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ABSTRACT: Inspection and maintenance (I&M) optimization entails many sources of
computational complexity, among others, due to high-dimensional decision and state variables in
multi-component systems, long planning horizons, stochasticity of objectives and constraints, and
inherent uncertainties in measurements and models. This paper studies how the above can be
addressed within the context of constrained Partially Observable Markov Decision Processes
(POMDPs) and Deep Reinforcement Learning (DRL) in a unified fashion. Special emphasis is
paid on how ordered action structuring of 1&M actions can be exploited to decompose the
respective policy parametrizations in actor-critic DRL schemes, resulting into fully decoupled
maintenance and inspection actors. It is shown that the Value of Information (Vol) is naturally
utilized in such POMDP control frameworks, as directly associated with the DRL advantage
functions that emerge in the gradient computations of the inspection policy parameters. Overall,
the presented approach, following the natural flow of engineering decisions, results in new
architectural configurations for policy networks, facilitating more efficient training, while
alleviating further the dimensionality burdens related to combinatorial definitions of I&M actions.
The efficiency of the methodology is demonstrated in numerical experiments of a structural system
subject to corrosion, where the optimization problem is formulated to concurrently account for
state and model uncertainties as well as long-term probability of failure exceedance constraints.
Results showcase that the obtained DRL policies considerably outperform standard decision rules.

KEYWORDS: inspection & maintenance; deep reinforcement learning; partially observable
Markov decision processes; value of information; stochastic constraints; decision theory.

1 INTRODUCTION

Inspection and maintenance (I&M) planning of
deteriorating systems can be defined as a dynamic
programming problem of minimizing life-cycle risks
and operational costs, through proper allocation of
available resources. Formulating such a program
involves two discrete tasks: modeling the deteriorating
environment and optimizing actions over time.
Modeling of environment transitions, as these are
manifested due to chronic or abrupt stressors acting on
structures, can be efficiently carried out by Bayesian
networks, e.g. in (Straub, 2009; Andriotis &
Papakonstantinou, 2018). Based on the constructed or
learned Bayesian network, optimization is often
conducted heuristically, through evaluation of
responses under possible decision rules, with the best
rule being eventually elected as the final policy. Such
decision rules typically rely on threshold- or interval-
based criteria (Straub & Faber, 2005; Serensen, 2009;

Nielsen & Serensen, 2011). Other optimization
formulations in the broader area of infrastructure
I&M planning, focus on more principled
mathematical  programming  processes  for
determination of optimal solutions, such as
gradient-based, mixed integer programming, and
evolutionary algorithms, e.g. (Nishijima, et al.,
2009; Ouyang & Madanat, 2004; Su, et al., 2017,
Yang & Frangopol, 2018).

Optimal I&M solutions from such formulations
primarily ensue from static or quasi-static problem
statements, thus, in principle, approximating the
optimum that can be provided by a dynamic
programming-based sequence of decisions.
Bridging dynamic programming and Dynamic
Bayesian Networks (DBNs), Partially Observable
Markov Decision Processes have been successfully
used for I&M planning (Jiang, et al., 2000;
Papakonstantinou & Shinozuka, 2014; Schobi &
Chatzi, 2016). The theoretical elegance of POMDPs
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is, however, not on par with the complexity of their
accompanying solution techniques. Alleviating some
of the emerging complexities, point-based value
iteration is successfully implemented for optimization
of medium-sized I&M problems (Papakonstantinou &
Shinozuka, 2014; Papakonstantinou, et al., 2016 &
2018, Morato, et al., 2022a).

