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Abstract—The coupling of federated learning (FL) and
multi-access edge computing (MEC) has the potential to foster
numerous applications. However, it poses great challenges to
train FL fast enough with limited communication and com-
puting resources of mobile edge devices. Motivated by recent
development in ultra fast wireless transmissions and promising
advances in artificial intelligence (AI) computing hardware of
mobile devices, in this paper, we propose a time efficient FL
over future mobile edge devices, called dynamic batch sizes
assisted federated learning (DBFL) with convergence guarantee.
The DBFL allows batch sizes to increase dynamically during
training, which can unleash the computing potential of GPU’s
parallelism for on-device training and effectively leverage the
fast wireless transmissions (WiFi-6, 5G, 6G, etc.) of mobile edge
devices. Furthermore, based on the derived DBFL’s convergence
bound, we develop a batch size control scheme to minimize
the total time consumption of FL over mobile edge devices,
which trade-offs the ‘“talking”, i.e., communication time, and
“working”, i.e., computing time, by adjusting the incremental
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factor appropriately. Extensive simulations are conducted to
validate the effectiveness of our proposed DBFL algorithm and
demonstrate that our scheme outperforms existing time efficient
FL approaches in terms of the total time consumption in various
settings.

Index Terms—Federated learning, dynamic batch sizes, future
mobile edge devices, on-GPU computing.

I. INTRODUCTION

MBRACING recent advances in ultra-high speed wireless
transmissions (e.g., WiFi-6, 5G, 6G, etc.) and mobile
hardware technologies, multi-access edge computing (MEC)
has recently emerged as a promising paradigm enabling
local data analysis and real-time service provisioning. With
this trend, federated learning (FL) further pushes artificial
intelligence (AI) functions to mobile edge devices, thereby
being instrumental in spearheading the vision of intelligent
mobile edge networks. As we know, through local training
updates, FL enables data stakeholders (e.g., mobile edge
devices) to collaboratively learn a joint global machine learn-
ing (ML) model without sharing their private raw data.
Various features of MEC make it perfectly fit to support
FL. First, although current mobile edge devices (e.g., 4G
or 5G smartphones, tablets, etc.) can only make learning
inferences, future mobile edge devices in MEC will be
widely equipped with high-performance integrated processors
(e.g., high-performance GPUs) and are expected to have
on-device local training capability [1], given the promising
research advances in mobile computer architecture designs
and computing hardware development. Besides, the distributed
architecture of MEC [2] is consistent with that of FL, where
future mobile edge devices can serve as local FL clients, and
the edge server can serve as the FL aggregator. Moreover, the
widespread popularity of social networking applications will
breed a wealth amount of data continually generated on future
mobile edge devices, which provides data basic for on-device
training. Therefore, the coupling of MEC and FL can prompt a
broad range of applications, including keyboard prediction [3],
cardiac event prediction [4], financial risk management, etc.
However, deploying FL over future mobile edge devices in
practice is non-trivial and poses great challenges, of which
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time consumption is a critical concern. In particular, the pro-
liferation of real-time and lifelong applications with stringent
requirements on low latency, such as augmented reality and
voice assistant [5], has spurred a growing need for continuous
training on mobile edge devices. The mismatch between the
delay-sensitive property of these applications and the limited
resources of mobile edge networks raises two fundamental
issues of FL over future mobile edge devices. One is how to
fundamentally accelerate the training process from the algo-
rithmic perspective while guaranteeing learning convergence
and model accuracy. It is also challenging for future mobile
edge devices to efficiently execute the time consuming neural
network training, which may cause intolerable latency for
certain delay-sensitive FL applications. The other is how to
determine the key training parameters adapting to the mobile
edge environment in practice so that the system resources,
such as GPU resources and wireless bandwidth, can be fully
utilized to improve the time efficiency.

Most existing works in the machine learning community
focused on improving the communication efficiency of FL
since communication is usually regarded as a bottleneck in
the training procedure. In [6], the local SGD (a.k.a. FedAvg)
algorithm is proposed to allow every participating device to
perform multiple stochastic gradient descent (SGD) iterations
locally before synchronizing with others, thereby avoiding
communication after every local iteration. Another notable
method to reduce the necessary communication rounds is
gradually enlarging the batch sizes during training, which
properly increases local computations in a single round to
reduce the variance [7]-[10]. Although these methods exhibit
great potential in communication burden alleviation, it is
questionable whether the communication is a bottleneck in
itself. In fact, the rapidly expanding 5G networks can provide a
high transmission rate up to 1 Gbps, and WiFi-6 claims to have
a peak throughput of 9.6 Gbps. Furthermore, the forthcoming
6G networks are envisioned to open up a “Tbps” era. These
advanced technologies make transmission delay no longer
a dominant issue hindering FL’s implementation in wireless
networks [11], [12]. In this situation, wireless transmissions
and local computing are comparable in time consumption. For
example, performing a single-step local iteration (including
data accessing and computing) of a ResNet-50 model with
100MB parameters on one GPU typically takes hundreds of
milliseconds [13], which is similar to the transmission delay
introduced by uploading the model via 1 Gbps wireless links
(i.e., 800 ms).

Recognizing the comparability between the communication
cost and computing cost, some recent works in [14]-[22] study
to reduce the FL system cost over mobile edge devices via joint
communication and computing resource management. Their
methods just allocate system resources under a given budget
and strive to acquire a proper resource allocation strategy
matching the network environment. However, essentially sav-
ing the total time consumption from the learning’s perspective
is widely overlooked in these works, such as how to adjust the
appropriate batch size. Thus, it is worthwhile to investigate
the trade-off between “working” (i.e., local computing) and
“talking” (i.e., wireless communication) from both the learning
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algorithm and resource allocation perspectives for efficient FL
over future mobile edge devices.

