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Abstract: Green stormwater infrastructure (GSI) can provide multiple benefits in addition to stormwater management. However, there is a
need to improve GSI siting to ensure these benefits are realized. We present a planning algorithm that hones in on ‘sweet spots’ of GSI
implementation that are hydrologically optimal, feasible, and provide more equitable access to the benefits of GSI. We apply this approach in
Lancaster, a city in Pennsylvania, US, with multiple stormwater-related challenges. To identify sweet spots, we first leveraged available
spatial data to derive maps of five key criteria, including hydrology, vegetation, property ownership, sewer system type, and social vulner-
ability. We then normalized each layer and combined them using two different weighting schemes, including an ‘Even Weights’ and a
‘People’s Choice’ scenario based on a choice experiment embedded in a community survey. The survey indicated a preference for prioritizing
the hydrology and sewer system criteria. Sweet spots for GSI implementation under each scenario were mapped based on the 90th percentile
of the final combined key criteria layers. Comparisons between the two weighting schemes indicated a 73% overlap in sweet spot locations.
We also found a small percentage (16%) of existing GSI in Lancaster overlapped with the sweet spots, indicating an opportunity to target
future GSI implementation in the remaining sweet spots. Despite being demonstrated in a specific city, this relatively simple approach lever-
aging widely available spatial data can be applied and customized elsewhere and help improve future GSI siting methods. DOI: 10.1061/
JSWBAY.SWENG-513. © 2023 American Society of Civil Engineers.
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Introduction

Unmanaged stormwater runoff is a challenging environmental
problem in urban areas, causing potential nuisance pluvial and flu-
vial flooding, water quality impairment, and ultimately affecting

environmental health (Barbosa et al. 2012; Carson et al. 2013;
Walsh et al. 2016). Population growth and climate change are likely
to intensify these problems (Barbosa et al. 2012; Carter et al. 2018).
In cities with combined sewer systems (CSSs), where stormwater
runoff and domestic sewage are transported in the same pipe sys-
tem, these problems get more complicated because even small
storms can overwhelm the CSS and lead to combined sewer over-
flows (CSOs). CSOs release heavy loads of pollutants, such as sedi-
ments, nutrients, and pathogens, to water bodies, harming human
and ecosystem health (Carson et al. 2013; Botturi et al. 2021).

Stormwater control measures are placed in the urban landscape
to control the quality and quantity of stormwater runoff and can
comprise varying combinations of green and gray infrastructure
or ecological and technological elements (Bell et al. 2019). Green
stormwater infrastructure (GSI), such as infiltration basins, green
roofs, wetlands, rain gardens, and bioswales, leverages ecological
components such as vegetation and soil to treat stormwater
(Adhikari et al. 2023). Besides reducing runoff and pollutant loads,
GSI contributes to other ecosystem services such as cooling
through evapotranspiration or shading, enhancing biodiversity
through habitat provision, improving aesthetics, or enhancing
cultural services (Hoover and Hopton 2019; Prudencio and Null
2018). In recent decades, because of its multifunctionality, GSI
has been increasing in popularity to replace or complement the
services of gray infrastructure (McPhillips and Matsler 2018).

Although green infrastructure is promoted based on its multi-
functionality, GSI projects are primarily sited based on stormwater
abatement due to the regulatory focus on stormwater quantity
and quality. Thus, much research on spatial optimization of GSI
has focused on optimizing stormwater management benefits and
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hydrologic or water quality metrics at a sewershed or watershed
scale (e.g., Zhang and Chui 2018). However, resource constraints
and the potential for GSI to help address a wide range of urban
environmental issues have made it essential to consider multiple
functions and beneficiaries of GSI and identify optimal locations
for their implementation (Bell et al. 2019; Meerow and Newell
2017). In the last decade, research on GSI siting has increasingly
considered optimizing multiple functions beyond water quantity
and quality management. For example, local microclimate regula-
tion is one factor being considered to incorporate the benefits of
vegetated spaces on urban heat island mitigation (Madureira and
Andresen 2014; Marks et al. 2022; Norton et al. 2015). Habitat
provision is another factor considered in optimizing the benefits
of vegetated stormwater solutions (Jessup et al. 2021).

Equity in access to GSI benefits has been recently gaining at-
tention considering documented inequity in access to GSI benefits
among certain demographic groups (Baker et al. 2019; Brent et al.
2022; Chan and Hopkins 2017; Mandarano and Meenar 2017;
Marks et al. 2022). Looking more broadly at green space in cities,
there is also widely documented inequity in the distribution of veg-
etation and associated access to benefits (Wen et al. 2013; Nesbitt
et al. 2019). Beyond the cooling benefits of vegetation, people liv-
ing in greener or more vegetated surroundings report lower levels of
fear, fewer incivilities, and less aggressive and violent behavior
(Ward Thompson et al. 2012). Exposure to vegetated spaces has
also been associated with many health benefits, including stress
reduction and sustained mental health improvements (Alcock
et al. 2014; Kuo and Sullivan 2001). Conversely, the lack of green
space in people’s living environment has coincided with feelings of
loneliness and a perceived shortage of social support (Maas et al.
2009). In dense urban areas, GSI and its associated vegetation and
stormwater management function can help mitigate the social vul-
nerability of communities by reducing exposure to certain hazards
as well as providing cultural services (Dagenais et al. 2017).

