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ABSTRACT KEYWORDS

The use of data to explain natural phenomena has been a core feature Computational thinking;

of science education, and science educators continue to call for an data practices; design-based
increased emphasis on teaching data practices. This mixed methods research; professional
design-based research study adds to the growing body of research on  development; self-regulated
data practices in science by explaining the learning trends of science learning

teachers involved in a three-year collaborative professional develop-

ment (PD) using computational thinking (CT) and self-regulated learn-

ing (SRL) as a means to support teachers in implementing data

practices. The PD resulted in long-term high-quality teacher learning

outcomes for all three elements of the PD (data practices, CT, and SRL)

despite the upheaval of teaching platforms due to the COVID-19

pandemic. Since the teachers were involved in design-based research,

their professional learning focused on collaboratively creating an elec-

tronic, interactive notebook with lessons for use in science classrooms

across the United States. Creating a common product as an outcome

of the PD may have served as motivation for teachers to learn about

and implement more data practices, CT, and SRL, which suggests that

design-based research is another valuable design for teacher PD.

Research has indicated that effective professional development (PD) is participatory, long-
term, and specific to and relevant for the teachers who are participating (Darling-
Hammond et al., 2017; Loucks-Horsley et al., 2010; Luft & Hewson, 2014). Successful
models of PD for science teachers include approaches such as learning cycles and research
experiences (Enderle et al., 2014; Herrington et al., 2016). Collaboration stands out as a key
feature in these PD models extending beyond teacher-to-teacher collaboration (Coenders &
Terlouw, 2015; Herrington et al., 2016) providing opportunities to share expertise, learn
from each other, and develop new teaching strategies (Vescio et al., 2008) and ultimately
improving learning gains for students (Roth et al., 2011). Moreover, evidence is emerging
that PD that involves broader collaborations can help teachers address equity issues in the
classroom (Bancroft & Nyirenda, 2020).

The purpose of this paper is to present the learning trends of teachers involved in a type
of long-term collaborative PD model through Design-Based Research (DBR). This DBR PD
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research involved collaboration among teachers, educational psychologists, school psychol-
ogists, science educators, technology educators, and software developers to design a web-
based tool to support high school student engagement with data practices during science
investigations. Teachers experienced developmental PD over three years to meet the goal of
designing and testing the Science Practices Innovation Notebook (SPIN) for use not only in
their own classrooms, but in high school science classrooms across the United States. SPIN
is a web-based interactive notebook that supports self-regulated learning (SRL) of high
school students engaged in data practices and computational thinking (CT) by guiding
students through teacher-authored investigations in physics, chemistry, biology, and Earth
science while collecting learning analytics for both teacher feedback and educational
research.

Conceptual framework

Four integrated conceptual frameworks were used for this study: DBR (Bannan-Ritland,
2009), data practices (Weintrop et al., 2016), CT practices (Wing, 2006), and SRL
(Zimmerman, 2000). The following section describes each framework and then explains
how they were integrated to design the research, product development, and PD experiences
with the teachers.

Design-based research

DBR, specifically the Integrated Learning Design Framework (ILDF, Bannan-Ritland,
2009), was adopted for this study as it provided guidance in the form of iterative phases
for collaboratively designing an educational product. Previously, this framework has been
leveraged for collaborative learning with teachers by Bannan (2013) and Bannan et al.
(2010). The study by Bannan (2013) indicated that across ILDF phases, the research
questions, design criteria, and corresponding evaluation cycles became progressively
more sophisticated and complex. Bannan et al.'s study (2010) showed the incorporation
of mobile devices into an overarching instructional intervention not only promoted
enhanced geological observation and reasoning but also facilitated shifts of agency, social
structures, and cultural practices. The ILDF supports multiple objectives (content knowl-
edge, pedagogical content knowledge), multiple contexts (data practices, CT, and SRL), and
multi-layered collaborations (researcher-teacher, researcher-software developer, teacher-
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Figure 1. Integrated learning design framework (ILDF) used for the study.
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student, student-student). The ILDF has four iterative phases, Informed Exploration,
Enactment, Local Impact, and Broader Impact (see Figure 1). This study, a part of a larger
research study, took place during the first three phases of the ILDF.

The intention of the Informed Exploration phase (IEP) is to identify the general problem,
conduct research to better understand the problem, and define the problem so that the
eventual product serves the needs of the users (Bannan-Ritland, 2003). Because DBR is
intended to be collaborative, all of the stakeholders come to the context expecting to learn.
The purpose of the Enactment phase (EP) is to take what was learned from the IEP, create
a rough idea of an educational product, and continue to perform small, iterative tests to
refine the product (Bannan-Ritland, 2003). There are two purposes of the Local Impact
phase (LIP): to determine how well the product works for the students of the teachers who
designed the product and to make initial determinations about how well the product will
scale up for use in other teachers’ classrooms (Bannan-Ritland, 2003). The purpose of the
Broader Impact phase is to test the product in full classrooms of teachers who were not
involved with the design. However, this paper will focus on the development of teacher
knowledge and skills from the IEP, EP, and LIP of the project. A description of PD activities
characterizing each phase can be found in the methods section.

Data practices framework

During IEP, teachers identified a need for students to engage in data practices more fully
during science investigations. Weintrop et al. (2016) identified five data practices that
scientists engage in which intersect with CT: (a) collecting data, (b) creating data, (c)
manipulating data, (d) visualizing data, and (e) analyzing data. Weintrop et al. (2016)
established these categories for better understanding ways people use CT and automation
of data to study science. Collecting consists of using computational tools to make observa-
tions and record information. Creating consists of generating data through computational
tools such as simulations. Manipulating consists of cleaning and organizing data for analysis
or communication. Visualizing consists of the use of tools to create graphic summaries of
data for analysis and communication. Analyzing consists of the use of descriptive and
inferential statistics to explain outcomes. During the IEP, teachers and researchers reconfi-
gured the five data practices to fit the way students do science investigations. The adaptation
resulted in five categories: (a) creating, (b) collecting, (c) preparing, (d) visualizing, and (e)
analyzing. Creating data was placed before collecting data as teachers indicated students
needed to understand the phenomena and the variables before they collected data, thus
changing the essence of the term “creating” for the science context. The term “manipulat-
ing” was replaced with “preparing” because teachers felt that the term manipulating could
be misinterpreted by students to mean changing the numbers to fit a preconceived notion.

Despite the ubiquitous presence of data practices in science education, there are few
studies that examine how teachers teach and how students learn data practices. Implications
from those studies offer three primary insights into teaching and learning of data practices.
These include the need for authentic learning scenarios that use real data sets and engage
students with the entire cycle of data practices (Gold et al., 2015; Lesh et al., 2008; Masnick
& Morris, 2002; Newton, 2000), the usefulness of technology tools such as data-logging and
graphing technology for students learning about data practices (Barton, 1997; Newton,
2000; Rogers, 1997), and the importance of addressing students’ often unsystematic
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approaches to working with data. Kanari and Millar (2004) examined students’ practices
when collecting data on an experimental investigation and found that most students did not
repeat measurements to check on their validity while Masnick and Morris (2002) found that
students’ conceptions of error are not well integrated into measurement processes or
explaining experimental error.

