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Abstract

In 2020, Kang and Park conjectured a “level 2”7 Alder-type partition inequality
which encompasses the second Rogers-Ramanujan Identity. Duncan, Khunger, the
fourth author, and Tamura proved Kang and Park’s conjecture for all but finitely
many cases utilizing a “shift” inequality and conjectured a further, weaker gener-
alization that would extend both Alder’s (now proven) as well as Kang and Park’s
conjecture to general level. Utilizing a modified shift inequality, Inagaki and Tamura
have recently proven that the Kang and Park conjecture holds for level 3 in all but
finitely many cases. They further conjectured a stronger shift inequality which
would imply a general level result for all but finitely many cases. Here, we prove
their conjecture for large enough n, generalize the result for an arbitrary shift, and
discuss the implications for Alder-type partition inequalities.

Mathematics Subject Classifications: 05A17, 05A20, 11P81, 11P84

1 Introduction

A partition of a positive integer n is a non-increasing sequence of positive integers, called
parts, that sum to n. Let p(n | condition) count the number of partitions of n that satisfy
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the specified condition, and define

g5 (n)

:=p(n | parts > a and differ by at least d),
“(n) = p(n| parts = £a (mod d + 3)),
AL () = (n) = Q) ().

Euler’s well-known partition identity, which states that the number of partitions of n into
distinct parts equals those into odd parts, can be written as Agl)(n) = 0. Moreover,
the celebrated first and second Rogers-Ramanujan identities, written here in terms of
g-Pochhammer notation?,

o0 an 1
(@D (667)00(0% %) o0
qn2+n 1

WK

(@0)n  (50)x(d® %)
are interpreted in terms of partitions as Agl)(n) =0 and AgQ) (n) = 0, respectively.

Schur [10] proved that the number of partitions of n into parts differing by at least 3,
where no two consecutive multiples of 3 appear, equals the number of partitions of n into
parts congruent to £1 (mod 6), which yields that Aél) (n) > 0. Lehmer [9] and Alder [1]
proved that such a pattern of identities can not continue by showing that no other such
partition identities can exist. However, in 1956 Alder [2] conjectured a different type of
generalization. Namely, that for all n,d > 1,

AP (n) > 0. (1)

In 1971, Andrews [4] proved (1) when d = 2% — 1 and k > 4, and in 2004, Yee [11, 12]
proved (1) for d > 32 and d = 7, both using g-series and combinatorial methods. Then
in 2011, Alfes, Jameson, and Lemke Oliver [3] used asymptotic methods and detailed
computer programming to prove the remaining cases of 4 < d < 30 with d # 7, 15.

It is natural to ask whether (1) can be generalized to @ = 2 in order to encapsulate
the second Rogers-Ramanujan identity, or perhaps even be generalized to arbitrary a.

In 2020, after observing that A((f) (n) = 0 does not hold for all n,d > 1, Kang and
Park [8] defined

QL

)(n) := p(n| parts = +a (mod d + 3), excluding the part d + 3 — a),
Aéa )(n) =q

& () = Q7 (),
and conjectured that for all n,d > 1,

AP () > 0. ®)

Ya;q)o =1 and (a;q), == [[}—o(1 — ag*) for 1 < n < o0
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Kang and Park [8] proved (2) when n is even, d = 28 — 2, and k > 5 or k = 2. Then
in 2021, Duncan, Khunger, the fourth author, and Tamura [5] proved (2) for all d > 62.
Exploring the question for larger a, they conjectured that for all n,d > 1,

AB () > 0, (3)

but found that when a > 4, the removal of one additional part appears to be both
necessary and sufficient to obtain such a result for all n,d > 1. Letting

Ela’f’f)(n) :=p(n| parts = +a (mod d + 3), excluding the parts a and d + 3 — a),
AP ) =g () = Q7 (),
Duncan et al. [5] conjectured that if a,d > 1 such that 1 < a < d+ 2, then for all n > 1,
AP (n) 20, (4)

Recently, Inagaki and Tamura [6] proved (3) for d > 187 and d = 1,2,91,92,93, and
further proved that Ag’t’*) (n) = 0for d > 249 and 121 < d < 124 as a corollary to a result
for general a for certain residue classes of d. Inagaki and Tamura [6] were also able to
prove the general conjecture (4) of Duncan et al. [5] for sufficiently large d with respect
to a, namely when [4] > 273 — 1.