To bridge this gap, this paper targets to accelerate the FL.
training process by jointly considering the computing and
communication conditions over future mobile edge devices.
To this end, we first propose a time-efficient FL algo-
rithm, named dynamic batch sizes assisted federated learning
(DBFL), with the convergence guarantee. Unlike ordinary
local SGD using fixed batch sizes throughout the training,
the DBFL allows users to exponentially increase the batch
sizes with an incremental factor, leading to a reduction of
communication rounds required to complete the training.
We will explain the reduction in detail in the following section.
We then employ the proposed DBFL algorithm in wireless
networks and develop a batch size control scheme adapting
to the specific network conditions. In particular, we determine
the optimal incremental factor via an elaborate optimization
problem, where “working” and “talking” at future mobile edge
devices are well balanced to minimize the total training time
consumption. In addition, the goal of improving time effi-
ciency is in general consistent with that of improving energy
efficiency, as the shortening of overall time consumption leads
to the reduction of overall energy consumption. Our salient
contributions are summarized as follows:

o Capturing the learning dynamics, we propose the DBFL,

a time efficient FL algorithm allowing the batch size to
increase exponentially in the training process. We also
provide a theoretical analysis of the DBFL algo-
rithm in terms of convergence rate and communication
complexity.

o Guided by the theoretical results of DBFL, we further
study to minimize the total time consumed for training
an FL model to converge over future mobile edge devices.
In particular, we develop a batch size control scheme to
derive the optimal batch size incremental factor, catering
to the GPU computing performances and wireless com-
munication conditions of mobile edge devices.

e« We conduct extensive simulations to evaluate the per-
formance of the proposed scheme on various learning
models and system settings. Our scheme exhibits great
superiority in terms of time consumption reduction for
FL over future mobile edge devices compared with the
state-of-the-art FL solutions.

The rest of this paper is organized as follows. Section II
reviews some preliminaries of dynamic batch sizes. Section III
describes the detailed DBFL algorithm with the convergence
analysis. The formulation and solution of the batch size control
scheme over future mobile edge devices are presented in
Section IV. Numerical simulations are provided in Section V.
The related works are summarized in Section VI, and finally,
Section VII concludes the paper.

II. PRELIMINARIES OF DYNAMIC BATCH SI1ZES

In order to better explain the motivation of this paper, the
learning schemes with the fixed batch size and dynamic batch
sizes are compared through experiments in this part. Taking the
ResNet20 [23] model on the CIFAR-10 dataset as an example,
we consider an FL scenario with 10 participating users, and
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Fig. 1. FL with dynamic batch sizes (ResNet20 on CIFAR-10).
TABLE 1
GPU PERFORMANCE
Size 50 100 200 250 500 1000 | 2500
Time(s) | 0.021 | 0.022 | 0.023 | 0.024 | 0.040 | 0.072 | 0.171
Ratio 6.140 | 3.216 | 1.681 | 1.404 | 1.170 | 1.052 1

each user sequentially takes 10 local SGD steps. Based on this,
we deploy this scenario with the fixed scheme (FedAvg [6]
with batch size 200) and the dynamic scheme (gradually
increasing the batch sizes from 50 to 2,500), respectively, and
the experiment results are shown in Fig. 1. Note that the fixed
scheme needs the relatively small batch sizes (e.g., smaller
than 200) in the FL to guarantee the convergence [6]. Fig. 1(a)
shows that two schemes need almost the same data epochs to
achieve the target accuracy, and one epoch refers to one cycle
through the full training dataset. This means that the gradient
calculation operations of two schemes, i.e., the computation
loads during the training, are similar. The training curves
with data epochs as x-axis are similar in 1(a). But for the
global updates, i.e., communication cost, shown in Fig. 1(b),
the dynamic scheme needs far fewer communication rounds
than the fixed scheme. The reason is that the large batch size
implemented in the latter training stage leads to the reduction
of update frequency.

In this paper, we focus on the time consumption for the
overall FL procedure, including the communication time and
the computing time. From Fig. 1(b), it can be easily found
that the communication cost of the dynamic scheme is much
less than that of the fixed scheme due to the fewer required
communication rounds. In terms of the computing cost, when
using a similar number of data epochs to achieve FL conver-
gence in the two schemes (as shown in Fig. 1(a)), the total
computing time of the dynamic scheme is lower than that
of the fixed scheme due to the efficient large-batch training
in the later stage of training. Specifically, the local gradient
calculation delay does not increase linearly with the batch size
increase. For example, when the batch is doubled, the increase
in time consumption will be less than twice. Such a rela-
tionship between batch size and time consumption indicates
the efficiency of the large batch training. This is because the
GPU pipeline is a kind of parallel processing, where it can
directly process far more data simultaneously [24]. As shown
in Table I, we conduct the experiments on a single “RTX
8000” GPU and record the time consumption for different
batch sizes. The “Ratio” indicates the ratio of “Time for
computing 2,500 samples with specified batch size” and “Time
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for computing 2,500 samples with batch size 2,500”. This
“Ratio” implies that a larger batch size can save more time
when accessing the same number of stochastic gradients, and
similar results can be found in [25]. Thus, compared with the
fixed scheme that always uses relatively small batch sizes,
the dynamic batch size scheme consumes less computing
time for convergence, which is consistent with the trend of
communication consumption. Moreover, to further reduce the
system time consumption and balance the communication and
computing in the dynamic scheme, we are going to adjust
the batch size increasing rate to achieve the minimum time
consumption for the training.

ITII. FEDERATED LEARNING WITH DYNAMIC BATCH SI1ZES

In this section, we propose a general time efficient FL
framework with dynamic batch sizes in Sec. III-A, named
DBFL, and derive the convergence analysis for it in Sec. III-B.