Computational thinking framework

During IEP, the team identified that one way to support student data practices is by
developing their CT skills. Teachers found that CT practices including decomposition,
pattern recognition, abstraction, and algorithm building are naturally linked with data
analysis tactics to solve many types of problems (Shute et al., 2017; Wing, 2006).
Decomposition involves breaking down a complex problem into less complex sub-
problems. Pattern recognition is the identifying, clustering, and modularizing of steps
that repeat in order to cluster related parts of the problem by their recurring features.
Abstraction is a process of identifying and organizing relevant information and removing
unnecessary information in order to clarify problems and identify generalizable solutions.
Algorithm building is the creation of a series of precisely defined steps or rules that leads to
predictable outcomes.

CT is quite a new concept in science education, so science teachers are in need of PD to
systematically prepare them for understanding the concept, designing CT learning experi-
ences, and assessing CT (Angeli & Giannakos, 2020). However, there is little information
available about effective PD to support teachers in their efforts to integrate (Jocius et al.,
2020). According to V. Barr and Stephenson (2011), PD in CT needs to provide a clear
definition of what CT is and how it applies to students and the disciplinary content. Jocius
et al. (2020) reported positive outcomes on teacher understanding of the role of CT and self-
efficacy regarding CT integration when they offered teachers a clear CT model. A few other
studies also show promising results regarding teachers’ beliefs and knowledge around CT
(e.g., Adler & Kim, 2018; Bower et al., 2017). Furthermore, Ketelhut et al. (2020) offered
elementary teachers a yearlong PD on CT and found that over time the teachers got better at
integrating CT, advocating for continuous long-term CT PD, which results in sustainable
shifts in teachers’ integration of CT.

Self-regulated learning framework

During the IEP, it was articulated that a systematic way to structure learning tasks was
needed in SPIN. Researchers adopted Zimmerman’s (2000) model for the SRL framework.
SRL is a cyclical, fluid process through which students proactively and intentionally manage
and control their thinking, actions, and environments to attain personal goals
(Zimmerman, 2000). Self-regulated students can motivate themselves, set goals, monitor
their learning, and reflect on the learning process. From a social-cognitive perspective, SRL
includes a forethought phase, during which students set goals and strategize a plan for
approaching a problem; a performance phase, during which students enact the strategic
plans and gather information about their goal progress; and a self-reflection phase, during
which students evaluate their level of success based on pre-established standards, reasons
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for their success or failure, and lessons learned in terms of strategy use for improved
learning and performance in subsequent tasks.

Studies of SRL PD for science teachers have investigated the support of teacher learning
and support of teaching which fosters SRL skills for K-12 students (Kramarski & Heaysman,
2021). The duration of the PDs ranged from a few hours (e.g., S. Barr & Askell-Williams,
2020; Tran et al., 2022) to around 100 hours (e.g., Lewis et al., 2011; Michalsky & Schechter,
2018). In general, the short PDs aimed to align teachers’ perceptions regarding SRL with
SRL theories, while the long-term PDs targeted teachers’ ability to use SRL strategies in their
teaching (Adler et al., 2019; Kramarski & Michalsky, 2009, 2015; Lewis et al., 2011). Some
examined how teachers implemented lessons (S. Barr & Askell-Williams, 2020; Eilam, 2017;
Kramarski & Kohen, 2017; Michalsky, 2012), and a few gave science teachers the opportu-
nities to share their experiences regarding enacting the lessons (e.g., Peters-Burton & Botov,
2017; Peters-Burton et al., 2020). All the PDs achieved their learning objectives to some
extent. For example, Eilam (2017) found that teachers’ metacognitive considerations and
reflections on their planning and teaching were promoted with the use of a metacognitive
tool, but no substantial changes occurred in enacting the lessons. S. Barr and Askell-
Williams (2020) engaged four secondary science teachers in a researcher-facilitated profes-
sional learning community for 12 weeks (8 hours). The findings indicated that SRL content
knowledge, pedagogical content knowledge, and constructivist beliefs were improved con-
sistently for three of the four teachers.

Integration of the conceptual frameworks

DBR was used as an overarching guide for framing the PD and moving forward the ideas
that would result in the SPIN product. Within IEP, the team identified the need for
conceptual frameworks of data practices, CT, and SRL. As the IEP progressed, the team
continued to refine the articulation of data practices as the learning tasks to be accom-
plished, and CT practices as the tactics to support students in data practice engagement. For
example, when asked to create data, students were to identify the phenomena and the
relevant variables for data collection to answer the research question. Decomposition could
help students break down the phenomena into parts to see each individual variable, while
abstraction could help students find the relevant variables and to not engage with extra-
neous ideas. SRL was used to help students identify their plan for accomplishing each data
practice, monitor their progress, and reflect on their successes and failures before progres-
sing to the next. We viewed CT and SRL as problem-solving processes (Peters-Burton et al.,
2018), which helped to integrate the ideas into the context of data practices. Keeping in
mind that the ideas for the conceptual frameworks were discovered and refined while
situated in the DBR framework, we asked the research question, “What patterns emerged
regarding teacher learning of data practices, CT, and SRL across three phases of DBR while
designing SPIN?”

Methods

The research design for this study was concurrent mixed methods research in the context of
DBR. Three of the four phases of DBR (Bannan-Ritland, 2009) served as the foundation for
the study and helped the teachers to work toward a common end goal of developing SPIN,
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Figure 2. Timeline of data source collection across three years.

an online tool for students to support data practices in science by using CT and SRL as
supports. Qualitative and quantitative data were collected across all three phases of the
DBR. The mixed data sources were intentionally designed to complement and triangulate
each other and were integrated throughout the study (Teddlie & Tashakkori, 2009). Figure 2
displays the timeline of the study. Attempts to minimize bias in this study were accom-
plished through the use of multiple data sources, data that represented multiple dimensions,
interrater reliability, and member checks for correct representation of the results with the
teachers in the PD (Maxwell, 2013).

Participants

Nineteen high school science teachers with an average of 15.5 years of experience, ranging
7-33 years, were involved in this project across the three years. Each teachers” pseudonym
and demographic information can be found in Table 1.

Description of PD over three years

Year 1 (IEP) began in the summer with two weeks of intensive PD experiences on data
practices, CT, and SRL. Teachers performed activities related to knowledge and application
of data practices, CT, and SRL separately. They then integrated the ideas by designing
opportunities for student engagement with data practices, CT, and SRL in lessons to be
taught during the school year using lesson planning tools such as planning templates and
task analysis tools (Peters-Burton et al., 2021). The intention was to use these lessons in
SPIN. During the academic year in Year 1, teachers taught the lessons they designed and
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Table 1. Participant pseudonyms and demographic.

Total Years
Pseudonym Teaching Subject Taught  Grade Level Type of Courses Taught
Zeke 11 Chemistry 9th Research, AP
Kyle 10 Earth Science 9th Individual Research, Research, Dual Enroll
Jace 8 Physics 9th-11th  Academic, AP
Jayla 12 Biology 9th and 10th Academic, Research, Dual Enrollment
Miles 15 Chemistry 10th-12th  Academic, Research, AP
Carla 15 Biology 9th-10th Academic, Research, AP
Ana 19 Biology 10th-11th  Research, AP
Kya 33 Chemistry 9th-12th  Research, AP
Chloe 29 Biology 9th and 10th Academic, Research, AP
Jemma 1 Biology 9th-12th Academic, Research, AP
Kylie 9 Biology 10th-12th  Academic, Research, AP
Sita 18 Biology 10th-12th  Research, AP
Hayley 7 Biology 9th, 10th, Individual Research, Academic, Research, Dual
12th Enroliment
Sara 10 Chemistry 10th-12th  Academic, Research, AP
Eileen 23 Physics 11th-12th  Academic, AP
Lyla 20 Earth Science 9th, 11th,  Research, Dual Enrollment
12th
Elizabeth 19 Physics 10th-12th AP
Lakshmi 18 Physics 12th Academic, AP, Dual Enrollment
Eugene 8 Biology 9th-10th  Academic, Research

met in content area groups to discuss student outcomes, lesson revisions, and application of
data practices, CT, and SRL in their classrooms. At the end of the year, the researchers
conducted a needs analysis with teachers to determine their preference for the structure and
content of the PD in Year 2.