The proof of (2) for d > 62 by Duncan et al. [5] utilized a particular shift identity.
Namely, they showed that if d > 31 or d = 15, then for n > 1,

g5 (n) = Q4 (n). (5)

The proof of (3) for d > 187 or d = 1,2,91,92,93 by Inagaki and Tamura [6] utilized
a stronger shift identity that holds for large enough n with respect to d. Namely, they
showed that if d > 63 or d = 31, then for n > d + 2,

1 1,—
0" (n) > Q75 (n). (6)
Given a choice of a, it is natural to ask for which n,d > 1,
AE ) > 0. (7)

Inagaki and Tamura [6] posed the following shift identity conjecture, which they further
determined can be used to obtain answers to (7) and a vast improvement on the bounds
for (4).

Conjecture 1 (Inagaki, Tamura [6], 2022). Let d > 12 and n > d + 2. Then

g5’ (n) — QL (n) > 0.

In this paper, we prove a generalized shift identity. We have the following theorem.
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Theorem 2. If N > 2, d > max{63,46N — 79}, and n > d + 2, then
1 1,—
4’ (n) > Qv ()
As an immediate corollary of Theorem 2 we obtain Conjecture 1 when d > 105.
Corollary 3. Ford > 105, andn > d + 2,
1 1,—
ai’(n) > Q4 ()

Moreover, using the methods of Inagaki and Tamura [6] Corollary 3 can be applied to
obtain a more complete answer to (7) as well as stronger bounds for (4).

Theorem 4. Let a > 1 and d Z —3 (mod a) such that (ﬂ > 105. Then for allm > 1,
A% () > 0.

Moreover, for d = —3 (mod a) then Agl’f) (n) >0 for alln #d+a+ 3.

As a corollary of Theorem 4 we obtain the following, which proves conjecture (4) of
Duncan et al. [5] for (ﬂ > 105. We note that this bound is lower than that given by
Inagaki and Tamura [6, Thm. 1.8] when a > 4, and is significantly lower as a grows.

Corollary 5. For all a,d > 1 such that (% > 105, and n > 1,
ALY () > 0.

We now outline the rest of the paper. In Section 2, we state a fundamental result of
Andrews [4] and discuss some notation and lemmas used in the proofs of Theorems 2, 4,
and 5. In Section 3, we prove Theorem 2, and in Section 4, we use Corollary 3 to prove
Theorem 4 and Corollary 5. We conclude with additional remarks and discussion.

2 Preliminaries

For a nonempty set A C N, define p(A;n) to count the number of partitions of n with
parts in A. The following theorem of Andrews [4] gives a way to compare the number of
partitions of n with parts coming from different sets.

Theorem 6 (Andrews [4], 1971). Let S = {x;}2, and T = {y;}32, be two strictly in-
creasing sequences of positive integers such that yy = 1 and x; = y; for all i. Then

p(T;n) = p(S;n).
For fixed d > 1, define r to be the greatest integer such that
2" —1<d. (8)
Further define for integers d, s > 1

Tea={yeN|y=1,d+2,...,d+2° " (mod 2d)}. 9)
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Table 1: Elements of T 4 in increasing order by rows for s < r.

1 d+2 d+ 2571
2d + 1 3d+2 3d + 2571
(2] —2)d+1| (2 —1)d+2 |- | (2 —1)d+ 271

Lemma 7. Letd > 1 and 1 < a < b < r, withr as in (8). Then p(Tyq4in) < p(Tha;n).

