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Design-Based Research as Professional Development: 
Outcomes of Teacher Participation in the Development of the 
Science Practices Innovation Notebook (SPIN)
Erin E. Peters-Burton a, Hong H. Tranb, and Brittany Millera

aCollege of Education and Human Development, George Mason University, Fairfax, Virginia, USA; bDepartment 
of Mathematics, Science, and Social Studies Education, Mary Frances Early College of Education, University of 
Georgia, Athens, Georgia, USA

ABSTRACT
The use of data to explain natural phenomena has been a core feature 
of science education, and science educators continue to call for an 
increased emphasis on teaching data practices. This mixed methods 
design-based research study adds to the growing body of research on 
data practices in science by explaining the learning trends of science 
teachers involved in a three-year collaborative professional develop
ment (PD) using computational thinking (CT) and self-regulated learn
ing (SRL) as a means to support teachers in implementing data 
practices. The PD resulted in long-term high-quality teacher learning 
outcomes for all three elements of the PD (data practices, CT, and SRL) 
despite the upheaval of teaching platforms due to the COVID-19 
pandemic. Since the teachers were involved in design-based research, 
their professional learning focused on collaboratively creating an elec
tronic, interactive notebook with lessons for use in science classrooms 
across the United States. Creating a common product as an outcome 
of the PD may have served as motivation for teachers to learn about 
and implement more data practices, CT, and SRL, which suggests that 
design-based research is another valuable design for teacher PD.
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Research has indicated that effective professional development (PD) is participatory, long- 
term, and specific to and relevant for the teachers who are participating (Darling- 
Hammond et al., 2017; Loucks-Horsley et al., 2010; Luft & Hewson, 2014). Successful 
models of PD for science teachers include approaches such as learning cycles and research 
experiences (Enderle et al., 2014; Herrington et al., 2016). Collaboration stands out as a key 
feature in these PD models extending beyond teacher-to-teacher collaboration (Coenders & 
Terlouw, 2015; Herrington et al., 2016) providing opportunities to share expertise, learn 
from each other, and develop new teaching strategies (Vescio et al., 2008) and ultimately 
improving learning gains for students (Roth et al., 2011). Moreover, evidence is emerging 
that PD that involves broader collaborations can help teachers address equity issues in the 
classroom (Bancroft & Nyirenda, 2020).

The purpose of this paper is to present the learning trends of teachers involved in a type 
of long-term collaborative PD model through Design-Based Research (DBR). This DBR PD 
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research involved collaboration among teachers, educational psychologists, school psychol
ogists, science educators, technology educators, and software developers to design a web- 
based tool to support high school student engagement with data practices during science 
investigations. Teachers experienced developmental PD over three years to meet the goal of 
designing and testing the Science Practices Innovation Notebook (SPIN) for use not only in 
their own classrooms, but in high school science classrooms across the United States. SPIN 
is a web-based interactive notebook that supports self-regulated learning (SRL) of high 
school students engaged in data practices and computational thinking (CT) by guiding 
students through teacher-authored investigations in physics, chemistry, biology, and Earth 
science while collecting learning analytics for both teacher feedback and educational 
research.

Conceptual framework

Four integrated conceptual frameworks were used for this study: DBR (Bannan-Ritland,  
2009), data practices (Weintrop et al., 2016), CT practices (Wing, 2006), and SRL 
(Zimmerman, 2000). The following section describes each framework and then explains 
how they were integrated to design the research, product development, and PD experiences 
with the teachers.

