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Quadrature squeezing of 104 spatial modes via manipulation of diffraction
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We propose a general and feasible approach to realize a large number of squeezed spatial modes. This is
achieved by manipulation of paraxial diffraction such that the critical wave components with most significant
squeezing contribute in-phase to the spatial squeezing. As an example, we then demonstrate that it is possible
to achieve localized squeezing of ∼−1.51 dB at an area 102 μm2 within a homogeneously squeezed spatial
regime of wp = 1 mm2 using four-wave mixing (FWM) based on current experimental settings, corresponding
to approximately 104 squeezed spatial modes, which is >102 larger in number of squeezed modes and also ∼6
times stronger in squeezing as compared to that obtained in the state-of-the-art experiment. We also show that
the obtained extremely localized squeezed light can be directly applied to enhance the signal-to-noise ratio in
quantum imaging of weakly absorbing objects by a factor of ∼3.5 at a spatial resolution of d ∼ 1 mm where d
is the detector size.
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I. INTRODUCTION

Light can have different modes and quantum states simul-
taneously. Owing to this intrinsic dual nature, it is possible
to realize multimode quantum light, e.g., multimode entan-
glement and quadrature squeezing in the discrete-variable and
continuous-variable (CV) regimes, respectively [1]. Owing to
the intrinsic insensitivity to environmental decoherence and
the striking possibility of substantial scalability [2], multi-
mode quantum light highlights its unparalleled advantages
in quantum information processing. In particular, in the CV
regime multimode quadrature squeezing was revealed to be
capable of achieving enhanced precision in quantum measure-
ments [3,4] and generating CV cluster states [5,6] that hold
promise for one-way quantum computation [7–11].

Substantial progress has been made to achieve up to
squeezing of 106 modes in the time domain [12,13], however,
simultaneous squeezing of many spatial modes, i.e., multi-
spatial-mode (MSM) squeezing, has been lacking. Squeezing
of a few spatial modes can be generated via different physi-
cal mechanisms, e.g., the χ (2) processes including parametric
down-conversion or optical parametric amplification [14–17].
A highly flexible scheme is the conjugate four-wave mixing
(FWM) [18–28], a χ (3) process in which the linear and non-
linear responses of the medium can be easily tailored by the
applied laser fields [18–24]. Based on FWM, the most recent
record is the simultaneous squeezing of ∼75 spatial modes
in a single laser beam in the state-of-the-art experiment [23]
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in which a squeezing of ∼−0.25 dB is obtained in a minimal
area of ∼1802 μm2. MSM squeezing in a single laser beam as
a multimode quantum light source does not only show advan-
tages in quantum communication in terms of the complexity
of protocols [9,29], but can as well be of great importance to
diverse applications where either MSM or few-spatial-mode
squeezing is required to enhance spatial resolution, e.g., in
quantum imaging [3], measurements of nanometer displace-
ment [30,31], and biological systems [32,33] since the single
MSM squeezed laser beam can be decomposed to a few spatial
modes with much stronger squeezing defined by the mode of
the local oscillator [23].

A large number of squeezed spatial modes within a sin-
gle finite-size laser beam suggests extremely localized spatial
squeezing. Paraxial diffraction is believed to be the key obsta-
cle to achieve strongly localized squeezing since it imposes
phase shifts to affect the angle of the squeezing ellipse dif-
ferently for the various transverse spatial wave components
which might contribute out-of-phase to the spatial squeezing.
A seemingly straightforward way to achieve simultaneous
squeezing of many localized spatial modes would be to
eliminate the paraxial diffraction by exploring physical mech-
anisms including nonlocal linear response due to atomic
motion [34,35], coherent population trapping [36,37], and
optically written waveguide [38]. These schemes to eliminate
diffraction usually cancel only the propagation-accumulated
phase shifts for small paraxial wave components |k⊥| ∼ 1/wp

(k⊥ is the transverse wave vector of the component and wp is
the probe beam waist) since the larger transverse wave com-
ponents |k⊥| � 1/wp are negligible for the intensity profile.
However, the larger components |k⊥| are crucially important
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FIG. 1. (a) A schematic illustration of the squeezing process. The
nonlinear medium is driving by a pump field to generated MSM
squeezed probe and single fields denoted by âp(r) and âs(r), re-
spectively. (b) The MSM squeezing is measured by a bichromatic
homodyne detection method in which the local oscillator ELO(r)
consists of two strong laser beams with frequencies equal to that
of âp(r) and âs(r). The MSM squeezing is detected by varying the
spatial size of ELO(r).

for squeezing in an area � w2
p and may contribute out-of-

phase to the spatial squeezing. Thus to achieve extremely
localized squeezing, it is required to eliminate the phase shifts
for large |k⊥|. In typical χ (2) or χ (3) media, the nonlinearity
is limited and cannot support the cancellation of phase shifts
for large |k⊥|, thus it is physically impractical to achieve
extremely localized squeezing via reduction of diffraction.

Alternatively, here we propose a general and feasible ap-
proach to realize strong squeezing at an area A (λ2 � A � w2

p
with λ being the laser wavelength) in a finite-size probe beam,
which is achieved surprisingly not via elimination, but by the
manipulation of diffraction. The central idea is to focus on the
critical wave components which contribute most significantly
to the spatial squeezing. By analyzing the squeezing proper-
ties of these critical wave components, we are able to identify
the conditions for the susceptibilities to control the diffraction
such that all wave components contribute constructively to the
spatial squeezing. These conditions can be easily satisfied by
changing the laser parameters like detunings and intensities.
Since the analysis is derived from the paraxial propagation
equation of the quantum fields, therefore it does not depend
on the actual squeezing process. In other words, our theory is
applicable to either the χ (2) or χ (3) nonlinear processes. As
an example, we apply our theory to the FWM and show that
it is possible to reach quadrature squeezing of −1.51 dB at
an area of 102 μm2 for a probe beam with size ∼1 mm2 in
the realistic parameter regime, corresponding to around 104

detectable squeezed spatial modes.

II. THEORETICAL MODEL

Considering a general squeezing process depicted in
Fig. 1(a), the propagation equations for the two quantum fields
in the continuous-wave limit are given by(

d

dz
+ i

2kp
∇2

⊥

)
â†p(r⊥, z) = −iP̂†

p (r), (1a)

(
d

dz
− i

2ks
∇2

⊥

)
âs(r⊥, z) = iP̂s(r), (1b)

where âp(r⊥, z) [âs(r⊥, z)] is the annihilation operator for
the quantum probe [signal] field with associated wave num-
ber kp [ks], P̂p [P̂s] represents the corresponding polarization
operator of the nonlinear medium. The terms including ∇2

⊥
introduces the paraxial diffraction which affects both the

squeezing degree and ellipse angles for different k⊥. Equa-
tion (1) serves as a general description of spatial squeezing in
a traveling-wave setting and can thus be applied to different
mechanisms such as the χ (2) or χ (3) nonlinear process.