Proof. When s < 7, we have 2°71 — 1 < d which implies that (2k — 1)d + 257! < 2kd + 1
for all £ > 1. Thus Table 1 shows the elements of T 4 listed in increasing order when read
left to right.

Let y; denote the it" smallest element of T;,4. Observe that when 1 < a < b <7 we
must have that y¢ > y? for all i, since the number of columns in Table 1, and thus the
index of the elements in the first column, is weakly increasing when s = a is replaced by

s = b. Thus, by Theorem 6, we conclude that p(7, 4;n) < p(Tpq;n). O

Previous work of Andrews [4] and Yee [12] on Alder’s conjecture gives the following

lower bound for qc(ll)(n) for sufficiently large d and n.

Lemma 8 (Andrews [4], Yee [12]). Let d > 63 and n > 5d. Then qél)(n) > p(Tsq;m).

Proof. Recall for fixed d > 1, r is defined as in (8). When d > 2" — 1 for » > 5 and
n > 4d + 2", work of Yee [[12], Lemmas 2.2 and 2.7] gives that

1 1
" (n) = 6\ (n),

where

d+27—1. 2d
n —q yq o)
56 () = ( )

k>0 (43 %o (412 %) o0 -+ (277 420

From this generating function it follows that gfl”(n) counts the number of partitions of n
into distinct parts congruent to d + 2"~! modulo 2d and unrestricted parts from the set
T,_1,4 as defined in (9). Thus it follows that

a1’ (n) = G (n) = p(Tr-14m).
From our hypotheses d > 63, so r > 6. Hence by Lemma 7, we have when d > 2" — 1 that

qc(zl) (n) = p(Ts.a;n).

ot
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When d = 2" — 1 for r > 4, work of Andrews [[4], Theorem 1 and discussion], gives

¢4 (n) = La(n),

where

> Luln :
o (@3 6*) oo (A2 ¢* oo -+ (@471 %) s

n=0
From this generating function it follows that L4(n) = p(T,.4;n). Thus with our hypotheses,
and Lemma 7, it follows that when d = 2" — 1, q(1 (n) = p(T5,4;m). O
Let
SY ={reN|rx=+l(modd— N +3)}\ {d— N +2},
so that we have by definition
1
N () = p(SY ). (10)
We write z)¥ and y; to denote the i*" smallest elements of S5 and T5 4, respectively.
If ¥ > y; for all 4, then Theorem 2 would follow easily from Theorem 6 and Lemma

8. While this is not the case, the inequality does hold for all but the index ¢ = 2, as shown
in the following lemma.

Lemma 9. If N > 2 and d > max{31,6N —17}, then ¥ —y; > 0 for alli > 3. Moreover,
we have that
min{z) — y;} = min{d — 2N — 1,d — 6N + 17}.

>3
Proof. Fix d > 1. We first show that we can reduce the indices modulo 10 in our com-
parison. By definition of SY, we see that for ¢ > 3, 2l = [£](d — N +3) + (=1), so it
follows that =%, = x)¥ +5d — 5N + 15. Since d > 31 we have that r > 5. Thus recalling
Table 1, we can write ;.10 = y; + 4d for all ¢ > 1. Thus for ¢ > 3, we have
10 = Yirro = (27 —yi) + (d = 5N +15) > &} — y;, (11)
since d > max{31,6/N — 17} > 5N — 15 when N >
Thus, it suffices to show x¥ —y; > 0 for the mdlces 3 < ¢ < 12. By direct computation,
) —ys=d—2N +1,
oy —yy=d—2N —1,
xd —ys =2d — 3N -8,
2 —ye =d—3N +9,
Y —y;=d—4N +9,
ry —yg=d—4N +9,
x5 —yo = 2d — 5N + 6,
Ty — Y10 = 2d — 5N,
x) —yn = 2d — 6N + 16,
Xy — Y12 =d — 6N + 17,
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so that ¥ — y; > 0 when

3N +8

d > max{31,5N — 15,2N — 1,2N + 1, 3N —9,...,3N —8,6N — 17}.