Despite the clear importance of considering who has access
to the benefits of GSI, few US cities have explicitly considered
environmental justice and/or social vulnerability in their GSI siting
strategies (Hoover et al. 2021). To address this gap, some GSI
planning strategies have integrated sociodemographic variables rel-
evant to the benefits of GSI to improve spatial planning efforts
(Mandarano and Meenar 2017), while others have implemented
more complex metrics of social vulnerability or equity, generally
relying on existing indices such as the social vulnerability index
(SoVI) created by the Hazards and Vulnerability Research Institute
(Castro 2022; Chang et al. 2021; Marks et al. 2022; Pacetti et al.
2022).

One of the most comprehensive GSI planning approaches is the
Green Infrastructure Spatial Planning (GISP) Model (Meerow and
Newell 2017). With green infrastructure broadly defined as includ-
ing both GSI and other green spaces such as parks, the GISP is a
GIS-based multicriteria method that combines six benefits of green
infrastructure, including stormwater management, social vulner-
ability, green space provision, air quality improvement, urban heat
island amelioration, and landscape connectivity. The model also
incorporates stakeholder priorities from 23 green infrastructure
experts in the Detroit region through a survey on the importance
of the six benefit criteria. The criteria layers were then weighted
based on the survey results (Meerow and Newell 2017). However,
despite its many strong elements, the GISP could benefit from
considering alternative hydrologic metrics and greater community
input.

Here, we build upon GISP and related work by proposing a mul-
ticriteria planning approach that leverages widely available data to
consider multiple GSI benefits, accessibility to those benefits, and

feasibility of implementation. More specifically, we demonstrate an
alternative approach for assessing runoff accumulation and flood-
ing potential while still avoiding a data-intensive runoff routing
model. Additionally, we also consider several other factors, includ-
ing sewer system type (i.e. combined versus separate, to address
different types of overflows), existing vegetation (to integrate
multiple ecosystem services of vegetated systems), property type
(to inform the feasibility of implementation), and social vulnerabil-
ity (to factor in who benefits from GSI services). Moreover, to ad-
dress the overemphasis of expert opinions and lack of community
input in previous siting approaches, we explore how incorporating
community preferences in GSI siting criteria may influence the
spatial pattern of optimal locations.

Methods

In this section, we first introduce our study area and then elaborate
on the four-step procedure for identifying GSI sweet spots: (1) cre-
ating five criteria layers, (2) developing two weighting scenarios,
(3) combining the criteria layers under the two different scenarios,
and (4) analyzing and comparing the mapping outcomes for
implications.

Study Area

We conducted this research in the City of Lancaster, located in
south-central Pennsylvania (Fig. 1). This historic city was incorpo-
rated in 1818 and had a 2010 population of 59,322 and an urban
area of 19 sq km. The annual average rainfall is 107 cm (1926–
2000) (City of Lancaster 2011). Lancaster is highly developed, with
53% of the city being impervious surfaces, such as buildings, roads,
parking lots, and sidewalks (Chesapeake Conservancy 2020).

The city uses both a CSS and a municipal separate storm sewer
system (MS4). The CSS covers about 45% of the city and conveys
rainwater, domestic sewage, and industrial waste to the city’s
Advanced Wastewater Treatment Facility. During heavy rains, un-
treated CSOs are discharged into the Conestoga River, a tributary of
the Susquehanna River (The City of Lancaster 2022), serving as the
primary source of pollution for the Conestoga during wet weather.
Based on the city’s annual CSO status reports, on average, about
one billion gallons of untreated combined sewage is discharged into
the Conestoga River annually (City of Lancaster 2011).

To address this problem, Lancaster adopted its 25-year Green
Infrastructure Plan in 2011, with 327 potential GSI projects iden-
tified (City of Lancaster 2011). These potential GSI projects were
primarily targeted on publicly owned land in areas of the city with
high impervious cover. In 2018, Lancaster entered a consent decree
with the US Environmental Protection Agency and the Pennsylva-
nia Department of Environmental Protection to comply with the
CleanWater Act and Clean Stream Law. Additional GSI implemen-
tation is a major component of this agreement. Lancaster currently
has about 500 GSI facilities installed to manage stormwater and
associated pollutants. Their major GSI types include bioretention
basins/swales, infiltration trenches, permeable pavement, tree
trenches, and detention basins (City of Lancaster 2011).

Creation of Criteria Layers

Data availability, accessibility to multiple GSI benefits, and fea-
sibility of implementation were key considerations for choosing
the siting criteria. Based on discussions among the interdisciplinary
project team and Lancaster City stormwater managers, five criteria
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were selected: hydrology, sewer system, green space provision,
property ownership, and social vulnerability. A series of steps
(Fig. 2) were then taken to create the five criteria layers, as detailed
in the following section.

Hydrology Layer

The hydrology layer was created to identify areas with high poten-
tial for stormwater accumulation and, therefore, priority for GSI
implementation. There are different methods for identifying such

Fig. 2. Flowchart demonstrating the multi-step procedure for the sweet spots analysis.

