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Picosecond and femtosecond superfluorescent beatings are observed from a dense atomic vapor. 
Cesium atoms are excited by femtosecond laser pulses via two-photon processes into their coherent 
superpositions of the ground 6S and excited 8S states. The yoked superfluorescent blue light at lower 
transitions of 6S – 7P is recorded and studied. Delayed buildup time of this blue light is measured as 
a function of the input laser beam power using a high-resolution 2 ps streak camera. At low power 
and density, a beating with a period of approximately 100 picoseconds is observed as we believe that 
represents the ground state splitting. The autocorrelation measurements of the generated blue light 
exhibit a beating with a quasi-period of 200 ± 60 fs corresponding to the splitting of the 7P level. Our 
experimental observations may hold a promising direction for investigation of cooperative radiation in 
many-body systems including solid-state materials.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

Spontaneous emission from excited atoms is a relatively slow 
and hardly manipulative process. Spontaneous emission is scaled 
in nanoseconds or microseconds intrinsically depending on the 
bandwidth of the excited energy levels of atoms and molecules 
in gas phase. With a laser excitation, the atoms and molecules 
are prepared in their collective state and eventually emit syn-
chronously [1–6]. Synchronized spontaneous emission is com-
monly called superfluorescence (SF) and occurs in a much-reduced 
timescale compared to that of the unsynchronized spontaneous 
emission [7,8]. SF is observed in various atomic and molecular va-
pors [9–14] as well as other exotic materials [15–20]. A two-level 
model predicts the peak intensity and delay of SF pulses that are 
proportional to N2 and N−1, respectively, where N is the number of 
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two-level atoms in the ensemble [7,8]. A three-level model exhibits 
the so-called cascade SF [21,22]. This process can be understood as 
a transient four-wave mixing process that involves two input laser 
pulses and two emitted pulses. If these two emitted pulses in the 
cascade transition did occur simultaneously then the emission in 
the lower transition is referred to as a yoked superfluorescence 
(YSF) [13,23,24].

Common beatings observed in spontaneous emissions involve 
directly excited energy sublevels only, however, the beatings that 
are measured in SF emissions can involve the excited energy sub-
levels both directly and indirectly [25,26] when pumped by the 
laser light. Another important difference between them is that the 
SF beating frequency can be shifted depending on many param-
eters including the input laser power and number density which 
rather obscures the beating interpretation. For example, SF beating 
demonstrates quasi-periodic behaviors where both red and blue 
shifts can be expected [25,27]. In the early works [25,26], cesium 
(Cs) atomic vapor was excited with nanosecond (ns) pulses and 
the SF emissions were detected on a nanosecond time scale. Later, 
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a picosecond (ps) pulse excitation of the Cs vapor and the detec-
tion of the YSF on hundreds of picoseconds were reported [23,24]. 
However, to our knowledge, the detection of the YSF and its beat-
ing properties on a shorter time scale has not been reported yet. 
This can be achieved, e.g., by pumping the dense Cs atoms with 
femtosecond (fs) pulses and detecting the generated light signal 
with an ultrafast streak camera.

In this letter, we study the YSF and its beating behaviors in a 
dense Cs vapor pumped by 60-fs laser pulses. This research is com-
plementary to our previous work on cooperative emissions from 
rubidium [5,6,13,28,29] and sodium vapors [14]. Particularly, our 
focus is to observe the ultrafast beatings. Next section introduces 
the experimental setup and detection methods. In section 3, the 
observed results will be discussed. The last section is conclusion.

2. Materials and methods

A Ti:Sapphire amplified laser system (Coherent Inc.) is used to 
produce a 60-femtosecond (fs) long pulses at 804 nm center wave-
length (half width at half maximum – HWHM of 20 nm) at one 
kilohertz repetition rate. The maximum input power is about 800 
mW (i.e., 0.8 mJ/pulse). A beam diameter is approximately half 
centimeter of the area of 0.2 cm2. In this case, e.g., 200 mW power 
is converted to 0.2 mJ energy per pulse, thus, the pulse energy 
fluence becomes 1 mJ/cm2. The laser beam enters a 3-inch long 
cylindrical cell with Cs atoms. The cell is heated up and stabilized 
(with a variation of less than 2 degrees during experiment) either 
at 217 C or 242 C. The main reason of this particular tempera-
ture selection is that the atomic density of approximately 3 × 1016