A. Dynamic Batch Sizes Assisted FL Algorithm Design

We consider a multi-access edge computing system for the
distributed machine learning task with one edge server and
aset K := {1,...,K} of K participating future mobile
edge devices, as shown in Fig. 2. Specifically, each device
7 has its own dataset D; and cannot access other devices’
datasets. Moreover, all devices maintain their local machine
learning models with the same model structure and attempt
to achieve a global goal, i.e., obtain a common model to
minimize the training loss, under the coordination of the edge
server. Such a scenario can be considered as a FL task, where
the future mobile edge server can serve as the FL aggregator
and future mobile edge devices can serve as local FL clients.
In addition, FL can be also formulated as the following
distributed non-convex optimization problem

1 K
min f(w) £ EZMW), (1)
=1

weRd

where f;(w) is the training loss for device ¢ over the dataset
D;, ie., filw) £ E¢,op, [Fi (w;&;)]. Here, we assume all
users have the same size of dataset D; for concise expression,
and the size of D; can be possibly different for different .
& denotes the randomness in the training process, e.g., different
data points and different batch sizes selection. In every training
iteration ¢, each device will take one SGD step, which means
each device observes the unbiased stochastic gradients with
one batch data based on the model w!™" obtained at the last
iteration step as g! = VE; (w!™";&;). Here, g! is the unbiased
estimation of V fi(wi '), i.e, Eep, [g1 | €] = Vfi(wi™h).

One classical method to coordinate all devices’ local model
is to collect and take the average of the observed gradients
among all devices in each iteration, then adopt the averaged
gradients to update the global model. Furthermore, each device
downloads the updated global model and continues to take the
SGD step mentioned above for training. Such an optimization
method is called mini-batch SGD. However, updating the
global model in each iteration with only one SGD step
is extremely communication inefficient, which consumes a
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Fig. 2. The illustration of the dynamic batch sizes assisted federated learning.

tremendous amount of the limited communication resource,
especially for the FL over mobile edge devices. Hence,
we employ a communication efficient optimization method,
called local SGD, where each device performs H sequential
SGD steps and then updates the global model. Note that each
data sample can be repetitively used during local updates. But
it will have different effects on the model since the local
model accumulates the previous gradient calculation results.
Therefore, we will update the global model every H iteration.
For explanation convenience, we define a virtual global model
at each iteration step ¢ as

1
——t A it
Wit ) Wl @)

and the virtual global model can be iteratively calculated as

1
t t—1 E:t
W =W =i—— . 3

where v is the learning rate. Note that when ¢ mod
H=0wt=w?"

Moreover, to further reduce the communication cost and
improve computing efficiency, we consider a dynamic batch
size in the training process. We gradually increase the batch
size in the training stage and propose a time-efficient feder-
ated learning approach, called dynamic batch sizes assisted
federated learning (DBFL) algorithm, which is described in
Alg. 1. Particularly, in each communication round 7, the
batch size is different and exponentially increased with an
incremental factor 3, i.e., B, = |37 1Bg]. In Alg. 1, E is
the total number of stochastic gradient accesses. The proposed
DBFL procedure over future mobile edge devices is briefly
described in Fig. 2. The edge server first broadcasts a current
global model to the participating mobile edge devices in FL.
After receiving the global model, each mobile edge device
selects the batch size for local on-device training based on
the local data and its computing capability. When a mobile
edge device finishes its local training, it will upload its local
model via ultra fast wireless transmissions (e.g., WiFi-6, 5G,
6G, etc.) for global model updates. The above steps will repeat
until the training converge. The proposed DBFL algorithm can
effectively reduce the communication rounds of global updates

11041

Algorithm 1 Dynamic Batch Sizes Assisted Federated Learn-
ing Algorithm (DBFL)

Initialization: Initialize the global model w” and set w) =
w9, Vi € K; Set the learning rate -, batch size incremental
factor (3, local step H, and initial batch size By; Initialize the
communication index 7 = 0 and the iteration index ¢t = 1;
Initialize the local step count [o

1: while H - E;:o B, < E do
2:  Each device ¢ identifies the batch size B, = |3 By |
33 forlo=1,...,H do
4: Each device 7 observes the unbiased stochastic gradi-

ents gt of f;(w!™') with one batch data with the size B,
from the dataset D;
5: Each device ¢ in parallel updates its local model

t o t—1 ¢ :
w; =w,  —7g;, Vi

6: Update t < ¢t 41

7:  end for

8:  Update the global model w'~! = L S wit

9:  Each device ¢ in parallel updates its local model
Wffl — gt

10:  Update 7 < 741

11: end while

and benefit from the time efficient large batch training, which
had been discussed in detailed in Sec. II. Furthermore, the
convergence analysis of the proposed DBFL algorithm will be
provided in the next section.

From the theoretical point of view, gradually increasing
batch sizes is also beneficial for the training. We can inter-
pret the SGD method as integrating a stochastic differential
equation (SDE) whose “noise scale” n ~ «v|D|/B [13], [26],
where |D| is the dataset size and B denotes the batch size.
For the above non-convex optimization problem, large-scale
random fluctuations help to explore the parameter space to
avoid trapping in local minima in the initial stage. After that,
when we locate a promising region of parameter space, small-
scale fluctuations are required to fine-tune the parameters in
the later stage. Therefore, exponentially gradually increasing
batch sizes is helpful in the training.

B. Convergence Analysis for the DBFL Algorithm

We consider the loss function f;, Vi in (1) satisfies the
following two assumptions:
Assumption 1 (Smoothness): The objective function f; is
differentiable and L-smooth:
IVfi(x) =V fi(y)ll < Lllx -y, Vi. ()
Assumption 2 (Bounded Variances and Second Moments):
The variance and the second moments of stochastic gradients
evaluated with a mini-batch of size B can be bounded as

2
VE (wi&) = Vi(w)|” < 5, Yw, Vi, (5)

Ee,~p, |VF: (w; &)|I” < 6%, Yw, Vi, (6)

IN

EfiNDi

where o and 0 are the positive constants.
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We set the total number of iterations as 7. Under the above
assumptions, the following theorem holds, which is a key
property of analyzing the convergence of the DBFL algorithm.

Theorem 1: If we consider the initial batch size By, batch
size incremental factor 3 > 1, local step H, the number of
participating device K, and choose the learning rate v < %,
then the convergence rate for all T' > 1 in Alg. 1 satisfies:

T —
L H-1y(2] < 20 (F°) = 1)
7 2 BV #F )] < s
T; [ } fylogﬁ%ol)
2L~o? B
logy 22U KByH F—1

+4y2H?S2L? + . (D
where f* is the minimum value of the loss, and E is the total
number of stochastic gradient accesses.