In all cases, from policy enumeration to static
optimization formulations to dynamic programming,
attempts to trace a globally optimal solution succumb
to the burdens of dimensionality; long planning
horizons; stochasticity of objectives and constraints;
and integration of state and/or model updating, among
others. To deal with such complex and general
environments, a coupled Deep Reinforcement
Learning (DRL) and POMDP framework has been
introduced in (Andriotis & Papakonstantinou, 2019a,
2019b), shown to significantly outperform standard
risk-, condition-, and time-based I&M rules in decision
analysis of multi-component engineering systems. The
integrated DRL-POMDP approach has the capacity to
alleviate issues of dimensionality and uncertainty,
approximating arbitrarily well globally optimal belief-
conditioned sequential decision paths in long-horizon
planning problems. This concept is extended in
(Andriotis & Papakonstantinou, 2021) to facilitate
incorporation of constraints that bound strictly, or in a
probabilistic sense, relevant quantities of interest, such
as risk, failure probability, system availability, budget-
related costs, and other measures.

In this paper, the above-described multi-agent
actor-critic DRL approach is further enhanced to
provide training and planning of improved efficiency.
Maintenance and inspection policies are decoupled and
defined by separate actor networks, following the
natural structuring of decisions inside each decision
analysis step. Training of the two resulting policy
networks (actors) is thereby performed independently.
This architectural feature reduces the original output of
the policy network that would be formed through
combinations of I&M actions. Moreover, it uses
distinct inputs, as it does not condition the two types of
actions (maintenance and inspection) on the same prior
probability distribution (belief) over states of structural
health (as this may be represented by corrosion depth,
crack size, or other relevant engineering metrics).

Parametric independence of inspection and
maintenance policies is computationally reflected in
the formed gradients of the actors. The inspection-actor
and the maintenance-actor are trained with their own
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advantage functions, both being linked to the
centralized life-cycle cost (parametrized by the
critic network). For the inspection-actor network, it
is shown that the respective advantage function
assumes Value of Information (Vol) semantics, i.e.,
conditional Vol is directly leveraged for learning of
inspection network weights during training. The
role of Vol, as a metric quantifying the amount the
decision-maker should be willing to pay for
structural data prior to maintenance (Thons &
Faber, 2011; Pozzi & Der Kiureghian, 2011;
Andriotis, et al., 2021), is therefore explicitly
positioned within the framework of DRL-POMDP
and within planning of the inspection policy.

As an application of the developed approach, a
multi-component steel truss structure subject to
corrosion deterioration is examined. For the
optimization problem, the failure risk over the
service life is constrained, so that the structure
adheres to prescribed safety levels, whereas the
deterioration model is also uncertain and gets
updated in time based on data. Results show the
suggested approach to outperform standardly
optimized decision rules. It is additionally shown
that the new training scheme furnishes advantages
of theoretical consistency and relies on more
interpretable metrics, such as Vol, for policy
training and action selection.

2 1&M OPTIMIZATION WITH POMDPs

The stochastic objective to be optimized in the [&M
problem under consideration is the following:

T
V' (bo) = 1’71[’1€11}’11E|:Z}/t(’, a, ~ 72'(00:,,610:,71 ):| (1)

t=0

where V " is the optimal expected life-cycle cost; bo
is the initial probability distribution of the system
states/parameters; c: is the cost at time step #; 7'1s the
length of service life; y is a discount factor in (0,1);
ar = (ary, ams) € A=Ar<Am is an inspection (azs) and
maintenance (a,) action at time step ¢; or € Q is an
observation of structural health at time #; and 7 € I1
is a policy (decision rule). Policy, z, is a function
that maps past observations and actions to a new
action. As such, at best, an optimal policy may
consider the entire history of actions and
observations up to each time step #, (00:,@0:+1), to
output an action ar. Expectation of Eq. (1) is taken
over possible states s € S, as reached through
transitions e € &, and the action outcomes.
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Figure 1. Recurrence of sequential decisions, random variables, and computational steps in inspection and
maintenance planning of deteriorating engineering systems.

