

Generalized Alder-Type Partition Inequalities

Liam Armstrong*

Oregon State University
Corvallis, OR, U.S.A.

armstrli@oregonstate.edu

Thomas Meyer‡

Amherst College
Amherst, MA, U.S.A.
tmeyer23@amherst.edu

Bryan Ducasse†

University of Central Florida
Orlando, FL, U.S.A.

bducasse77@knights.ucf.edu

Holly Swisher§

Department of Mathematics
Oregon State University
Corvallis, OR, U.S.A.

swisherh@oregonstate.edu

Submitted: Oct 14, 2022; Accepted: May 12, 2023; Published: Jun 2, 2023

© The authors. Released under the CC BY-ND license (International 4.0).

Abstract

In 2020, Kang and Park conjectured a “level 2” Alder-type partition inequality which encompasses the second Rogers-Ramanujan Identity. Duncan, Khunger, the fourth author, and Tamura proved Kang and Park’s conjecture for all but finitely many cases utilizing a “shift” inequality and conjectured a further, weaker generalization that would extend both Alder’s (now proven) as well as Kang and Park’s conjecture to general level. Utilizing a modified shift inequality, Inagaki and Tamura have recently proven that the Kang and Park conjecture holds for level 3 in all but finitely many cases. They further conjectured a stronger shift inequality which would imply a general level result for all but finitely many cases. Here, we prove their conjecture for large enough n , generalize the result for an arbitrary shift, and discuss the implications for Alder-type partition inequalities.

Mathematics Subject Classifications: 05A17, 05A20, 11P81, 11P84

1 Introduction

A partition of a positive integer n is a non-increasing sequence of positive integers, called parts, that sum to n . Let $p(n \mid \text{condition})$ count the number of partitions of n that satisfy

*Supported by NSF grant DMS-2101906.

†Supported by NSF grant DMS-2101906.

‡Supported by NSF grant DMS-2101906.

§Supported by NSF grant DMS-2101906.

the specified condition, and define

$$\begin{aligned} q_d^{(a)}(n) &:= p(n \mid \text{parts} \geq a \text{ and differ by at least } d), \\ Q_d^{(a)}(n) &:= p(n \mid \text{parts} \equiv \pm a \pmod{d+3}), \\ \Delta_d^{(a)}(n) &:= q_d^{(a)}(n) - Q_d^{(a)}(n). \end{aligned}$$

Euler's well-known partition identity, which states that the number of partitions of n into distinct parts equals those into odd parts, can be written as $\Delta_1^{(1)}(n) = 0$. Moreover, the celebrated first and second Rogers-Ramanujan identities, written here in terms of q -Pochhammer notation¹,

$$\begin{aligned} \sum_{n=0}^{\infty} \frac{q^{n^2}}{(q; q)_n} &= \frac{1}{(q; q^5)_{\infty} (q^4; q^5)_{\infty}}, \\ \sum_{n=0}^{\infty} \frac{q^{n^2+n}}{(q; q)_n} &= \frac{1}{(q^2; q^5)_{\infty} (q^3; q^5)_{\infty}}, \end{aligned}$$

are interpreted in terms of partitions as $\Delta_2^{(1)}(n) = 0$ and $\Delta_2^{(2)}(n) = 0$, respectively.

Schur [10] proved that the number of partitions of n into parts differing by at least 3, where no two consecutive multiples of 3 appear, equals the number of partitions of n into parts congruent to $\pm 1 \pmod{6}$, which yields that $\Delta_3^{(1)}(n) \geq 0$. Lehmer [9] and Alder [1] proved that such a pattern of identities can not continue by showing that no other such partition identities can exist. However, in 1956 Alder [2] conjectured a different type of generalization. Namely, that for all $n, d \geq 1$,

$$\Delta_d^{(1)}(n) \geq 0. \quad (1)$$

In 1971, Andrews [4] proved (1) when $d = 2^k - 1$ and $k \geq 4$, and in 2004, Yee [11, 12] proved (1) for $d \geq 32$ and $d = 7$, both using q -series and combinatorial methods. Then in 2011, Alfes, Jameson, and Lemke Oliver [3] used asymptotic methods and detailed computer programming to prove the remaining cases of $4 \leq d \leq 30$ with $d \neq 7, 15$.

It is natural to ask whether (1) can be generalized to $a = 2$ in order to encapsulate the second Rogers-Ramanujan identity, or perhaps even be generalized to arbitrary a .

In 2020, after observing that $\Delta_d^{(2)}(n) \geq 0$ does not hold for all $n, d \geq 1$, Kang and Park [8] defined

$$\begin{aligned} Q_d^{(a,-)}(n) &:= p(n \mid \text{parts} \equiv \pm a \pmod{d+3}, \text{ excluding the part } d+3-a), \\ \Delta_d^{(a,-)}(n) &:= q_d^{(a)}(n) - Q_d^{(a,-)}(n), \end{aligned}$$

and conjectured that for all $n, d \geq 1$,

$$\Delta_d^{(2,-)}(n) \geq 0. \quad (2)$$

¹ $(a; q)_0 := 1$ and $(a; q)_n := \prod_{k=0}^{n-1} (1 - aq^k)$ for $1 \leq n \leq \infty$

Kang and Park [8] proved (2) when n is even, $d = 2^k - 2$, and $k \geq 5$ or $k = 2$. Then in 2021, Duncan, Khunger, the fourth author, and Tamura [5] proved (2) for all $d \geq 62$. Exploring the question for larger a , they conjectured that for all $n, d \geq 1$,

$$\Delta_d^{(3,-)}(n) \geq 0, \quad (3)$$

but found that when $a \geq 4$, the removal of one additional part appears to be both necessary and sufficient to obtain such a result for all $n, d \geq 1$. Letting

$$\begin{aligned} Q_d^{(a,-,-)}(n) &:= p(n \mid \text{parts} \equiv \pm a \pmod{d+3}, \text{excluding the parts } a \text{ and } d+3-a), \\ \Delta_d^{(a,-,-)}(n) &:= q_d^{(a)}(n) - Q_d^{(a,-,-)}(n), \end{aligned}$$

Duncan et al. [5] conjectured that if $a, d \geq 1$ such that $1 \leq a \leq d+2$, then for all $n \geq 1$,

$$\Delta_d^{(a,-,-)}(n) \geq 0. \quad (4)$$

Recently, Inagaki and Tamura [6] proved (3) for $d \geq 187$ and $d = 1, 2, 91, 92, 93$, and further proved that $\Delta_d^{(4,-)}(n) \geq 0$ for $d \geq 249$ and $121 \leq d \leq 124$ as a corollary to a result for general a for certain residue classes of d . Inagaki and Tamura [6] were also able to prove the general conjecture (4) of Duncan et al. [5] for sufficiently large d with respect to a , namely when $\lceil \frac{d}{a} \rceil \geq 2^{a+3} - 1$.