cm−3 at 217 C is approximately doubled (approximately 6 × 1016

cm−3) at 242 C. As sketched in Fig. S1 in Supplemental Document, 
the atoms are efficiently excited from the ground state 6S via two-
photon absorption through the intermediate level (6P3/2 state is 
not shown here) into 8S state. The laser beam center wavelength 
line is about 9 nm off from its two-photon resonant transition on 
6S – 8S. It is important to note that 6S – 7D transition is even fur-
ther away (about 19 nm off from 804 nm). Since the HWHM is 
about 20 nm, therefore, the processes associated with 6S – 7D are 
substantially diminished. However, another competitive process in-
volving 6S1/2, 8S1/2, 6P3/2, 6P1/2 may still be present, which was 
studied and reported in Refs. [23,24]. The emissions (761 nm, 795 
nm, 852 nm and 895 nm), in this case, fall within the near infrared 
region and are filtered out together with the 804 nm input beam. 
The emissions in transition 7P – 8S are in mid infrared region and 
are filtered out. In addition, our streak camera and photodiode de-
tector sensors are less or not sensitive in this region. This process 
is also referred to as a transient four-wave mixing (FWM) as in 
[23,24]. In our previous work [13], we demonstrated for rubidium 
vapor that when laser intensity increases (decreases) the coher-
ence between ground and excited states (like in this case 8S and 
6S) effectively increases (decreases), thus, the FWM emission in-
creases (decreases). Two photons through intermediate 6P3/2 state 
excite atoms. The two-photon excitation eventually triggers simul-
taneous emissions on both 7P – 8S and 6S – 7P transitions. The 
emissions in transitions 6S1/2 – 7P3/2 at 456 nm and 6S1/2 – 
7P1/2 at 459 nm are spectrally resolved, see Fig. S1 (C). How-
ever, the intensity ratio between the two is significant and 456 
nm is mainly contributed. Both emissions represent YSF and have 
a common ground state [25] therefore, we expect beating in a 456 
nm emission (blue light). The splitting of 7P level is 181 cm−1, 
which corresponds to 184 fs. On the other hand, the splitting of 
the ground state is about 9 GHz which corresponds to 108 ps beat-
ing. Although, the construction of a detailed quantitative model of 
these laser-field interactions are challenging we believe that these 
beatings are observed, and our data are listed in the following sec-
tion.
2

Fig. 1. Pulse temporal characteristics are recorded by the streak camera. (A) Data 
for 38, 50, 75, 100, 200, 304, 500 and 797 mW at temperature of 217 C. (B) Data 
for 38, 50, 75, 100, 200, 250 and 300 mW at temperature 242 C. (C) Scaled delay 
dependence on input power. Red (black) curves for temperature 217 C (242 C). All 
three data are overlaid for each input power. (D) The selected data (black curve) for 
38 mW input power at 217 C compared with a sinusoidal function (dashed curve). 
(For interpretation of the colors in the figure(s), the reader is referred to the web 
version of this article.)

The generated blue light beam profiles (approximately 4 cm di-
ameter) are shown for several different input laser powers (from 
100 mW to 450 mW with an increment of 50 mW) at the tem-
perature 242 C in Fig. S1 (D). For low power (<250 mW) the blue 
light divergence half angle is estimated to be less than one degree, 
however, for high power (>250 mW) the profile diameter is more 
than doubled due to the ring formation. For higher power, beam 
profiles have distinct ring and central spot structures. More rigor-
ous theoretical and experimental studies are needed to explore the 
structured beam profiles and non-monotonic power dependence 
(see Fig. S1 (E)) as discussed in [30]. In this work, for the sake 
of transparency, we mainly focus on the data collected at lower 
power (<250 mW at the temperature 242 C). A detailed setup lay-
out is sketched in Fig. S2 in Supplemental Document. The amplifier 
output pulses (with optional the Michelson interferometer for dou-
ble pulses with a variable delay) enter the cell and generate blue 
light. The generated blue light is spectrally filtered and then de-
tected either by the specially designed photodiode detectors or the 
2-ps resolution streak camera. A response time of commercially 
available photodiode detectors (OPT101, Thorlabs Inc.) is intention-
ally increased to a half millisecond as to improve the signal to 
noise ratio by the time-integrated detection scheme. A digital stor-
age oscilloscope (Tektronix) displays and records both input and 
generated light. A fast streak camera (Hamamatsu, c5680) is used 
to record temporal characteristics of the input and generated light.

3. Results and discussions

The generated blue light pulse characteristics are shown in 
Fig. 1. The data at 217 C (see, A) and at 242 C (see, B) and their 
comparison (see, C) are depicted for different input powers. The 
sharp peaks are input 804 nm pulses and their rising edge halves 
are aligned at zero. The following delayed pulses are the charac-
teristics of the blue light pulses. As seen from both figures (A) 
and (B), buildup delays tend to elongate as the input power de-
creases. This is the main difference of the cooperative process from 
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Fig. 2. Interferometric autocorrelation data for input beam (A), the generated blue 
beam at input power of (B) 15 mW, (C) 20 mW (D) 25 mW (E) 30 mW. Black, 
red and green curves represent measured signals, upper and lower envelopes of the 
signals, respectively.