A general form for P̂j (r) in the squeezing process can be
written as a linear combination of the field operators

P̂†
p (r) = Cpχppâ

†
p(r) +Cpχspâs(r) + F̂p(r), (2a)

P̂s(r) = Csχpsâ
†
p(r) +Csχssâs(r) + F̂s(r). (2b)

Cp [Cs] is a dimensional constant for the probe [signal] field.
χi j with i, j ∈ {p, s} describes, respectively, the linear and
nonlinear susceptibilities of the medium whose exact ex-
pressions are usually complicated depending on the medium
properties and laser parameters. F̂p(r) and F̂s(r) denote the
quantum noises for the two fields, respectively, owing to the
dissipative and dephasing processes in the nonlinear medium.
In principle, χi j should also be position-dependent determined
by the specific physical process. However, to focus on the
diffraction of the quantum fields themselves, we assume χi j

to be spatially homogeneous for the two quantum fields.
This is possible when the pump lasers driving the squeezing
process are spatially much broader and also much brighter
(low-depletion regime) than the two quantum fields.

Inserting Eqs. (2) into Eqs. (1) and Fourier-transforming
them from position to momentum space leads to

d

dζ
â(k⊥, ζ ) = iĤ (k⊥) â(k⊥, ζ ) + f̂ (k⊥, ζ ), (3)

where â(k⊥, ζ ) = {â†p(−k⊥, ζ ), âs(k⊥, ζ )}T with â j (k⊥, ζ ) =
(
√
2π )−2

∫∫ ∞
−∞ â j (r⊥, ζ )e−ik⊥·ξdξ for j ∈ {p, s}. Here we in-

troduced the dimensionless variables ξ = r⊥/wp, ζ = z/Sz,
and Sz = kpw2

p with wp and Sz being the transverse and prop-
agation scales, respectively. Ĥ (k⊥) is given by

H =
[
−χpl + k2⊥

2 −χpn

χsn χsl − k2⊥
2

]
, (4)

where k2⊥ = k2x + k2y , χpl = CpSzχpp and similarly for χpn, χsl ,

and χsn. Furthermore, f̂ (k⊥, ζ ) = { f̂ p(k⊥, ζ ), f̂s(k⊥, ζ )}T =
Sz{F̂p(k⊥, ζ ), F̂s(k⊥, ζ )}T . In the experiments that have been
done to demonstrate squeezing, the laser parameters were
usually chosen to work in the dispersive regime where
|Im[χ j]| � |Re[χ j]| ( j ∈ {pl, sl, pn, sn}) such that the quan-
tum noises which are detrimental to the squeezing can be
minimized. We may thus assume χ j to be real and neglect
the noise terms in the following. A general analysis of the
noise properties in the context of FWM process is given in
Appendix C.

The effective Hamiltonian for Eq. (3) can be written as

Ĥeff =
(

χpl − k2⊥
2

)
â†p(−k⊥)âp(−k⊥),

+
(

χsl − k2⊥
2

)
âs(k⊥)âs(k⊥),

+ χpnâp(−k⊥)âs(k⊥) + χsnâ
†
p(−k⊥)â†s (k⊥), (5)
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based on which Eq. (3) can be obtained from ∂
∂ζ
â =

i[Ĥeff, â] + f̂ j . The last two terms in the effective Hamilto-
nian describe a typical squeezing process, thus quadrature
squeezing will be generated between the wave component
âp(−k⊥) and âs(k⊥). Meanwhile, the squeezing process is
controlled by the paraxial diffraction term k2⊥ in the sense
that both the squeezing degree and angle would be varied
considerably as k⊥ changes. For a given spatial mode, the
corresponding squeezing degree is determined by a weighted
summation over the squeezing of all wave components where
the weighting function is given by the momentum spectrum
of this spatial mode. Depending on the squeezing ellipse
orientations, each wave component may contribute in-phase
or out-of-phase to the spatial squeezing. Thus the spatial
squeezing will be significantly affected by the diffraction. For-
tunately, the effect of the diffraction can be controlled by the
susceptibilities χ j . If we are able to manipulate χ j by tuning
the laser parameters such that the most significantly squeezed
wave components have their squeezing ellipses oriented in the
same direction, then they will contribute in-phase to the spatial
squeezing. Note that this does not necessarily mean that the
paraxial diffraction needs to be eliminated.

III. MANIPULATION OF DIFFRACTION

Having established that the diffraction is the key factor
limiting the number of squeezed spatial modes, here we dis-
cuss how to control the diffraction by exploiting the intrinsic
properties of the squeezing process itself. We first write the
formal solution to Eq. (3)

â(k⊥, ζ ) = M(k⊥, ζ ) â(k⊥, 0), (6)

where M(k⊥, ζ ) = eiH (k⊥ )ζ and the eigenvalues of H (k⊥) are

β1,2 = �χl

2
± iβ, (7)

with β =
√

χpnχsn − (χl − k2⊥)2/4, �χl = χsl − χpl , and
χl = χsl + χpl being the difference and sum of the two linear
atomic susceptibilities, respectively. Then we have

M(k⊥, ζ ) =
[
cosh βζ + iδ

2β sinh βζ − iχpn

β
sinh βζ

iχsn

β
sinh βζ cosh βζ − iδ

2β sinh βζ

]
,

(8)

with δ = k2⊥ − χl , and we neglected the common phase term
ei�χl ζ/2 which is not important here. The commutation rela-
tion [â j (k⊥, ζ ), â†j (k

′
⊥, ζ )] = δ(k⊥ − k′

⊥) requires χsn = χpn

which is usually the case in the experiments; we thus set
χpn = χsn = χnl .

We then analyze the squeezing properties of each spatial
wave component k⊥, the corresponding quadrature operator
is given by X̂ (k⊥, ζ , θ ) = {i[âp(−k⊥, ζ ) + âs(k⊥, ζ )]e−iθ +
H.c.}/(2√2). The variation for X̂ (k⊥, ζ , θ ) is

〈�X̂ 2(k⊥, ζ , θ )〉 = 1
4 {1+2C2−2C

√
1+C2 cos[φ(k⊥)−2θ ]},

(9a)

φ(k⊥) = arctan

[
2β cosh(βζ )(

k2⊥ − χl
)
sinh(βζ )

]
, (9b)

FIG. 2. The minimum variance and ellipse angle as a function of
|k⊥|. Here we take the linear and nonlinear susceptibilities from the
FWM example considered in Fig. 3. Parameters are the same as in
the caption of Fig. 3 except � = 16.4�32.

with C = χnl sinh(βζ )/β. It can be seen that β plays the
central role determining both the variance 〈�X̂ 2〉 and phase
φ. β is very sensitive to k⊥ due to the quadratic dependence,
and becomes purely imaginary for large |k⊥| (k2⊥ � Max[χl +
2|χnl |, 0]) where both the squeezing degree and phase undergo
increasingly rapid oscillations.