The proof of (2) for $d \geq 62$ by Duncan et al. [5] utilized a particular shift identity. Namely, they showed that if $d \geq 31$ or $d = 15$, then for $n \geq 1$,

$$q_d^{(1)}(n) \geq Q_{d-2}^{(1,-)}(n). \quad (5)$$

The proof of (3) for $d \geq 187$ or $d = 1, 2, 91, 92, 93$ by Inagaki and Tamura [6] utilized a stronger shift identity that holds for large enough n with respect to d . Namely, they showed that if $d \geq 63$ or $d = 31$, then for $n \geq d+2$,

$$q_d^{(1)}(n) \geq Q_{d-3}^{(1,-)}(n). \quad (6)$$

Given a choice of a , it is natural to ask for which $n, d \geq 1$,

$$\Delta_d^{(a,-)}(n) \geq 0. \quad (7)$$

Inagaki and Tamura [6] posed the following shift identity conjecture, which they further determined can be used to obtain answers to (7) and a vast improvement on the bounds for (4).

Conjecture 1 (Inagaki, Tamura [6], 2022). Let $d \geq 12$ and $n \geq d+2$. Then

$$q_d^{(1)}(n) - Q_{d-4}^{(1,-)}(n) \geq 0.$$

In this paper, we prove a generalized shift identity. We have the following theorem.

Theorem 2. *If $N \geq 2$, $d \geq \max\{63, 46N - 79\}$, and $n \geq d + 2$, then*

$$q_d^{(1)}(n) \geq Q_{d-N}^{(1,-)}(n).$$

As an immediate corollary of Theorem 2 we obtain Conjecture 1 when $d \geq 105$.

Corollary 3. *For $d \geq 105$, and $n \geq d + 2$,*

$$q_d^{(1)}(n) \geq Q_{d-4}^{(1,-)}(n).$$

Moreover, using the methods of Inagaki and Tamura [6] Corollary 3 can be applied to obtain a more complete answer to (7) as well as stronger bounds for (4).

Theorem 4. *Let $a \geq 1$ and $d \not\equiv -3 \pmod{a}$ such that $\lceil \frac{d}{a} \rceil \geq 105$. Then for all $n \geq 1$,*

$$\Delta_d^{(a,-)}(n) \geq 0.$$

Moreover, for $d \equiv -3 \pmod{a}$ then $\Delta_d^{(a,-)}(n) \geq 0$ for all $n \neq d + a + 3$.

As a corollary of Theorem 4 we obtain the following, which proves conjecture (4) of Duncan et al. [5] for $\lceil \frac{d}{a} \rceil \geq 105$. We note that this bound is lower than that given by Inagaki and Tamura [6, Thm. 1.8] when $a \geq 4$, and is significantly lower as a grows.

Corollary 5. *For all $a, d \geq 1$ such that $\lceil \frac{d}{a} \rceil \geq 105$, and $n \geq 1$,*

$$\Delta_d^{(a,-,-)}(n) \geq 0.$$

We now outline the rest of the paper. In Section 2, we state a fundamental result of Andrews [4] and discuss some notation and lemmas used in the proofs of Theorems 2, 4, and 5. In Section 3, we prove Theorem 2, and in Section 4, we use Corollary 3 to prove Theorem 4 and Corollary 5. We conclude with additional remarks and discussion.

2 Preliminaries

For a nonempty set $A \subseteq \mathbb{N}$, define $\rho(A; n)$ to count the number of partitions of n with parts in A . The following theorem of Andrews [4] gives a way to compare the number of partitions of n with parts coming from different sets.

Theorem 6 (Andrews [4], 1971). *Let $S = \{x_i\}_{i=1}^{\infty}$ and $T = \{y_i\}_{i=1}^{\infty}$ be two strictly increasing sequences of positive integers such that $y_1 = 1$ and $x_i \geq y_i$ for all i . Then*

$$\rho(T; n) \geq \rho(S; n).$$

For fixed $d \geq 1$, define r to be the greatest integer such that

$$2^r - 1 \leq d. \tag{8}$$

Further define for integers $d, s \geq 1$

$$T_{s,d} := \{y \in \mathbb{N} \mid y \equiv 1, d+2, \dots, d+2^{s-1} \pmod{2d}\}. \tag{9}$$

Table 1: Elements of $T_{s,d}$ in increasing order by rows for $s \leq r$.

1	$d + 2$	\cdots	$d + 2^{s-1}$
$2d + 1$	$3d + 2$	\cdots	$3d + 2^{s-1}$
\vdots	\vdots	\vdots	\vdots
$(2j-2)d + 1$	$(2j-1)d + 2$	\cdots	$(2j-1)d + 2^{s-1}$
\vdots	\vdots	\vdots	\vdots

Lemma 7. *Let $d \geq 1$ and $1 \leq a \leq b \leq r$, with r as in (8). Then $\rho(T_{a,d}; n) \leq \rho(T_{b,d}; n)$.*

Proof. When $s \leq r$, we have $2^{s-1} - 1 < d$ which implies that $(2k-1)d + 2^{s-1} < 2kd + 1$ for all $k \geq 1$. Thus Table 1 shows the elements of $T_{s,d}$ listed in increasing order when read left to right.

Let y_i^s denote the i^{th} smallest element of $T_{s,d}$. Observe that when $1 \leq a \leq b \leq r$ we must have that $y_i^a \geq y_i^b$ for all i , since the number of columns in Table 1, and thus the index of the elements in the first column, is weakly increasing when $s = a$ is replaced by $s = b$. Thus, by Theorem 6, we conclude that $\rho(T_{a,d}; n) \leq \rho(T_{b,d}; n)$. \square

Previous work of Andrews [4] and Yee [12] on Alder's conjecture gives the following lower bound for $q_d^{(1)}(n)$ for sufficiently large d and n .