Design-based research

DBR, specifically the Integrated Learning Design Framework (ILDF, Bannan-Ritland,  
2009), was adopted for this study as it provided guidance in the form of iterative phases 
for collaboratively designing an educational product. Previously, this framework has been 
leveraged for collaborative learning with teachers by Bannan (2013) and Bannan et al. 
(2010). The study by Bannan (2013) indicated that across ILDF phases, the research 
questions, design criteria, and corresponding evaluation cycles became progressively 
more sophisticated and complex. Bannan et al.'s study (2010) showed the incorporation 
of mobile devices into an overarching instructional intervention not only promoted 
enhanced geological observation and reasoning but also facilitated shifts of agency, social 
structures, and cultural practices. The ILDF supports multiple objectives (content knowl
edge, pedagogical content knowledge), multiple contexts (data practices, CT, and SRL), and 
multi-layered collaborations (researcher-teacher, researcher-software developer, teacher- 

Figure 1. Integrated learning design framework (ILDF) used for the study.
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student, student-student). The ILDF has four iterative phases, Informed Exploration, 
Enactment, Local Impact, and Broader Impact (see Figure 1). This study, a part of a larger 
research study, took place during the first three phases of the ILDF.

The intention of the Informed Exploration phase (IEP) is to identify the general problem, 
conduct research to better understand the problem, and define the problem so that the 
eventual product serves the needs of the users (Bannan-Ritland, 2003). Because DBR is 
intended to be collaborative, all of the stakeholders come to the context expecting to learn. 
The purpose of the Enactment phase (EP) is to take what was learned from the IEP, create 
a rough idea of an educational product, and continue to perform small, iterative tests to 
refine the product (Bannan-Ritland, 2003). There are two purposes of the Local Impact 
phase (LIP): to determine how well the product works for the students of the teachers who 
designed the product and to make initial determinations about how well the product will 
scale up for use in other teachers’ classrooms (Bannan-Ritland, 2003). The purpose of the 
Broader Impact phase is to test the product in full classrooms of teachers who were not 
involved with the design. However, this paper will focus on the development of teacher 
knowledge and skills from the IEP, EP, and LIP of the project. A description of PD activities 
characterizing each phase can be found in the methods section.

Data practices framework

During IEP, teachers identified a need for students to engage in data practices more fully 
during science investigations. Weintrop et al. (2016) identified five data practices that 
scientists engage in which intersect with CT: (a) collecting data, (b) creating data, (c) 
manipulating data, (d) visualizing data, and (e) analyzing data. Weintrop et al. (2016) 
established these categories for better understanding ways people use CT and automation 
of data to study science. Collecting consists of using computational tools to make observa
tions and record information. Creating consists of generating data through computational 
tools such as simulations. Manipulating consists of cleaning and organizing data for analysis 
or communication. Visualizing consists of the use of tools to create graphic summaries of 
data for analysis and communication. Analyzing consists of the use of descriptive and 
inferential statistics to explain outcomes. During the IEP, teachers and researchers reconfi
gured the five data practices to fit the way students do science investigations. The adaptation 
resulted in five categories: (a) creating, (b) collecting, (c) preparing, (d) visualizing, and (e) 
analyzing. Creating data was placed before collecting data as teachers indicated students 
needed to understand the phenomena and the variables before they collected data, thus 
changing the essence of the term “creating” for the science context. The term “manipulat
ing” was replaced with “preparing” because teachers felt that the term manipulating could 
be misinterpreted by students to mean changing the numbers to fit a preconceived notion.

Despite the ubiquitous presence of data practices in science education, there are few 
studies that examine how teachers teach and how students learn data practices. Implications 
from those studies offer three primary insights into teaching and learning of data practices. 
These include the need for authentic learning scenarios that use real data sets and engage 
students with the entire cycle of data practices (Gold et al., 2015; Lesh et al., 2008; Masnick 
& Morris, 2002; Newton, 2000), the usefulness of technology tools such as data-logging and 
graphing technology for students learning about data practices (Barton, 1997; Newton,  
2000; Rogers, 1997), and the importance of addressing students’ often unsystematic 
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approaches to working with data. Kanari and Millar (2004) examined students’ practices 
when collecting data on an experimental investigation and found that most students did not 
repeat measurements to check on their validity while Masnick and Morris (2002) found that 
students’ conceptions of error are not well integrated into measurement processes or 
explaining experimental error.