Fig. 1. Location and land cover of the City of Lancaster, PA.
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hydrologic hotspots. The most complex approaches leverage
hydrologic and hydraulic models that route water through the sur-
face landscape and drainage infrastructure. While these methods
can yield high accuracy, they also require high data inputs and cal-
ibration (Rosenzweig et al. 2021). In contrast, the most simplified
methods rely strongly on land cover and soil characteristics, such as
the Curve Number or Rational Method (Hosseiny et al. 2020;
Jessup et al. 2021; Meerow and Newell 2017). These approaches
sometimes integrate simple sewer system characteristics, such as
the density of sewer pipes or CSO discharge (Meerow and Newell
2017; Pacetti et al. 2022). Another type of simplified method con-
siders topography as the most important factor controlling water
movement in the landscape (Schmidt and Persson 2003), such
as the ‘blue spot’ method and topographic wetness index (TWI).
Despite the ability of urban drainage systems to mitigate flooding
in low-lying areas, topography remains a strong indicator of water
accumulation in urbanized areas during high-intensity storm events
when typical drainage infrastructure may be overwhelmed. The
‘blue spot’ method detects low-lying areas (blue spots or sinks) in
the landscape from analysis of a digital elevation model (DEM) and
then assesses their flooding potential based on the sink’s watershed
and capacity (Balstrøm and Crawford 2018). The TWI is also cal-
culated using a DEM but with simple equations considering topo-
graphic elements such as slope and flow direction (Buchanan et al.
2013; Quinn et al. 1995). TWI has long been used in hydrologic
models to predict areas prone to water accumulation in rural catch-
ments (Buchanan et al. 2013). However, recent work has demon-
strated its utility as an indicator of urban pluvial flooding (Kelleher
and McPhillips 2020; Metes et al. 2022).

Considering data availability and computational efficiency, we
chose the TWI as an indicator of areas prone to stormwater accu-
mulation. TWI is calculated according to Eq. (1), where a repre-
sents the upslope area and tan β represents the local slope. The flow
direction and upslope area of a given point are calculated based on
the D-infinity flow direction algorithm as it performs better than
other alternatives such as the D8 and multiple flow direction meth-
ods (Kelleher and McPhillips 2020; Tarboton 1997)

TWI ¼ ln

�
a

tan β

�
ð1Þ

We first downloaded a 1m high-resolution DEM of Lancaster,
HUC 8 watershed shapefiles, the Lancaster City boundary, and
building footprints from Pennsylvania Spatial Data Access
(PASDA 2018). We then clipped the DEM to the three HUC 8
watersheds containing Lancaster. After eliminating building foot-
prints from the DEM, we calculated the TWI using the TauDEM
package (Tarboton 2015) and the D-infinity flow direction algo-
rithm in ArcGIS (v. 10.7). Next, we clipped the TWI map using
the city boundary and normalized the values to the range 0–1.
Finally, we removed areas of existing water bodies from the TWI
map (PASDA 2007).

Social Vulnerability Layer

The social vulnerability layer was created to help prioritize GSI
implementation in vulnerable communities. Here, vulnerability is
defined as the inability of residents to deal with hazards such as
flooding (Cutter 1996; Meerow and Newell 2017). The factors that
shape social vulnerability are complex and difficult to quantify
(Meerow and Newell 2017). There are different methods used for
measuring social vulnerability, but income, poverty level, minority,
race, ethnicity, single-parent status, vacancy, age, gender, employ-
ment status, educational attainment, and household size are among

the most frequently used variables in previous studies (Cutter et al.
2003; Grabowski et al. 2023; Mandarano and Meenar 2017). For
example, higher income typically reduces social vulnerability be-
cause wealth enables communities to recover quickly from hazard
impacts or may lead to prioritization of infrastructure upgrades
(Cutter et al. 2003). Additionally, a higher proportion of the pop-
ulation identifying as a racial or ethnic minority may increase social
vulnerability because of historical bias or inequitable and inad-
equate allocation of resources, including those related to siting
and maintaining critical infrastructure (Hendricks and Van Zandt
2021). Potential language barriers can also make information ex-
change difficult, leading to residents’ inability to use resources after
a disastrous event. Additionally, extremes of age (both young and
elderly) can also affect social vulnerability, with mobility concerns
in harmful situations, for example, for the elderly (Cutter et al.
2003).

Based on an extensive literature review, we adapted the com-
monly used SoVI (Cutter et al. 2003; Meerow and Newell 2017).
Instead of aggregating 29 socioeconomic variables, we selected the
16 attributes with data available at the smallest scale of census
blocks (a total of 74 blocks for Lancaster). The census block scale
was chosen to produce fine spatial detail in the final layers. The
selected variables included income, poverty, percent female, per-
cent female in the civilian labor force, racial and ethnic minorities,
median age, population under age 5, population over age 65, un-
employment, renter-occupied houses, single-parent households,
education, tree cover, violent crime, building vacancy, and popu-
lation density (Appendix A, Table 1). Using data obtained from
the 2018 US Census, the City of Lancaster, and ArcGIS online,
we first performed principal component analysis (PCA) to reduce
correlation and create independent factors from the 16 variables
(Hastie et al. 2009). The PCA extracted five principal components
that account for 75% of the variability of the data. Then, we clus-
tered the census blocks into four groups based on the k-means
method (Cutter et al. 2003; James et al. 2013) using R, the Stats
package, and the k-means function (R Core Team 2020; Appendix
A, Table 2). We calculated the social vulnerability indicator and
assigned social vulnerability indices for the groups as 0.36, 1.7,
2.37, and 4.3 for groups 1, 2, 4, and 3, respectively.