The cost function, ¢;, depends on states and actions
and is decomposed into sub-costs:

c(s,a;,ay) =cylay)+tyc(a)+cp(s,ay) ()
maintenance inspection risk

Additional sub-costs can be included in this class of
problems, such as scheduled shutdown costs and/or
unavailability costs (Andriotis & Papakonstantinou,
2021). In case life-cycle is considered in its entirety,
the cost function at time step 0 and 7 can also include
initial and terminal costs such as design/construction
and decommissioning costs, respectively (Morato, et
al., 2022b). Such sub-costs are omitted here.

The sequence of random variable realizations and
decisions within each step is shown in Figure 1.
Accordingly, the computational tasks undertaken
within each step consist of an optimal state control
task; an uncertainty propagation (prediction) task; a
Value of Information (Vol) maximization task; and a
state/model updating task. POMDPs seek globally
optimal solutions over a multi-step horizon, unifying
the above tasks. In a POMDP, states representing the
condition of structural health and/or model parameters
are partially observable to the decision-maker, i.e.,
modeled as latent random variables (Papakonstantinou
& Shinozuka, 2014; Schobi & Chatzi, 2016).
Collected observations through inspections and
monitoring are conditioned on these states and are
used to update their respective priors. This forward
filtering operation is herein described by a Bayesian
update:

b'(s')=Pr(s'|0',a,,aM,b)

o Pr(o'|s"a,)Pr(s'ay,b) 3)

where b: is the probability distribution over S at
time ¢, and (-)" s (-) at the next time step. Based on
this belief update, the Bellman equation, describing
the optimal value of the objective function of Eq.
(1), can be written as:

V'(b)= rgleigl{ D b(s)c(s,a)+

}/ZPr(o'|b,a)V* (b')}

0eQ

— min {Z b(s)(cy +cp)+y V" (baM )

ay €Ay

4)
— ymax Vol (a, )}

ajed;

where Voluer denotes the net Value of Information
(Vol) associated with inspection action as:

Vol,, (a,)=V"(b™)-E,[ 7" (b)]-c, (5)

Thus, Eq. (4) describes that following execution of
a maintenance action am, under an optimal POMDP
policy, inspections as are chosen based on the net
Vol (Andriotis, et al, 2021). Within the
mathematical principles of POMDPs, this assures
non-negativity of Vol both at every decision step
and over the entire horizon of decisions.

21 Optimization under life-cycle risk constraints

Consideration of constraints in the decision
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optimization problem enables a policy to control the
deterioration of structural health while satisfying
pragmatic desired or required targets on some
quantities of interest, as these for example relate to
maintenance costs, risks, etc. These quantities are not
necessarily bounded at every single step, in general,
but rather over longer horizons. Some types of
constraints may also be perceived only stochastically,
as they depend on the underlying stochastic processes
that govern the deterioration.

An example of such a type of constraints, which is
of interest to this work, is bounding the failure
probability or risk over the service life of a structure.
The need for a stochastic formulation of this constraint
type can be understood if one notes that the probability
of failure over multiple time steps is updatable based
on observations at instances where inspection actions
are prescribed by the policy. Thereby, different
realizations of a policy, producing different
observation sequences, yield different trajectories of
probability of failure. Accordingly, the expected
cumulative risk is herein bounded as:

T
RN = E[z y'cg (s[,aM’t)}

t=0

=c {i Y (P Folaton ~ Filagson )} ©)

t=0

where cr is the failure cost, Pr, is the failure probability
up to time ¢, and R, is a prescribed life-cycle risk
tolerance. A broader family of constraints and how
these can be implemented in a POMDP/DRL
framework is presented in more elaborate terms in
(Andriotis & Papakonstantinou, 2021). Attaching the
constraint of Eq. (6) at the objective function of Eq. (1),
the following max-min optimization problem is
eventually defined:

V*(bo) = H}aoX V; (by)
A>0 rwell

=max minE{ZT: v (c, +/ICFAPE) (7)
t=0

- AR,

ult

a, ~ ”(OO:taaO:z—l) }

where A is a Lagrange multiplier transforming the
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constrained problem into an unconstrained one. A
globally optimal solution to the above problem is
sought through the belief-based constrained multi-
agent actor-critic DRL approach presented in the
next section, for multi-component systems.