Lemma 8 (Andrews [4], Yee [12]). *Let $d \geq 63$ and $n \geq 5d$. Then $q_d^{(1)}(n) \geq \rho(T_{5,d}; n)$.*

Proof. Recall for fixed $d \geq 1$, r is defined as in (8). When $d > 2^r - 1$ for $r \geq 5$ and $n \geq 4d + 2^r$, work of Yee [[12], Lemmas 2.2 and 2.7] gives that

$$q_d^{(1)}(n) \geq \mathcal{G}_d^{(1)}(n),$$

where

$$\sum_{k \geq 0} \mathcal{G}_d^{(1)}(n) q^n = \frac{(-q^{d+2^{r-1}}; q^{2d})_\infty}{(q; q^{2d})_\infty (q^{d+2}; q^{2d})_\infty \cdots (d^{d+2^{r-2}}; q^{2d})_\infty}.$$

From this generating function it follows that $\mathcal{G}_d^{(1)}(n)$ counts the number of partitions of n into distinct parts congruent to $d + 2^{r-1}$ modulo $2d$ and unrestricted parts from the set $T_{r-1,d}$ as defined in (9). Thus it follows that

$$q_d^{(1)}(n) \geq \mathcal{G}_d^{(1)}(n) \geq \rho(T_{r-1,d}; n).$$

From our hypotheses $d \geq 63$, so $r \geq 6$. Hence by Lemma 7, we have when $d > 2^r - 1$ that

$$q_d^{(1)}(n) \geq \rho(T_{5,d}; n).$$

When $d = 2^r - 1$ for $r \geq 4$, work of Andrews [[4], Theorem 1 and discussion], gives

$$q_d^{(1)}(n) \geq \mathcal{L}_d(n),$$

where

$$\sum_{n \geq 0} \mathcal{L}_d(n) q^n = \frac{1}{(q; q^{2d})_\infty (d^{d+2}; q^{2d})_\infty \cdots (q^{d+2r-1}; q^{2d})_\infty}.$$

From this generating function it follows that $\mathcal{L}_d(n) = \rho(T_{r,d}; n)$. Thus with our hypotheses, and Lemma 7, it follows that when $d = 2^r - 1$, $q_d^{(1)}(n) \geq \rho(T_{5,d}; n)$. \square

Let

$$S_d^N := \{x \in \mathbb{N} \mid x \equiv \pm 1 \pmod{d-N+3}\} \setminus \{d-N+2\},$$

so that we have by definition

$$Q_{d-N}^{(1,-)}(n) = \rho(S_d^N; n). \quad (10)$$

We write x_i^N and y_i to denote the i^{th} smallest elements of S_d^N and $T_{5,d}$, respectively.

If $x_i^N \geq y_i$ for all i , then Theorem 2 would follow easily from Theorem 6 and Lemma 8. While this is not the case, the inequality does hold for all but the index $i = 2$, as shown in the following lemma.

Lemma 9. *If $N \geq 2$ and $d \geq \max\{31, 6N-17\}$, then $x_i^N - y_i \geq 0$ for all $i \geq 3$. Moreover, we have that*

$$\min_{i \geq 3} \{x_i^N - y_i\} = \min\{d-2N-1, d-6N+17\}.$$

Proof. Fix $d \geq 1$. We first show that we can reduce the indices modulo 10 in our comparison. By definition of S_d^N , we see that for $i \geq 3$, $x_i^N = \lceil \frac{i}{2} \rceil (d-N+3) + (-1)^i$, so it follows that $x_{i+10}^N = x_i^N + 5d - 5N + 15$. Since $d \geq 31$ we have that $r \geq 5$. Thus recalling Table 1, we can write $y_{i+10} = y_i + 4d$ for all $i \geq 1$. Thus for $i \geq 3$, we have

$$x_{i+10}^N - y_{i+10} = (x_i^N - y_i) + (d-5N+15) \geq x_i^N - y_i, \quad (11)$$

since $d \geq \max\{31, 6N-17\} \geq 5N-15$ when $N \geq 2$.

Thus, it suffices to show $x_i^N - y_i \geq 0$ for the indices $3 \leq i \leq 12$. By direct computation,

$$\begin{aligned} x_3^N - y_3 &= d - 2N + 1, \\ x_4^N - y_4 &= d - 2N - 1, \\ x_5^N - y_5 &= 2d - 3N - 8, \\ x_6^N - y_6 &= d - 3N + 9, \\ x_7^N - y_7 &= d - 4N + 9, \\ x_8^N - y_8 &= d - 4N + 9, \\ x_9^N - y_9 &= 2d - 5N + 6, \\ x_{10}^N - y_{10} &= 2d - 5N, \\ x_{11}^N - y_{11} &= 2d - 6N + 16, \\ x_{12}^N - y_{12} &= d - 6N + 17, \end{aligned}$$

so that $x_i^N - y_i \geq 0$ when

$$d \geq \max\{31, 5N - 15, 2N - 1, 2N + 1, \frac{3N + 8}{2}, 3N - 9, \dots, 3N - 8, 6N - 17\}.$$

Among these terms, 31 is maximal when $N \leq 8$ and $6N - 17$ is maximal for $N \geq 8$, so that $x_i^N - y_i \geq 0$ for $d \geq \max\{31, 6N - 17\}$. Moreover from (11) we have that

$$\min_{i \geq 3} \{x_i^N - y_i\} = \min_{3 \leq i \leq 12} \{x_i^N - y_i\}.$$

By direct computation we see that among the terms $x_i^N - y_i$ for $3 \leq i \leq 12$ listed above, $d - 2N - 1$ is minimal when $N \leq 4$ and $d - 6N + 17$ is minimal when $N \geq 5$. Thus

$$\min_{i \geq 3} \{x_i^N - y_i\} = \begin{cases} d - 2N - 1 & N \leq 4 \\ d - 6N + 17 & N \geq 5. \end{cases} \quad \square$$

For fixed $d, n \geq 1$, write S^N to denote the set of partitions of n with parts in S_d^N so that $|S^N| = \rho(S_d^N; n)$. For $\lambda \in S^N$, let p_i denote the number of times x_i^N occurs as a part in λ , and define

$$\alpha = \alpha(\lambda) := \sum_{i \geq 3} (x_i^N - y_i)p_i. \quad (12)$$

The following lemma gives a lower bound on the number of parts that are equal to $x_2^N = d - N + 4$ for certain partitions $\lambda \in S^N$. It is imperative to our proof of Theorem 2.