non-cooperative processes. For example, at temperature 242 C, the 
pulse shapes and delay off-sets become insensitive for relatively 
high input powers (within a 2 ps resolution), see Fig. S3. As power 
gradually increases above 300 mW (at 242 C), beam profiles first 
become non-uniform consisting of the central spot and distinct 
ring formations, and then for relatively high powers (>450 mW), 
they become nearly uniform and collimated. Next, as mentioned 
above, these two temperatures correspond to the density ratio of 
two. Thus, in Fig. 1 (B) the scaled values of positions of the pulse 
peak halves at rising edges as functions of variable input power are 
plotted. In this case, the delay values for 242 C are scaled up by 
a factor of two. The delay time behaviors of the two quantitatively 
agree which indicates that they are proportional to N−1. Another 
intriguing feature of the YSF is the beating that can be printed di-
rectly on temporal pulse characteristics [25,26]. The data for 38 
mW power at 217 C exhibits this feature as compared to the sinu-
soidal function with a period of 100 ps, see Fig. 1 (D). The splitting 
of the ground state 6S1/2 is 9.19 GHz [25,26] corresponding to 108 
ps. It is important to note that the quasi periodicity due to the SF 
beatings is different from the well-known Burnham-Chiao ringing 
[31], which explicitly depends on square root of time as was previ-
ously observed by the authors [6,13]. In our current experimental 
condition, this power of 38 mW is the lowest possible input power 
for the minimum observable signal intensity sufficient enough to 
be captured with the streak camera. All three data for this power 
distinctly exhibit the 100-ps beating. However, for a higher input 
power range, this beating, unfortunately, vanishes.

The streak camera resolution used here is limited, but (interfer-
ometric) autocorrelation measurements utilizing a pair pulse with 
variable time delay can reveal the beating further down to fs time 
scale [28,29]. All autocorrelation data are taken at temperature 
242 C. As seen in Fig. S2, a Michelson interferometer is inserted on 
the path of input beam. One of the two end mirrors is facilitated 
to scan controlled by the AC function generator. The scope cap-
tures the signals in three channels: applied voltage, autocorrelation 
traces for the input and generated beams. Fig. 2 displays a set of 
the autocorrelation data for several different input powers. In Fig. 2
3

(A), the autocorrelation signal for input beam is measured to be 
93 fs. Assuming Gaussian pulse shapes, the pulse temporal width 
corresponds to 60 fs. This width is confirmed with the measure-
ment by the commercial second order autocorrelator (APE Inc.). 
We emphasize here that the above interferometric autocorrelation 
measurement demonstrates a linear interference, which is only 
sensitive to spectral intensities, but not phases. This one-to-one 
comparison of the first-order autocorrelation to the second-order 
autocorrelation concludes that the spectral phase of the input laser 
pulse is flat. The generated blue light autocorrelations are shown 
in Figs. 2 (B, C, D and E) for input powers of 15, 20, 25 and 30 
mW, respectively. We note that the beating feature observed here 
not periodic corresponding to a single narrowband beat frequency. 
However, in this case, an important beating information can be ex-
tracted from these data. For example, the measured autocorrelation 
data exhibit the repeated bumps which have also certain temporal 
widths. Interestingly, the width of the central bump is measured 
to be 60 fs, which is shorter than the input beam width of 93 
fs. However, the observed off-center bumps are directly related to 
SF. Unambiguously, maxima of the second bumps are located at a 
relative delay about 200 fs away from the center (zero delay) posi-
tion with half width at half maximum of approximately 60 fs. This 
beating is expected since the splitting of 7P state corresponds to 
184 fs. Finally, we note that as input power increases the nature of 
SF beating is eventually washed out, see the cases (D) and (E) in 
Fig. 2.

4. Conclusions

Spontaneous emission of excited individual atoms in vapor lasts 
nanoseconds, if not microseconds and the beatings in it involve di-
rectly excited energy sublevels. In contrast, the superfluorescent 
burst occurs, e.g., on a picosecond timescale. Since the generated 
superfluorescent light is free from dephasing and/or spontaneous 
emission decay processes, the beatings in superfluorescent light 
can involve not only directly laser excited sublevels but also indi-
rectly excited and even ground energy sublevels. In this work, the 
ultrafast superfluorescent beatings that involve both excited and 
ground energy sublevels are observed. Cs atoms are excited by 60-
femtosecond long, 804 nm laser pulses via two-photon near res-
onant processes into their coherent superpositions of the ground 
6S and excited 8S states. As a part of the transient four wave mix-
ing process, the yoked superfluorescent blue light pulses at lower 
transitions of 6S – 7P are recorded. Delayed buildup time of this 
blue light is measured as a function of the input laser beam power 
by the use of a high-resolution streak camera. Delays are appropri-
ately scaled with the number of atoms as varying the temperature 
of the vapor. At low power and density, a beating with a period of 
100 picoseconds corresponding to the ground state splitting is ob-
served. The linear autocorrelation measurements exhibit a beating 
with a quasi-period of 200 ± 60 fs corresponding to the splitting 
of the 7P level primarily in the lower input laser power range. 
At increased laser power, the nature of the both observed beat-
ing is worn away. Temporal coherent control [32–34] using the 
ultrashort superfluorescent pulses [29] is still a challenging task. 
Our experimental observations may hold a promising direction for 
investigation of cooperative radiation in many-body systems in-
cluding solid-state materials.
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