In Year 2 (EP), teachers and researchers met again for a two-week intensive summer PD
experience that focused on reflecting on the results of the implementation of the lessons,
further lesson refinement, and pursuing an advanced understanding of CT and SRL. During
the academic year, teachers and researchers met by content area groups to check the
accuracy of integration of CT and SRL into data practices, reflect on the refined lessons
taught, and to contribute design features for SPIN based on their reflection of the lessons.

Year 3 (LIP) was dedicated to converting lessons from business as usual to SPIN-
appropriate lessons. During the year, teachers were given small components of SPIN to
test. At the end of Year 3, lessons in SPIN were field tested by the teachers with small groups
of students for the purposes of giving feedback for scaling up the following year.

Data sources

Data sources included (a) a test of knowledge and application about data practices, CT, and
SRL; (b) a self-efficacy measure of data practices, CT, and SRL; (c) a survey of familiarity,
value, and use of data practices, CT, and SRL, (d) interviews; and (e) lesson plan artifacts.
Each data source was measured multiple times across the three years, as shown in Figure 2.

Test of knowledge and application for data practices, CT, and SRL

Each teacher took an open-ended test of knowledge and application about data practices,
CT, and SRL that was assessed with a rubric at the beginning and end of the IEP. Two
versions of the vignette were created for pre- and post-PD assessment to avoid threats to
validity. Knowledge of CT, SRL, and data practices were assessed with one free-response
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question for each concept. The teachers were first prompted to define and describe their
understanding of each concept. For example, “How would you define and describe CT?
Provide as many details as you can using the space below.” Next, application was evaluated
with a vignette describing a struggling student in a science classroom. After reading the
vignette, teachers were prompted to identify data practices, CT practices, and SRL by
highlighting a section of the text and explaining their interpretation. In addition, teachers
were asked to respond to open-ended questions about specific actions they might take to
better promote CT practices and improve students’ SRL. Teacher responses were assessed
with concept-specific rubrics that endeavored to score the quantity and quality of teacher
understanding of each concept as well as knowledge of specific vocabulary. Rubrics were
completed independently by two or three researchers, who then met to discuss and resolve
any discrepancies in scoring. Discrepancies found were minimal and typically demonstrated
variance with mid-level scores.

Teacher familiarity, use, and value of data practices, CT, and SRL

Teacher familiarity, use, and value of each concept was measured with a 3-point Likert scale
(1 = not often, 2 = somewhat often, 3 = very often) with question stems such as, “How often
do you infuse CT concepts with your teaching?” The items assessed teachers’ perceptions of
use and value as well as how often they infused each concept into their teaching. There were
10-items for overall SRL and SRL components (i.e., goal setting, task analysis, motivation,
time management, organization, help-seeking, anxiety control, self-monitoring, self-
reflection, and adapting behaviors), five for CT and CT components (i.e., decomposition,
pattern recognition, abstraction, algorithm building, and automation), and five for data
practices and data practice components (i.e., creating, collecting, preparing, visualizing, and
analyzing).

Self-efficacy of data practices, CT, and SRL

The self-efficacy scale, which had Likert scale ranging from 0 (certain cannot do at all) to
100 (highly certain can do), assessed teachers’ efficacy beliefs to use each component of data
practices, CT, and SRL. The scale was developed based on Bandura’s (2006) guidelines.
Items were developed by six experts, two experts in each of the domains (data practices, CT,
and SRL). The initial version of the self-efficacy scale was developed and pilot-tested and
refined with eight high school teachers. Following data collection, the experts examined the
phrasing and sought to provide an even more specific context for the instrument. There
were five items measuring data practices, five items measuring CT, and 10 items measuring
SRL. A sample item was “T'o what extent can you develop lesson plans on data practices that
enable students to successfully generate data from observations?” Teachers were asked to
rate their efficacy for each item under two conditions: (a) when working with students
whom teachers perceived as academically struggling (i.e., lower bound of efficacy), (b) when
working with students whom teachers perceived as advanced or successful (i.e., upper
bound of efficacy). Thus, for each item, the teachers reported their range of self-efficacy
for teaching data practices, CT, and SRL.

Interviews
We conducted semi-structured, individual interviews with teachers at the end of each phase
of the three phases of DBR. The interviews were approximately an hour each and focused on
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data practices, CT, and SRL learning in Year 1; on teaching data practices, CT, and
supporting students with SRL in Year 2; and on small-scale implementation of SPIN for
student learning of data practices, CT, and supports through SRL in Year 3. During the EP
and LIP, COVID abruptly changed the format of participants’ classrooms and teaching.
Year 3 interviews, then, focused not only on teachers’ knowledge and application of SRL,
CT, and data practices, but also on the changes teachers experienced due to the pandemic
and how these changes impacted perceptions and integration of these concepts.

Artifacts

We collected artifacts at the end of each year. In Year 1, we collected the offline lesson plans
and documentation of CT integration using a task analysis tool (Peters-Burton et al., 2021).
Teachers were asked to collaboratively develop five lesson plans per content area using
a template that included standards, learning objectives, the components of a 5E lesson, and
an assessment map. At least one teacher per content area committed to teaching the lessons.
Student work samples were also collected and discussed during monthly content meetings.
In Year 2, we collected 18 revised lesson plans and revised documentation of CT integra-
tion. The 18 revised lessons from the teachers were formatted and incorporated into SPIN.
In Year 3, we collected the refined lessons embedded in SPIN, noting alignment with data
practices, CT, and SRL supports.

Data analysis

We analyzed the data systematically as they were available over the three years. We
integrated the qualitative and quantitative data by looking for connections between the
themes in the scale responses and the codes and categories in the interviews and artifacts.

Qualitative analysis

We treated the interviews and artifacts for all teachers as a case study for each phase of the
DBR (Yin, 2003). They were coded using an a priori codebook (Saldafia, 2012) created by
defining the five data practices (create, collect, prepare [formerly manipulate], visualize, and
analyze), the CT practices (decomposition, pattern recognition, abstraction, algorithmic
thinking), and SRL processes (e.g., goal setting, metacognitive monitoring, self-evaluation).
We sought out emergent codes, which resulted in two codes, “mistaking data practices for
CT” and “Aha! Moment.” All three researchers independently coded 30% of all interviews
and artifacts and met to discuss accuracy of codes until consensus was reached. All three
researchers then coded the remainder of the interviews and artifacts, spot checking each
other’s coding for accuracy by looking through a randomly selected 20% of all interviews
and artifacts when a coder had completed the set. No major discrepancies in coding
occurred in the second round of coding.