Lemma 10. *Let $N \geq 2$, $d \geq \max\{31, 9N - 13, 13N - 31\}$, $n \geq 7d + 14$, and $\lambda \in S^N$ such that $p_1 + \alpha < (N - 2)p_2$. Then $p_2 \geq 8$.*

Proof. Suppose $p_2 \leq 7$. We first observe that if $\alpha \neq 0$, then there exists some $i \geq 3$ such that $p_i \neq 0$. By Lemma 9 and our bounds on d it follows that

$$\alpha \geq \min\{d - 2N - 1, d - 6N + 17\} \geq 7N - 14.$$

But then

$$p_1 + \alpha \geq 7N - 14 \geq (N - 2)p_2,$$

which contradicts our hypothesis on p_1 .

However, if $\alpha = 0$, then $p_i = 0$ for all $i \geq 3$, and $p_1 < 7N - 14$, so

$$n = p_1 + p_2(d - N + 4) < (7N - 14) + 7(d - N + 4) = 7d + 14,$$

which contradicts our hypothesis on n . Thus we must have $p_2 \geq 8$ as desired. \square

We conclude this section with a few results that will be used in Section 4. The first two are lemmas from work of Duncan et al. [5] which give key inequalities in our proof of Theorem 4.

Lemma 11 (Duncan et al. [5], 2021). *Let $a, d \geq 1$, and let $n \geq d + 2a$. Then*

$$q_d^{(a)}(n) \geq q_{\lceil \frac{d}{a} \rceil}^{(1)} \left(\left\lceil \frac{n}{a} \right\rceil \right).$$

Lemma 12 (Duncan et al. [5], 2021). *Let $a, d, n \geq 1$ be such that $a \mid (d + 3)$. Then*

$$Q_d^{(a,-)}(an) = Q_{\frac{d+3}{a}-3}^{(1,-)}(n).$$

Inagaki and Tamura [6] expanded Theorem 6 to allow for partitions of different integers, which enables us to prove another key inequality in our proof of Theorem 4.

Lemma 13 (Inagaki and Tamura [6]). *Let $a \geq 1$, and let $S = \{x_i\}_{i=1}^{\infty}$ and $T = \{y_i\}_{i=1}^{\infty}$ be two strictly increasing sequences of positive integers such that $y_1 = a$ and $a \mid y_i$, $x_i \geq y_i$ for all $i \geq 1$. Then for all $n \geq 1$,*

$$\rho(T; n + \hat{n}_a) \geq \rho(S; n),$$

where \hat{n}_a denotes the least nonnegative integer such that $a \mid (n + \hat{n}_a)$.

3 Proof of Theorem 2

In this section, we modify the work of Inagaki and Tamura [6] and use results from Andrews [4] and Yee [12] to prove Theorem 2. As our primary method works only when $n \geq 7d + 14$, we first consider the case when $d + 2 \leq n \leq 7d + 13$ below.

Lemma 14. *Let $N \geq 2$ and $d \geq \max\{63, 46N - 79\}$. Then for all $d + 2 \leq n \leq 7d + 13$,*

$$q_d^{(1)}(n) \geq Q_{d-N}^{(1,-)}(n).$$

Proof. Observe that $q_d^{(1)}(n)$ and $Q_{d-N}^{(1,-)}(n)$ are both weakly increasing functions since every partition of n counted by $q_d^{(1)}(n)$ or $Q_{d-N}^{(1,-)}(n)$, respectively, injects to a partition of $n + 1$ counted by $q_d^{(1)}(n + 1)$ or $Q_{d-N}^{(1,-)}(n + 1)$, respectively by adding 1 to the largest part or adding a part of size 1, respectively. Thus, if $q_d^{(1)}(k_1) \geq Q_{d-N}^{(1,-)}(k_2)$ for integers $k_1 \leq k_2$, it follows that $q_d^{(1)}(n) \geq Q_{d-N}^{(1,-)}(n)$ for all $k_1 \leq n \leq k_2$. By our hypotheses on d , it follows that $d + 2 \leq 2d - 2N + 4$, $2d - 2N + 5 \leq 5d - 5N + 16$, and $5d - 5N + 17 \leq 7d + 13$. Thus it suffices to prove the following three inequalities.

$$q_d^{(1)}(d + 2) \geq Q_{d-N}^{(1,-)}(2d - 2N + 4), \tag{13}$$

$$q_d^{(1)}(2d - 2N + 5) \geq Q_{d-N}^{(1,-)}(5d - 5N + 16), \tag{14}$$

$$q_d^{(1)}(5d - 5N + 17) \geq Q_{d-N}^{(1,-)}(7d + 13). \tag{15}$$

Note that the partition n itself is always counted by $q_d^{(1)}(n)$, and for any $1 \leq k \leq \lfloor \frac{n-d}{2} \rfloor$, the partition $(n - k) + k$ is counted by $q_d^{(1)}(n)$ since then $(n - k) - k \geq d$. Thus, for any $d, n \geq 1$,

$$q_d^{(1)}(n) \geq \max \left\{ 1, \left\lfloor \frac{n-d}{2} \right\rfloor + 1 \right\}. \quad (16)$$

We first prove (13). Observe that any partition counted by $Q_{d-N}^{(1,-)}(2d-2N+4)$ can only use the parts $x_1^N = 1$ and $x_2^N = d-N+4$ since $x_3^N > 2d-2N+4$. There is exactly one such partition with largest part x_1^N , and one with largest part x_2^N . Thus $Q_{d-N}^{(1,-)}(2d-2N+4) = 2$. Using (16) we obtain that $q_d^{(1)}(d+2) \geq 2$ which gives (13).