Proof: See Appendix A |
For Theorem 1, we can derive the following corollary.
Corollary 1: Under Assumptions 1 and 2, if we choose

learning rate ~v = VK local steps H <

L,/log:, —(BO n’
E(B—1

K%, the number of participating devices
K < (log E)3, then the Alg. 1 has the O(

=

ﬁ) con-

vergence rate with O ( (log EK )%) communication rounds.
Proof: See Appendix B |

Furthermore, the communication complexity O(7'/H) can be

considered as O ( (K log E)% , which is lower than that of

the local SGD method (FedAvg) with a fixed batch size as
O((KE)%) [27].

I'V. DBFL OVER FUTURE MOBILE EDGE DEVICES

Both the experimental results obtained in Sec. II and the
convergence analysis derived in Sec. III-B validate that the
proposed dynamic batch sizes scheme can reduce the commu-
nication rounds of global updates, and the experimental results
also show the efficiency of the large batch computing. There-
fore, the total time consumption will be reduced when using
the proposed DBFL algorithm. In this section, we employ the
DBFL algorithm over future mobile edge devices in Sec. IV-A
and develop a control scheme in Sec. [V-B to adjust the batch
size incremental factor (3 for further minimizing the total time
consumption of FL, including both the communication time
and computing time.

A. Problem Formulation

We consider the multi-access edge computing environment
in practice and develop the corresponding wireless commu-
nication and GPU computing model for future mobile edge
devices.

Communication: For each future mobile edge device, the
average transmission rate over the whole training process can
be evaluated as

P|n|?
R =WE, [log2 <1+ 1A >] )
No

®)

where the expectation is taken over the channel fading h,
and Ny implies the power of additive white Gaussian

IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 21, NO. 12, DECEMBER 2022

Relationship between B & T

Time Consumption (ms)

| 1 1
200(B,) 400(B,) 800(B,)
Batch Size

Fig. 3. The relationship between batch sizes and time consumption.

noise (AWGN). Here, we consider the ideal transmission
condition, where we assume the interference can be well-
managed [28], [29] and channel conditions are stable.
W and P denote the bandwidth and the transmission power,
respectively. Afterward, the transmission delay for transmitting
the learning model with the model size N in one communi-
cation round can be evaluated as
N
R C))

Computing: Future smart mobile edge devices will be
widely armed with high-performance GPUs, which will be
powerful in handling sophisticated computations of FL tasks.
Consequently, we consider the GPU computing model and
formulate the execution time for GPU computing the gradient
of one data sample as:

ttran —

to""? = tinit + L L,

fmem fcore

where feore and fiuem denote the GPU core frequency and

GPU memory frequency, and t;,;; represents the static time

consumption [30], [31]. u and v are constant factors that reflect

the sensitivity of the task execution to GPU memory and

core frequency scaling. Therefore, the time consumption for
accessing a batch size of B data can be calculated as

t°om2(B) = & . d(B), (11)

where d(B) is a function describing the relationship between
the batch size and time consumption.

Due to the parallelism property of the GPU, the time
consumption for calculating the gradients with different data
sizes does not linearly increase with the batch sizes increasing,
as shown in Table I. The first is that the per data sample
time consumption gradually decreases with the batch size
increasing. The second one is that the efficiency improvement
of the large batch training gradually also decreases with the
increasing batch size. Moreover, we find that when the batch
size is not extremely, a part of the quadratic function can
fit such a nonlinear relationship, as shown in Fig. 3, and
have the assumption below. Similar observations can also be
found in [25]. Therefore, we choose the quadratic function
d(B) = aB? + ¢ in (11), where a > 0 and ¢ > 0, to describe
the nonlinear relationship, which can well reflect the efficiency
of GPU computing for large batch sizes. Note that we use
a segment of the quadratic function to represent the time
consumption; we can select different values of a and c for
different types of GPUs.

(10)
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Assumption 3 (Quadratic Relationship): For the general
CNN model, when the batch size is not extremely large, the
relationship between the GPU time consumption and batch
sizes of gradient calculation follows the quadratic form.

After establishing the communication and computing model,
the next step is to identify the required communication rounds.
According to Theorem 1, we have the following corollary on
required communication rounds of the DBFL algorithm.

Corollary 2: The maximum number of communication
rounds M = % for achieving € global convergence accuracy,
i.e., satisfying

1 I
B[V #F 7] < (13
t=1
is given by
T A
M=% E%+% (14)

where both A and x are positive constants.

Proof: According to (36), if we achieve the e global
convergence accuracy, i.e., % Zthl E {HVf (Wt‘l) ‘ﬂ <e
we will have

_ 2 —0) _ px apas2r2 , 2Lyo*H B
E—FYT(f(W) f)+4fyH5L+TKBO 71

Then, we have
T 2bBoK (B — 1)+ 27202 BHL

Me= H = BoB R (B=1) (c = 90272H212)
B 2b ol (15)
T Hy (e —CH?) ' ByK (e—CH?) (3 —1)
p
= O( )+0(m)7 (16)
where we define o = 2Ly0?, and b = f (WO) — f*. We have

C = 4+25%L?, and we further choose ¢ > CH?.