Quantitative analysis

Because our data did not meet conditions for normality, we used descriptive statistics and
visualizations to make conjectures about teacher learning trends. Patterns in score changes
were analyzed using visualizations.
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Mixed methods analysis

Once qualitative and quantitative data were analyzed separately, the researchers organized
all data sources sequentially in the DBR framework and examined trends and interactions
sequentially. This allowed the researchers to qualify the quantitative data and quantify the
qualitative data to look for coherence and divergence among the different types of data
along the timeline of activities. For example, when we found a dip in self-efficacy scores for
data practices, CT and SRL during Time 2, we returned to the interviews during that time to
find why their self-efficacy was lowered. Conversely, when we read a unique passage in the
interviews, we examined the scores to see if the quantitative data reflected that idea.

Findings
Data practices

As expected, high school science teachers were already familiar with the various data
practices (Weintrop et al., 2016) although they did not initially use the vocabulary explicitly
with their students. After Year 1 teachers began using the terms more explicitly with their
students.

Informed Exploration phase (IEP)

According to the scores on the data practices knowledge and application assessment,
teachers had knowledge of most data practices when they began the PD. Before the PD,
teachers averaged 2.9 out of 4.0, with scores ranging from 1 to 4. After the PD, teachers
averaged 3.8 out of 4.0 with scores ranging from 2 to 4. We believe that the average growth
score of 0.93 out of 4.0 could be attributed to the teachers understanding the common
terminology for data practices. Similarly, teacher interview results at the end of the IEP
showed that teachers were familiar with create, collect, visualize, and analyze, but were less
familiar with prepare, which was a trend found across the three years from the quantitative
data. As stated by Eileen, “Collecting data takes time so sometimes we [teachers] give the
students clean data.” Since teachers were giving students cleaned data, there was not
a purpose for preparing the data. Figure 3 displays the teachers’ responses to the familiarity,
use, and value of all data practices. Measures during times 1 and 2 occurred during the IEP.
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Figure 3. Average teacher familiarity, use, and value of data practices across the DBR phases.
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Figure 4. Average teacher upper and lower boundaries for self-efficacy of data practices across the DBR
phases.

Notably, teachers’ value of data practices dropped at the end of IEP, possibly because that
simultaneously occurred with the beginning of COVID and the shift to teaching online.

During IEP, teachers noted in their interviews that they were not clear about the
differences between create (designing the data collection) and collect (the act of collecting
and monitoring data). This is exemplified in the self-efficacy scores reported by teachers
during IEP (Times 1 and 2 in Figure 4). Teachers started with a lower self-efficacy score for
their knowledge of data practices for both boundaries of their reported self-efficacy, which
then increased at the end of IEP.

Enactment phase (EP)

By the end of the EP, teachers reported that not only were they using data practices in
their classes more purposefully, they also were using the terms create, collect, visua-
lize, and analyze. Kyle reported that the EP helped him to clarify what it is to create
data,

I think the biggest one that was new or kind of like a new thought about it was the creating the
data aspect. I think that in a lot of my lessons, I have the students create the data, but I had
never really thought about it in that way. The students are actually generating and creating their
own data set that they are then going to use to analyze or visualize at the end.

Teachers’ familiarity and use for data practices during EP maintained the same high levels
that they had during IEP (Time 3 in Figure 3). Teachers’ value for data practices increased
during EP, and interviews indicated that when teachers shifted to online instruction, they
had difficulty teaching students to do investigations with data. This instructional change
demonstrated to teachers the importance of teaching with data in science. Sita noted,

We need virtual labs where they can collect data [when we are teaching online]. And we can
have these conversations [about data]. Because they’re just analyzing a data set, or theyre
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watching me collect, it’s so hard. I think the big support we need is, if we’re truly in this study
with computational thinking and self-regulated learning focusing on data, we have to have
support to know how it is we’re going to get data for these students.

Elizabeth also noted “I think what was interesting was how the focus was different. Knowing
that the data was perfect because it was virtual, . .. they were two different lenses.”

During EP, the teachers’ self-efficacy scores dipped slightly (Time 3 in Figure 4) but then
raised to the IEP level (Time 4 in Figure 4), indicating that they initially had less self-efficacy
for data practices during the implementation of the lessons than they did for planning the
lessons.

Local Impact phase (LIP)

When lessons were converted to SPIN during LIP, teachers aligned their lessons
explicitly to instruct students in all five data practices (a requirement in SPIN).
A trend that was noted was that the data practice of prepare needed to be added or
enhanced in the lessons for it to fit into the data practice tabs for SPIN. All of the
other four data practices were well represented and consistent with the conceptual
framework. This evidence indicates that although teachers knew about data prepara-
tion, they were not yet engaging students in the practice. As Miles stated, “ ...
collecting and creating we tend to do a lot in terms of data practices; manipulating,
we do sometimes, but more often we will visualize and analyze the data.” Teachers’
familiarity, use, and value for all of the data practices were maintained at the same
high level (see Time 4 on Figure 3) and their self-efficacy boundaries for data practices
also maintained at a high level (see Times 5 and 6 on Figure 4). The boundaries
between high and low self-efficacy for data practices narrowed slightly as the DBR
phases proceeded.

Computational thinking

CT was a newer content area for teachers and there were mixed perceptions related to its
value and applicability throughout the project. Overall, teachers saw CT as important but
challenging to integrate, especially during hybrid and online learning. Overall, they grew in
their knowledge of and confidence of how CT might be integrated into high school science.

Informed Exploration phase (IEP)

Scores from the CT Knowledge and Application assessment before and after the IEP
indicate that teachers improved their CT knowledge (1.9 out of 4 in the pretest, ranging
from 1 to 3, and 3.1 out of 4 in the post test, ranging from 2 to 4). Similarly, teachers
reported their familiarity with specific CT practices was minimal prior to the PD.
Decomposition was the only practice that nearly half of the teachers felt familiar with at
the beginning of the project.

ThatCT was new to the teachers was evident in their interviews, self-efficacy scores,
and familiarity, use, and value scores. Teachers had the lowest scores for average
familiarity, use, and value (1.95) compared with data practices (2.45) and SRL (2.25)
and the lowest self-efficacy scores for CT (59.12 out of 100) compared with other
content areas (66.30 for data practices and 62.09 for SRL). However, having experienced
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Figure 5. Average teacher familiarity, use, and value of CT across the DBR phases.
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Figure 6. Average teacher upper and lower boundaries for self-efficacy of CT across the DBR phases.

the Year 1 PD opportunities, they quickly saw the importance of CT, as when Jace
described, “the big takeaway for me from the computational thinking part was, this is,
this is how, like, this is how smart people solve problems [...] how do we take this and
turn it into the teaching of the, the practices.” Their familiarity increased from a 2.3 to
a 2.8, on a scale from 1 to 3 after IEP (see Times 1 and 2 in Figure 5). As familiarity
with CT increased, so did self-efficacy for both upper and lower boundaries, as can be
seen in Times 1 and 2 in Figure 6. Following the IEP, teachers felt comfortable with



14 (&) E.E.PETERS-BURTON ET AL.

both decomposition and pattern-finding and were confident that they already promoted
these practices in their lessons.