Sewer Layer

The sewer layer, which delineates the CSS and MS4 areas in
Lancaster, was included to allow different options to prioritize ei-
ther CSS or MS4 for GSI implementation. One option is to priori-
tize the CSS area, where GSI can help reduce the runoff quantity
through the CSSs after heavy rains, thus aiding the city in meeting
its CSO goals in the consent decree. However, priority can also be
given to implementing GSI in the MS4 area, which suffers from
flooding challenges and requires improved stormwater manage-
ment. In this case study, we demonstrate the option of prioritizing
the CSS. If desired, this priority can also be removed by choosing a
weight of 0 for the sewer layer later when integrating the five cri-
teria. Using the sewer system shapefile obtained from the munici-
pality, we rasterized the layer by assigning a 0 value to the MS4
area and 1 to the CSS area.

Vegetation Layer

The vegetation layer was created to classify Lancaster into veg-
etated and nonvegetated areas. This allows the option of prioritiz-
ing GSI in areas currently lacking vegetated space, where GSI
implementation will bring critical cobenefits such as urban heat
island mitigation, stormwater retention, and habitat creation

© ASCE 05023004-4 J. Sustainable Water Built Environ.
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(Melaas et al. 2016). To create this layer, we used 1m high-
resolution regional land use data for the Chesapeake Bay Watershed
(Chesapeake Conservancy 2020). Land use categories include im-
pervious roads, impervious nonroad, tree canopy over impervious,
water, floodplain wetlands, other wetlands, forest, tree canopy over
turf, mixed open, fractional turf (small), fractional turf (med), and
agriculture. After classifying the land cover layer into vegetated
and nonvegetated pixels, we assigned the 0 value to vegetated pixels
and 1 to nonvegetated pixels.

Property Layer

The property layer was created to allow consideration of different
types of property ownership, which may impact the feasibility of
GSI implementation as well as who benefits from it. Here, we pri-
oritize public parcels based on the higher feasibility of implement-
ing GSI and the increased number of people with access to GSI on
public property. Using the property shapefile provided by the city,
we categorized parcels into two groups: private versus public.
Private properties include residential, private nonresidential, and
vacant residential, whereas public parcels primarily include parks,
schools, and municipal buildings. We then assigned a 0 value to the
private parcels and 1 to the public parcels.

Developing Two Weighting Scenarios

To explore how different weighting schemes may influence the spa-
tial pattern of the GSI sweet spots, we test two scenarios in our
study. The first scenario of “Even Weights” involves weighting the
five layers equally, i.e., the weight of 0.2 is assigned to every layer
(Bozorg-Haddad et al. 2021). The second scenario is a “People’s
Choice” scenario, where the layers are weighted differently based
on community preferences. We specify the survey methods used to
parameterize the People’s Choice scenario as follows.

Choice Experiment for Identifying Public Preference

We designed a choice experiment survey to understand the prefer-
ences of Lancaster City residents regarding GSI planning (full
survey available in Supplemental Materials). Choice experiments
are a type of stated preference tool typically used in economics
for nonmarket valuation (Brent et al. 2017). Here, we applied this
technique to discern preferences for how GSI location is prioritized.
The survey included an introduction page with a GSI definition,
Lancaster’s GSI implementation efforts, images of GSI facilities,
definitions of the five criteria used in the spatial analysis, and
an explanation of the choice activities. The respondents were then
randomly assigned to one of four blocks containing five separate
choicesets. The choice sets were created using a simulation ap-
proach that maximized D-efficiency from the full factorial design.
Each choiceset asked the respondents to select between two given
GSI plans (i.e., Plan A versus B). Table 1 is an example of a choic-
eset. When identifying their preferred plan, the respondents needed
to compare which specific criteria were prioritized under which

scenario. Some may consider stormwater management as the most
essential service provided by GSI, thus selecting the plan that
prioritizes flood control, while others may think providing green
(vegetated) spaces for vulnerable communities is more important.
Analyzing the entire sample population’s responses estimates the
relative importance of the five criteria.

The survey was administered in Qualtrics and received an
exemption from the Penn State Internal Review Board (#
STUDY00016210). We sent the survey link in spring 2021 by post-
cards to 3,315 addresses randomly selected from the Lancaster
property database. Results were analyzed in the R software using
a conditional logit model as implemented in the mlogit package
(Brent et al. 2017; Londoño Cadavid and Ando 2013). With
participants’ GSI plan choice as the outcome variable, this model
predicts the probability of selecting the preferred GSI plan as a
function of the five criteria. The estimated parameters indicate
how important each criterion is when selecting the preferred GSI
plan and were then used as weights for the five criteria indicating
community preference for GSI siting.