Among these terms, 31 is maximal when N < 8 and 6/N — 17 is maximal for N > 8, so
that ¥ —y; > 0 for d > max{31,6N — 17}. Moreover from (11) we have that

min{z;" —yi} = min {2;° —4i}.

By direct computation we see that among the terms ¥ — y; for 3 < < 12 listed above,
d—2N — 1 is minimal when N < 4 and d — 6N + 17 is minimal when N > 5. Thus

d—2N—-1 N

<4 N
d—6N+17 N >5.

. N _
min{z;’ — yi} {

For fixed d,n > 1, write SV to denote the set of partitions of n with parts in SY so
that |SN| = p(SY;n). For A € SV, let p; denote the number of times ¥ occurs as a part
in A, and define

a=a) =3 @) . (12)

i>3
The following lemma gives a lower bound on the number of parts that are equal to
2 = d— N +4 for certain partitions A € SV. It is imperative to our proof of Theorem 2.

Lemma 10. Let N > 2, d > max{31,9N —13,13N — 31}, n > 7d+14, and A\ € SV such
that p1 + o < (N — 2)py. Then py > 8.

Proof. Suppose ps < 7. We first observe that if o # 0, then there exists some i > 3 such
that p; # 0. By Lemma 9 and our bounds on d it follows that

a > min{d—2N —1,d — 6N + 17} > 7N — 14.

But then
p+a>=TN—14 > (N —2)p,,

which contradicts our hypothesis on p;.
However, if &« = 0, then p;, =0 for all ¢ > 3, and p; < 7N — 14, so

n=p +p(d—N+4) < (TN —14)+7(d— N +4) =7d + 14,
which contradicts our hypothesis on n. Thus we must have p, > 8 as desired. ]

We conclude this section with a few results that will be used in Section 4. The first
two are lemmas from work of Duncan et al. [5] which give key inequalities in our proof
of Theorem 4.
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Lemma 11 (Duncan et al. [5], 2021). Let a,d > 1, and let n > d + 2a. Then

o gy (2)
qq (n) 2 q[g] al)
Lemma 12 (Duncan et al. [5], 2021). Let a,d,n > 1 be such that a | (d+ 3). Then

Qi (an) = Q4 ().

Inagaki and Tamura [6] expanded Theorem 6 to allow for partitions of different inte-
gers, which enables us to prove another key inequality in our proof of Theorem 4.

Lemma 13 (Inagaki and Tamura [6]). Leta > 1, and let S = {x;}2, and T = {y;:}2,
two strictly increasing sequences of positive integers such that y; = a and a | y;, x; > Vi
foralli>1. Then for alln > 1,

p(Ti;n+ng) = p(S;n),

where n, denotes the least nonnegative integer such that a | (n + ng).

3 Proof of Theorem 2

In this section, we modify the work of Inagaki and Tamura [6] and use results from
Andrews [4] and Yee [12] to prove Theorem 2. As our primary method works only when
n = 7d + 14, we first consider the case when d + 2 < n < 7d + 13 below.

Lemma 14. Let N > 2 and d > max{63,46N — 79}. Then for alld+2 < n < 7d+ 13,
1 1,-
a’ (n) > QN ()

Proof. Observe that qfll)( ) and ng\,) (n) are both weakly increasing functions since every
partition of n counted by q(l)( ) or Qél_;\,) (n), respectively, injects to a partition of n + 1
counted by qd ( + 1) or Qd N(n + 1), respectively by adding 1 to the largest part or
adding a part of size 1, respectlvely Thus, if q(l)(kl) > (1 A (kg) for integers ky < ko, it

follows that qC(l (n) > d_ N( ) for all k&; < n < ky. By our hypotheses on d, it follows
that d +2 < 2d — 2N 4+ 4, 2d — 2N 4+ 5 < 5d—5N+16, and 5d — BN + 17 < 7d + 13.
Thus it suffices to prove the following three inequalities.