The spatial squeezing in a certain area can be then ob-
tained by taking into account the contributions from the spatial
components. Maximal spatial squeezing can be obtained by
considering a local oscillator in which the phase of each spa-
tial component is controlled to minimize 〈�X̂ 2(k⊥, ζ , θ )〉 in
Eq. (9 a). Obviously, preparing such a local oscillator would
be very challenging. Instead, we consider the situation that the
phase of each component in the local oscillator is constant,
and this constant phase will be denoted as θ . We would like
now to find the optimal choice for θ to achieve extremely
localized spatial squeezing.

Extremely localized spatial squeezing will crucially de-
pend on the squeezing properties of large |k⊥| for which β will
become purely imaginary. For large |k⊥|, β turns from real to
purely imaginary such that C will oscillate periodically as k⊥
grows. As a result, the variance 〈�X̂ 2〉 changes periodically.
We then find that for χnl > 0 and θ = 0 there is a mini-
mal 〈�X̂ 2〉 in each period when |β|ζ = (n + 1/2)π at which
φ(k⊥) = 0 [see Eq. (9) and also Fig. 2]. For χnl < 0, θ = π/2
has to be chosen to have a minimal 〈�X̂ 2〉 in each period.
We call these wave components having minimal 〈�X̂ 2〉 as
“critical wave components” since they exhibit the strongest
squeezing in each period.

Based on the previous discussions, the optimal choice for
the phase of the local oscillator to maximize the localized
spatial squeezing would be either θ = 0 or θ = π/2 such
that the critical wave components contribute constructively.
To have in-phase contributions from all wave components,
one would require 〈�X̂ 2(k⊥, ζL )〉 � 1/4 for either θ = 0 or
θ = π/2, i.e.,

χnl (χl − k2⊥ + 2χnl ) sinh2(βζL )

β2
� 0 for θ = 0, (10a)

χnl (k2⊥ − χl + 2χnl ) sinh2(βζL )

β2
� 0 for θ = π

2
, (10b)

here ζL = L/Sz with L being the interaction length of the
FWM process. Satisfying this condition for all k⊥ then leads
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to

χnl > 0, χl � −2χnl for θ = 0, (11a)

χnl < 0, χl � 2χnl for θ = π

2
. (11b)

Equations (11) also indicate that β will be imaginary for
all k⊥, i.e., there is no exponential growth of squeezing for
any k⊥. This is in sharp contrast to the single-mode case in
which the strongest squeezing is obtained for real β because
of exponential growth. It is also worth noting here that satis-
fying Eqs. (11) may break the phase-matching condition for
different k⊥. Furthermore, to have stronger squeezing in k⊥
space, one would expect an efficient nonlinear process which
requires

|χnl | � 1. (12)

Equations (11) and (12) are the essential requirements for
the linear and nonlinear susceptibilities to achieve optimal
squeezing in a very small spatial area by manipulation of
diffraction. This is the key finding from our work. Note that
the manipulation of diffraction is operated in momentum
space, meaning that it does not depend on the specific spatial
profiles of the two quantum fields as long as they are spatially
much smaller than the pump fields.

In addition, if one would also like to maximize the spatial
squeezing in a large area, then the squeezing angle for small
wave components should be in-phase with these critical wave
components, i.e., φ(k⊥ 
 0) 
 0, which leads to√

χ2
l − 4χ2

nlζL

(2m0 − 1)π

 1, (13)

with m0 being any positive integer. It should be noted that
Eq. (13) is not required to achieve extremely localized squeez-
ing which are determined by large wave components.

IV. PHYSICAL IMPLEMENTATION AND RESULTS

To demonstrate how many localized spatial modes can be
realized based on our theory, here we explore an example, i.e.,
the conjugate FWM process to produce MSM squeezing as
shown in Fig. 3(a). The interacting Hamiltonian can be written
as

Ĥ/h̄ = −[�σ̂22 + �c1σ̂33 + (� + �c2)σ̂44,+�c1σ̂31

+ �c2σ̂42 + gpâpσ̂32 + gsâsσ̂41 + H.c.]. (14)

Here we write σ̂i j (r, t ) = ∑N
l=1 σ̂

(l )
i j (t )δ(r − rl ) as σ̂i j . gj

is the coupling coefficient for the quantum â j , and �c j

( j ∈ {1, 2}) are the two Rabi frequencies of the classical
control fields, respectively. �c1 = ωc1 − (ω3 − ω1),�c2 =
ωc2 − (ω4 − ω2) and �p = ωp − (ω3 − ω2) are the detunings
for the corresponding fields and � = �c1 − �p is the two-
photon detuning for �c1 and âp, and we have ωp + ωs =
ωc1 + ωc2. To have spatially homogeneous susceptibilities χ jl

for â†p and âs, we assumed the two classical control fields
are spatially much larger than the two quantum fields such
that �c1 and �c2 can be treated as plane waves. Assuming
the phase-matching condition kc1,z + kc2,z = kp,z + ks,z in the
z direction, one then obtain Eqs. (1) for â†p and âs.

FIG. 3. (a) Conjugate FWM process to produce MSM squeezing.
The calculated squeezing degree and angle are plotted versus the
width of the bichromatic local oscillator wL for different two
photon detunings � as shown in (b) and (c), respectively. Panel
(d) shows the degree of squeezing as a function of wL and �.
Here we choose B(ξ) ∝ e−k2⊥w2

L/2. Other parameters are as follows:
�c1 = 133.3�32, ω21 = 505.9�32, �c2 = �c1 + ω21, �c1 = �c2 =
60�32, n0 = 4.0 × 1012 cm−3, wp = 1 mm, �32 = 2π × 6 MHz,
λp = 795 nm, and the length of the sample is L = 1.25 cm.
Parameters are chosen as the same as in the experiment [23] except
for �.

Experimentally, the MSM squeezing is measured by
bichromatic homodyne detection [23,39] as sketched in
Fig. 1(b) where the local oscillator ELO(r) consists of two
strong coherent fields whose frequencies match that of the
two quantum fields. The squeezing degree is obtained as (see
Appendix B)

S(θ, ζ ) =10 log10

∫∫ ∞
−∞ dk|B(k⊥)|2G(k⊥, θ, ζ )

2
∫∫ ∞

−∞ dk|B(k⊥)|2
, (15)

with

G(k⊥, θ, ζ ) =
∑
jl

|Mi j (k⊥, ζ )|2 − [Q(k⊥, ζ )e−2iθ + c.c.],

(16)

where i, j ∈ {1, 2} and “c.c.” denotes complex conjugate. In
addition,

Q(k⊥, ζ ) = B∗(−k⊥)
B(k⊥)

[M∗
11(k⊥, ζ )M21(k⊥, ζ ),

+ M22(k⊥, ζ )M∗
12(k⊥, ζ )]. (17)

Here we further assume that the two coherent fields in ELO(r)
have the same momentum spectrum B(k⊥). For a real and
symmetric spectrum B(k⊥) = B∗(−k⊥), S(θ, ζ ) reduces to

S(θ, ζ ) = 10 log10

∫∫ ∞
−∞ dk|B(k⊥)|2〈�X̂ 2(k⊥, ζ , θ )〉

2
∫∫ ∞

−∞ dk|B(k⊥)|2
, (18)
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which clearly shows that the spatial squeezing is indeed a
weighted summation of squeezing in momentum space which
depends on the spatial spectrum of the local oscillator B(k⊥).