Computational thinking framework

During IEP, the team identified that one way to support student data practices is by 
developing their CT skills. Teachers found that CT practices including decomposition, 
pattern recognition, abstraction, and algorithm building are naturally linked with data 
analysis tactics to solve many types of problems (Shute et al., 2017; Wing, 2006). 
Decomposition involves breaking down a complex problem into less complex sub- 
problems. Pattern recognition is the identifying, clustering, and modularizing of steps 
that repeat in order to cluster related parts of the problem by their recurring features. 
Abstraction is a process of identifying and organizing relevant information and removing 
unnecessary information in order to clarify problems and identify generalizable solutions. 
Algorithm building is the creation of a series of precisely defined steps or rules that leads to 
predictable outcomes.

CT is quite a new concept in science education, so science teachers are in need of PD to 
systematically prepare them for understanding the concept, designing CT learning experi
ences, and assessing CT (Angeli & Giannakos, 2020). However, there is little information 
available about effective PD to support teachers in their efforts to integrate (Jocius et al.,  
2020). According to V. Barr and Stephenson (2011), PD in CT needs to provide a clear 
definition of what CT is and how it applies to students and the disciplinary content. Jocius 
et al. (2020) reported positive outcomes on teacher understanding of the role of CT and self- 
efficacy regarding CT integration when they offered teachers a clear CT model. A few other 
studies also show promising results regarding teachers’ beliefs and knowledge around CT 
(e.g., Adler & Kim, 2018; Bower et al., 2017). Furthermore, Ketelhut et al. (2020) offered 
elementary teachers a yearlong PD on CT and found that over time the teachers got better at 
integrating CT, advocating for continuous long-term CT PD, which results in sustainable 
shifts in teachers’ integration of CT.

Self-regulated learning framework

During the IEP, it was articulated that a systematic way to structure learning tasks was 
needed in SPIN. Researchers adopted Zimmerman’s (2000) model for the SRL framework. 
SRL is a cyclical, fluid process through which students proactively and intentionally manage 
and control their thinking, actions, and environments to attain personal goals 
(Zimmerman, 2000). Self-regulated students can motivate themselves, set goals, monitor 
their learning, and reflect on the learning process. From a social-cognitive perspective, SRL 
includes a forethought phase, during which students set goals and strategize a plan for 
approaching a problem; a performance phase, during which students enact the strategic 
plans and gather information about their goal progress; and a self-reflection phase, during 
which students evaluate their level of success based on pre-established standards, reasons 
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for their success or failure, and lessons learned in terms of strategy use for improved 
learning and performance in subsequent tasks.

Studies of SRL PD for science teachers have investigated the support of teacher learning 
and support of teaching which fosters SRL skills for K-12 students (Kramarski & Heaysman,  
2021). The duration of the PDs ranged from a few hours (e.g., S. Barr & Askell-Williams,  
2020; Tran et al., 2022) to around 100 hours (e.g., Lewis et al., 2011; Michalsky & Schechter,  
2018). In general, the short PDs aimed to align teachers’ perceptions regarding SRL with 
SRL theories, while the long-term PDs targeted teachers’ ability to use SRL strategies in their 
teaching (Adler et al., 2019; Kramarski & Michalsky, 2009, 2015; Lewis et al., 2011). Some 
examined how teachers implemented lessons (S. Barr & Askell-Williams, 2020; Eilam, 2017; 
Kramarski & Kohen, 2017; Michalsky, 2012), and a few gave science teachers the opportu
nities to share their experiences regarding enacting the lessons (e.g., Peters-Burton & Botov,  
2017; Peters-Burton et al., 2020). All the PDs achieved their learning objectives to some 
extent. For example, Eilam (2017) found that teachers’ metacognitive considerations and 
reflections on their planning and teaching were promoted with the use of a metacognitive 
tool, but no substantial changes occurred in enacting the lessons. S. Barr and Askell- 
Williams (2020) engaged four secondary science teachers in a researcher-facilitated profes
sional learning community for 12 weeks (8 hours). The findings indicated that SRL content 
knowledge, pedagogical content knowledge, and constructivist beliefs were improved con
sistently for three of the four teachers.