¢Md+2) = Q! *>(2d — 2N +4), (13)
¢ (2d — 2N +5) > “ J(5d — 5N + 16), (14)
¢ (5d — 5N +17) > “ V(7d 4 13). (15)

Note that the partition n itself is always counted by ql(jl) (n), and for any 1 < k < {"%dj ,

the partition (n — k) + k is counted by qél) (n) since then (n — k) — k > d. Thus, for any
d,n>1,

THE ELECTRONIC JOURNAL OF COMBINATORICS 30(2) (2023), #P2.36 8



0’ (n) = max{l, V;dJ + 1}. (16)

We first prove (13). Observe that any partition counted by leljv)(Qd — 2N +4) can
only use the parts ¥ = 1 and 2} = d — N + 4 since 2l > 2d — 2N + 4. There is
exactly one such partition with largest part =), and one with largest part x). Thus

() (2d — 2N +4) = 2. Using (16) we obtain that ¢{”(d + 2) > 2 which gives (13).
We next prove (14). Since 23, = 5d — 5N + 16, any partition that is counted by
Ell_’;\,)(5d — 5N + 16) can only use the parts z¥ with 1 < ¢ < 10. Using the fact that
d > max{63,46N — 79}, one can calculate that the number of partitions of 5d — 5N + 16
with largest part xV as i ranges from 1to 10is 1,4, 5, 6, 5, 3, 2, 1, 1, 1, respectively. Thus
U )(5d— 5N +16) = 29. Since d > max{63,46N — 79}, it follows that d — 2N +5 > 56,
and thus (16) gives that

d—2N +5

¢"(2d — 2N +5) > { 5

J +1>29,
which yields (14).

We now prove (15). Since d > max{63,46N — 79}, it follows that 21t > 7d + 13. Thus
any partition counted by Qfﬁ?(?d—k 13) can only use the parts x¥ with 1 < i < 14. Using
the fact that d > max{63,46/N — 79}, one can calculate that the number of partitions of
7d+13 with largest part x¥ as i ranges from 1 to 14, is at most? 1, 7, 12, 20, 16, 18, 10, 10,
5,5, 2,2, 1, 1, respectively. Thus Q\")(7d + 13) < 110. Since d > max{63,46N — 79},
it follows that 4d — 5N + 17 > 218, and thus (16) gives that

4d — 5N + 17

¢ (5d — 5N +17) > L 5

J+1>110,

which yields (15). O
We now complete the proof of Theorem 2 with the following lemma.

Lemma 15. Let N > 2 and d > max{63,46N — 79}. Then for all n > 7d + 14,

1 1,—
¢’ (n) = QY (n).

Proof. We first note that our bound on d allows us to apply Lemma 8, so we have the
inequality qc(ll)(n) > p(T54;n), and thus by (10) it suffices to show

p(Tsain) = p(Sy'sn). (17)

Recall that for fixed d and n we write S to denote the set of partitions of n with
parts in SV, and for A € S, we let p; denote the number of times ¥ occurs as a part

i

2Some variance can occur for certain choices of d and N.
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in A. Furthermore write 7" to denote the set of partitions of n with parts in 75 4, and for

p € T, let g; denote the number of times y; occurs as a part in . Then |SY| = p(SY;n)

and |T'| = p(Ts 4;n), so to prove (17), it suffices to construct an injection ¢V : SV — T
We decompose SV into the subsets

SYi={re SN [pi+a=(N-2)p}, (18)
Sy ={re SV [pi+a< (N-2)p},

and we further partition S5 for integers 8 > 0 by

p1tp
Shg = {A eSSy |8= Ll_lN_f’lJ } (19)

By inspection, it is clear that SV is the disjoint union of the sets S} and S(]\Qf 8) for all
= 0. Thus we can construct ¢” piecewise by constructing injections ¢f : S < T and
goé\zf P Sg 5 = T for each # > 0 that have mutually disjoint images. To describe such

maps, given A € S, we define its image in T by specifying the g; associated to the image
in terms of the p; associated to . Also, recall by (12) that

a=a(\) = Z(va — Yi)Di-

Define ¢ : S — T by

pta—(N=2)p,, ifi=1
= ifi>2.

