see that the
proposed algorithms outperform the baselines in almost all
cases. The abundance maps and spectral signatures produced
by GradPAPA-LR and GradPAPA-NN are also visually much
closer to the ground truth; see Figs. 6 and 7. One can see that
our algorithms perform well in keeping the edges of abundance
maps, better than baselines.
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Grass.
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Fig. 8. The estimated abundance maps of Urban data (SNR=30dB) by different methods. From top to bottom: Asphalt, Grass, Tree, and Roof.

We also validate the effectiveness and convergence of
the proposed algorithms under a relatively low SNR in the
context of HU, i.e., SNR = 10dB. Table VI shows the MSE
performance of the algorithms. One can see that GradPAPA-
LR achieves the lowest MSE of estimated C' and S. In terms
of running time, the proposed methods are approximately 5
times faster than the four ALS-MU based LL1 baselines (i.e.,
MVNTF, MVNTFTV, SSWNTF, and SPLRTF).

Table VII shows the SADs and MSEs of all methods on
the Urban dataset under SNR=30dB. One can see that our
GradPAPA methods again achieve the best performance of
estimating C' and S. In terms of running time, the proposed
methods are approximately 10 times faster than the ALS-MU
based LL1 baselines. In addition, one can see that GradPAPA-
LR achieves lower estimated MSE values than GradPAPA-NN

at the expense of more running time.

Figs. 8-9 show the estimated abundance maps and end-
members, respectively. Again, the results by our algorithms
are visually closer the ground truth. In particular, all the
algorithms—except for the two GradPAPA algorithms—seem
to have difficulties in correctly recovering the endmember
Asphalt. Both GradPAPA algorithms offer visually accurate
estimations for this signature.

D. Real Data Experiment

1) Data: In this experiment, we test the algorithms on
real data. A subimage of the AVIRIS HSI data with 50 x 50
pixels and 181 bands (after removing the water absorption
bands), covering the Moffett Field, is used. The subimage has
been wildly studied in HU research, and is known to contain
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SPA MVCNMF SISAL MVNTF

Fig. 10. The estimated abundance maps of Moffett data by different methods.
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Fig. 11. The spectral signatures of manually selected pure pixels and estimated spectral signatures of Moffett data by different methods.

three types of materials—namely, Soil, Vegetation, and
Water; see, e.g., [7].

2) Baselines: We use the same baselines as those in the
semi-real data experiments.

3) Results: Fig. 10 shows the estimated abundance maps.
One can see that all methods produce similar maps. How-
ever, the proposed methods obtain slightly clearer boundaries
among different materials (e.g. the map of Vegetation),
and keep the smooth region of the map for Soil better than
the ones obtained using other baselines.

Fig. 11 shows the estimated spectral signatures. For com-
parison, we also present the spectra of some manually selected
pure pixels, which contain only one material. These pure
pixels can approximately serve as the “ground truth”. One
can see that all baselines cannot provide accurate estimates
of spectral signatures. To be specific, the spectral signatures
of Water obtained by SPA, MVCNMF, and SPLRTF are

TABLE VIII
THE RUNNING TIME (IN SECONDS) FOR MOFFETT DATA BY ALL
ALGORITHMS.
Methods MVCNMF SISAL MVNTF MVNTFTV
Time (sec.) — — 375 £ 0.6 492 + 2.5
Methods SSWNTF SPLRTF GradPAPA-LR  GradPAPA-NN
Time (sec.) 383+ 14 820+ 19 4.6 £03 1.7 £ 0.1

far away from the spectra of the pure pixel. There are many
negative values of the spectra of Water estimated by SISAL.
The spectral signatures of Vegetation given by MVNTE,
MVNTFTYV, and SSWNTF, are hightly corrupted around the
30th band. Compared to the baselines, the proposed algorithms
output spectra of the three materials that are clearly more
similar to those of the manually picked pure pixels. The
running time of all methods is listed in Table VIII. Again,
the proposed GradPAPA-LR and GradPAPA-NN are at least
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8 times and 22 times faster than the ALS-MU based LL1
baselines, respectively.