22 System-level control through multi-agent

belief-based DRL

In the actor-critic DRL approach taken in this paper,
following the deep multi-agent algorithmic schemes
in (Andriotis & Papakonstantinou, 2019a; 2021),
the value function of Eq. (7) is parametrized by a
critic network, with parameters 0y, which are
gradually learned during training:

Vi (b)=v: (b:6,) (®)

where b is the system belief (typically consisting
of all factored component and model parameter
probability distributions). The multi-agent policy
actor is also similarly parametrized, with each
component being treated as a separate agent.
Accordingly, policies of different components have
their individual action outputs, which are
conditionally independent given the current system
belief:

ﬁ(a|6)=ﬁn,.(a“> |b; eﬂ) (9)

where Nc is the number of components (or control
units), a is a vector of actions a®, and 0, is the
vector of the policy network parameters. The
parameters of the actor and critic networks are
updated based on their gradients. Based on Eq. (9),
the actor gradient is given within the premises of the
policy gradient theorem (Sutton, et al., 2000):

v, Vi (f)) =E,, [WAZ (B,a; 0, )

Nc A (10)
-ZVOI log 7, (a(” |b; 0, )}
i=l1

where w is an importance sampling weight, A7 is
the advantage function, and M is the experience
replay containing information of past transitions
and costs. Importance sampling is used because off-
policy learning is used, i.e., experiences retrieved
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Figure 2. Underlying dynamic Bayesian network describing deterioration, structural and statistical dependencies
among components, and effects of decisions on state and observation random variables.

from M were generated by policies other than the
current one (in training time).

According to Eq. (7), and using the parametrized
Lagrangian value function of Eq. (8), the advantage
function is computed through the following relation:

A7 (B,a; 0, ) = B, [e(s,a)] - Ac AP,
. . (1)
—yV7 (b0, )+77 (b;0,)
The critic network gradient is similarly given as:

v, V7 (b)=E,, [WAZ (b.2:0, )V, ¥ (b:0, )} (12)

VT is linear with respect to A and thus the respective
gradient is:

T
Vv,V = CFZQ/APF, — R

t=0

(13)

Lagrange multipliers are updated using Eq. (13) in an
on-policy manner at the end of every episode (service-
life realization), and therefore, unlike for the other
gradients, importance sampling is not required.

Based on the gradients of Egs. (10), (12), and (13),
respective parameters are updated through stochastic
gradient descent. For 4=0, the constrained problem is
now defined as an unconstrained one, with Egs. (8)-

(12) remaining unchanged. In that case, the gradient
of Eq. (13) becomes irrelevant.

3 DECOUPLED INSPECTION AND MAINTEN-
ANCE ACTORS

Following the ordered structuring of inspection and
maintenance actions within each decision step
(Figure 1) the factored policy representation in Eq.
(9) can be written as:

x(alb) :H,ZM (a m)ijﬁ;»(a;» b))

)¢ - maintenance policy

7y - inspection policy

Parametrizing the two policies with different
networks, i.e., having 0y and 0;, and substituting
Eq. (14) in Eq. (10), it immediately follows that the
gradient is decomposed into two parts. Based on
this and keeping only the advantage parts that are
relevant to each decision, the maintenance and
inspection actors have the following gradients:

VQM Vi =R, [wvv,\/,/lz\’;’/jL (f)’aM; BV)'

New . (15)
>3 Vo, log () (a,(\j) |b; BM)
i-1
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Vi, Vi=E, |:WIA17T,/1 (BaM ,a;5 0, )
Ney } (16)

'Zve, log 7" (a}” | b* ;0,)
i=1
The advantage functions, A4y, , 47, , which are

necessary for the training of the maintenance and
inspection policy networks, respectively, assume the
following forms:

1\7;,}, (f)a Ay, 01/) =-[, [CM (s, a)] - ﬂ’CFAPFt

. . (17)
V7 (b 0,)+v7 (b: 0,)
AI”,/I (f)aM ,a;;, 0, ) =—c/(a;)—
. . (13)
%4 (b X eV)+ 24 (b"M : eV)
Following standard nomenclature in structural

reliability literature regarding information value, e.g.
in (Straub, 2014; Konakli, et al., 2015), it can be readily
noted that the inspection advantage is the net value of
Conditional Vol (CVol) at every time step ¢:

CVol,, = A7, (b ,a,) (19)
Taking the expected value over all possible
observations, one can compute Vol:

Vol,., =B, | 47 (6" .a,)] (20)

As shown in Eq. (4), Vol is inherently present in
POMDPs as the selection criterion of inspection
actions at every step. This property can be also
naturally utilized in DRL to avoid separate related
neural networks and inspection parametrizations, thus
only parametrizing the maintenance policy and
choosing the inspection that maximizes net Vol, using
Egs. (5) and (20). This option would, however, require
an accurate estimate of Vol at every step, which in
multi-component systems is computationally hard
(expectation over component observations, o).

By parametrizing instead the inspection network
and using CVol to train the parameters, this optimal
inspection behavior is gradually approximated through
gradient descent. In similar terms, the advantage
function backpropagated for the maintenance actor can
be interpreted as net conditional value of maintenance.
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Figure 3. Multi-component deteriorating truss

structure.

Table 1. Environment parameters and random variables.

Name Type? Values®
Annual corrosion Gam( 6% x,x ), 0:0.02: 1.0
depth, ox (cm) see Eq. (21)

Initial corrosion Exp(2) 0:0.02: 1.0
depth, xo (cm)

Gamma parameter, Uni([4,6]) 4:0.5:6
mzo (mm)

Gamma parameter, deterministic 0.2 m7o

o070 (mm)

Gamma parameter, deterministic 1.5

B

Observation, o (cm) Norm(x,6%-x) 0: 0.02: 1.0
Load, P (kN) Weib(330,72) 0:5: 380
Nominal section deterministic 32e-4, 38e-
areas, A, Ag, Ap (m?) 4,26e-4
Yield strength, o, deterministic 355.0
(MPa)

Lengths, ¢, 42, {3 deterministic 6.0,3.0,4.5
(m)

Costs, ¢, Cimat Chas» deterministic 0.01, 0.6,
cr (Crep)© 0.02, 1.0
Discount, y deterministic 0.95

* Gam, Exp, Uni, Norm, and Weib, are gamma,
exponential, uniform, normal, and Weibull distributions,

respectively.

®For random variables, reported values include minimum:

step: maximum.

€ crep: entire structure rebuild cost; cna: material cost of
intact structural volume; c.s: base cost of replacement
campaign incurred when Nc>0; R, =0.05¢es.

4 RESULTS

41 Modeling of the deteriorating environment

Scheduling of I&M actions is considered for a
multi-component steel structure subject to
deterioration. The structure consists of 13 truss
members, which incur cross section losses due to
operation in a corroding environment for a service
horizon of 50 years. I&M actions are taken once
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Table 2. Description of optimized baseline policies.
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Table 3. Life-cycle costs of baseline and DRL policies *.