We first show ¢} is well defined. Given A\ € SV, we have by definition of SV that
p1+a = (N —2)py. Thus each ¢; > 0 so that ¢ () is indeed a partition into parts from
Ts 4. Furthermore, we see that ¢} ()\) is a partition of n, i.e., oY ()\) € T, as

> i = +a— (N =2)ps) +pa(d+2) + > pivi
i>1 i>3

:p1—|—(d—N+4)p2+Zpix£V:Zpisz =n. (20)

>3 i>1

To see that 1 is injective, suppose A, N € S such that ¢ (\) = oV (V). Let p!
and ¢/ denote the number of times z and y; occur in X and ¢} ()\), respectively, and
let of = 3 s(x) — y;)p;. Then ¢; = ¢} for all 4 implies that p; = p for all i > 2 and
pr+a—(N—=2)py=p) + o — (N —2)p),. Since p; = p} for all i > 2 implies o = o/, we
have p; = p) and hence that A = X. So ¢V : S — T as desired.

Next, for fixed 8 > 0, given A € Sgﬁ), let

cme(\) = 0 if po is even,
B )1 if pe is odd.
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Then define gpé\;ﬁ) : S(J\Qfﬁ) — T by

pr+ o+ RS | oogs 4 (96 4+ N)e,  ifi=1

es+e iti=2
BT Y ps+ e — 28— 2, iti=5
P iti#£1,2,5,

To see that (p(2 g) is well defined, we first observe that since d > max{63,46N — 79}, we
have easily that ¢; > 0 for all ¢ # 5. To prove ¢; > 0, it suffices to show that p, — 3¢ > 40.
By the definitions (19), (12), (18), as well as d > maX{GS, 46N — 79}, it follows that

P11+ Ds P+ o 4(N—2)p2 D2
1p<a (25 ) <y <2
& <d—N—1> (d—N—1)<d—N—1 2

Moreover, the hypotheses of Lemma 10 are satisfied, so p; > 8. Thus,

%<p2—3 P2 — 3€.

Thus each ¢; > 0 so that ¢, B)(/\) is indeed a partition into parts from T 4. Furthermore,

45<*_P2—

we see that ¢ 5 (A) is a partition of n, ie., ¢ 5(\) € T as

> i = (p1+a+ (p: +e)(d — 2V — §) +28B+(26+N)5> (284 o) (d+2)

, 2
=1

+e
—|—(p5+p22 —25—25) (d+16) + szyz

i£1,2,5
+)(2d — 2N + 8
:p1+(p2 I )+(—d+N—4)6+Zpix£V
2 :
>3
=pr+pa(d = N+4)+> pal = pal =
>3 i>1

To see that <p(2 5) 1s injective, suppose A\, \" € 5(2 g such that gog 5(A) = gpg 5 (N).
As in the previous case, let pl and ¢/ denote the number of times z¥ and y; occur in N
and gp (2., (A'), respectively, o = = > ios(@) — yi)p), and also let &’ denote the residue of p),
modulo 2. Then ¢; = ¢, for all ¢ 1mphes that p; = pj for all i # 1,2,5 and ¢ = ¢’. From
¢1 = ¢4 and g5 = ¢;, we obtain that

d—2N —8 5(d—2N —38
p1+(2d—3N—8)p5—|—p2( 5 ) _ ’+(2d—3N_8)pg+Pz( . )7(21)
P2 / pIQ
P2, Do 99
Pt =pst (22)
Multiplying (22) by (d — 2N — 8) and subtracting this from (21) gives
p1+(d = N)ps = py + (d — N)pi. (23)
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From (19), we see that p; + ps = f(d — N — 1) +m and p} + pt = f(d— N — 1) + m/,

where 0 < m,m’ <d— N — 1. Thus subtracting yields

/

(p1 = Ph) + (ps — p5) = m —m'.
Combining (24) and (23) gives

m’' —m = (d— N —1)(p5 — ps).