Therefore, the communication round M can be represented
as ’8 + x, where both A and x are posmve constants
Moreover A and y can be determined with H2 = and
according to (16), respectively. l

When we employ the DBFL algorithm, the total time
consumption ¢ can be calculated as in (12), shown at the
bottom of the page, which is the summation of the total com-
munication time and the total computing time. Hence, aiming
at minimizing the overall time consumption, we determine the
best incremental factor 3 by solving the following optimization
problem:

(17a)

min ¢
B
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s.t. ﬁ Z ﬁmin
BoBM < min |Dy],
1

(17b)
(17¢)

where fmin > 1, |D;] is the size of the dataset owned by
device 7. The constraint in (17¢) limits the maximum value
of the selected batch size to be smaller than the local dataset
size, which can also be simplified as,

(A4+x)B—x min; |D;]|
lnﬂ . T S In TO,
InB((A+x)8—x) < Z(B-1), (18)
where Z = In M

We look into some critical parameters of the objective
function ® with further analysis. The total time consumption
includes two parts that are communication consumption (“talk-
ing”) and computing consumption (“working”). The results
in (14) indicates that the incremental factor 3 takes impact
on communication rounds M. Given a target global accuracy,
a larger [ results in a smaller number of communication
rounds (less “talking”). However, enlarging the incremental
factor leads to an increase in the calculations each round
(more “working”). Therefore, there exists a trade-off between
communication cost and computing cost that requires us to
find an optimal § to determine “work more” or “talk more”
to minimize the total time consumption. Furthermore, the
overall time consumption decreases as the number of devices
K increases. Still, the relationship between the total time
consumption and the local step H is unknown because of the
non-monotonicity.

B. Optimal Control Solutions for DBFL

For notational convenience, we define following functions,

Pi(B) = (A+X)/B X)(ttran +CHtCOmp)(ﬂ+ 1)
P2(5) = aBOHt(C)omp( In 3- % B 1)

P3(ﬂ) — ﬂ2

G A A+ —ZG-T. a9

The objective function ® of the optimization problem is
in a fractional form. To solve it efficiently, we employ the
Dinkelbach [32] method to iteratively find the optimal results,
which is widely considered in dealing with fractional program-
ming problem. Introduce an auxiliary variable ¢ and set ¢ as

the value of the objective function ®, that is, ¢ = W.
Accordingly, we have P;(8) + P»(8) — ¢Ps(8) = 0, and
we further define the function Pi(3) + P2(8)—qP3(03) as

M
d = M- ttran . Hztgomp(a(BOﬂT_l)Q + C),
F=l.
2(A+x)B—2x
(A+RB—X 4 2 1—p3 51
— ME T AP A (ptran Htcomp B Htcomp—
e G )+a 5

_ (A+X)8 =X + cHEg™) (8 + 1) + aBFH™™ (e

a2 ) a2

F-1
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©(0,q). Here, ©(0, q) is strictly monotonic decreasing with
the parameter ¢g. Notice that solving the problem in (17) is
essentially equivalent to finding the root of ©(3, ¢). Therefore,
we use the parametric approach to represent the objective
in (17) and consider the following problem:

mﬁin P(B) + P2(B)—qPs(83) (20a)
8.t. B> Bumin, (20b)
G(B) < 0. (20c)

We iteratively solve the problem (20) and update the
non-negative variable ¢ in each iteration. Finally, ¢ will be
the unique root of the function (20a), which is also the
optimal value of original problem (17). The updating process
of variable ¢ is described in Alg. 2. In general, the solution
of the original problem (17) can be summarized as follows.
We first solve problem (20) and denote the optimal solution
as (3%, which is referred to as the inner loop in Alg. 2.
Then, we update the corresponding ¢ value, referred to as the
outer loop in Alg. 2. Finally, the algorithm repeats the above
two-loop steps until the convergence condition is reached.
We further investigate the problem (20) and have the following
lemma.

Lemma 1: The function Pi(3), Ps(8), G(8) are convex
functions in problem (20).

Proof: Pi(f) and Ps;(3) can be easily verified to be
convex. For the function G(3), we have

d?G(B) _ d(A+x)(np+1)) dxB'+2)
g dg dg
A+x X
= T + @ >0, 21
which implies that the function G(3) is convex. [ |

We now first focus on the function P»(3) = aBZHt;™""
2(A+x)B—2x
(€™ FFFEET 1), Let Uy (8) = h(g(B)) = e9) where

h(z) =€*, VzeR (22)
g(B) =mg3- MJ;}X#. (23)

Then P»(3) can be rewritten as P»(8) = aB3Ht™""
(U1(B) — 1). Notice that g(f3) is concave since

Pg(B) _, x(B-1+ABB-1)
g~ (L =By
Thus, it is difficult to judge the convexity of the composition
function Uy (), as well as P»(3). Thanks to the convexity of
function P;(3),Vi = 1,3 and the non-negativity of parameter
q introduced in the Dinkelbach framework, the composite
function P;(8) — ¢Ps(0) is in the Difference of Convex (DC)
structure. Let U () = P1(8) — ¢Ps(5). We then re-represent
the problem in (20) as:

(24)

<0,

min o BZHtE™ (U, (8) — 1)+ U2(8)  (25a)
s.t. ﬂ Z ﬂminv (25b)
G(B) <0. (25¢)

We then focus on solving the problem in (25) with
non-convex objective (25a), by applying the iNner cOnVex
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Algorithm 2 Batch Sizes Control of DBFL

Initialization: Initialize ¢ = ¢(°) > 0, outer-loop iteration
index k& = 0, the stop criteria £, and the maximum number of
iterations K4z

1: repeat

2. Initialize the step size ¢° € (0, 1]

3:  Set inner-loop iteration index v = 0 and start with 3°
4:  repeat

5: Calculate 5*(5¥) via (32)

6 Set Bl =B 4 ¢Y(8*(8Y) — B)

pis Setv=v+1

8: until B” is a stationary solution of problem (28)

9:  Set f* = (" as the current solution of the primal

problem (20).
10: Update q(k+1) . w
(5

)
1 if |0(¢®) — 0(¢*+t1)| < ¢ then

12: return The current solution 3*.
13:  else
14: Setk=k+1

15: until & = K4,
16: return Optimal solution 3*.