We next prove (14). Since $x_{10}^N = 5d-5N+16$, any partition that is counted by $Q_{d-N}^{(1,-)}(5d-5N+16)$ can only use the parts x_i^N with $1 \leq i \leq 10$. Using the fact that $d \geq \max\{63, 46N-79\}$, one can calculate that the number of partitions of $5d-5N+16$ with largest part x_i^N as i ranges from 1 to 10 is 1, 4, 5, 6, 5, 3, 2, 1, 1, 1, respectively. Thus $Q_{d-N}^{(1,-)}(5d-5N+16) = 29$. Since $d \geq \max\{63, 46N-79\}$, it follows that $d-2N+5 \geq 56$, and thus (16) gives that

$$q_d^{(1)}(2d-2N+5) \geq \left\lfloor \frac{d-2N+5}{2} \right\rfloor + 1 \geq 29,$$

which yields (14). \square

We now prove (15). Since $d \geq \max\{63, 46N-79\}$, it follows that $x_{15}^N > 7d+13$. Thus any partition counted by $Q_{d-N}^{(1,-)}(7d+13)$ can only use the parts x_i^N with $1 \leq i \leq 14$. Using the fact that $d \geq \max\{63, 46N-79\}$, one can calculate that the number of partitions of $7d+13$ with largest part x_i^N as i ranges from 1 to 14, is at most² 1, 7, 12, 20, 16, 18, 10, 10, 5, 5, 2, 2, 1, 1, respectively. Thus $Q_{d-N}^{(1,-)}(7d+13) \leq 110$. Since $d \geq \max\{63, 46N-79\}$, it follows that $4d-5N+17 \geq 218$, and thus (16) gives that

$$q_d^{(1)}(5d-5N+17) \geq \left\lfloor \frac{4d-5N+17}{2} \right\rfloor + 1 \geq 110,$$

which yields (15). \square

We now complete the proof of Theorem 2 with the following lemma.

Lemma 15. *Let $N \geq 2$ and $d \geq \max\{63, 46N-79\}$. Then for all $n \geq 7d+14$,*

$$q_d^{(1)}(n) \geq Q_{d-N}^{(1,-)}(n).$$

Proof. We first note that our bound on d allows us to apply Lemma 8, so we have the inequality $q_d^{(1)}(n) \geq \rho(T_{5,d}; n)$, and thus by (10) it suffices to show

$$\rho(T_{5,d}; n) \geq \rho(S_d^N; n). \quad (17)$$

Recall that for fixed d and n we write S^N to denote the set of partitions of n with parts in S_d^N , and for $\lambda \in S^N$, we let p_i denote the number of times x_i^N occurs as a part

²Some variance can occur for certain choices of d and N .

in λ . Furthermore write T to denote the set of partitions of n with parts in $T_{5,d}$, and for $\mu \in T$, let q_i denote the number of times y_i occurs as a part in μ . Then $|S^N| = \rho(S_d^N; n)$ and $|T| = \rho(T_{5,d}; n)$, so to prove (17), it suffices to construct an injection $\varphi^N : S^N \hookrightarrow T$.

We decompose S^N into the subsets

$$\begin{aligned} S_1^N &:= \{\lambda \in S^N \mid p_1 + \alpha \geq (N-2)p_2\}, \\ S_2^N &:= \{\lambda \in S^N \mid p_1 + \alpha < (N-2)p_2\}, \end{aligned} \quad (18)$$

and we further partition S_2^N for integers $\beta \geq 0$ by

$$S_{(2,\beta)}^N := \left\{ \lambda \in S_2^N \mid \beta = \left\lfloor \frac{p_1 + p_5}{d - N - 1} \right\rfloor \right\}. \quad (19)$$

By inspection, it is clear that S^N is the disjoint union of the sets S_1^N and $S_{(2,\beta)}^N$ for all $\beta \geq 0$. Thus we can construct φ^N piecewise by constructing injections $\varphi_1^N : S_1^N \hookrightarrow T$ and $\varphi_{(2,\beta)}^N : S_{(2,\beta)}^N \hookrightarrow T$ for each $\beta \geq 0$ that have mutually disjoint images. To describe such maps, given $\lambda \in S^N$, we define its image in T by specifying the q_i associated to the image in terms of the p_i associated to λ . Also, recall by (12) that

$$\alpha = \alpha(\lambda) := \sum_{i \geq 3} (x_i^N - y_i)p_i.$$

Define $\varphi_1^N : S_1^N \rightarrow T$ by

$$q_i = \begin{cases} p_1 + \alpha - (N-2)p_2, & \text{if } i = 1 \\ p_i, & \text{if } i \geq 2. \end{cases}$$

We first show φ_1^N is well defined. Given $\lambda \in S_1^N$, we have by definition of S_1^N that $p_1 + \alpha \geq (N-2)p_2$. Thus each $q_i \geq 0$ so that $\varphi_1^N(\lambda)$ is indeed a partition into parts from $T_{5,d}$. Furthermore, we see that $\varphi_1^N(\lambda)$ is a partition of n , i.e., $\varphi_1^N(\lambda) \in T$, as

$$\begin{aligned} \sum_{i \geq 1} q_i y_i &= (p_1 + \alpha - (N-2)p_2) + p_2(d+2) + \sum_{i \geq 3} p_i y_i \\ &= p_1 + (d - N + 4)p_2 + \sum_{i \geq 3} p_i x_i^N = \sum_{i \geq 1} p_i x_i^N = n. \end{aligned} \quad (20)$$

To see that φ_1^N is injective, suppose $\lambda, \lambda' \in S_1^N$ such that $\varphi_1^N(\lambda) = \varphi_1^N(\lambda')$. Let p'_i and q'_i denote the number of times x_i^N and y_i occur in λ' and $\varphi_1^N(\lambda')$, respectively, and let $\alpha' = \sum_{i \geq 3} (x_i^N - y_i)p'_i$. Then $q_i = q'_i$ for all i implies that $p_i = p'_i$ for all $i \geq 2$ and $p_1 + \alpha - (N-2)p_2 = p'_1 + \alpha' - (N-2)p'_2$. Since $p_i = p'_i$ for all $i \geq 2$ implies $\alpha = \alpha'$, we have $p_1 = p'_1$ and hence that $\lambda = \lambda'$. So $\varphi_1^N : S_1^N \hookrightarrow T$ as desired.