As mentioned, one can estimate the number of endmember
R using existing algorithms model-order selection methods,
e.g., those in [12], [51]. But sometimes the estimated R is
inaccurate. Here, we demonstrate the effectiveness of the pro-
posed algorithms for handling the case where the estimated R
is slightly off. Figs. 12 and 13 show the estimated endmembers
and abundance maps when R = 4 for Moffett Field in real
data experiment, respectively. One can see that the proposed
algorithms can well estimate the abundances of the three main
materials. The spectra of the three materials estimated by
GradPAPA-NN are similar to those of the manually picked
pure pixels. The fourth material can be regarded as a spurious
endmember, whose abundances have low intensity over the

space.

(c) Water (d) Sparse component

]

(a) Soil

(b) Vegetation

Fig. 13. The estimated abundance maps of Moffett data by the proposed
methods. First row: GradPAPA-LR; Second row: GradPAPA-NN.

V. DISCUSSIONS

In this section, we discuss the performance of the proposed
algorithms under different parameters, the low-rankness of
abundance maps, and the influence of selected pure pixels for
the performance comparison.

A. Effect of The Parameters

In Fig. 14, we study the sensitivity analysis of two key
parameters 6 and L on Terrain data with SNR=40dB and
Urban data with SNR=30dB. One can see that the proposed
approach can maintain similar low MSEs in a relatively wide
range of these two parameters.

We also discuss the effect of parameters (¢,e) on Urban
data with SNR=30dB. In Fig. 15, we show the impact of the
different ¢ and ¢ on the performance of the proposed Grad-
PAPA. One can see that the performance change is relatively
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“optimal value" as revealed in the figures.
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Fig. 15. MSEs of the estimated C' and S under different ¢ and €.
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Fig. 16. The abundance maps and the corresponding singular value curves
of Terrain dataset.

insensitive to these two parameters. The other settings of the
experiment here follow those in Fig. 8.

B. Low Rank of Abundance Maps

In Fig. 16, we present the singular values of the abundance
maps of Terrain data. The ground-truth abundance maps are
available online'. From Fig. 16, one can see that the first 50
principal components of .S, (first 50 left, right singular vectors
and singular values) contain more than 90% of its energy. Note
that the size of the abundance maps is 500 x 307, and the fact
that most of the energy is concentrated in the first 50 principle
components means that the maps are approximately low-rank.
The reason why this model makes sense is that the abundance
maps often exhibit correlations across the neighboring pixels
(i.e., spatial correlations).

C. The Influence of Selected Pure Pixels

In our real-data experiment, the evaluation was based on
manually selected pure pixels. This raises a question regarding
the potential influence of using different pure pixels. Figs. 17
and 18 respectively show the RGB image of the real Moffett
data and the pure pixels manually extracted from the real HSI
data at different spatial locations. One can see that for one
material, the corresponding manually extracted pure pixels at
different spatial locations are very similar—which indicates

Thttps://github.com/LinaZhuang/NMF-QMV _demo



Fig. 17. The RGB image of the real Moffett data. The red dots are the visually
picked pure pixels.
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Fig. 18. The manually extracted pure pixels at different spatial locations.

that the selection of pixels may not have much influence on
the performance comparisons.

VI. CONCLUSION

In this work, we proposed an algorithmic framework,
namely, GradPAPA, for LL1 tensor decomposition with struc-
tural constraints and regularization arising in the context of
HU. Different from existing LL1 tensor-based HU algorithms
that use a three-factor parameterization and the ALS-MU type
update strategies, our method utilizes a two-factor parameter-
ization and a GP scheme. As a consequence, the proposed
algorithm effectively avoids heavy computations in its itera-
tions. To realize the GP framework, we proposed AP solvers
for quickly enforcing a number of important constraints in
the context of HU. We also provided custom analysis to un-
derstand the convergence properties of the proposed algorithm.
Extensive experimental results on various synthetic, semi-real,
and real datasets showed significant performance improve-
ments (in terms of both accuracy and speed), compared to
existing LL1 based HU algorithms. Future directions include
extending the LL1 model to cover nonlinear/bilinear mixture
models that are widely used in HU and to take outlying pixels
into consideration.