Integration of the conceptual frameworks

DBR was used as an overarching guide for framing the PD and moving forward the ideas 
that would result in the SPIN product. Within IEP, the team identified the need for 
conceptual frameworks of data practices, CT, and SRL. As the IEP progressed, the team 
continued to refine the articulation of data practices as the learning tasks to be accom
plished, and CT practices as the tactics to support students in data practice engagement. For 
example, when asked to create data, students were to identify the phenomena and the 
relevant variables for data collection to answer the research question. Decomposition could 
help students break down the phenomena into parts to see each individual variable, while 
abstraction could help students find the relevant variables and to not engage with extra
neous ideas. SRL was used to help students identify their plan for accomplishing each data 
practice, monitor their progress, and reflect on their successes and failures before progres
sing to the next. We viewed CT and SRL as problem-solving processes (Peters-Burton et al.,  
2018), which helped to integrate the ideas into the context of data practices. Keeping in 
mind that the ideas for the conceptual frameworks were discovered and refined while 
situated in the DBR framework, we asked the research question, “What patterns emerged 
regarding teacher learning of data practices, CT, and SRL across three phases of DBR while 
designing SPIN?”

Methods

The research design for this study was concurrent mixed methods research in the context of 
DBR. Three of the four phases of DBR (Bannan-Ritland, 2009) served as the foundation for 
the study and helped the teachers to work toward a common end goal of developing SPIN, 
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an online tool for students to support data practices in science by using CT and SRL as 
supports. Qualitative and quantitative data were collected across all three phases of the 
DBR. The mixed data sources were intentionally designed to complement and triangulate 
each other and were integrated throughout the study (Teddlie & Tashakkori, 2009). Figure 2 
displays the timeline of the study. Attempts to minimize bias in this study were accom
plished through the use of multiple data sources, data that represented multiple dimensions, 
interrater reliability, and member checks for correct representation of the results with the 
teachers in the PD (Maxwell, 2013).

Participants

Nineteen high school science teachers with an average of 15.5 years of experience, ranging 
7–33 years, were involved in this project across the three years. Each teachers’ pseudonym 
and demographic information can be found in Table 1.

Description of PD over three years

Year 1 (IEP) began in the summer with two weeks of intensive PD experiences on data 
practices, CT, and SRL. Teachers performed activities related to knowledge and application 
of data practices, CT, and SRL separately. They then integrated the ideas by designing 
opportunities for student engagement with data practices, CT, and SRL in lessons to be 
taught during the school year using lesson planning tools such as planning templates and 
task analysis tools (Peters-Burton et al., 2021). The intention was to use these lessons in 
SPIN. During the academic year in Year 1, teachers taught the lessons they designed and 

Informed Exploration- Year 1 Local Impact-Year 3Enactment-Year 2

*Data 
Practices, CT 
and SRL 
knowledge

*Self-efficacy 
for CT and 
SRL

*Familiarity, 
usage, and 
value of data 
practices, CT 
and SRL

*Data 
Practices, CT 
and SRL 
knowledge

*Self-efficacy 
for CT and SRL

*Familiarity, 
usage, and 
value of data 
practices, CT 
and SRL

*Interviews
*Artifacts 

*Self-
efficacy for 
CT and SRL

*Familiarity, 
usage, and 
value of data 
practices, CT 
and SRL

*Interviews 
*Artifacts

*Self-
efficacy for 
CT and SRL

*Familiarity, 
usage, and 
value of data 
practices, CT 
and SRL

*Interviews 
*Artifacts

*Self-
efficacy for 
CT and SRL

*Self-
efficacy for 
CT and SRL

Figure 2. Timeline of data source collection across three years.
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met in content area groups to discuss student outcomes, lesson revisions, and application of 
data practices, CT, and SRL in their classrooms. At the end of the year, the researchers 
conducted a needs analysis with teachers to determine their preference for the structure and 
content of the PD in Year 2.