Next, for fixed $\beta \geq 0$, given $\lambda \in S_{(2,\beta)}^N$, let

$$\varepsilon = \varepsilon(\lambda) := \begin{cases} 0 & \text{if } p_2 \text{ is even,} \\ 1 & \text{if } p_2 \text{ is odd.} \end{cases}$$

Then define $\varphi_{(2,\beta)}^N : S_{(2,\beta)}^N \rightarrow T$ by

$$q_i = \begin{cases} p_1 + \alpha + \frac{(p_2 + \varepsilon)(d - 2N - 8)}{2} + 28\beta + (26 + N)\varepsilon, & \text{if } i = 1 \\ 2\beta + \varepsilon, & \text{if } i = 2 \\ p_5 + \frac{p_2 + \varepsilon}{2} - 2\beta - 2\varepsilon, & \text{if } i = 5 \\ p_i, & \text{if } i \neq 1, 2, 5, \end{cases}$$

To see that $\varphi_{(2,\beta)}^N$ is well defined, we first observe that since $d \geq \max\{63, 46N - 79\}$, we have easily that $q_i \geq 0$ for all $i \neq 5$. To prove $q_5 \geq 0$, it suffices to show that $p_2 - 3\varepsilon \geq 4\beta$. By the definitions (19), (12), (18), as well as $d \geq \max\{63, 46N - 79\}$, it follows that

$$4\beta \leq 4 \left(\frac{p_1 + p_5}{d - N - 1} \right) \leq 4 \left(\frac{p_1 + \alpha}{d - N - 1} \right) < \frac{4(N - 2)p_2}{d - N - 1} \leq \frac{p_2}{2}.$$

Moreover, the hypotheses of Lemma 10 are satisfied, so $p_2 \geq 8$. Thus,

$$4\beta < \frac{p_2}{2} = p_2 - \frac{p_2}{2} < p_2 - 3 \leq p_2 - 3\varepsilon.$$

Thus each $q_i \geq 0$ so that $\varphi_{(2,\beta)}^N(\lambda)$ is indeed a partition into parts from $T_{5,d}$. Furthermore, we see that $\varphi_{(2,\beta)}^N(\lambda)$ is a partition of n , i.e., $\varphi_{(2,\beta)}^N(\lambda) \in T$, as

$$\begin{aligned} \sum_{i \geq 1} q_i y_i &= \left(p_1 + \alpha + \frac{(p_2 + \varepsilon)(d - 2N - 8)}{2} + 28\beta + (26 + N)\varepsilon \right) + (2\beta + \varepsilon)(d + 2) \\ &\quad + \left(p_5 + \frac{p_2 + \varepsilon}{2} - 2\beta - 2\varepsilon \right) (d + 16) + \sum_{i \neq 1, 2, 5} p_i y_i \\ &= p_1 + \frac{(p_2 + \varepsilon)(2d - 2N + 8)}{2} + (-d + N - 4)\varepsilon + \sum_{i \geq 3} p_i x_i^N \\ &= p_1 + p_2(d - N + 4) + \sum_{i \geq 3} p_i x_i^N = \sum_{i \geq 1} p_i x_i^N = n. \end{aligned}$$

To see that $\varphi_{(2,\beta)}^N$ is injective, suppose $\lambda, \lambda' \in S_{(2,\beta)}^N$ such that $\varphi_{(2,\beta)}^N(\lambda) = \varphi_{(2,\beta)}^N(\lambda')$. As in the previous case, let p'_i and q'_i denote the number of times x_i^N and y_i occur in λ' and $\varphi_{(2,\beta)}^N(\lambda')$, respectively, $\alpha' = \sum_{i \geq 3} (x_i^N - y_i)p'_i$, and also let ε' denote the residue of p'_2 modulo 2. Then $q_i = q'_i$ for all i implies that $p_i = p'_i$ for all $i \neq 1, 2, 5$ and $\varepsilon = \varepsilon'$. From $q_1 = q'_1$ and $q_5 = q'_5$, we obtain that

$$p_1 + (2d - 3N - 8)p_5 + \frac{p_2(d - 2N - 8)}{2} = p'_1 + (2d - 3N - 8)p'_5 + \frac{p'_2(d - 2N - 8)}{2}, \quad (21)$$

$$p_5 + \frac{p_2}{2} = p'_5 + \frac{p'_2}{2}. \quad (22)$$

Multiplying (22) by $(d - 2N - 8)$ and subtracting this from (21) gives

$$p_1 + (d - N)p_5 = p'_1 + (d - N)p'_5. \quad (23)$$

From (19), we see that $p_1 + p_5 = \beta(d - N - 1) + m$ and $p'_1 + p'_5 = \beta(d - N - 1) + m'$, where $0 \leq m, m' < d - N - 1$. Thus subtracting yields

$$(p_1 - p'_1) + (p_5 - p'_5) = m - m'. \quad (24)$$

Combining (24) and (23) gives

$$m' - m = (d - N - 1)(p'_5 - p_5). \quad (25)$$

Since $0 \leq m, m' < d - N - 1$, (25) implies that $m = m'$ and thus $p_5 = p'_5$. Thus from (22) it follows that $p_2 = p'_2$, so (21) yields that $p_1 = p'_1$, and hence $\lambda = \lambda'$. So $\varphi_{(2,\beta)}^N : S_{(2,\beta)}^N \hookrightarrow T$ as desired.

It remains to show that the images of all of the φ_1^N and $\varphi_{(2,\beta)}^N$ are distinct. First observe that if $\beta \neq \beta'$, $\lambda \in S_{(2,\beta)}^N$, and $\lambda' \in S_{(2,\beta')}^N$, then $\varphi_{(2,\beta)}^N(\lambda) \neq \varphi_{(2,\beta')}^N(\lambda')$ since $q_2 \neq q'_2$.