We then calculate the linear and nonlinear susceptibilities
and find that χnl > 0 for all the two-photon detunings �

considered in Fig. 3 (see Appendix C). Subsequently, the
squeezing degree S(θ, ζ ) defined by Eq. (15) can be obtained.
In Fig. 3(b), we plotted S(θ, ζ ) as a function of wL/wp for
different � where wL is the width of the local oscillator. For
� = 16.4�32, Eqs. (11a), (12), and (13) are all satisfied such
that all spatial wave components contribute constructively to
the spatial squeezing. We further notice that the actual phase
for the local oscillator remains almost 0 as shown in Fig. 3(c)
by the dashed red line, which agrees with our previous analy-
sis presented in Sec. III. The corresponding squeezing S keeps
almost unchanged in the range 0.1 < wL/wp < 1, indicating
the multimode nature of the spatial squeezing which is in-
sensitive to the mismatch of the transverse modes between
the quantum field and the local oscillator. Furthermore, when
the local oscillators are displaced by ξ0 in the transverse
plane, i.e., B(k) → B(k)eik·ξ0 , it can be seen from Eq. (15)
that S does not change. In other words, the spatial squeez-
ing is homogeneous in the probe regime. This is in contrast
to the case of single-mode squeezing where the observed
squeezing will be degraded considerably for increasing mode
mismatch [40–43]. The squeezing decreases from −15.33 dB
atwL/wp = 1 to around−1.51 dB atwL/wp = 0.01, suggest-
ing localized squeezing at ∼102 μm2 and alternatively 104 of
spatially squeezed modes in the probe regime which is of an
area 1 mm2.

For comparison, we plotted S for � = 14.0�32 at which
Eqs. (12) and (13) are satisfied but Eq. (11a) is not. In this
case, β is real for small k⊥ components such that these com-
ponents experience exponential growth of squeezing. This
leads to the strongest spatial squeezing for wL 
 wp which is
determined by small k⊥ components. However, S drops much
faster than that in the case of � = 16.4�32 due to the break-
down of Eq. (11a). When increasing � to 19.0�32, Eqs. (11)
and (13) are broken and only Eq. (12) is valid, the squeez-
ing is always weaker as compared to the other two cases.
An interesting feature here is that the strongest squeezing is
obtained at wL/wp = 10−1.5, this is because in this case the
wave components having strongest squeezing locate around
|k⊥| ∼ 1/(101.5wp).

As wL/wp → 0.001, the dominant contributions comes
from even larger wave components whose squeezing are neg-
ligible, thus the squeezing for all three cases converges to
S → 0 which corresponds to the quantum properties of vac-
uum. We also calculate the squeezing versus � and wL/wp in
Fig. 3(d), in which the squeezing remains almost unchanged
for � in a wide range 16.0 � �/�32 � 17.0, suggesting that
it is feasible in realistic experimental settings where the in-
volved laser beams have certain frequency bandwidths. In the
calculation we made the key approximation that the two con-
trol fields can be considered as plane waves. Practically, this
can be satisfied by choosing control fields with much larger
spatial size as compared to the probe. For example, if tak-
ing super-Gaussian spatial profiles for the two control fields
as �c1(r⊥) = �c2(r⊥) ∝ e−r4⊥/(2w4

c ) with wc = 10wp, we find
that the relative changes in the direct and cross dispersions

FIG. 4. The spatial dependence of the linear and nonlinear dis-
persions for the probe and signal by applying super-Gaussian control
beams with beam waist wc = 10wp. Here we take the slice for y = 0.
Note that the dashed black lines only denote the probe profile and are
irrelevant to the vertical axis values. Here we choose � = 16.4�32,
and other parameters are the same as in the caption of Fig. 3.

are within less than 2%, respectively, across the probe spatial
profile as shown in Fig. 4. Furthermore, since the two strong
control fields are far-detuned from the atomic transitions, their
propagation dynamics in the medium can be considered as
the same in free space, and their spatial profiles remain un-
changed during the sample 0 � ζ � ζL. In this respect, the
super-Gaussian control beams act as plane waves in the spatial
region of the probe. Note that the absorptions which are not
shown in Fig. 4 remain always negligible.

V. APPLICATION IN QUANTUM IMAGING

To demonstrate the potential applications of the extremely
localized squeezed light obtained here, we further apply our
results to image a weakly absorbing object denoted by α(r⊥)
as shown in Fig. 5(a). The output âs is shining on α(r⊥)
and then is measured by the detector of size d2, meanwhile
âp is incident on another detector of the same size. Finally
the intensity deference δN̂− = N̂p − N̂s is measured (here

N̂j = ∫∫ d/2
−d/2 dr⊥â

†
j (r⊥)â j (r⊥) for j ∈ {p, s}) (see details in

Appendix E). For a weakly absorbing object |α(r⊥)| � 1,

FIG. 5. (a) Sketch for quantum imaging. (b) δ(k⊥, k′
⊥) as a func-

tion of k⊥ and k′
⊥. (c) Noise reduction factor σ and the enhancement

factor E 
 1/
√

σ as a function of the detector size d . As d increases
the squeezing measured at the detector becomes stronger, leading to a
better improvement of SNR. Here� = 16.4�32 and other parameters
are the same as in the caption of Fig. 3.
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the enhancement in the signal-to-noise ratio (SNR) as com-
pared to the standard quantum limit is given by E 
 1/

√
σ

where σ is the noise reduction factor [44–49] defined as
σ = 〈δN̂2

−〉/〈N̂p + N̂s〉, which can be reduced to

σ = 1 + 1

2πd2N

∫∫ ∞

−∞
dk⊥dk′

⊥Fd (k⊥, k′
⊥)δ(k⊥, k′

⊥), (19)

withN = ∫ ∞
−∞ dk⊥|M12(k⊥)|2 being the total number in either

âp or âs, and

Fd (k⊥, k′
⊥) = d4sinc2[(kx − k′

x )d/2]sinc2[(ky − k′
y)d/2]

(20)

being the momentum filter defined by the detector
size [50], and δ(k⊥, k′

⊥) = |M12(k⊥)M12(k
′
⊥)|2 −

Re[M11(k⊥)M12(k⊥)M∗
11(k

′
⊥)M

∗
12(k

′
⊥)] due to the squeezing

process (here the ζ dependence is omitted for simplicity).
Note here we neglect the diffraction for â j (r⊥) during the
imaging process, which can be either eliminated by adding
lens or reduced by choosing a compact imaging setting. At
the optimal condition � = 16.4�32, we plot δ(k⊥, k′

⊥) as
a function of k⊥ and k′

⊥ in Fig. 5, which shows a similar
oscillation behavior as in Fig. 2 in both directions. For larger
d , the filter Fd only covers the small area around k⊥ = k′

⊥
where δ is minimized, resulting in maximal E . For decreasing
d , Fd takes into account more wave components, and thus E
decreases. We find that the enhancement factor E changes
from ∼3.44 for d/wp = 1.0 to ∼1.1 for d/wp = 0.01 as
shown in Fig. 5, suggesting enhanced SNR with high spatial
resolution at the near-micrometer regime (∼10 μm).