Optimal

TPI- RBI-

Policy Acronym Decision variables values Cost TPI RBI RBP RBP DRL
inspection time 1* =5 &M 218 182  1.84 157 100
TPI: Time Periodic 1nte1"val, fr; (years);
Inspection section-loss on =6 Insp. 0.20 0.21 0.24 0.20 0.25
replacement R
threshold, o (mm) Maint. 198 161 160 137  0.75
system PoF? .
ir}llspec tion threshold, Du*=8e- Risk 0.27 0.29 0.30 0.30 0.29
RBI: Risk-Based D' 3; @ Computed based on 10° policy realizations and
Inspection section-loss or*=8 normalized with respect to the DRL policy. Normalized
replacement (mm) 95% confidence intervals are tighter than 0.1. For all
threshold, or policies constraint violation estimate is lower than 3.5%.
nyr* =9
TPL.RBP" TPI & number of 0t =4 gxposure.of 70 years. The state of each'member also
Risk-Based components to be (years); includes its age. Age is considered, without loss of
Prioritization maintained, 7,3 ;08 op*=6 generality, to be a fully observable variable
(mm) reflecting the rate of deterioration, evolving
iy = 8; deterministically based on the selected maintenance
RBLRBP" RBI & number of ik = 6e- action, in contrast to the corrosion depth variable
Risk-Based components to be 3. which is stochastic and latent, only perceivable
Priomitivation maintained, 7, ; pu ; 0; N through observations collected at time instances of
OR (mm) inspection visits.

2 Probability of failure of structural system.
® RBP is conducted based on PoF of individual components.

every year. The deterioration process DBN and the
truss are shown in Figures 2 and 3, respectively.

In the DBN of Figure 2, deterioration rate, 7\,
corresponds to component age; deterioration level, x®,
corresponds to corrosion depth (assumed uniform over
the cross section); component performance state, /',
indicates the failure of a component (binary); and
system performance, f;, indicates system failure
(binary). The overall system belief is defined based on
the above variables together with the environment
parameters, @.... The depth of corrosion of each
member is modeled as a gamma process, whose mean
follows a power law (Frangopol, et al., 2004), as is
typical for the assumed type of stressor and material:

¥ =rt’ 1k

@2y

X, — X, | ~Gamma( ~|rrﬂ—r(r—1)ﬁ,1<)

Environment parameters, @e.v, comprise (f,r,x) of Eq.
(21) together with load, P. Given S, parameters r, k are
determined through known mean corrosion depth (m70)
values and the respective standard deviation (o70) after

The global environment parameter m7o of the
gamma process is also a latent variable. As
illustrated in Figure 2, it is assumed that m7o is an
overarching parameter, shared among components,
since all member stochastic deterioration processes
ensue from the same environment. This parameter
is also identifiable in inference time, i.e., during the
deployment phase of the life-cycle policy, based on
direct cross-section thickness measurements
(observations). Discretization and probabilistic
assumptions for the corrosion modeling can be
found in Table 1. At inspection times, all
components are inspected (Nc~=1). Maintenance
actions exist for each member (Nc=13), including
do-nothing and perfect-repairs (replacement).

Component failure occurs when the cross section
normal stress, o, exceeds the material yield stress,
oy, or the cross section area loss exceeds 50%.
System failure occurs upon failure of at least one
member (series system assumption). Members
under compression are not prone to buckling due to
appropriate slenderness ratio. The same value of
corrosion penetration depth inflicts roughly equal
percentage of cross section loss to all members, due
to the equally thick hollow circular cross sections
used for the structural members (Icm). Parameter
details for the environment are presented in Table 1.
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42 Deep network parametrization and training

On the basis of the derivations of Section 3, separate
inspection and maintenance actors are utilized,
whereas the critic network corresponds to a
parametrization of the Lagrangian value function,
allowing us to evaluate the actors’ advantage functions
through a surrogate of the life-cycle cost. For the
maintenance actor, the used parametrization introduces
independency among components, in accordance with
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Each actor has 2x100 hidden layers, mapping
the system belief to a binary output, whereas the
critic is parametrized with 2x300 hidden layers. For
the inspection actor, the binary output applies to all
members. The involved networks were trained with
Keras with Tensorflow backend version 1.5.0.