Approximation (NOVA) [33] method and finding the stationary
points iteratively. The main idea is to continuously optimize
certain approximations of the non-convex objective in (25) and
maintain feasibility at each iteration. This requires us to derive
a strongly convex approximant of (25a) around each feasible
iteration. To this end, we build an approximation for functions
Ui(B) and Us(0) as follows:

01(8:8”) 2 hig(8") + Vg(B)(8 = B) + 5118 = B”II%,
26)
02(8,8”) £ Pi(8) - aPs(B*) — aVB(8°) (B~ B), D)

where (3 denote the current intermediate ( obtained in the
v-th iteration. Vg(3”) and VPs(3") are the gradients of g
and P; at ¥, respectively, and £ > 0. To acquire the optimal
solution 5* in (25), we iteratively compute the solution 5(3")
by taking a step from ¥ with a initial feasible point 3°. In this
way, we build the approximation for ©(3) in (25) as () =
Us(B3,8Y)+ aB2Ht’™(U,(8) — 1) and the approximated
problem of (25) can be formulated as

min 6(9) (28a)
s.t. ﬂ > ﬁmim (ng)
G(B) <0. (28¢)

Obviously, the problem in (28) is convex, continuously
differentiable, and the Slater’s condition is satisfied, implying
that strong duality holds. Hence, the problem can be derived
using the KKT conditions, and the stationary point §* can be
determined accordingly.

The first order derivative of the objective (:)(,B) can be
calculated as

—di(ﬁﬁ ) _ 15+ AR~ 2g8" + J(Y<9EP 1 np — )

=T +Jr)B+JYeVIBIB 1 g (29)
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Fig. 4. The iterative convergence process of the proposed solution.

where R = t'"%" + cHt""™", I = 2(A+ x)R, J =
aB¢HtY™, Y = e9(B)=Va(B)B 7 4(3"), S = (AR —
JEBY —2qB).

We further calculate the first order derivative of g(/3) and

obtain Vg(B") = zﬁ;%gﬁﬁ)l—)zx — i‘gjn_(f;) As the first

order derivative of the function G(5) has already shown
in (21), we have the following equations according to the KKT
conditions

00(8) . 9G(B) _
23 +p B 0,
pG(B) =0, (30)
p =0,
G(B) <0,
where 4 is the Lagrange multiplier. Then, we have
_Vg(BY
(I+ JR)W ("ng“’fﬁn ) +Vg(6")S
/81:— VQ(ﬂV)(I+JI{) 9
o =V, @1

where W(-) represents the Lambert function, and \* satisfies
AN N+ XNy — Ze* — Xx + Z = 0. It should note
that A* can be easily acquired through the bisection method.
We further define § = argmin{©(f:1),0(52)}, and the
optimal solution 3* can be given as:
{@min: ﬂ S Br‘r.lina (32)
B, otherwise.

We summarize the procedure of the inner convex approx-
imation as the inner-loop in Alg. 2. Alg. 2 describes how
we obtain the optimal incremental factor §* that can control
the batch size in each training round to minimize the total
time consumption in MEC networks by well balancing the
communication and computing. Note that the main computa-
tional workload of the inner convex approximation lies in the
calculation of 3*(3"), i.e., the solution of the problem in (28).
We mitigate the workload by computing §*(5”) in closed
form, which allows us to obtain the unique solutions of the
inner-loop problems directly without resorting to any iterative
solver that provides approximate solutions only. Thanks to
the desirable convergence properties from the Dinkelbach and
NOVA algorithms, our batch size control algorithm in Alg. 2
can finish finding §* after a finite number of steps with
relatively low computational complexity. Fig. 4 shows one
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approximation error example of the proposed solution, where
we employ the brute force approach to find the optimal results,
which verifies the accuracy and efficiency of the proposed
solution.

V. PERFORMANCE EVALUATION

In this section, we conduct extensive simulations to validate
the effectiveness of our proposed DBFL algorithm and the
corresponding control scheme over future mobile edge devices.
To evaluate the performance of our proposed scheme over
future mobile edge devices in practice, we need to find the
proper model parameters to represent the computing and com-
munication of MEC. First of all, we take some experiments on
the edge device to identify the GPU computing model. We use
the edge devices occupied with one NVIDIA RTX 8000 GPU
to model the edge computing environment of the future
mobile device in practice, where the GPU core frequency
feore and memory frequency fi.em equal to 1,400 MHz
and 1,750 MHz. Through running the ResNet20 model with
CIFAR-10 dataset on devices multiple times, we identify that
to”"" nearly equals to 0.024, and a and ¢ can be selected as
9.49 x 1077 and 1 in function d(B), respectively. Next, for
the communication model, we consider the ultra fast wireless
transmissions (e.g., 5G) to simulate the edge communication
environments, where the achievable upload transmission rates
R is between 5 Mbps and 125 Mbps, depending on the
wireless communication conditions.

A. Impacts of Communication Conditions, Local Steps, and
the Number of Participants on the DBFL Algorithm

After identifying the parameters of the GPU computing
model and wireless communication model, the expressions
of communication round M and objective @ still have some
parameters to be estimated. We estimate these parameters with
different learning settings by experiments and take 22 = 250,
C = 0.0005, and ¢ = 400 as an example in Eq. (15) to identify
the values of A and . We further take € = 0.5 to guarantee
€ > CH? for different potential H. The transmission model
size IN can be estimated as 1.25 MB, and the dataset size
for each user equals to 5,000. The simulation results for
different parameter settings of our proposed DBFL algorithm
with optimal control are shown in Fig. 5.

We first consider different communication conditions and
different local steps H with a fixed number of partici-
pating devices K = 25, and the simulation results are
shown in Fig. 5(a) and Fig. 5(b). Different communication
levels represent different communication conditions, where
level 1 to 5 correspond to upload transmission rates R =
5,10,25,50, and 125 Mbps, respectively. In particular, the
level 1 indicates that the communication cost is dominant
in total time consumption, while level 5 indicates that the
computing cost is dominant. Fig. 5(a) demonstrates the total
time consumption with varying local steps H under different
communication conditions, where the y-axis represents the
value relative to the optimal time consumption for each H.
In Fig. 5(a), under the same communication condition, the
local step H has an optimal value in the middle of the candi-
date ranges. This is because too small H will lead to inefficient
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Fig. 5. Numerical illustration of DBFL algorithm.
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Fig. 6.

communication. In contrast, if H is too large, the overfitting
problem of local computation also affects the convergence
rate. Moreover, it is easy to observe that with the deteri-
oration of communication conditions, the time consumption
will increase. It’s also notable that the optimal H is gradually
decreasing with the rising of the communication level, as the
remarked points in Fig. 5(a). The reason can be explained
as the optimal solutions prefer to reduce the total time con-
sumption by putting more communication rounds (more “talk-
ing”) when the communication conditions are good, and vice
versa. This reflects the trade-off between communication and
computing of our proposed scheme. Fig. 5(b) further shows
the relationship between the obtained optimal incremental
factor §* and different communication conditions. Here, as the
communication conditions degrade, the optimal incremental
factor (3 increases accordingly. This is another reflection
of our algorithm regulating communication and computing.
The degraded communication environment indicates that the
time consumption of each transmission will increase. In this
situation, the incremental factor should be increased for taking
more local computing tasks (more “working”) in each round
to reduce the global updates, so as to minimize the total time.