(24)

(25)

Since 0 < m,m' <d— N —1, (25) implies that m = m' and thus ps = pt. Thus from (22)
it follows that p, = p}, so (21) yields that p; = p}, and hence A = X'. So 90?2’75) : S(]\Qfﬁ) —T

as desired.

It remains to show that the images of all of the ¢ and gogﬁ) are distinct. First
observe that if § # ', A € S(Jgﬁ)7 and \' € Sgﬁ/), then gogﬁ)()\) # gog’ﬁ,)()\’) since g2 # qb.
Now fix f > 0, and suppose toward contradiction that \ € Sgﬁ) and X' € SN such
that cpgﬁ)()\) = N(N). Then ¢; = ¢, for all i immediately gives that p; = p| for all

1#1,2,5 and

+ée)(d—2N -8
p’1+o/—(N—2)p’2=pl+oz+(p2 )(2 )
Py =20 +e,

p2+e€
2

+ 288 + (26 + N)e,

Py = D5+ — 20 — 2,

which yield that

P, +(2d — 3N — 8)p =
(p2 +¢€)(d — 2N —8)
2

p1+ (2d — 3N — 8)ps + + (2N +24)(B + ),

p2;6 —2(8+¢).

Multiplying (27) by (2d — 3N — 8) and subtracting this from (26) gives

(p2 +€)(N —d)
5 +

Ps = D5 +

Pi=m+ (4d — AN + 8) + (4d — AN + 8)e.

From (18) and (19) we have

P < p1r+a < (N —2)p,,

P11+ ps < p1+ o <(N_2)P2
d—N—-1 "d-N-1 d—N-1

b <
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Thus, (28) and (29) yield that

/ _ (p2 +&)(NV —d) _ (N —2)ps
Py < (N —2)py+ 5 + (4d — 4N +38) N1 ¢
(—d? + (12N — 19)d — 11N? + 33N — 28)p,
N 2d — 2N — 2
Td?> + d(—14N 4+ 9) + TN? — 9N — 16
L (T +d +9) + k.@m

2d — 2N —2

Since the hypotheses of Lemma 10 are satisfied, we have that py > 8. If po = 8, then
e =0 and (30) becomes

,  —4d® + (48N — 76)d — 44N? + 132N — 112
L=< d—N_1 ‘

Since d > max{63,46N — 79}, the denominator above is always positive. But when
d > 12N= 19+V 100N Z=324N+249 the numerator is negative, which would yield a contradiction
since pj > 0. Slnce 100]\72 — 324N + 249 < (10N — 16)?, it thus suffices to show that
d > 11N — 17, which follows easily from the fact that d > max{63,46N — 79}. Thus we
have a contradiction in the case when py = 8.

Suppose py = 9. Since d > max{63,46N — 79}, for all N > 2 we have

—d* 4+ d(12N —19) — 11N? 4 33N — 2

8 <0,
7d* +d(—14N +9) + TN* —9N — 16 > 0

<
>
Thus (30) yields that

|4 (ATN — 81)d — 46N 1 144N — 134
PL s d—N_—1 '

As above, when d > 1™V= 81+V2025N Z_T038N+6025 the right hand side is negative which
contradicts the nonnegativity of p. Smce 2025N2—7038N +6025 < (45N —78)?, it suffices
to show that d > 46N — 79, which is immediate from our bound d > maX{63 46N — 79}
Thus we have a contradiction in the case when p, > 9, and have shown ¢, B)( ) # eV (V)

for any \ € 5(27 and \ € S,
Thus considered together, ¢ and gpé\i 8 for each 8 > 0 form a piecewise injective map
N SN < T which gives our desired inequality. O