Enactment phase (EP)

The EP focused on continuing to build teacher knowledge while also working with
teachers to design and implement lessons that incorporated CT into data practices.
Self-efficacy for CT dipped slightly between Time 2 and Time 3 for both lower and
upper reporting ranges, indicating slightly less self-efficacy for CT as they began to
initially try out lessons and integrate CT within their classrooms (see Figure 6). As
teachers shifted from planning lessons to actual implementation within their class-
rooms, they identified areas they wanted further support. For example, Carla,
a biology teacher, reported,

I think I've struggled to implement the algorithm and automation practices because I honestly
don’t really understand them very well myself. I hate to admit that this far along in the process.
I don’t really know what tools to use with students to implement the algorithm and automation
practice.

This type of feedback was useful in providing further support to teachers throughout the EP.

During the EP, the COVID pandemic created an unprecedented shift in the teaching
methods for all participants. While the teachers in this study continued to participate
actively, their classrooms shifted to online or hybrid which impacted several perceptions
related to CT. In the interviews, teachers discussed the challenges of trying to integrate CT
with data practices and SRL in an online environment as well as the broader concerns about
engaging their students. Jayla shared, “I've recognized [...] how challenging it [teaching
CT] was to do this in a virtual environment and how important it is to get students to really
engage with the data” and Zeke stated, “if you have them engage in the computational
thinking if they’re online, you’re leading them up to a meltdown.” In addition, teachers were
less sure about their knowledge of abstraction and algorithmic thinking after EP.

Teachers keenly felt the importance of students thinking computationally but found it
to be more challenging to incorporate outside of a traditional classroom learning
environment. This was also evident in the data trends for familiarity, use, and value.
As seen in Figure 5, teachers’ value for CT increased while their frequency and utility for
CT decreased. The main challenge discussed was lack of conversations and collaboration
while online. Despite these struggles, teacher self-efficacy for CT remained consistent
(Time 4 in Figure 6). By the end of the EP, students began to return to the classroom,
and teachers’ use of CT in their own lesson plans increased from 2.15 to 2.26 on a scale
from 1 to 5.

Local Impact phase (LIP)

During LIP, teachers’ lesson plans were transferred to SPIN and they had the opportunities
to engage in these lessons as both teachers and students, exploring the potential issues and
affordances of the software for supporting the instruction and integration of CT in small
iterations. Overall, teachers’ self-efficacy for CT continued to incrementally rise (see
Figure 6, Times 4, 5, and 6) and familiarity, use, and value for CT practices were maintained
at the same high level (see Time 4 on Figure 5) as they tested the tool. They began
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incorporating more abstraction and algorithmic thinking into the lessons, based on the
lesson plan artifacts.

Self-regulated learning

Across the three phases of DBR, the teachers improved their understanding of the role of
SRL in supporting data practices and CT during student investigations and indicated that
they wanted more opportunities for students to self-regulate learning.

Informed Exploration phase (IEP)

The scores on the SRL knowledge and application assessment showed that the science
teachers had some knowledge of SRL prior to the PD (1.8 out of 4.0, with scores ranging
from 1 to 3). However, during the IEP, the teachers consistently reported that learning data
practices and CT was a priority, as they could see the applicability in the classroom. SRL was
not prioritized as a learning goal for the first year mainly because teachers were at capacity
learning about data practices and CT and did not have any additional cognitive energy to
take on another topic. For example, Elizabeth discussed her initial implementation of SRL
in IEP,

At this point, I don’t think I've used it enough to have any kind of effect. Like it wasn’t negative,
it wasn’t positive. And because I'm not sure if I had implemented it in the best way that it could
have had an effect.

Even though the teachers did not prioritize SRL during IEP, their familiarity and use of SRL
increased (as seen in Times 1 and 2 in Figure 7). Similar to teachers’ value of data practices
and CT, their value for SRL decreased in Time 2 when the classrooms started moving
online. Regarding self-efficacy, teachers’ scores markedly increased by the end of IEP in
both lower and upper boundaries (Figure 8).

Enactment phase (EP)

The COVID pandemic changed teaching platforms in their school district from in-person
to online or hybrid in the EP and the interviews at the end of the second year over-
whelmingly indicated that teachers found SRL to be a higher priority than CT; however,
they still held top priority for teaching data practices in their classrooms. Teachers reported
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Figure 7. Average teacher familiarity, use, and value of SRL across the DBR phases.
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Figure 8. Average teacher upper and lower boundaries for self-efficacy of SRL across the DBR phases.

that they saw how important motivation and engagement were to learning when they were
not with students in person. As Eileen stated, “I put more emphasis on [SRL] because that
was something that I needed; I needed the kids to be better learners, better at managing their
learning.” Quantitative data also showed the increase in teachers’ value of SRL, as seen in
Time 3 in Figure 7.

When discussing how online and hybrid classes affected the implementation of
SRL, teachers’ responses showed a theme. For teachers who could foster their
students’ SRL skills to some extent before the pandemic, moving to online classes
positively affected SRL implementation because online learning environments gave
students more opportunities to practice what they have learned or opportunities to
work more on their own. For teachers who did not foster SRL in their students
before the pandemic or did not know the students in-person, the change negatively
affected SRL implementation. Those teachers felt the need to foster SRL in students
but said it was hard for them to do so in online classes. Interestingly, Lyla said that
initially online learning positively affected the enactment of SRL due to the need for
SRL, then negatively affected because students lost motivation for learning. She said
that her students felt “it’s Ok” not to try their best. Despite the divergence in
teachers’ perceptions of how online classes affected the implementation of SRL,
overall, teachers’ self-efficacy for SRL decreased and then roughly stayed the same
in EP (Times 3 and 4, Figure 8) compared to the end of IEP (Time 2, Figure 8).
Those changes might indicate that teachers faced some unexpected situations while
implementing SRL in EP, which they were not aware of when planning the lessons
in IEP.
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Local Impact phase (LIP)

Teachers’ familiarity, use, and value for SRL increased or maintained at the same high level
(see Time 4 in Figure 7). Teachers’ self-efficacy boundaries for SRL increased (Time 5 in
Figure 8), then slightly decreased (Time 6 in Figure 8). The difference between upper and
lower boundaries for self-efficacy of SRL narrowed across the DBR phases indicating
teachers gained more confidence in supporting SRL for students whom teachers perceived
as academically struggling students compared to the gain in supporting advanced or
successful students. During the LIP, teachers noted they wanted more opportunities for
students to reflect on their learning during the data practices in SPIN, indicating their value
in seeking additional PD.

Integration of data practices, CT, and SRL

Examining how teachers integrated their learning about data practices, CT, and SRL gives
insight into how teacher educators might go about designing PDs that have many different,
yet integrated, components. We found three overarching findings across the DBR phases:
(a) teachers felt that integrating three components was too much to take on initially, but
using multiple examples of integration alleviated their concerns (b) contextual components
such as type of learning platform can shift priorities of the teachers, and (c) collaboratively
working toward a common educational product (SPIN) motivated teachers to continue the
long-term PD.

Informed Exploration phase (IEP)

During the IEP, teachers noted that they could not integrate all three components and chose
to learn how to integrate data practices and CT since these topics were most relevant to
science. As Lyla stated,

I think CT practices are not separate from data practices. CT uses student inquiry and
investigations and apply their knowledge to solve problems and it also involves critical
thinking, project-based learning, and it’s basically identifies content related research question
and then, which eventually needs to, it needs to do with data collection.