Next, we investigate the impact of different numbers of
participating devices K on the total time consumption, and the
results are shown in Fig. 5(c) and Fig. 5(d). We simulate the
upload transmission rates R = 25 Mbps, which indicates
the communication cost and computing cost are comparable.
Fig. 5(c) shows that the speedup of the total time consumption
grows with the increase of the participating users under all
H situations, but the growth rate gradually slows down.
This results from the fact that increasing the number of
participating users can help speed up the convergence, and
thereby reduce the time consumption. However, when there are
enough devices to capture the characteristics of the database

0 [
0 50 100 150 200 250 300 0

Epochs

1000 2000 3000
Time Consumption (s)

4000

(c) Training accuracy vs. epochs (d) Test accuracy vs. time cons.

Simulation results on various architectures and datasets. ((a-b): ResNet20 on CIFAR-10; (c-d): VGG19-BN on CIFAR-100.)

\J; D; among all users, adding extra users will only have a
slightly positive impact on the training convergence. Fig. 5(d)
depicts the increase of the optimal incremental factor 3* when
increasing the number of participating FL users. More devices
participating in the training will accelerate the convergence,
so the optimal incremental factor should be increased to match
the change in the convergence rate, thus further minimizing the
total time consumption.

B. Convergence Analysis and Comparisons

To demonstrate the effectiveness of our proposed DBFL
scheme with optimal incremental factor 5* under different
learning architectures and varied datasets, we compare it with
a typical fixed batch size FL scheme “FedAvg [6],” and a FL.
scheme with gradually increased batch size “GIBS”. In GIBS,
all devices communicate with the edge server after every local
iteration, and the batch size exponentially increases in each
iteration. We consider the scenarios with K = 10 participating
devices and take local steps H = 10 for FedAvg and our
DBFL scheme. The experiment results are shown in Fig. 6. All
schemes have the same initial batch size By = 100 and learn-
ing rate 0.2 to ensure comparability. Moreover, We guarantee
that our proposed DBFL scheme and GIBS scheme have the
same batch size increasing rate in terms of the training epochs,
which is also consistent with the decay of the learning rate for
the FedAvg scheme.

Figs. 6(a) and 6(b) show the learning results of the ResNet20
model on the CIFAR-10 dataset with 1 MB parameters, where
we consider the training with NVIDIA RTX 8000 GPU
and simulate the current 5G network with 50 Mbps upload
transmission rate. Fig. 6(a) demonstrates that the training loss
curves of all schemes are nearly identical in terms of the
number of gradient calculation operations, i.e., data epochs.
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Fig. 7.

Fig. 6(b) demonstrates the total time consumption to the same
target accuracy (e.g., 88%) for the corresponding schemes, and
we find that the overall time consumption of our proposed
DBFL scheme with optimal 5* can be reduced to one-third of
that of the FedAvg. In particular, our proposed scheme requires
fewer communication rounds than FedAvg, thus reducing the
communication time. At the same time, our scheme consumes
less computing time due to the large batch training effi-
ciency. Moreover, the optimal §* can trade-off the relationship
between communication and computing by adapting to the
current mobile edge environments to further reduce the overall
time consumption. For the GIBS scheme, although the GIBS
scheme saves some computing time than the FedAvg, its huge
communication overhead makes its convergence speed very
slow. We also conduct the experiments on a relatively large
model, i.e., the VGG19 model with batch normalization, on the
CIFAR-100 dataset, which contains 549 MB parameters. Here,
we simulate the 5G network with 1 Gbps upload transmission
rate. The results are shown in Figs. 6(c) and 6(d), which
reach similar conclusions as those of the “ResNet” one. It is
noteworthy that the performance of the FedAvg scheme is
slightly better than the others. The reason is that the relatively
small batch size of the FedAvg on the initial learning stage
speeds up the convergence in this model set.

From Fig. 6(a) and Fig. 6(c), we also find that the proposed
DBFL approach has a similar convergence performance as the
typical FL approach, e.g., FedAvg. In other words, both the
DBFL and the FedAvg can approach the same target accuracy
with similar training epochs. For this reason, there are some
potential benefits of our DBFL algorithm when compared
with other time-efficient FL algorithms integrating model
compression techniques (e.g., the quantization, sparsification,
etc.). On the one hand, unlike the model compression based
approaches that usually result in a considerable sacrifice of
training accuracy, the DBFL algorithm ensures all the gradi-
ent information is aggregated in every global round without
distortion, and thereby hardly impairs the learning outcome.
On the other hand, our DBFL method can be considered an
add-on module integrated with any model compression method
for further FL time reduction.

We further investigate the impacts of the number of local
steps H, the number of participants K, and transmission rate R
on the DBFL approach. We still utilize the ResNet20 model on
the CIFAR-10 dataset with varying numbers of H, K, and R,
where simulation settings are the same as the configurations
of Fig. 6(a) and Fig. 6(b). Fig. 7(a) shows that the number

100
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100 20
95 0 75
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(b) Impact of K.
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Simulation results on different values of local steps H, the number of participants K, and transmission rates R.

of local steps H has a modest effect on the time consump-
tion, where either too large or too small H will degrade
the performance. Fig. 7(b) exhibits the performance under
different numbers of participating devices K, from which
we observe that a larger K leads to less time consumption.
However, as K increases, the improvement of time-saving
gradually gets slight. Moreover, Fig. 7(c) illustrates that when
the communication conditions get worse, the proposed DBFL
approach will enable more local computing to reduce the
required communication rounds, thus minimizing the overall
time consumption. These observations are also consistent with
our analysis taken in Sec. V-A.