4 Proof of Theorem 4 and Corollary 5

We now demonstrate that the methods of Inagaki and Tamura [6] together with Corollary
3 yield the generalized Kang-Park type result given in Theorem 4.
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Proof of Theorem 4. We first suppose that n > d + 2a. Write n, and d, to denote the

least nonnegative residue of —n and —d modulo a, respectively, so that [2] = ntha and
(g} = %. Then using Lemma 11, Corollary 3, and Lemma 12, we obtain
(a) W (Nt - (e _ e A
P>l () 2ol (M) =) e a).
Thus it remains to show that
QW) L+ = Q¢ (n). (31)

Define

S:={xeN|z=+a (modd+3)}\{d+3—a},
T:={zeN|z=+a (mod d+d, —a)}\{d+d, —2a},

and observe that lea’ (n) = p(S;n) and Qd+d ,(n+1e) = p(T;n + ny). Letting
and y; denote the i*" smallest elements of S and T, respectively, we have that 1, = y; = «q,
and
xglzz(d—i-?))—ka, ygi:i(d—i-da—a)—ka, fOI'?;}l,
Toi1 =i(d+3)—a, Yy 1=i(d+d,—a)—a, fori=>2.

Clearly a | y; for all ¢ > 1, and moreover, z; > y; for all i > 1 since 0 < d, < a. Thus by
Lemma 13, we have (31) as desired.

We now consider 1 < n < d+ 2a — 1. As in the proof of Lemma 14, we observe that
qc(la) (n) is a weakly increasing function, however Q da _)(n) is not.

If1<n<a-1,then q((ia)(n) =0= ( ( ). Also, q(a)( ) =1and ng’f)(n) < 1 for
all a <n < d+a+ 2 since a is the only avallable part. Thus it remains to consider when
d+a+3<n<d+2a— 1, which only occurs for a > 4.

By our hypothesis that [%W > 105, it follows that d4+2a—1 < 2d—a+6. Thus the only
available parts for a partition counted by le’_) (n) when d+a+3 < n < d+2a—1 are a and
d+a+3. Furthermore, the part d+a+3 can occur at most once since 2d+2a+6 > d+2a—1.
Thus a partition counted by Q(a’ (n) when d+a+3 <n < d+2a—1is either a sum of
parts of size a, which can only occur when n =0 (mod a), or d+a+ 3 plus a sum of parts
of size a, which can only occur when n = d 4+ 3 (mod a). Thus Q((ia’_)(n) <1< qc(la) (n)
except when d = —3 (mod a) and n = 0 (mod a) simultaneously. But if d = ka — 3 for
k > 1, then (k+1)a < n < (k4+2)a—4, so the only exception occurs when n = d+a+3. [

We now prove Corollary 5.

Proof of Corollary 5. By definition, Al» 77 (n) > A" (n), since there are fewer parts
available for partitions counted by Agla’_’_)(n). Thus by Theorem 4, it follows that
Afla’_’_)(n) > 0 for any a,d > 1 such that (ﬂ > 105 and n > 1, except possibly
when d = —3 (mod @) and n = d + a + 3. However in these cases, observe that
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((ia’_’_)(d +a+3) = 1, since d + a + 3 is the only available part by definition. Also,
qc(la)(d +a+3) > 1 since d + a + 3 is a partition counted by qc(la)(d + a + 3). Thus
q((la) (n) > Ela’f’f) (n) in all of our considered cases. O

5 Concluding Remarks

By work of Kang and Kim? [7, Thm. 1.1] and the fact that le) (n) > gl’_)(n), it follows
that when ged(a,d — N) =1,

lim (g, (n) = Q43 (n)) = oo,
forall N <d+3— L%J, where A; = $log® ay + Y02, r~2aj, with aq4 the unique real
root of #% + 2 — 1 in the interval (0,1). Thus it may be possible to generalize Theorem 2

to an inequality of the form qéa) (n) > gl_]_\,) (n) for more general a.
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