Now fix $\beta \geq 0$, and suppose toward contradiction that $\lambda \in S_{(2,\beta)}^N$ and $\lambda' \in S_1^N$ such that $\varphi_{(2,\beta)}^N(\lambda) = \varphi_1^N(\lambda')$. Then $q_i = q'_i$ for all i immediately gives that $p_i = p'_i$ for all $i \neq 1, 2, 5$ and

$$\begin{aligned} p'_1 + \alpha' - (N - 2)p'_2 &= p_1 + \alpha + \frac{(p_2 + \varepsilon)(d - 2N - 8)}{2} + 28\beta + (26 + N)\varepsilon, \\ p'_2 &= 2\beta + \varepsilon, \\ p'_5 &= p_5 + \frac{p_2 + \varepsilon}{2} - 2\beta - 2\varepsilon, \end{aligned}$$

which yield that

$$\begin{aligned} p'_1 + (2d - 3N - 8)p'_5 &= \\ p_1 + (2d - 3N - 8)p_5 + \frac{(p_2 + \varepsilon)(d - 2N - 8)}{2} &+ (2N + 24)(\beta + \varepsilon), \end{aligned} \quad (26)$$

$$p'_5 = p_5 + \frac{p_2 + \varepsilon}{2} - 2(\beta + \varepsilon). \quad (27)$$

Multiplying (27) by $(2d - 3N - 8)$ and subtracting this from (26) gives

$$p'_1 = p_1 + \frac{(p_2 + \varepsilon)(N - d)}{2} + (4d - 4N + 8)\beta + (4d - 4N + 8)\varepsilon. \quad (28)$$

From (18) and (19) we have

$$p_1 \leq p_1 + \alpha < (N - 2)p_2, \quad (29)$$

$$\beta \leq \frac{p_1 + p_5}{d - N - 1} \leq \frac{p_1 + \alpha}{d - N - 1} < \frac{(N - 2)p_2}{d - N - 1}.$$

Thus, (28) and (29) yield that

$$\begin{aligned}
p'_1 &< (N-2)p_2 + \frac{(p_2 + \varepsilon)(N-d)}{2} + (4d-4N+8) \left(\frac{(N-2)p_2}{d-N-1} + \varepsilon \right) \\
&= \frac{(-d^2 + (12N-19)d - 11N^2 + 33N - 28)p_2}{2d-2N-2} \\
&\quad + \frac{(7d^2 + d(-14N+9) + 7N^2 - 9N - 16)\varepsilon}{2d-2N-2}. \quad (30)
\end{aligned}$$

Since the hypotheses of Lemma 10 are satisfied, we have that $p_2 \geq 8$. If $p_2 = 8$, then $\varepsilon = 0$ and (30) becomes

$$p'_1 < \frac{-4d^2 + (48N-76)d - 44N^2 + 132N - 112}{d-N-1}.$$

Since $d \geq \max\{63, 46N-79\}$, the denominator above is always positive. But when $d > \frac{12N-19+\sqrt{100N^2-324N+249}}{2}$, the numerator is negative, which would yield a contradiction since $p'_1 \geq 0$. Since $100N^2 - 324N + 249 < (10N-16)^2$, it thus suffices to show that $d \geq 11N-17$, which follows easily from the fact that $d \geq \max\{63, 46N-79\}$. Thus we have a contradiction in the case when $p_2 = 8$.

Suppose $p_2 \geq 9$. Since $d \geq \max\{63, 46N-79\}$, for all $N \geq 2$ we have

$$\begin{aligned}
-d^2 + d(12N-19) - 11N^2 + 33N - 28 &\leq 0, \\
7d^2 + d(-14N+9) + 7N^2 - 9N - 16 &\geq 0.
\end{aligned}$$

Thus (30) yields that

$$p'_1 \leq \frac{-d^2 + (47N-81)d - 46N^2 + 144N - 134}{d-N-1}.$$

As above, when $d > \frac{47N-81+\sqrt{2025N^2-7038N+6025}}{2}$ the right hand side is negative which contradicts the nonnegativity of p'_1 . Since $2025N^2 - 7038N + 6025 < (45N-78)^2$, it suffices to show that $d \geq 46N-79$, which is immediate from our bound $d \geq \max\{63, 46N-79\}$. Thus we have a contradiction in the case when $p_2 \geq 9$, and have shown $\varphi_{(2,\beta)}^N(\lambda) \neq \varphi_1^N(\lambda')$ for any $\lambda \in S_{(2,\beta)}^N$ and $\lambda' \in S_1^N$.

Thus considered together, φ_1^N and $\varphi_{(2,\beta)}^N$ for each $\beta \geq 0$ form a piecewise injective map $\varphi^N : S^N \hookrightarrow T$, which gives our desired inequality. \square

4 Proof of Theorem 4 and Corollary 5

We now demonstrate that the methods of Inagaki and Tamura [6] together with Corollary 3 yield the generalized Kang-Park type result given in Theorem 4.

Proof of Theorem 4. We first suppose that $n \geq d + 2a$. Write \hat{n}_a and \hat{d}_a to denote the least nonnegative residue of $-n$ and $-d$ modulo a , respectively, so that $\lceil \frac{n}{a} \rceil = \frac{n+\hat{n}_a}{a}$ and $\lceil \frac{d}{a} \rceil = \frac{d+\hat{d}_a}{a}$. Then using Lemma 11, Corollary 3, and Lemma 12, we obtain

$$q_d^{(a)}(n) \geq q_{\frac{d+\hat{d}_a}{a}}^{(1)}\left(\frac{n+\hat{n}_a}{a}\right) \geq Q_{\frac{d+\hat{d}_a}{a}-4}^{(1,-)}\left(\frac{n+\hat{n}_a}{a}\right) = Q_{d+\hat{d}_a-a-3}^{(a,-)}(n+\hat{n}_a).$$

Thus it remains to show that

$$Q_{d+\hat{d}_a-a-3}^{(a,-)}(n+\hat{n}_a) \geq Q_d^{(a,-)}(n). \quad (31)$$

Define

$$\begin{aligned} S &:= \{x \in \mathbb{N} \mid x \equiv \pm a \pmod{d+3}\} \setminus \{d+3-a\}, \\ T &:= \{x \in \mathbb{N} \mid x \equiv \pm a \pmod{d+\hat{d}_a-a}\} \setminus \{d+\hat{d}_a-2a\}, \end{aligned}$$

and observe that $Q_d^{(a,-)}(n) = \rho(S; n)$ and $Q_{d+\hat{d}_a-a-3}^{(a,-)}(n+\hat{n}_a) = \rho(T; n+\hat{n}_a)$. Letting x_i and y_i denote the i^{th} smallest elements of S and T , respectively, we have that $x_1 = y_1 = a$, and

$$\begin{aligned} x_{2i} &= i(d+3) + a, & y_{2i} &= i(d+\hat{d}_a-a) + a, \quad \text{for } i \geq 1, \\ x_{2i-1} &= i(d+3) - a, & y_{2i-1} &= i(d+\hat{d}_a-a) - a, \quad \text{for } i \geq 2. \end{aligned}$$

Clearly $a \mid y_i$ for all $i \geq 1$, and moreover, $x_i \geq y_i$ for all $i \geq 1$ since $0 \leq \hat{d}_a < a$. Thus by Lemma 13, we have (31) as desired.