VI. RELATED WORKS

With the prevalence of mobile edge devices and the upgrad-
ing of hardware performance, FL over mobile edge devices,
as a distributed machine learning framework integrated with
MEC, has enormous potential and attracts a lot of attention
from researchers and scholars. Tran ef al. [16], [17] devel-
oped an optimization approach to explore the trade-offs of
FL in mobile edge networks, e.g., between the computing
and the communication, between the time and the energy.
By considering the time-varying edge environments during
training, Wang et al. [18] and Zhan et al. [19] proposed the
dynamical control schemes to determine the optimal model
aggregation frequency and the optimal CPU-cycle frequency
under a given resource budget, respectively. Furthermore,
Chen et al. [20], [21] established a joint user selection and
resource block allocation scheme to minimize the convergence
time and optimize the FL performance. Zeng et al. [34] imple-
mented FL algorithms within a UAV swarm and proposed a
joint power allocation and scheduling design to optimize the
convergence rate. These works indeed save the FL’s system
cost in mobile edge networks, but they don’t consider the
intrinsic mechanism of the learning to accelerate the training
process. More specifically, they allocate the existing resources
appropriately to adapt to the FL approach, and do not essen-
tially consider this time efficiency issue from the algorithmic
perspective.

Nowadays, there is a growing interest in the learning
structure with dynamic batch sizes, which can accelerate the
training process by capturing the inherent nature of the learn-
ing process. It was a common practice to decrease the learning
rate during training, but Smith and Devarakonda et al. [7], [8]
experimentally found that in centralized training, one can
obtain the same learning curve by instead gradually increasing
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the batch size. Meanwhile, the latter required a decreased
amount of parameter updates and could enjoy the time-efficient
advantages of large batch training, and a similar rigorous
theoretical analysis was shown in some pioneer research
works [35], [36]. Along with the increasing complexity of
the machine learning models and the growing demand for the
needed data, some works focused on exploring the dynamic
batch size structures in a distributed training manner from
both the theoretical [9] and experimental [10] point of view,
where the communication cost can be significantly reduced.
However, there are two main differences between our work
and the above work. On the one hand, these distributed
frameworks did not integrate local SGD, a communication-
efficient training method, while we integrated the local SGD
to improve the training efficiency. On the other hand, they
only consider the FL problem from the learning algorithm
perspective itself and widely ignore the coupling between
the resource consumption in the training process and the
environment of the mobile edge devices. Besides, finding
the proper batch size increasing policy to make the trade-off
between computing and communication to minimize the total
time consumption is still unexplored.

VII. CONCLUSION

In this paper, we have focused on minimizing the overall
time consumption of FL over future mobile edge devices in
terms of both communication and computing time. We first
developed a time efficient FL algorithm, named DBFL, with
the convergence guarantee, where the batch size exponentially
increases during FL training. In particular, gradually increasing
the batch sizes in DBFL can fully adapt to the GPUs’ paral-
lelism property and reduce the required communication rounds
for global updates. To minimize the total time consumption of
deploying DBFL in MEC networks, we have further designed
a batch size control scheme, which helps balance the time
consumption of wireless communication and that of local
computing in practice. Extensive simulations have shown the
impacts of different communication conditions, local steps,
and the number of participants on the proposed DBFL algo-
rithm. Furthermore, the results have validated the effectiveness
of our proposed control scheme, which saves nearly 3x time
than the state-of-the-art approaches.

APPENDIX
A. Proof of Theorem 1
We set the batch size in each communication round 7, 7 €
{0,1,...,T/H—1} as | 7 By| and assume 7'/ H is an integer.
Therefore in Alg. 1, we must have HZT/H '187Bo] > E,
which future implies H ZT /[H-1 B87By > E. Through the

summation formula of the geometrrc series, We can observe
that g7/H > E(ﬁ 1) + 1, which yields,

E(B-1)
a5 T 1>

D togs (EWB_O—U - 1)

T > Hlogg <
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EpB—-1
> logs <7(BBO )> 5 (33)
where (a) follows by (1 4+ z)" > 1+ rz for z > —1,7r €

R\ (0,1).
Under Assumption 1, we have

E[f (W) <E[f (¥ “)]+E[<Vf( o)W )]
4= E[Hw e e

Through the convergence analysis provided for Theorem 1
in [27], we can bound the terms in the above inequality as

E([vs @)

2 —L ’
< 2 (@[ (@) B[ ) rmer e 27
2 Lyo®
< 2@ ) B PO gy
@ 2 2Lyo?
< SE[FE]-E[f (Wt)])+CH2+%’
(35)

where we set C' = 49%6?L?, and (a) follows by |z| > 1z
if © > 2. After summing the above inequality (10) over ¢ €

{1,2,...,T} iterations and dividing it by 7', we have
2> e [vs )]
< U ) -5 +om
/
< Fute-ryeon s RS
2w -y rem+ 2L )

where (a) follows by simplifying the sum of the proportional
sequence and % < 1. Next, Substituting (33) into (36) yields

1 & o2l 2(F (W) =)

— E|llV t—1 il L N S B

th:; [H FE } = log; E(go—r)
2Ly H 3

+4+42H?6%L2 + (37)

logg 2=V KB, /-1

B. Proof of Corollary 1

Similar to the settings in a fixed batch size scenario [27],
: VK H < (log E(B 1>) =
ogg

if we choose v = T
Bo
K < (log E)%, and substitute them into the (37), we have

%;r (117 &)
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2L

< (s (%) - )
Klogz =5
452 o2 1)
A EG-D | Ki(log, ZED)ip, A-1
Klogs =5— 1 (logg Bo )% Bo
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