VI. SUMMARY

In summary, we proposed a general and plausible approach
to realize extremely localized squeezing in an area of 102 μm2

with a squeezing degree of −1.51 dB in a probe beam of size
1 mm2, corresponding to approximately 104 squeezed spatial
modes. This is achieved by tuning the laser detunings to
manipulate the paraxial diffraction such that all the squeezed
spatial wave components can contribute constructively to the
spatial squeezing based on the analysis of the critical wave
components having most significant squeezing. The localized
squeezing is further applied to the quantum imaging of weakly
absorbing object and results in greatly enhanced SNR. Our
results may facilitate a number of applications including su-
persensitive quantum imaging and CV quantum information
processing.
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APPENDIX A: MULTI-SPATIAL-MODE SQUEEZING

To see the multi-spatial-mode nature of squeezing, it is
worthwhile to first decompose the input multi-mode quantum

field â j (ξ, 0) into any orthogonal transverse-mode basis

â j (ξ, 0) =
∑
n

φn(ξ)â jn, (A1)

with j ∈ {p, s} and â jn is the annihilation operator of a
photon in the transverse mode φn(ξ) at the input plane
satisfying [âm, â†n] = δmn. The mode functions satisfy the or-
thogonal and completeness relations

∫∫ ∞
−∞ φ∗

m(ξ)φn(ξ)dξ =
δmn and

∑
n φn(ξ)φ∗

n (ξ
′) = δ(ξ − ξ′) with δmn and δ(ξ − ξ′)

being the Kronecker and Dirac delta functions, respectively.
From Eq. (A1) we have â j (k, 0) = ∑

n φn(k)â jn with φn(k) =
(
√
2π )−2

∫∫ ∞
−∞ φn(ξ)e−ik⊥·ξdξ. We thus find the solutions for

the two fields in position space

â†p(ξ, ζ ) =
∑
n

a†pnv
∗
n,11(ξ, ζ ) + âsnun,12(ξ, ζ ), (A2a)

âs(ξ, ζ ) =
∑
n

a†pnv
∗
n,21(ξ, ζ ) + âsnun,22(ξ, ζ ), (A2b)

where

un, jl (ξ, ζ ) =
∫∫ ∞

−∞
φn(k)Mjl (k⊥, ζ )eik⊥·ξdk, (A3a)

v∗
n, jl (ξ, ζ ) =

∫∫ ∞

−∞
φ∗
n (−k)Mjl (k⊥, ζ )eik⊥·ξdk, (A3b)

where j, l ∈ {1, 2}. A number of things implied by Eqs. (A2)
and (A3) are worth being noted here. First, the mode functions
un, jl , vn, jl at propagation distance ζL now depend crucially
on the effect of paraxial diffraction included in Mjl (k⊥, ζL ).
Second, the squeezing properties of mode φn are determined
by its spatial frequency spectrum. For the mode function φn

having a narrow spectrum, it will experience stronger squeez-
ing across its modal section; meanwhile, for these modes
associated with a broad spectra, the mode functions at ζL may
be modified significantly by Mjl (k⊥, ζL ) and the consequent
squeezing will be considerably weakened across its modal
section. In short, the number of squeezed spatial modes would
critically depend on how we control the system parameters
which determine Mjl (k⊥, ζL ).

APPENDIX B: BICHROMATIC HOMODYNE
MEASUREMENT

Experimentally, the squeezing is measured by bichromatic
homodyne detection and is defined by the variance of the
power difference operator as [23,39]

P̂(ζ ) = i
∫∫ ∞

−∞
dξ[Êsq(ξ, ζ )Ê

†
LO(ξ, ζ ) − H.c.], (B1)

where

Êsq = âp(ξ, ζ ) + âs(ξ, ζ ), (B2)

ÊLO = b̂p(ξ, ζ ) + b̂s(ξ, ζ ), (B3)

the local oscillators ÊLO consists of two coherent fields
b̂p(ξ, ζ ) and b̂s(ξ, ζ ) whose frequencies are the same as âp
and âs. Assuming that the coherent fields are much stronger
in intensity as compared to the two quantum fields, we then
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replace b̂p and b̂s by βpbp(ξ) and βsbs(ξ) with βp, βs and bp(ξ), bs(ξ) being the amplitude and normalized mode functions,
respectively. For simplicity, we may assume that βp = βs = βeiθ and bp(ξ) = bs(ξ) = b(ξ).

Substituting the expressions for Ês and ÊLO to Eq. (B1) results in

P̂(ζ ) = iβ
∫∫

dξ{[âp(ξ, ζ ) + âs(ξ, ζ )]b
∗(ξ)e−iθ − [â†p(ξ, ζ ) + â†s (ξ, ζ )]b(ξ)e

iθ },

= iβ
∑
n

âpn[vn,11(ζ )e
−iθ − vn,21(ζ )e

iθ ] + â†pn[v
∗
n,21(ζ )e

−iθ − v∗
n,11(ζ )e

iθ ],

+ iβ
∑
n

âsn[un,22(ζ )e
−iθ − vn,12(ζ )e

iθ ] + â†sn[u
∗
n,12(ζ )e

−iθ − u∗
n,22(ζ )e

iθ ], (B4)

where

vn,11(ζ ) =
∫∫

dξvn,11(ξ, ζ )b
∗(ξ), v∗

n,21(ζ ) =
∫∫

dξv∗
n,21(ξ, ζ )b

∗(ξ), (B5a)

u∗
n,12(ζ ) =

∫∫
dξu∗

n,12(ξ, ζ )b
∗(ξ), un,22(ζ ) =

∫∫
dξun,22(ξ, ζ )b

∗(ξ). (B5b)

We thus find the variance for P̂ as

〈�P̂2〉 = 〈P̂2〉 − 〈P̂〉2,

= 4β2

(∑
n

〈
�X 2

pn

〉
[vn,11(ζ )e

−iθ − vn,21(ζ )e
iθ ][v∗

n,11(ζ )e
iθ − v∗

n,21(ζ )e
−iθ ]