Enactment phase (EP)

During the EP interviews, 14 teachers reported that they understood how data practices,
CT, and SRL were intertwined, but they needed extra support to integrate the three content
areas. During this time, it was easier for the teachers to integrate CT with data practices than
to integrate SRL with CT as evidenced in the lesson artifacts created during the EP. CT and
data practices integrated: 2.43 out of 3 (range = 0.56); SRL and CT integrated: 1.92 out of 3
(range = 0.49).

Local Impact phase (LIP)

During LIP, teachers tested modular components of SPIN as they were being developed.
The fragmentation of the development, while necessary, could have caused teachers to have
difficulty understanding how the integration occurred in the online tool. However, when
testing the completed beta version of SPIN, teachers were able to identify data practices, CT,
and SRL as they were integrated in SPIN (see Figure 9). Teachers noted that when they
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Figure 9. Screenshot of SPIN with data practices, CT, and SRL integration noted.

tested SPIN with students, the separation of each data practice with tabs in the notebook
was helpful to teach students about data practices explicitly.

Discussion

The learning patterns of teachers demonstrated learning gains and maintenance in data
practices, CT, and SRL over the three years of the DBR project, even when faced with
challenges associated with the COVID pandemic. Similar to Bannan (2013), across ILDF
phases, teacher learning became progressively more sophisticated, complex, and con-
textualized. DBR was used to design, implement, and broadly test an educational
product, and the participating teachers persisted in the long-term PD because they
were motivated to produce SPIN for use by other teachers. Evidence for their motivation
lies in the features of SPIN that echo what has been documented in the literature related
to data practices, which indicates that IEP is particularly effective in setting the stage for
what teachers need in the PD. SPIN featured authentic learning scenarios, using real
data sets, and engaged students with the entire cycle of data practices (Lesh et al., 2008;
Newton, 2000). Additionally, it was found by Barton (1997) and Rogers (1997) that
graphing technology helps students explore data easily and make meaning of data faster.
Teachers incorporated features of CT and SRL that increased student support of
visualizing data by helping students understand why they were creating graphs based
on characteristics of the data set. Teachers also designed SPIN to help students use
systematic approaches when they work with data, which was a need found by Kanari
and Millar (2004) when they found that most students did not repeat measurements to
check on their validity.

Engagement in DBR as PD also helped teachers incorporate more CT and SRL
into their classroom cultures, as well as refining their already established data
practices instruction, similar to the findings of Bannan et al. (2010). Because DBR
used interactive cycles and multiple sources of feedback to track progress, the team
was able to collaboratively converge on distinct definitions of CT used in the science
classroom, as recommended by V. Barr and Stephenson (2011). The findings of this
study confirmed the need for continuous CT PD in order to produce sustainable



JOURNAL OF SCIENCE TEACHER EDUCATION 19

shifts in teachers’ integration of CT (Ketelhut et al., 2020). Teachers had the lowest
knowledge of CT at the beginning of the PD, but grew in knowledge and confidence
for how to teach and integrate, as well as in their value of CT.

Teachers better understood how to foster SRL in students and value the roles of SRL in
engaging with data practices across the three phases of DBR. By the end of LIP, teachers’
familiarity, use, and value as well as self-efficacy of SRL increased. Even after three years of
the PD, teachers wanted more opportunities for students to engage in SRL, showing their
commitment to implementing SRL. As seen in multiple research studies, although short-
term PDs can change teachers’ perceptions, long-term PDs are needed for teachers to
successfully implement SRL (Adler et al., 2019; S. Barr & Askell-Williams, 2020;
Kramarski & Kohen, 2017; Kramarski & Michalsky, 2009, 2015; Lewis et al., 2011;
Michalsky, 2012). This study corroborates those findings because teachers’ perceptions
about SRL increased from the IEP to the EP (short-term), their understanding of student
support for SRL improved in the LIP (long-term), when teachers found SRL to be a higher
priority than CT.

Implications, limitations, and future research

DBR as PD consists of several characteristics of effective PD for science teachers, given
the findings of the learning patterns for the teachers. First, the PD was long term
(Darling-Hammond et al., 2017; Loucks-Horsley et al, 2010; Luft & Hewson, 2014;
Vescio et al., 2008). During the three years, teachers learned new concepts, enacted new
instructional strategies, reflected on their practice, adjusted dynamic learning environ-
ments, and produced a web-based learning tool. Second, teachers had many opportu-
nities to collaborate with other teachers, researchers, software developers, and students.
A systematic literature review by Bancroft and Nyirenda (2020) showed most PD
programs provide teachers with planned lessons instead of using teacher-authored
lessons. The lack of teacher ownership might contribute to teachers not fully imple-
menting intended learning experiences (Brown & Crippen, 2017). SPIN used teacher-
authored lessons that gave teachers a sense of ownership but also facilitated the enact-
ment of intended learning experiences. Because of the collaborative nature of DBR, the
PD allowed for convergence on clear definitions of data practices, CT, and SRL for all
stakeholders. By using CT and SRL as a means to support data practices, our PD
proposed a systematic approach to implementing data practices that was co-created by
educational researchers and teachers.

This study only examined the first three phases of DBR, and future work should take into
account the entire process including whole class learning from the resulting instructional
product. Additionally, future work could focus on DBR as PD in other contexts and with
other stakeholders. Although this study provides initial information about how teacher high and
low boundaries of self-efficacy for teaching diverse groups of students narrowed with contin-
uous PD, more information about teacher ranges of self-efficacy for teaching different students
is needed. This study also gives initial evidence that CT can be used as a means for learning other
concepts. Future studies could examine how science teachers transfer what they have learned
from using CT to support data practices to using CT to support student learning of other science
practices.



20 (&) E.E.PETERS-BURTON ET AL.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This material is based upon work supported by the National Science Foundation under Grant
No. 1842090. Any opinions, findings, and conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

ORCID

Erin E. Peters-Burton () http://orcid.org/0000-0003-1233-9119

References

Adler, R. F., & Kim, H. (2018). Enhancing future K-8 teachers’ computational thinking skills through
modeling and simulations. Education and Information Technologies, 23(4), 1501-1514. https://doi.
0rg/10.1007/s10639-017-9675-1

Adler, 1., Zion, M., & Rimerman-Shmueli, E. (2019). Fostering teachers’ reflections on the dynamic
characteristics of open inquiry through metacognitive prompts. Journal of Science Teacher
Education, 30(7), 763-787. https://doi.org/10.1080/1046560X.2019.1627060

Angeli, C., & Giannakos, M. (2020). Computational thinking education: Issues and challenges.
Computers in Human Behavior, 105, 106185. https://doi.org/10.1016/j.chb.2019.106185

Bancroft, S. F., & Nyirenda, E. M. (2020). Equity-focused K12 science teacher professional develop-
ment: A review of the literature 2001-2017. Journal of Science Teacher Education, 31(2), 151-207.
https://doi.org/10.1080/1046560X.2019.1685629

Bandura, A. (2006). Guide for constructing self-efficacy scales. Self-efficacy Beliefs of Adolescents, 5(1),
307-337.

Bannan, B. (2013). GO inquire - Geological observational inquiry: Cycles of design research. In
T. Plomp & N. Nieveen (Eds.), Educational design research — Part B: Illustrative cases (pp.
113-139). SLO.