In Year 2 (EP), teachers and researchers met again for a two-week intensive summer PD 
experience that focused on reflecting on the results of the implementation of the lessons, 
further lesson refinement, and pursuing an advanced understanding of CT and SRL. During 
the academic year, teachers and researchers met by content area groups to check the 
accuracy of integration of CT and SRL into data practices, reflect on the refined lessons 
taught, and to contribute design features for SPIN based on their reflection of the lessons.

Year 3 (LIP) was dedicated to converting lessons from business as usual to SPIN- 
appropriate lessons. During the year, teachers were given small components of SPIN to 
test. At the end of Year 3, lessons in SPIN were field tested by the teachers with small groups 
of students for the purposes of giving feedback for scaling up the following year.

Data sources

Data sources included (a) a test of knowledge and application about data practices, CT, and 
SRL; (b) a self-efficacy measure of data practices, CT, and SRL; (c) a survey of familiarity, 
value, and use of data practices, CT, and SRL, (d) interviews; and (e) lesson plan artifacts. 
Each data source was measured multiple times across the three years, as shown in Figure 2.

Test of knowledge and application for data practices, CT, and SRL
Each teacher took an open-ended test of knowledge and application about data practices, 
CT, and SRL that was assessed with a rubric at the beginning and end of the IEP. Two 
versions of the vignette were created for pre- and post-PD assessment to avoid threats to 
validity. Knowledge of CT, SRL, and data practices were assessed with one free-response 

Table 1. Participant pseudonyms and demographic.

Pseudonym
Total Years 
Teaching Subject Taught Grade Level Type of Courses Taught

Zeke 11 Chemistry 9th Research, AP
Kyle 10 Earth Science 9th Individual Research, Research, Dual Enroll
Jace 8 Physics 9th-11th Academic, AP
Jayla 12 Biology 9th and 10th Academic, Research, Dual Enrollment
Miles 15 Chemistry 10th-12th Academic, Research, AP
Carla 15 Biology 9th-10th Academic, Research, AP
Ana 19 Biology 10th-11th Research, AP
Kya 33 Chemistry 9th-12th Research, AP
Chloe 29 Biology 9th and 10th Academic, Research, AP
Jemma 11 Biology 9th-12th Academic, Research, AP
Kylie 9 Biology 10th-12th Academic, Research, AP
Sita 18 Biology 10th-12th Research, AP
Hayley 7 Biology 9th, 10th, 

12th
Individual Research, Academic, Research, Dual 

Enrollment
Sara 10 Chemistry 10th-12th Academic, Research, AP
Eileen 23 Physics 11th-12th Academic, AP
Lyla 20 Earth Science 9th, 11th, 

12th
Research, Dual Enrollment

Elizabeth 19 Physics 10th-12th AP
Lakshmi 18 Physics 12th Academic, AP, Dual Enrollment
Eugene 8 Biology 9th-10th Academic, Research
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question for each concept. The teachers were first prompted to define and describe their 
understanding of each concept. For example, “How would you define and describe CT? 
Provide as many details as you can using the space below.” Next, application was evaluated 
with a vignette describing a struggling student in a science classroom. After reading the 
vignette, teachers were prompted to identify data practices, CT practices, and SRL by 
highlighting a section of the text and explaining their interpretation. In addition, teachers 
were asked to respond to open-ended questions about specific actions they might take to 
better promote CT practices and improve students’ SRL. Teacher responses were assessed 
with concept-specific rubrics that endeavored to score the quantity and quality of teacher 
understanding of each concept as well as knowledge of specific vocabulary. Rubrics were 
completed independently by two or three researchers, who then met to discuss and resolve 
any discrepancies in scoring. Discrepancies found were minimal and typically demonstrated 
variance with mid-level scores.