+
∑
n

〈
�X 2

sn

〉
[un,22(ζ )e

−iθ − vn,12(ζ )e
iθ ][u∗

n,22(ζ )e
iθ − u∗

n,12(ζ )e
−iθ ]

)
, (B6)

where 〈�X̂ 2
jn〉 = (〈â†jnâ jn〉 + 〈â jnâ

†
jn〉 − 2〈â†jn〉〈â jn〉)/4 with j ∈ {p, s}. Suppose now the input quantum probe is in a single-

mode coherent state, say, 〈âp0〉 = α0, then we have 〈�X̂ 2
pn〉 = 〈�X̂ 2

sn〉 = 1/4 for all n, which lead us to

〈�P̂2〉 = β2

(∑
n

|vn,11(ζ )|2 + |vn,21(ζ )|2 + |un,12(ζ )|2 + |un,22(ζ )|2,

− vn,11(ζ )v
∗
n,21(ζ )e

−2iθ − v∗
n,11(ζ )vn,21(ζ )e

2iθ − un,22(ζ )u
∗
n,12(ζ )e

−2iθ − un,22(ζ )u
∗
n,12(ζ )e

2iθ

)
. (B7)

Note that∑
n

|vn,11(ζ )|2 =
∫∫∫∫

dξdξ′ ∑
n

vn,11(ξ, ζ )v
∗
n,11(ξ

′, ζ ) f (ξ′) f ∗(ξ),

=
∫∫∫∫

dξdξ′
∫∫∫∫

dk⊥dq⊥
∑
n

φn(−k)M11(k⊥, ζ )φ∗
n (−q)M∗

11(q, ζ )e
−i(k⊥·ξ−q⊥·ξ′ )b(ξ′)b∗(ξ),

=
∫∫∫∫

dξdξ′
∫∫∫∫

dk⊥dq⊥δ(k − q)M11(k⊥, ζ )M∗
11(q, ζ )e

−i(k⊥·ξ−q⊥·ξ′ )b(ξ′)b∗(ξ),

=
∫∫∫∫

dξdξ′
∫∫

dk|M11(k⊥, ζ )|2e−ik⊥·(ξ−ξ′ )b(ξ′)b∗(ξ),

=
∫∫

dk⊥|M11(k⊥, ζ )|2|B(k⊥)|2, (B8)

where

B(k⊥) =
∫∫

dξb(ξ)eik⊥·ξ (B9)

is the spatial frequency spectrum of the local oscillator field. Similarly one has∑
n

vn,11(ζ )v
∗
n,21(ζ ) =

∫∫
dkM∗

11(k⊥, ζ )M21(k⊥, ζ )B∗(k⊥)B∗(−k⊥). (B10)
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Thus one finds that

〈�P̂2(θ, ζ )〉 = 〈P̂2〉 − 〈P̂〉2,

= β2
∫∫

dk⊥|B(k⊥)|2G(k⊥, θ, ζ ), (B11)

with

G(k⊥, θ, ζ )

=
∑
jl

|Mi j (k⊥, ζ )|2 −
{
B∗(−k⊥)
B(k⊥)

[M∗
11(k⊥, ζ )M21(k⊥, ζ )

+ M22(k⊥, ζ )M∗
12(k⊥, ζ )]e−2iθ + c.c.

}
, (B12)

where i, j ∈ {1, 2} and “c.c.” denotes the complex conjugate.
As in [23], we now define the spatial squeezing as

S(θ, ζ ) = 10 log10
〈�P̂2(θ, ζ )〉
〈�P̂2(θ, 0)〉 ,

= 10 log10

∫∫ ∞
−∞ dk|B(k⊥)|2G(k⊥, θ, ζ )

2
∫∫ ∞

−∞ dk|B(k⊥)|2
. (B13)

APPENDIX C: DERIVATION OF ATOMIC
SUSCEPTIBILITIES

As formulated in [51], The equation of motion for the
atomic operators is determined by the following Heisenberg-
Langevin equations:(

d

dt
+ γ jl

)
σ̂ jl = i

h̄
[Ĥ1, σ̂ jl ] + r̂ jl + F̂jl , (C1)

where γ jl are dephasing rates which will be neglected since it
is much smaller than the spontaneous decay given by r̂ jl . F̂jl

stand for the Langevin random forces, which satisfy

〈F̂jl (r, t )〉 = 0, (C2a)

〈F̂ †
jl (r, t )F̂mn(r

′, t ′)〉 = 2Djlmnδ(r − r′)δ(t − t ′), (C2b)

with Djlmn being the diffusion coefficients which can be cal-
culated using the Einstein relationship as shown later.

In the following, we neglect the dephasing terms γ jl which
are much smaller that the spontaneous decay in our atom-
light interacting system. Then one can obtain the equations of
motion for the relevant collective atomic operators

d σ̂32

dt
= i[�32σ̂32 − �c1σ̂12 + �c2σ̂34

+ gpâ
†
p(σ̂33 − σ̂22)] + F̂32, (C3a)

d σ̂12

dt
= i[�12σ̂12 − �c1σ̂32 + �c2σ̂14

+ gpâ
†
pσ̂13 − gsâsσ̂42] + F̂12, (C3b)

d σ̂34

dt
= i[�34σ̂34 − �c1σ̂14 + �c2σ̂32

− gpâ
†
pσ̂24 + gsâsσ̂31] + F̂34, (C3c)

d σ̂14

dt
= i[�14σ̂14 − �c1σ̂34 + �c2σ̂12

− gsâs(σ̂44 − σ̂11)] + F̂14, (C3d)

where �32 = −�p + i�32,�12 = � + i�12,�34 = −�p +
�c2 + i�34, and �14 = � + �c2 + i�14,� = �c1 − �p, and
� jl represents the spontaneous decay rates of the correspond-
ing transition, respectively. In the following we will choose
�32 = �14 = �34/2 = �,�12 = 0. Considering the limit that
the quantum probe and signal fields are much weak than the
control fields, the coherence operators can be considered to
be only perturbed. In this case one can then write the atomic
operators as

σ̂i j (r, t ) = σ̂
(0)
i j + σ̂

(1)
i j (r, t ), with

〈
σ̂
(1)
i j (r, t )

〉 � 〈
σ̂
(0)
i j

〉
,

(C4)

where the first constant term in the right-hand side is the
zeroth-order part when the probe and signal fields are absent
and the second term is the first-order part which is introduced
due to the two quantum fields. Since in the zeroth-order limit
the quantum effects have been neglected, one can replace the
operator σ̂

(0)
i j by a number σ

(0)
i j . In typical FWM experiments

for squeezing, it is usual that âp and �c1 is chosen in an EIT
structure, and meanwhile, âs and �c2 forms an ARG con-
figuration. Thus one can find that �c2 � �c1,�p,�c1,�c2.
Under these conditions, the nonzero zeroth-order matrix ele-
ments can be obtained