We should mention that beyond HU, the LL1 model was
also employed for many other tasks, e.g., hyperspectral super-
resolution [42], [54], Electroencephalogram (EEG)/magnetic
resonance imaging (MRI) analysis in medical imaging [55],
fluorescence data analysis in chemometrics [31], and spectrum
cartography in wireless communications [56]—and thus our
algorithm design may be of broader interest.

APPENDIX A
THE GRADIENT Gg) IN (14)

For simplicity, we denote the objective function in (11) as

R
1
J(C.8) =5 Y = CSlli+>_0:0(Sr).
r=1
Note that under the design of the smoothed 2D TV regularizer,
the gradient GS) of J(C**t1,8) exists. The main idea of

computing Gg’) is that we first construct a tight upper bounded
function F(CU+1) §; 8®) such that

F(CtY s®). S(t)) > J(CtY g1y,
Vs F(CHY §1, 81y = yg7(CttD 8,

Then, we compute G(st.) = Vg J(CH1 8 through comput-
ing Vg F(Ct+1) 1. §(1))

It is shown in [8] that ¢, .(x) (0 < ¢ < 1) admits a
majorizer (x, (")) as

q

B, 2) = S w®fal? + 251 <§[w(t>]i) T ),

i

= %mTU(t)m + const, (28)

q-—2
where [w®]; = £(([x®];)>+¢) =, UY is a diagonal ma-
trix with [U®)]; ; = [w®]; and const is a constant. Therefore,
we obtain the quadratic majorizer function F(C*+1) §; S®)
as follows:

R
+> (P(H,q,, Hyq\") + 3(Hyq,, Hyq")).  (29)

The gradient G(St) can be expressed as follows:

Gg) :(C(t+1))TC(t+1)S(t) 7 (C(t+1))TY

+qlon HT UV H,q ... 0pH]UY H,q\"]
+alosH) V" H, g, ... 0 H] VO H g},

q—2
where [Ur(t)}m- = ([quﬁt)]f +¢) 7, and [Vr(t)]m-
(t) 32

(Hyq:")? +¢) 2 ,r=1,...,R.

APPENDIX B
PROOF OF PROPOSITION 1

Before the proof, we give the following important lemma.

Lemma 1. [48, Lemma 1] Let

() — T, (x - oz(t)VH(a':)) ,

where & = (V) 4+ p()(x® — 2D O 2D ¢ x ¥
is proper and lower bounded on the set X and has Lipschitz
continuous gradient L® at the current iterate z®, and o®
and ;") are chosen to satisfy

0<a® <o, u< T\/(Clyt—l)) / (cal®)



for some 7 < 1, ¢; > 0, and co > 0. Then, it holds that where we have applied (30) to get (a). Now, we analyze the
last fours terms in (31). First,
H (wu)) Y (:c(t"'l))

t+1) _ &®)
> e LO ||t — )12 — 72 LD || 2@ — 2012, HC ¢ H
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With Lemma 1, we now proceed to prove the theorem. The - HC( -C + (C -C H (32)
gradient of the objective function in (26) is:

(t) ) _ (t—1) _ (t+1)
AT (Z) +C(2)) < W e® et + e - ot

- - Second,
where Cc(C) and Cg(S) are indicator functions of the con- c ¢ F
straints on C' and S, respectively. _ (C,(t) _ ) ) S® (S(t))
The projections of (24) and (25) can be written as F
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subproblem and S**+1)-subproblem, we have Similarly, one can get
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where the equations are due to Lemma 1 with H = 7 (-, S*))

(first inequality) and H = F (C+D
ity).

Now, combining Lemma 1 and (36), we can use the proof
technique in [50] to establish the final convergence rate:
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From the above equation, we get
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Substituting (37) into (36) yields

min
t'=0,1
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This completes the proof.
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