Teacher familiarity, use, and value of data practices, CT, and SRL
Teacher familiarity, use, and value of each concept was measured with a 3-point Likert scale 
(1 = not often, 2 = somewhat often, 3 = very often) with question stems such as, “How often 
do you infuse CT concepts with your teaching?” The items assessed teachers’ perceptions of 
use and value as well as how often they infused each concept into their teaching. There were 
10-items for overall SRL and SRL components (i.e., goal setting, task analysis, motivation, 
time management, organization, help-seeking, anxiety control, self-monitoring, self- 
reflection, and adapting behaviors), five for CT and CT components (i.e., decomposition, 
pattern recognition, abstraction, algorithm building, and automation), and five for data 
practices and data practice components (i.e., creating, collecting, preparing, visualizing, and 
analyzing).

Self-efficacy of data practices, CT, and SRL
The self-efficacy scale, which had Likert scale ranging from 0 (certain cannot do at all) to 
100 (highly certain can do), assessed teachers’ efficacy beliefs to use each component of data 
practices, CT, and SRL. The scale was developed based on Bandura’s (2006) guidelines. 
Items were developed by six experts, two experts in each of the domains (data practices, CT, 
and SRL). The initial version of the self-efficacy scale was developed and pilot-tested and 
refined with eight high school teachers. Following data collection, the experts examined the 
phrasing and sought to provide an even more specific context for the instrument. There 
were five items measuring data practices, five items measuring CT, and 10 items measuring 
SRL. A sample item was “To what extent can you develop lesson plans on data practices that 
enable students to successfully generate data from observations?” Teachers were asked to 
rate their efficacy for each item under two conditions: (a) when working with students 
whom teachers perceived as academically struggling (i.e., lower bound of efficacy), (b) when 
working with students whom teachers perceived as advanced or successful (i.e., upper 
bound of efficacy). Thus, for each item, the teachers reported their range of self-efficacy 
for teaching data practices, CT, and SRL.

Interviews
We conducted semi-structured, individual interviews with teachers at the end of each phase 
of the three phases of DBR. The interviews were approximately an hour each and focused on 
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data practices, CT, and SRL learning in Year 1; on teaching data practices, CT, and 
supporting students with SRL in Year 2; and on small-scale implementation of SPIN for 
student learning of data practices, CT, and supports through SRL in Year 3. During the EP 
and LIP, COVID abruptly changed the format of participants’ classrooms and teaching. 
Year 3 interviews, then, focused not only on teachers’ knowledge and application of SRL, 
CT, and data practices, but also on the changes teachers experienced due to the pandemic 
and how these changes impacted perceptions and integration of these concepts.

Artifacts
We collected artifacts at the end of each year. In Year 1, we collected the offline lesson plans 
and documentation of CT integration using a task analysis tool (Peters-Burton et al., 2021). 
Teachers were asked to collaboratively develop five lesson plans per content area using 
a template that included standards, learning objectives, the components of a 5E lesson, and 
an assessment map. At least one teacher per content area committed to teaching the lessons. 
Student work samples were also collected and discussed during monthly content meetings. 
In Year 2, we collected 18 revised lesson plans and revised documentation of CT integra
tion. The 18 revised lessons from the teachers were formatted and incorporated into SPIN. 
In Year 3, we collected the refined lessons embedded in SPIN, noting alignment with data 
practices, CT, and SRL supports.

Data analysis

We analyzed the data systematically as they were available over the three years. We 
integrated the qualitative and quantitative data by looking for connections between the 
themes in the scale responses and the codes and categories in the interviews and artifacts.