We now consider $1 \leq n \leq d+2a-1$. As in the proof of Lemma 14, we observe that $q_d^{(a)}(n)$ is a weakly increasing function, however $Q_d^{(a,-)}(n)$ is not.

If $1 \leq n \leq a-1$, then $q_d^{(a)}(n) = 0 = Q_d^{(a,-)}(n)$. Also, $q_d^{(a)}(a) = 1$ and $Q_d^{(a,-)}(n) \leq 1$ for all $a \leq n \leq d+a+2$ since a is the only available part. Thus it remains to consider when $d+a+3 \leq n \leq d+2a-1$, which only occurs for $a \geq 4$.

By our hypothesis that $\lceil \frac{d}{a} \rceil \geq 105$, it follows that $d+2a-1 < 2d-a+6$. Thus the only available parts for a partition counted by $Q_d^{(a,-)}(n)$ when $d+a+3 \leq n \leq d+2a-1$ are a and $d+a+3$. Furthermore, the part $d+a+3$ can occur at most once since $2d+2a+6 > d+2a-1$. Thus a partition counted by $Q_d^{(a,-)}(n)$ when $d+a+3 \leq n \leq d+2a-1$ is either a sum of parts of size a , which can only occur when $n \equiv 0 \pmod{a}$, or $d+a+3$ plus a sum of parts of size a , which can only occur when $n \equiv d+3 \pmod{a}$. Thus $Q_d^{(a,-)}(n) \leq 1 \leq q_d^{(a)}(n)$ except when $d \equiv -3 \pmod{a}$ and $n \equiv 0 \pmod{a}$ simultaneously. But if $d = ka-3$ for $k \geq 1$, then $(k+1)a \leq n \leq (k+2)a-4$, so the only exception occurs when $n = d+a+3$. \square

We now prove Corollary 5.

Proof of Corollary 5. By definition, $\Delta_d^{(a,-,-)}(n) \geq \Delta_d^{(a,-)}(n)$, since there are fewer parts available for partitions counted by $\Delta_d^{(a,-,-)}(n)$. Thus by Theorem 4, it follows that $\Delta_d^{(a,-,-)}(n) \geq 0$ for any $a, d \geq 1$ such that $\lceil \frac{d}{a} \rceil \geq 105$ and $n \geq 1$, except possibly when $d \equiv -3 \pmod{a}$ and $n = d+a+3$. However in these cases, observe that

$Q_d^{(a, -, -)}(d + a + 3) = 1$, since $d + a + 3$ is the only available part by definition. Also, $q_d^{(a)}(d + a + 3) \geq 1$ since $d + a + 3$ is a partition counted by $q_d^{(a)}(d + a + 3)$. Thus $q_d^{(a)}(n) \geq Q_d^{(a, -, -)}(n)$ in all of our considered cases. \square

5 Concluding Remarks

By work of Kang and Kim³ [7, Thm. 1.1] and the fact that $Q_d^{(a)}(n) \geq Q_d^{(a, -)}(n)$, it follows that when $\gcd(a, d - N) = 1$,

$$\lim_{n \rightarrow \infty} (q_d^{(a)}(n) - Q_{d-N}^{(a, -)}(n)) = \infty,$$

for all $N < d + 3 - \lfloor \frac{\pi^2}{3A_d} \rfloor$, where $A_d = \frac{d}{2} \log^2 \alpha_d + \sum_{r=1}^{\infty} r^{-2} \alpha_d^{rd}$, with α_d the unique real root of $x^d + x - 1$ in the interval $(0, 1)$. Thus it may be possible to generalize Theorem 2 to an inequality of the form $q_d^{(a)}(n) \geq Q_{d-N}^{(a, -)}(n)$ for more general a .

Acknowledgements

We thank Ryota Inagaki and Ryan Tamura for their helpful correspondence and interesting idea.

References

- [1] Henry L. Alder. The nonexistence of certain identities in the theory of partitions and compositions. *Bulletin of the American Mathematical Society*, 54(8):712 – 722, 1948.
- [2] Henry L. Alder. Research problems, no. 4. *Bull. Amer. Math. Soc.*, 62(1):76, 1956.
- [3] Claudia Alfes, Marie Jameson, and Robert J. Lemke Oliver. Proof of the Alder-Andrews conjecture. *Proceedings of the American Mathematical Society*, 139(1):63–78, 2011.
- [4] George E. Andrews. *The theory of partitions*. Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 1976. Encyclopedia of Mathematics and its Applications, Vol. 2.
- [5] Adriana L. Duncan, Simran Khunger, Holly Swisher, and Ryan Tamura. Generalizations of Alder’s conjecture via a conjecture of Kang and Park. *Res. Number Theory*, 7(1):Paper No. 11, 26, 2021.
- [6] Ryota Inagaki and Ryan Tamura. On generalizations of a conjecture of Kang and Park. [arXiv:2206.04842](https://arxiv.org/abs/2206.04842), 2022.
- [7] Soon-Yi Kang and Young Kim. Bounds for d -distinct partitions. *Hardy-Ramanujan Journal*, Volume 43 - Special Commemorative volume in honour of Srinivasa Ramanujan - 2020, May 2021.

³Note that Kang and Kim use different notation than what we are using here.

- [8] Soon-Yi Kang and Eun Young Park. An analogue of Alder-Andrews conjecture generalizing the 2nd Rogers-Ramanujan identity. *Discrete Mathematics*, 343(7):111882, 2020.
- [9] D. H. Lehmer. Two nonexistence theorems on partitions. *Bull. Amer. Math. Soc.*, 52:538–544, 1946.
- [10] Issai Schur. *Gesammelte Abhandlungen. Band III*. Springer-Verlag, Berlin-New York, 1973. reprint containing original reference published in 1926.
- [11] Ae Ja Yee. Partitions with difference conditions and Alder’s conjecture. *Proceedings of the National Academy of Sciences - PNAS*, 101(47):16417–16418, 2004.
- [12] Ae Ja Yee. Alder’s conjecture. *J. Reine Angew. Math.*, 616:67–88, 2008.