43 Policy evaluations and comparisons
To assess the quality of the learned DRL policy we

the deep decentralized multi-agent actor critic compare against different baselines that are built
architecture in (Andriotis & Papakonstantinou, 2021). and optimized as per risk-, condition-, and time-
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Figure 4. Policy realization of the trained multi-agent actor-critic DRL networks. (a) Corrosion depth mean estimates based on
history of previous actions and observations; (b) System probability of failure (PoF), with the observation-driven update part
indicated in blue; (c) Gamma process environment parameter identification.
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based assumptions. These policies are succinctly
described in Table 2. The life-cycle costs of all
policies, including the DRL one, are reported in Table
3. It can be observed that the DRL policy reaches a
57% lower life-cycle cost than the optimized risk-
based policy with component prioritization. This
outcome 1s made possible by the dynamic and adaptive
nature of DRL policies, which are not relying on static
thresholds and/or conditioning of actions on noisy
observation outcomes, but rather perform a direct
mapping from the dynamically evolving posterior
state and model parameter beliefs to I&M actions.

Indicative realizations of the DRL policy are shown
in Figure 4. For these realizations, the real environment
parameter is assumed to be m7=6 mm, indicating
operation of the structure under severely corrosive
conditions. Surrounding plots in Figure 4(a) show
mean estimated corrosion depths for all members, as
computed throughout the service life based on actions
and observations and the corresponding belief vectors
at each time step. The system probability of failure and
gamma process parameter updates are also depicted in
Figures 4(b) and 4(c). In the highlighted policy
realization, it is observed that 19 inspections were
necessary during the planning horizon of 50 years,
taken at years 5, 11, 14, 17, 19, 21, 23, 28, 32, 34, 36,
38, 40-45, and 47. Maintenance actions (component
perfect-repairs) are dynamically selected for each
component based on both its individual corrosion
depth estimates (inferred via inspections) and system-
level scheduling considerations.

It can be observed, for example, in Figure 4(a), that
for the lower left member, although maintenance is
taken in year 23, the updated corrosion estimate after
inspection at year 28 dictates maintenance at that time
too. Later, although equal levels of corrosion are
reached or exceeded, repair is postponed until more
components can be included in the intervention (year
36), as there is a base cost associated with maintenance
campaigns. It can be, therefore, seen that component-
level adaptability regarding maintenance activity is not
irrelevant to system-level considerations. To reduce
single-member interventions, maintenance activity is
automatically grouped. For example, 6 members are
maintained in years 23, 4 members in years 36 and 47,
and 2 members in year 14. This pattern is observed in
all realizations without, however, suggesting fixed,
time-based interventions (see other realizations in
grey). It is instead noticed to be a mixture of
opportunistic criteria and time-based maintenance
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towards achieving optimality. Component classes
are also discovered as reflected through similar
policy patterns, e.g., internal members are seen to
mainly require no more than one repair during the
service life, typically after 30 years. However, the
actual timing of the respective visit is again adjusted
so that single-component interventions are avoided.
This is an adaptability feature driven by the unique
observation sequences of the life-cycle realizations.

5 CONCLUSIONS

An actor-critic Deep Reinforcement Learning
(DRL) architecture and training approach is
presented in this paper. Following the ordered
action structuring of I&M actions in decision
analysis of deteriorating structures, decoupled
inspection/maintenance actor networks are devised.
That 1s, the developed architecture recurrently
conditions maintenance and inspection decisions on
post-inspection and post-maintenance posterior
beliefs, respectively. The two networks are trained
based on their own distinct advantage functions. In
the case of the inspection policy network, the
advantage function coincides with the net
conditional Value of Information (Vol), a metric
that can objectively guide inspection decision
updates in both learning and deployment times.
Thereby, under the learned policy, the inspection
plan incorporates the inspection selection criterion
inherently present in Partially Observable Markov
Decision  Processes (POMDPs), i.e., the
maximization of the net Vol. Following this
intuitive formulation regarding decisions, this
approach is found to provide adept planning
solutions for a long-horizon problem of a multi-
component deteriorating structure under corrosion.
The decoupled DRL-POMDP policy outperforms
by at least 57% standard baselines following
condition-, risk-, and time-based assumptions.
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