σ
(0)
22 = 1, σ

(0)
42 = − �c2

�c2 + i�
, σ

(0)
24 = − �c2

�c2 − i�
,

(C5)

. (C6)

Equations (C3) are reduced to

d

dt
σ = iMσ + iv + F, (C7)

where σ = {σ̂ (1)
32 , σ̂

(1)
12 , σ̂

(1)
34 , σ̂

(1)
14 }T , v = {gpâ†p,−gsâsσ

(0)
42 ,

−gpâpσ
(0)
24 , 0}T , F = {F̂42, F̂12, F̂43, F̂13}T , and the matrix M

is given by

M =

⎡
⎢⎢⎢⎢⎣

�32 −�c1 �c2 0

−�c1 �12 0 �c2

�c2 0 �34 −�c1

0 �c2 −�c1 �14

⎤
⎥⎥⎥⎥⎦. (C8)

The Langevin random force F̂i j is characterized by their dif-
fusion coefficient Di jkl which is defined as

〈F̂ †
i j (r, t )F̂kl (r, t )〉 = 2Di jklδ(r − r′)δ(t − t ′), (C9)

where δ is the Dirac delta function. The diffusion coefficient
Di jkl can be calculated using the generalized Einstein relation-
ship [52,53], then the Langevin force vector F would define
the diffusion coefficient matrices as

〈F†(r, t )F (r′, t ′)〉 = D1δ(r − r′)δ(t − t ′), (C10a)

〈F(r, t )F†(r′, t ′)〉 = D2δ(r − r′)δ(t − t ′), (C10b)
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FIG. 6. Linear and nonlinear susceptibilities as a function of two-photon detuing �. Parameters are the same as in the caption of Fig. 3.

where D1 and D2 are given by

D1 =

⎡
⎢⎢⎢⎢⎣
0 0 0 0

0 2��2
c

2�2+�2
c2+4�2

c
0 0

0 0 2��2
c

2�2+�2
c2+4�2

c
− i2�2�c

2�2+�2
c2+4�2

c

0 0 i2�2�c

2�2+�2
c2+4�2

c

2�(�2+2�2
c )

2�2+�2
c2+4�2

c

⎤
⎥⎥⎥⎥⎦,

D2 =

⎡
⎢⎢⎢⎢⎣

2�(�2+�2
c2+2�2

c )
2�2+�2

c2+4�2
c

0 2i�(�+i�c2 )�c

2�2+�2
c2+4�2

c
0

0 2��2
c

2�2+�2
c2+4�2

c
0 0

− 2i�(�−i�c2 )�c

2�2+�2
c2+4�2

c
0 2��2

c

2�2+�2
c2+4�2

c
0

0 0 0 0

⎤
⎥⎥⎥⎥⎦.

(C11)

To obtain the atomic response for the two quantum fields, we
need to calculate σ̂

(1)
32 and σ̂

(1)
14 . By performing the Fourier

transformation from t to ω in Eq. (C7) one can then obtain
the formal solution as

σ(r, ω) = i[M + ω]−1[iv(r, ω) + F(r, ω)]. (C12)

In the following, we consider the continuous-wave limit which
means the dependence on ω can be omitted. Then we obtain

σ̂
(1)
32 (r) = gpχppâ

†
p(r) + gsχspâs(r) + F̂p(r), (C13a)

σ̂
(1)
14 (r) = gpχpsâ

†
p(r) + gsχssâs(r) + F̂s(r), (C13b)

FIG. 7. Here we plot the squeezing and the corresponding
squeezing angle versus the spatial size of the local oscillator for
different lengths of the atomic sample. Here � = 16.4�32 and other
parameters are the same as in the caption of Fig. 3.

χi j with i, j ∈ {p, s} describe the atomic properties and can be
derived

χpp = �12�14�34σ
(0)
22 −�12�14σ

(0)
24 �c−σ

(0)
22 �2

c (�12+�34)

�12�14�32�34−�2
c (�12+�34)(�14+�32)

,

(C14a)

χsp = �14�34σ
(0)
42 �c

�12�14�32�34 − �2
c (�12 + �34)(�14 + �32)

,

(C14b)

χps = �c(�12�32σ
(0)
24 − σ

(0)
22 �c(�12 + �34))

�12�14�32�34 − �2
c (�12 + �34)(�14 + �32)

,

(C14c)

χss = −�32�34σ
(0)
42 �c

�12�14�32�34 − �2
c (�12 + �34)(�14 + �32)

,

(C14d)

thus the susceptibilities can be obtained as χpl = g2NSzχpp/c
as defined in the main text, similarly for χsl , χpn, and χsn.
Their dependencies on the two-photon detuning � are plotted
in Fig. 6.

APPENDIX D: EFFECT OF OPTICAL DEPTH

From our analysis, the spatial squeezing at a small area
does not depend on the optical depth. To confirm this, we
further calculated the spatial squeezing as a function ofwL/wp

for different lengths of the atomic sample as shown in Fig. 7.
It can be seen indeed that the spatial squeezing at smaller area
is almost the same for different length L. At the same time,
the squeezing angle is approximately zero, agreeing with our
analytical analysis.

APPENDIX E: HIGH-SENSITIVITY QUANTUM IMAGING
OF A WEAKLY ABSORBING OBJECT

In this Appendix, we apply the generated MSM squeezed
light to quantum imaging of a weakly absorbing object, and
to see if we can obtain higher sensitivity beyond the standard
quantum limit. The setup is given in Fig. 8, where the output
âs from the squeezing process is shining on a two-dimensional
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FIG. 8. Sketch for quantum imaging with MSM squeezed light.

weakly absorbing object represented by α(x, y), which is fur-
ther combined with âp in a intensity-difference detector. The
SNR is given by [45]

SNR = 〈N̂ ′
−〉√

〈δN̂ ′2− 〉
, (E1)

where N̂ ′
− = N̂p − N̂ ′

s being the difference in photon number
and N̂p and N̂ ′

s are the detected photon numbers in the two
fields. After the object, the probe field is changed to

â′
s(r⊥) = t (r⊥)âs(r⊥) − i

√
1 − |t (r⊥)|2b̂(r⊥), (E2)

where α(r⊥) = 1 − |t (r⊥)|2 (α(r⊥) � 1) with t (r⊥) is the
transmission coefficient and b̂⊥ represents the vacuum field.
Suppose the input probe field for the squeezing process is a
vacuum, then the output two fields have the same intensities,
i.e., 〈â†pâp〉 = 〈â†s âs〉. One can find that

N̂ ′
− =

∫
A
dr⊥[â†p(r⊥)âp(r⊥)