Combining Criteria Layers to Identify GSI Sweet Spots

For combining the layers, we adopted a popular multicriteria de-
cision analysis approach that leverages weighted linear combina-
tion (e.g., Meerow and Newell 2017). After the raw criteria
layers were prepared, all vector layers were converted to rasters.
A series of steps were then undertaken to examine layer correla-
tions and normalize layer values before aggregating them using dif-
ferent weighting schemes under the two scenarios.

First, to assess redundancy in the five criteria layers, we used the
“Band Collection Statistics” tool in ArcMap (v.10.7.1) to generate a
correlation matrix that shows the correlation of different layers.
This matrix helps to determine the presence of strong correlations
that may impact the decision to include them all in the final com-
bined layer. Because no significant correlations emerged among the
individual layers (Appendix B, Table 1), all five layers were in-
cluded in subsequent processing and analyses.

Second, due to the significant differences in ranges of values in
different layers, it is necessary to rescale all layers to a common
numerical range (e.g., 0 to 1) to avoid giving those with larger val-
ues heavier weights. We used a technique that normalizes the values
based on mean and standard deviation (Bozorg-Haddad et al. 2021)
so that we would not bias our ‘Equal Weights’ scenario by having
different mean values. In order to make the mean value of all of the
layers the same, we divided each criteria layer by its mean value
and then scaled all the layers into 0 to 1 values (Fig. 3).

Next, we assigned appropriate weights to each criteria layer and
combined them to inform priority locations for GSI implementation
under the two chosen scenarios. As mentioned, the “EvenWeights”
scenario assigned a weight of 0.2 to every layer, while the “People’s
Choice” scenario applied the weights derived from the choice ex-
periment. These weights were then multiplied by each layer, and
the five values were added together to create a final combined layer
with a possible range of 0 to 1 under each scenario.

Table 1. An example of a choice question asking, “Which stormwater infrastructure plan do you prefer for Lancaster City?”

Category Plan A Plan B

Flood control Prioritize areas with high flood likelihood No prioritization
Green space Prioritize areas with the least vegetative cover No prioritization
People No prioritization Prioritize most vulnerable
Sewer system type Prioritize the combined sewer area Prioritize separated storm sewer area
Property No prioritization Prioritize private property

© ASCE 05023004-5 J. Sustainable Water Built Environ.
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Spatial analysis was performed on the two final combined
layers. Locations with the highest values were considered ‘sweet
spots’ or high-priority locations for GSI implementation. We spe-
cifically selected the values exceeding the 90th percentile. This was
an arbitrary decision to isolate the top 10 percent of values; the
specific range of values in similar analyses could be selected based
on local preferences and constraints. Two 90th-percentile sweet
spot raster maps were extracted and converted into a vector format.
The total area of sweet spots under each scenario was calculated for
subsequent comparisons.

Finally, the overlaps between the two sweet spot maps and the
existing GSI map were analyzed using the Intersect tool in ArcMap.
Percentages of overlap of the two sweet spot maps were calculated
by dividing their intersect area by the total area of sweet spots under
both scenarios. Similarly, to quantify the percentages of existing
GSI overlapping with sweet spots, we found the intersecting areas
of each sweet spot map and the existing GSI map and calculated the
percentage of existing GSI located in the detected sweet spots. We
also checked the overlap of existing GSI with the hydrologic hot-
spots by creating a 90th-percentile hydrology layer, intersecting it
with the existing GSI map, and dividing the intersecting area by the
total area of existing GSI.

Results

Individual Criteria Layers

The five criteria layers show both similarities and differences in
prioritized locations. First, the hydrology layer [Fig. 3(a)] indicates
major variation across the city with respect to flood risk; thus, a

need for prioritizing different locations for stormwater manage-
ment. The TWI values in the original raster prior to normalization
ranged between −2.28 and 20.58 with a mean of 4.89. A larger
TWI value means the area is more prone to runoff accumulation
and flooding. The hydrology map, in general, shows higher flood
risk areas around the edge of the city. Second, the sewer system
layer indicates that the CSS area dominates the older downtown
area, comprising 45% of the city [Fig. 3(b)]. Third, the vegetation
layer [Fig. 3(c)] indicates that the largest vegetated spaces are lo-
cated toward the outskirts of the city, with some scattered presence
of vegetation in the downtown area. Fourth, the property layer in-
dicates a variable distribution of public and private parcels through-
out the city, with some of the largest public parcels being parks
[Fig. 3(d)]. Public parcels comprised 20% of the city area, while
private comprised 80%. Lastly, for the social vulnerability layer,
zones of increased social vulnerability are concentrated in the cen-
tral downtown area, more specifically in the southeast quadrant
[Fig. 3(e)].

For creating the social vulnerability layer based on the PCA, we
selected five principal components because they represent 74% of
the variance of all the variables analyzed. The dominant variables in
these five principal components are the percentage of people living
in poverty, percent female, percent of the population over 65, per-
cent of the population under 5, and tree cover. More information
about the PCA is presented in Appendix A, Tables 1 and 2.