Bannan, B., Peters, E. E., & Martinez, P. (2010). Mobile, inquiry-based learning and geological
observation: An exploratory study. International Journal of Mobile and Blended Learning, 2(3),
13-29. https://doi.org/10.4018/jmbl.2010070102

Bannan-Ritland, B. (2003). The role of design in research: The integrative learning design framework.
Educational Researcher, 32(1), 21-24. https://doi.org/10.3102/0013189X032001021

Bannan-Ritland, B. (2009). The integrative learning design framework: An illustrated example from
the domain of instructional technology. In T. Plomp & N. Nieveen (Eds.), An introduction to
educational design research (pp. 53-71). SLO.

Barr, S., & Askell-Williams, H. (2020). Changes in teachers’ epistemic cognition about self-regulated
learning as they engaged in a researcher-facilitated professional learning community. Asia-Pacific
Journal of Teacher Education, 48(2), 187-212. https://doi.org/10.1080/1359866X.2019.1599098

Barr, V., & Stephenson, C. (2011). Bringing computational thinking to K-12: What is involved and
what is the role of the computer science education community? Acm Inroads, 2(1), 48-54. https://
doi.org/10.1145/1929887.1929905

Barton, R. (1997). Does data-logging change the nature of children’ s thinking in experimental work
in science? In B. Somekh & N. Davis (Eds.), Using information technology effectively in teaching and
learning (pp. 63-72). Routledge.

Bower, M., Wood, L. N,, Lai, J. W., Highfield, K., Veal, J., Howe, C., , and Mason, R. (2017).
Improving the computational thinking pedagogical capabilities of school teachers. Australian
Journal of Teacher Education, 42(3), 53-72. http://dx.doi.org/10.14221/ajte.2017v42n3.4


https://doi.org/10.1007/s10639-017-9675-1
https://doi.org/10.1007/s10639-017-9675-1
https://doi.org/10.1080/1046560X.2019.1627060
https://doi.org/10.1016/j.chb.2019.106185
https://doi.org/10.1080/1046560X.2019.1685629
https://doi.org/10.4018/jmbl.2010070102
https://doi.org/10.3102/0013189X032001021
https://doi.org/10.1080/1359866X.2019.1599098
https://doi.org/10.1145/1929887.1929905
https://doi.org/10.1145/1929887.1929905
http://dx.doi.org/10.14221/ajte.2017v42n3.4

JOURNAL OF SCIENCE TEACHER EDUCATION e 21

Brown, J. C., & Crippen, K. J. (2017). The knowledge and practices of high school science teachers in
pursuit of cultural responsiveness. Science Education, 101(1), 99-133. https://doi.org/10.1002/sce.
2017.101.issue-1

Coenders, F., & Terlouw, C. (2015). A model for in-service teacher learning in the context of an
innovation. Journal of Science Teacher Education, 26(5), 451-470. https://doi.org/10.1007/s10972-
015-9432-5

Darling-Hammond, L., Hyler, M. E., Gardner, M., & Espinoza, D. (2017). Effective teacher profes-
sional development. Learning Policy Institute. https://learningpolicyinstitute.org/product/teacher-
prof-dev

Eilam, B. (2017). Probing teachers’ lesson planning: Promoting metacognition. Teachers College
Record, 119(13), 1-28. https://doi.org/10.1177/016146811711901309

Enderle, P., Dentzau, M., Roseler, K., Southerland, S., Granger, E., Hughes, R., & Saka, Y. (2014).
Examining the influence of RET's on science teacher beliefs and practice. Science Education, 98(6),
1077-1108. https://doi.org/10.1002/sce.21127

Gold, A. U,, Kirk, K., Morrison, D., Lynds, S., Sullivan, S. B., Grachev, A., & Persson, O. (2015). Arctic
climate connections curriculum: A model for bringing authentic data into the classroom. Journal of
Geoscience Education, 63(3), 185-197. https://doi.org/10.5408/14-030.1

Herrington, D. G., Bancroft, S. F., Edwards, M. M., & Schairer, C. J. (2016). “I want to be the inquiry
guy!” How research experiences for teachers change beliefs, attitudes, and values about teaching
science as inquiry. Journal of Science Teacher Education, 27(2), 183-204. https://doi.org/10.1007/
$10972-016-9450-y

Jocius, R., Joshi, D., Dong, Y., Robinson, R., Cateté, V., Barnes, T., , and Lytle, N. (2020, February).
Code, connect, create: The 3¢ professional development model to support computational thinking
infusion. Proceedings of the 51st ACM technical symposium on computer science education (pp.
971-977). https://doi.org/10.1145/3328778.3366797

Kanari, Z., & Millar, R. (2004). Reasoning from data: How students collect and interpret data in
science investigations. Journal of Research in Science Teaching, 41(7), 748-769. https://doi.org/10.
1002/tea.20020

Ketelhut, D. J., Mills, K., Hestness, E., Cabrera, L., Plane, J., & McGinnis, J. R. (2020). Teacher change
following a professional development experience in integrating computational thinking into
elementary science. Journal of Science Education and Technology, 29(1), 174-188. https://doi.org/
10.1007/s10956-019-09798-4

Kramarski, B., & Heaysman, O. (2021). A conceptual framework and a professional development
model for supporting teachers™“triple SRL-SRT processes” and promoting students’ academic
outcomes. Educational Psychologist, 56(4), 298-311. https://doi.org/10.1080/00461520.2021.
1985502

Kramarski, B., & Kohen, Z. (2017). Promoting preservice teachers’ dual self-regulation roles as
learners and as teachers: Effects of generic vs. specific prompts. Metacognition and Learning, 12
(2), 157-191. https://doi.org/10.1007/s11409-016-9164-8

Kramarski, B., & Michalsky, T. (2009). Investigating preservice teachers’ professional growth in self-
regulated learning environments. Journal of Educational Psychology, 101(1), 161. https://doi.org/
10.1037/a0013101

Kramarski, B., & Michalsky, T. (2015). Effect of a TPCK-SRL model on teachers’ pedagogical beliefs,
self-efficacy, and technology-based lesson design. In C. Angeli & N. Valanides (Eds.), Technological
pedagogical content knowledge (pp. 89-112). Springer.

Lesh, R. A., Middleton, J. A., Caylor, E., & Gupta, S. (2008). A science of need: Designing tasks to
engage students in modeling complex data. Educational Studies in Mathematics, 68(2), 113-130.
https://doi.org/10.1007/s10649-008-9118-4

Lewis, E. B., Van der Hoeven Kraft, K. J., Bueno Watts, N., Baker, D. R., Wilson, M. J., & Lang, M.
(2011). Elementary teachers’ comprehension of flooding through inquiry-based professional
development and use of self-regulation strategies. International Journal of Science Education, 33
(11), 1473-1512. https://doi.org/10.1080/09500693.2010.506523


https://doi.org/10.1002/sce.2017.101.issue-1
https://doi.org/10.1002/sce.2017.101.issue-1
https://doi.org/10.1007/s10972-015-9432-5
https://doi.org/10.1007/s10972-015-9432-5
https://learningpolicyinstitute.org/product/teacher-prof-dev
https://learningpolicyinstitute.org/product/teacher-prof-dev
https://doi.org/10.1177/016146811711901309
https://doi.org/10.1002/sce.21127
https://doi.org/10.5408/14-030.1
https://doi.org/10.1007/s10972-016-9450-y
https://doi.org/10.1007/s10972-016-9450-y
https://doi.org/10.1145/3328778.3366797
https://doi.org/10.1002/tea.20020
https://doi.org/10.1002/tea.20020
https://doi.org/10.1007/s10956-019-09798-4
https://doi.org/10.1007/s10956-019-09798-4
https://doi.org/10.1080/00461520.2021.1985502
https://doi.org/10.1080/00461520.2021.1985502
https://doi.org/10.1007/s11409-016-9164-8
https://doi.org/10.1037/a0013101
https://doi.org/10.1037/a0013101
https://doi.org/10.1007/s10649-008-9118-4
https://doi.org/10.1080/09500693.2010.506523

22 (&) E.E.PETERS-BURTON ET AL.