− [1 − α(r⊥)]â†s (r⊥)âs(r⊥) − α(r⊥)b̂†b̂

+ it (r⊥)
√
1 − |t (r⊥)|2(â†s (r⊥)b̂− âs(r⊥)b̂†)], (E3)

here A stands for the area that is measured and r⊥ = (x, y).
In the following, for simplicity, we consider α to be constant
in the area A. Then we have 〈N̂ ′

−〉 = αNs with Nj = 〈N̂ j〉 and
N̂j = ∫

A dr⊥â
†
p(r⊥)âp(r⊥) for j ∈ {p, s}. Similarly,

〈N̂ ′2
− 〉 = 〈N̂2

p 〉 + (1 − α)2〈N̂2
s 〉 − (1 − α)

× [〈N̂pN̂s〉 + 〈N̂sN̂p〉] + α(1 − α)Ns, (E4)

then we have

〈δN ′2
− 〉 =(1 − α)〈δN2

−〉 + α(〈N̂2
p 〉 − 〈N̂2

s 〉)
+ α2〈δN̂2

s 〉 + α(1 − α)Ns

=(1 − α)〈δN2
−〉 + α2〈δN̂2

s 〉 + α(1 − α)Ns. (E5)

The SNR is calculated as

SNR = αNs√
(1 − α)〈δN2−〉 + α2〈δN̂2

s 〉 + α(1 − α)Ns

= α
√
Ns√

α2Q + 2σ (1 − α) + α
, (E6)

whereQ = 〈δN̂2
s 〉/〈N̂s〉 − 1 is the Mandel-Q parameter for the

signal field and

σ = 〈δN̂2
−〉

Np + Ns
(E7)

characterizes the correlation between the two beams. In the
case of two coherent beams with equal intensities, we have
Q = 0 and σ = 1, and we reach the SNR at the standard
quantum limit (SQL) as

SNRSQL = α
√
Ns

2 − α
. (E8)

We can then define the improvement of the SNR due to
squeezed beams with respect to SQL, which is given by

E = SNR

SNRSQL
=

√
2 − α

α2Q + 2σ (1 − α) + α
, (E9)

for very weak object α � 1 we have

E 
 1√
σ

. (E10)

When considering the MSM squeezed beams as we derived in
the main text, we have (the ζ dependence for Mi j is omitted
here for simplicity)

Np = Ns = 1

(2π )2

∫
A
dr⊥e−i(k′

⊥−k⊥ )·r⊥

×
∫∫ ∞

−∞
dk⊥dk′

⊥〈â†s (k)âs(k′
⊥)〉

= A

2π

∫ ∞

−∞
dk⊥|M12(k⊥)|2, (E11)

and

〈δN̂2
−〉 = 〈N̂2

−〉 − 〈N̂−〉2,

= 2

(2π )2

∫∫
A
dr⊥dr′⊥

∫∫
dk⊥dk′

⊥|M11(k⊥)|2|

× M12(k
′
⊥)|2e−i(k⊥−k′

⊥ )·(r⊥−r′⊥ ),

− 1

(2π )2

∫∫
A
dr⊥dr′⊥

∫∫
dk⊥dk′

⊥(M11(k⊥)

× M12(k⊥)M∗
11(k

′
⊥)M

∗
12(k

′
⊥)e

−i(k⊥−k′
⊥ )·(r⊥−r′⊥ )+c.c.),

(E12)

= 2

(2π )2

∫∫
A
dr⊥dr′⊥

∫∫
dk⊥dk′

⊥[|M11(k⊥)|2|M12(k
′
⊥)|2,

−Re[M11(k⊥)M12(k⊥)M∗
11(k

′
⊥)M

∗
12(k

′
⊥)]]e

−i(k⊥−k′
⊥ )·(r⊥−r′⊥ ),

(E13)

= 2Np + 2

(2π )2

∫∫
A
dr⊥dr′⊥

∫∫
dk⊥dk′

⊥

× [|M12(k⊥)|2|M12(k
′
⊥)|2,

−Re[M11(k⊥)M12(k⊥)M∗
11(k

′
⊥)M

∗
12(k

′
⊥)]]

· e−i(k⊥−k′
⊥ )·(r⊥−r′⊥ ), (E14)

023725-10
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FIG. 9. δ(k⊥, k′
⊥) as a function of k⊥ and k′

⊥. Note here the scale for the three cases varies significantly.

= 2Np + 2

(2π )2

∫∫ ∞

−∞
dk⊥dk′

⊥F (k⊥, k′
⊥)(|M12(k⊥)|2|

× M12(k
′
⊥)|2 − Re[M11(k⊥)M12(k⊥)M∗

11(k
′
⊥)M

∗
12(k

′
⊥)]),

(E15)

where we applied the relations for Mi j (k⊥) =
Mi j (−k⊥),M12(k⊥) = M∗

21(k⊥), and M11(k⊥) = M∗
22(k⊥)

and |M11(k⊥)|2 − |M12(k⊥)|2 = 1. And F (k⊥, k′
⊥) is the

filtering function in momentum space, which is defined by
the area A. Suppose we define A as a pixel with size d , i.e.,
A = d2, then we have

F (k⊥, k′
⊥) = d4sinc2

[
1

2
(kx − k′

x )d

]
sinc2

[
1

2
(ky − k′

y)d

]
,

(E16)

which agrees well with that derived in [50]. Finally, we have

σ = 〈δN̂2
−〉

Np + Ns
= 1 +

∫∫ ∞
−∞ dk⊥dk′

⊥F (k⊥, k′
⊥)δ(k⊥, k′

⊥)

2πd2
∫ ∞
−∞ dk⊥|M12(k⊥)|2

,

(E17)

with δ(k⊥, k′
⊥) given by

δ(k⊥, k′
⊥) = |M12(k⊥)|2|M12(k

′
⊥)|2

− Re[M11(k⊥)M12(k⊥)M∗
11(k

′
⊥)M

∗
12(k

′
⊥)].
(E18)

It can be seen from Eqs. (E16) and (E17) that increas-
ing d leads to smaller σ as the width of the sinc function
becomes narrower, and thus a stronger improvement of the
SNR. In our system, δ(k⊥, k′

⊥) only depends on k⊥ and k′
⊥

(k⊥ =
√
k2x + k2y , the same for k′

⊥). We thus plot δ(k⊥, k′
⊥)

as a function of k⊥ and k′
⊥ for the three cases as shown in

Fig. 9. For � = 14.0�32, since there is exponential squeezing
for small k⊥, one might get best σ for large d . However,
δ(k⊥, k′

⊥) soon becomes positive for increasing k⊥, leading to
a rapidly decreasing σ . For � = 16.4�32 which corresponds
to the case of optimal localized squeezing, δ is always smaller
than 0 and leads to a slower decreasing σ when reducing d .
Increasing � further to 19.0�32, σ will be always small as
there is only very weakly localized squeezing all the time. The
calculated σ and the improvement of the SNR (
 1/

√
σ ) is

plotted in Fig. 5.
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