Patterns of GSI Sweet Spots

The choice experiment survey for parameterizing the weights
for the “People’s Choice” scenario received 98 complete/usable

Fig. 3. Five criteria layers with original values: (a) hydrology layer; (b) sewer layer; (c) vegetation layer; (d) property layer; and (e) social
vulnerability layer.
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responses (3% response rate). Based on self-reporting of sociode-
mographic characteristics, these respondents are fairly representa-
tive of average Lancaster City residents. Age was well distributed
across all categories spanning from 18 to 65þ years old. While
education and income had respondents in all categories, there
was the least representation for those with high school or trade
school education and less than $25,000 annual household income
(Appendix B, Tables 2–5). Compared to city statistics (US Census
2020), our survey had some overrepresentation of higher income
levels, higher education levels, white/Caucasian ethnicity, and peo-
ple over age 65; however, approximately a third of respondents did
not report demographics, leaving some uncertainty in representa-
tion. The resulting weights from the choice experiment survey
are reported in Table 2. The respondents put the highest priority
on flood control, reduction of CSOs, and increasing green space.

The two final combined layers demonstrate similar overall spa-
tial patterns where the highest values, thus locations to prioritize
GSI implementation, are concentrated in the downtown city center
(Fig. 4). The downtown area has most of the priority implementa-
tion areas for both weighting schemes. Fig. 5 shows the 90th per-
centile map of combined layers with the even weighting of criteria
layers [Fig. 5(a)] and the assigned survey weights [Fig. 5(b)].

The two 90th-percentile sweet spot maps under the two weight-
ing schemes show a substantial overlap. After weighing and com-
bining five criteria layers with two approaches (even versus
People’s Choice), we found a significant overlap (72%–74%) be-
tween the final two combined sweet spot maps (Fig. 6). However,
there are also some parts of the city with notable differences be-
tween the two approaches. One example area zoomed in Fig. 5
shows the McCaskey High School and Lincoln Middle School area
being included as a sweet spot in the Even Weights instead of
People’s Choice scenario. The primary reason behind this differ-
ence was the lower weight assigned to the social vulnerability layer
in the People’s Choice than in the Even Weights scenario. When
rated by the survey respondents, the social vulnerability weight

became 0.157, lower than the 0.2 value in the Even Weights sce-
nario. Therefore, although this location was indicated by the social
vulnerability map as more vulnerable [Fig. 3(e)], the lower social
vulnerability weight of 0.15 in the People’s Choice scenario caused
a reduction in its overall score, driving this location to be just below
the sweet spots threshold.

Comparison of Sweet Spots with Existing GSI

The City of Lancaster has already implemented approximately 500
individual GSI features, including vegetated swales, tree trenches,
filter strips, green roofs, infiltration bioretention basins, infiltration
trenches, naturalized basins, permeable pavement, and infiltration
surface beds. We compare existing GSI facilities to the areas with
our designated sweet spots using both weighting schemes. Only
16.4% of GSI facilities are above the 90th percentile of locations
using the equal weighting scheme and 16.6% using the People’s
Choice weights (Fig. 7). Perhaps Lancaster is prioritizing hydro-
logic function above all other objectives. However, when focusing
exclusively on the hydrology layer, only 6% of existing GSI facili-
ties are above the 90th percentile TWI. Therefore, there are likely
gains to siting future GSI locations based either on hydrology or on
a more holistic set of objectives (Fig. 7).

Discussion

The City of Lancaster, like many other urban areas around the
world, has multiple stormwater-related concerns and intends to lev-
erage GSI as a key solution (City of Lancaster 2011). Although GSI
has the potential to provide numerous benefits, GSI siting ap-
proaches in many cities have often focused on solving stormwater
or sewer outflow problems or opportunities to leverage other infra-
structure projects and needs (City of Lancaster 2011; Green et al.
2021). To further GSI siting considerations based on additional
functions provided by GSI and ensure equitable access to these

Table 2. Survey weights assigned to criteria layers

Layer name Hydrology Sewer Vegetation Public property Private property Social vulnerability

Weight 0.258 0.271 0.209 0.103 0 0.157

Fig. 4. The two final combined maps where criteria layers were weighted (a) evenly; and (b) with survey results.
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benefits, we present a multicriteria spatial analysis approach to
identifying sweet spots of GSI implementation through a case study
in Lancaster. After weighing and combining five criteria layers with
two approaches (even weighting versus People’s Choice), we found
a significant overlap (72%–74%) between the final two combined
sweet spot maps. Only 16.4% of existing GSI in Lancaster are lo-
cated in the evenly weighted criteria sweet spots, compared to
16.6% for the People’s Choice sweet spots based on survey
weights. We discuss the advantages, customization, and limita-
tions of our method and the implications for GSI planning in the
following sections.

Methodological Advantages

Our work adds to a rapidly growing collection of approaches for
planners, designers, and decision makers to consider as they seek to
improve GSI siting strategies. The most important advantages of
our approach are its simplicity, broad data availability, and the in-
corporation of community preference through a choice experiment
survey. Additionally, the method can be customized in various
ways for other regions based on research or implementation goals,
data availability, and computational capability.

First, selecting critical criteria with publicly available data is im-
portant for the method to be transferable. Most of the data we used,
e.g., DEM, census, and land cover, is widely available in the United
States. The weighted linear combination method also makes the
aggregation of the layers highly computationally efficient, enabling
rapid testing of multiple weighting scenarios.