Loucks-Horsley, S., Stiles, K. E., Mundry, M. S. E., Love, N. B., & Hewson, P. W. (2010). Designing
professional development for teachers of science and mathematics (3rd ed.). Corwin Press. https://
doi.org/10.4135/9781452219103

Luft, J. A., & Hewson, P. W. (2014). Research on teacher professional development programs in
science. In N. G. Lederman & S. K. Abell (Eds.), Handbook of research on science education (Vol. II,
pp- 889-909). Routledge. https://doi.org/10.4324/9780203097267

Masnick, A. M., & Morris, B. ]. (2002). Reasoning from data: The effect of sample size and variability
on children’s and adults’ conclusions. Proceedings of the Annual Meeting of the Cognitive Science
Society, 24(24). https://doi.org/10.4324/9781315782379-146

Maxwell, J. A. (2013). Qualitative research design: An interactive approach. Sage.

Michalsky, T. (2012). Shaping self-regulation in science teachers’ professional growth: Inquiry skills.
Science Education, 96(6), 1106-1133. https://doi.org/10.1002/sce.21029

Michalsky, T., & Schechter, C. (2018). Teachers’ self-regulated learning lesson design: Integrating
learning from problems and successes. The Teacher Educator, 53(2), 101-123. https://doi.org/10.
1080/08878730.2017.1399187

Newton, L. R. (2000). Data-logging in practical science: Research and reality. International Journal of
Science Education, 22(12), 1247-1259. https://doi.org/10.1080/095006900750036244

Peters-Burton, E. E., & Botov, L. S. (2017). Self-regulated learning microanalysis as a tool to inform
professional development delivery in real-time. Metacognition and Learning, 12(1), 45-78. https://
doi.org/10.1007/511409-016-9160-z

Peters-Burton, E. E., Cleary, T. J., & Kitsantas, A. (2018). Computational thinking in the context of
science and engineering practices: A self-regulated learning approach. In D. Sampson,
D. Ifenthaler, J. M. Spector, & P. Isaias (Eds.), Digital technologies: Sustainable innovations for
improving teaching and learning (pp. 223-240). Springer.

Peters-Burton, E. E., Goffena, J., & Stehle, S. M. (2020). Utility of a self-regulated learning micro-
analysis for assessing learning during professional development. The Journal of Experimental
Education, 1-27. https://doi.org/10.1080/00220973.2020.1799314

Peters-Burton, E. E., Laclede, L., Stehle, S. M., Rich, P. J., & Kitsantas, A. (2021). High school science
teacher use of planning tools to integrate computational thinking. Journal of Science Teacher
Education. https://doi.org/10.1080/1046560X.2021.1970088

Rogers, L. (1997). New data-logging tools - New investigations. School Science Review, 79(287), 61-68.

Roth, K. J., Garnier, H. E., Chen, C., Lemmens, M., Schwille, K., & Wickler, N. I. (2011). Videobased
lesson analysis: Effective science PD for teacher and student learning. Journal of Research in Science
Teaching, 48(2), 117-148. https://doi.org/10.1002/tea.20408

Saldafa, J. (2012). The coding manual for qualitative researchers. Sage.

Shute, V. J., Sun, C., & Asbell-Clarke, J. (2017). Demystifying computational thinking. Educational
Research Review, 22, 142-158. https://doi.org/10.1016/j.edurev.2017.09.003

Teddlie, C., & Tashakkori, A. (2009). Foundational of mixed methods research: Integrating quantita-
tive and qualitative approaches in the social and behavioral sciences. Sage Publications.

Tran, H. H., Capps, D. K., & Hodges, G. W. (2022). Preservice science teachers’ perspectives on and
practices related to self-regulated learning after a brief learning opportunity. Sustainability, 14(10),
5923. https://doi.org/10.3390/5u14105923

Vescio, V., Ross, D., & Adams, A. (2008). A review of research on the impact of professional learning
communities on teaching practice and student learning. Teaching and Teacher Education, 24(1),
80-91. https://doi.org/10.1016/j.tate.2007.01.004

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., & Wilensky, U. (2016).
Defining computational thinking for mathematics and science classrooms. Journal of Science
Education and Technology, 25(1), 127-147. https://doi.org/10.1007/s10956-015-9581-5

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33-35. https://doi.
org/10.1145/1118178.1118215

Yin, R. K. (2003). Case study research: Design and methods. Sage.

Zimmerman, B. J. (2000). Attaining self-regulation: A social cognitive perspective. In M. Boekaerts, P.
R. Pintrich, & M. Zeidner (Eds.), Handbook of self-regulation (pp. 13-39). Academic Press. https://
doi.org/10.1016/B978-012109890-2/50031-7


https://doi.org/10.4135/9781452219103
https://doi.org/10.4135/9781452219103
https://doi.org/10.4324/9780203097267
https://doi.org/10.4324/9781315782379-146
https://doi.org/10.1002/sce.21029
https://doi.org/10.1080/08878730.2017.1399187
https://doi.org/10.1080/08878730.2017.1399187
https://doi.org/10.1080/095006900750036244
https://doi.org/10.1007/s11409-016-9160-z
https://doi.org/10.1007/s11409-016-9160-z
https://doi.org/10.1080/00220973.2020.1799314
https://doi.org/10.1080/1046560X.2021.1970088
https://doi.org/10.1002/tea.20408
https://doi.org/10.1016/j.edurev.2017.09.003
https://doi.org/10.3390/su14105923
https://doi.org/10.1016/j.tate.2007.01.004
https://doi.org/10.1007/s10956-015-9581-5
https://doi.org/10.1145/1118178.1118215
https://doi.org/10.1145/1118178.1118215
https://doi.org/10.1016/B978-012109890-2/50031-7
https://doi.org/10.1016/B978-012109890-2/50031-7

	Abstract
	Conceptual framework
	Design-based research
	Data practices framework
	Computational thinking framework
	Self-regulated learning framework
	Integration of the conceptual frameworks

	Methods
	Participants
	Description of PD over three years
	Data sources
	Test of knowledge and application for data practices, CT, and SRL
	Teacher familiarity, use, and value of data practices, CT, and SRL
	Self-efficacy of data practices, CT, and SRL
	Interviews
	Artifacts

	Data analysis
	Qualitative analysis
	Quantitative analysis
	Mixed methods analysis


	Findings
	Data practices
	Informed Exploration phase (IEP)
	Enactment phase (EP)
	Local Impact phase (LIP)

	Computational thinking
	Informed Exploration phase (IEP)
	Enactment phase (EP)
	Local Impact phase (LIP)

	Self-regulated learning
	Informed Exploration phase (IEP)
	Enactment phase (EP)
	Local Impact phase (LIP)

	Integration of data practices, CT, and SRL
	Informed Exploration phase (IEP)
	Enactment phase (EP)
	Local Impact phase (LIP)


	Discussion
	Implications, limitations, and future research
	Disclosure statement
	Funding
	ORCID
	References