Second, unlike most previous studies, our method integrates the
perspectives of residents in analyzing GSI siting priorities. Histor-
ically, GSI siting approaches had generally focused on ‘expert
opinions’ (e.g., Apud et al. 2020; Meerow and Newell 2017;
Sarabi et al. 2022), while largely neglecting the values of commu-
nity members (Meyer et al. 2018). In this work, we did incorporate
expert views in consideration of included criteria, but we also
explicitly integrated community preferences into the decision-
making process. This is important because it is the residents who
experience the day-to-day water challenges and interact the most
closely with proposed solutions, and there is documented need
for increased community engagement in the GSI planning process
(Campbell-Arvai and Lindquist 2021).

It is worth noting that there is 72%–74% overlap between two
layers when dividing the intersecting area by the 90th percentile of
even weight and survey weight scenarios, respectively (i.e., almost
three-quarters of either sweet spots layer is in common with the

Fig. 5. Final combined maps with 90th percentile values highlighted in red as ‘sweet spots’ for potential GSI implementation under the (a) Even
Weights; and (b) People’s Choice scenario. In each, an example area in northeast Lancaster is highlighted to showcase cross-scenario differences in
sweet spot designation.

Fig. 6. Overlap of the two 90th-percentile sweet spot maps. Common
pixels between two sweet spot maps are highlighted in blue.
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other sweet spots layer). It is ideal to explicitly consider the com-
munity preferences and insights, and more than 25% of identified
sweet spots were different in the ‘People’s Choice’ layer. However,
if there are not the resources to do a full choice experiment or sim-
ilar quantitative evaluation of preferences, simply broadening the
considered criteria is an important first step to improving GSI siting
strategies.

Customization of the Method

Next, there are multiple ways in which our method can be custom-
ized for other regions. We briefly provide two examples regarding
the selection of criteria (and associated metrics) and the spatial
analysis of the sweet spots. While the five criteria we considered
were initially determined based on discussions among the interdis-
ciplinary project team in light of data availability, other criteria may
be deemed important in other cities. For example, in cities trying to
leverage vacant lots to create multifunctional green infrastructure, a
vacant properties layer can be included. Additionally, alternative
metrics can be considered for a given criterion. For example, for
the hydrology layer widely recognized as a key GSI siting criterion,
the specific metric deemed most appropriate could vary. The avail-
ability of certain spatial data can facilitate a more detailed hydro-
logic model to be employed beyond the TWI method we used.
Additionally, if more detailed data was available on other con-
straints such as underground utilities or public right-of-way, this
could be included to better refine the most feasible final locations.

Regarding the spatial analysis of the sweet spots, what consti-
tutes a sweet spot can also be customized based on factors such as
research objectives, planning goals, or budget constraints. Besides
the weighted linear combination method we employed, others have
used spatial analysis-based approaches such as clustering or hot-
spot analysis (e.g., Marks et al. 2022). In adapting our method,
the key decisions, besides the selection of criteria layers discussed,
are the weighting of layers and the threshold value for the sweet
spot. The overall goal is to identify values at the ‘undesirable’
end of the value range in the final combined layer, i.e., the values

most subject to flooding, with the highest proportion of impervious
area and social vulnerability. What extent of values to include is
somewhat of an arbitrary decision. For example, instead of using
our selection of the 90th percentile values of the final weighted,
combined layer, decisions can be grounded in financial and
feasibility (e.g., parcel size) constraints to identify the extent of pri-
ority areas based on available budget for GSI installation. Addition-
ally, one can choose to not isolate the ‘sweet spots’ and leave the
final combined layer presented as a range of values clustered in
some way (e.g., as quantiles), giving the local decision makers
the flexibility to choose the number of priority sites (Meerow and
Newell 2017).

Method Limitations and Opportunities

Despite the advantages and flexibility mentioned, we note several
limitations and future considerations of our method. First, even
with careful methodological considerations, the representativeness
of the survey sample of the broader population cannot be assured
due to the low response rate. Because the survey was administered
during the early stage of the COVID-19 pandemic, the many other
sources of stress in people’s lives may have contributed to the lack
of responses. As previously noted, the demographics of respond-
ents are somewhat consistent with overall city demographics, but
there are several potential biases noted, including age, race, income,
and education. Thus, there may be some bias in the resulting
weights (e.g. possible underrepresentation of social vulnerability).
If possible, follow-up studies should be conducted to capture a
larger number and a broader range of residents to verify the factor
weightings of the current study.

Another issue requiring future investigation is to determine the
appropriate scale of analysis. In our work, data with the highest
available spatial resolution (e.g., census block groups versus tracts,
highest resolution elevation, or land use data) were selected where
possible to enhance the accuracy of criteria layers. For preparing
the social vulnerability layer, we followed the SoVI method

Fig. 7. Overlap of existing GSI with the 90th percentile sweet spots under the (a) Even Weights; and (b) People’s Choice scenario.
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(Cutter et al. 2003), but because we used block groups instead of
census tracts as units for calculations, some of the data available for
census tracts were not available at the block group level. Therefore,
we had to eliminate some variables used for SoVI calculations and
use the available data. As the unit of the analyses decreases, the
variability generally decreases, which should lead to more realistic
results. However, challenges result from uneven resolution across
layers, where the highest spatial resolution of socioeconomic data
is still much more coarse than land cover or topographic data. Ag-
gregated socioeconomic data are also subject to the ‘Modifiable
Areal Unit Problem,’ which is a source of statistical bias resulting
when spatial data are aggregated into blocks or tracts; previous re-
search evaluating overlap between social and flooding vulnerability
has identified differences in priority areas for interventions based
on the level of aggregation selected (Hinojos 2022).

Implications

Our mapping provides several interesting observations of current
GSI patterns and practical implications for future GSI implemen-
tation in Lancaster. First, the result that a low percentage (6%) of
existing GSI is located in hydrologic priority areas (i.e., with 90th
percentile TWI values) suggests that many GSI facilities are al-
ready being implemented in locations for reasons other than simply
maximizing flood mitigation. It should be noted, however, that this
low amount of overlap may be due to considerations of the GSI
type being implemented. GSI focused on detention and retention
may be best implemented directly in the areas with the highest
TWIs, where they can effectively capture accumulated stormwater.
However, infiltration-focused GSI may function better when im-
plemented just upslope of zones with the highest TWI, where
there may be a greater depth to the water table. This demonstrates
the opportunity to customize the chosen indicators based on
precise GSI goals and to use the identified sweet spots as a starting
point for identifying the exact future locations of GSI. Future iter-
ations of GSI siting tools could be customized for different types
of GSI.

Second, the observation that only 16% of existing GSI are
located in identified sweet spots presents an opportunity to target
future GSI implementation to sweet spots. This small overlap is
understandable because, for identifying its demonstration projects,
Lancaster used four prioritization criteria that are different from the
five we mapped. They included runoff capture cost efficiency, in-
tegration with other infrastructure needs, external grant funding,
and public acceptance and education (City of Lancaster 2011),
and most of which are difficult to quantify and map with specific
variables or metrics at the city scale. Given that recent scholarship
has highlighted the common gaps between overarching planning
goals and variables actually applied in GSI siting in many US cities
(Hoover et al. 2021), it is a prime opportunity for the city to (re)
evaluate how well existing GSI implementation matched initially
proposed priorities and planning goals. Our mapping informs
how historical criteria can be broadened to include other critical
variables easily mapped at the city scale. Finally, the identified
sweet spots can be used to inform future GSI locations. For exam-
ple, the railway corridor at the northern edge of Lancaster, the
several large industrial, commercial, and school parcels around
New Holland Ave., and areas around West Chestnut St. appear to
be promising locations identified by both weighing scenarios. City
stormwater managers can examine the individual criteria layers
for particular reasons behind the high combined values of these
parcels, meanwhile factoring in additional considerations such
as the four previously prioritized in the city’s 2011 plan.

The utility of our method is that it can be replicated and cus-
tomized for other regions. Our work adds to the toolbox that plan-
ners, designers, and decision makers could leverage as they seek to
improve GSI siting strategies while working under various physi-
cal, social, and financial constraints. Future work can continue to
improve the possible indicators, assess the function and benefits of
GSI installed based on these optimization approaches, and identify
opportunities to further improve implementation strategies. In
particular, we need to strive to ensure that improvements for im-
plementation strategies are being discussed as part of a transdisci-
plinary framework to bridge science and practice (Ramyar et al.
2021).

It is also important to note that GSI may not be considered a
universal good. While there are many documented benefits, poten-
tial ‘dis-services’ can become significant barriers to implementa-
tion. These can include mosquito habitat, generation of pollen
or pollutants such as volatile organic compounds, undesirable aes-
thetics (e.g., messiness or weediness) by community members, or
‘green gentrification’ (i.e., the inflation of nearby housing prices)
(Meenar et al. 2022; Nassauer 1988; Pataki et al. 2011). Many of
these issues can be managed with appropriate design decisions,
such as types of vegetation, and adequate maintenance, but ad-
equate policies have to be in place to prevent green gentrification.
Finally, any GSI planning and design project must consider the
broad range of services and potential dis-services to maximize
the environmental, social, and economic benefits of GSI.

Conclusions

The City of Lancaster, Pennsylvania, like many aging cities else-
where, has various stormwater-related challenges. The city has al-
ready started leveraging GSI as part of its stormwater management
strategies. In this case study, we presented a relatively simple and
customizable approach for considering multiple social, environ-
mental, and logistical factors in identifying priority locations for
GSI implementation. We compared two different approaches to
weighting the chosen factors, one of which was based on surveyed
community preferences. We believe this is an important improve-
ment over previous approaches, as it better represents resident per-
spectives in the decision-making process.

By identifying sweet spots outside existing GSI areas, our ap-
proach highlights future implementation opportunities for the City
of Lancaster, meanwhile offering broader implications for potential
ways to improve future siting approaches. The presented approach
will help stakeholders and organizations create a more comprehen-
sive, objective, yet simple process for GSI siting that not only helps
to address stormwater challenges, but also improves access of
vulnerable residents to the benefits of GSI.
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