Qualitative analysis
We treated the interviews and artifacts for all teachers as a case study for each phase of the 
DBR (Yin, 2003). They were coded using an a priori codebook (Saldaña, 2012) created by 
defining the five data practices (create, collect, prepare [formerly manipulate], visualize, and 
analyze), the CT practices (decomposition, pattern recognition, abstraction, algorithmic 
thinking), and SRL processes (e.g., goal setting, metacognitive monitoring, self-evaluation). 
We sought out emergent codes, which resulted in two codes, “mistaking data practices for 
CT” and “Aha! Moment.” All three researchers independently coded 30% of all interviews 
and artifacts and met to discuss accuracy of codes until consensus was reached. All three 
researchers then coded the remainder of the interviews and artifacts, spot checking each 
other’s coding for accuracy by looking through a randomly selected 20% of all interviews 
and artifacts when a coder had completed the set. No major discrepancies in coding 
occurred in the second round of coding.

Quantitative analysis
Because our data did not meet conditions for normality, we used descriptive statistics and 
visualizations to make conjectures about teacher learning trends. Patterns in score changes 
were analyzed using visualizations.
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Mixed methods analysis
Once qualitative and quantitative data were analyzed separately, the researchers organized 
all data sources sequentially in the DBR framework and examined trends and interactions 
sequentially. This allowed the researchers to qualify the quantitative data and quantify the 
qualitative data to look for coherence and divergence among the different types of data 
along the timeline of activities. For example, when we found a dip in self-efficacy scores for 
data practices, CT and SRL during Time 2, we returned to the interviews during that time to 
find why their self-efficacy was lowered. Conversely, when we read a unique passage in the 
interviews, we examined the scores to see if the quantitative data reflected that idea.

Findings

Data practices

As expected, high school science teachers were already familiar with the various data 
practices (Weintrop et al., 2016) although they did not initially use the vocabulary explicitly 
with their students. After Year 1 teachers began using the terms more explicitly with their 
students.

Informed Exploration phase (IEP)
According to the scores on the data practices knowledge and application assessment, 
teachers had knowledge of most data practices when they began the PD. Before the PD, 
teachers averaged 2.9 out of 4.0, with scores ranging from 1 to 4. After the PD, teachers 
averaged 3.8 out of 4.0 with scores ranging from 2 to 4. We believe that the average growth 
score of 0.93 out of 4.0 could be attributed to the teachers understanding the common 
terminology for data practices. Similarly, teacher interview results at the end of the IEP 
showed that teachers were familiar with create, collect, visualize, and analyze, but were less 
familiar with prepare, which was a trend found across the three years from the quantitative 
data. As stated by Eileen, “Collecting data takes time so sometimes we [teachers] give the 
students clean data.” Since teachers were giving students cleaned data, there was not 
a purpose for preparing the data. Figure 3 displays the teachers’ responses to the familiarity, 
use, and value of all data practices. Measures during times 1 and 2 occurred during the IEP. 

Figure 3. Average teacher familiarity, use, and value of data practices across the DBR phases.
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Notably, teachers’ value of data practices dropped at the end of IEP, possibly because that 
simultaneously occurred with the beginning of COVID and the shift to teaching online.

During IEP, teachers noted in their interviews that they were not clear about the 
differences between create (designing the data collection) and collect (the act of collecting 
and monitoring data). This is exemplified in the self-efficacy scores reported by teachers 
during IEP (Times 1 and 2 in Figure 4). Teachers started with a lower self-efficacy score for 
their knowledge of data practices for both boundaries of their reported self-efficacy, which 
then increased at the end of IEP.

Enactment phase (EP)
By the end of the EP, teachers reported that not only were they using data practices in 
their classes more purposefully, they also were using the terms create, collect, visua
lize, and analyze. Kyle reported that the EP helped him to clarify what it is to create 
data,

I think the biggest one that was new or kind of like a new thought about it was the creating the 
data aspect. I think that in a lot of my lessons, I have the students create the data, but I had 
never really thought about it in that way. The students are actually generating and creating their 
own data set that they are then going to use to analyze or visualize at the end.

Teachers’ familiarity and use for data practices during EP maintained the same high levels 
that they had during IEP (Time 3 in Figure 3). Teachers’ value for data practices increased 
during EP, and interviews indicated that when teachers shifted to online instruction, they 
had difficulty teaching students to do investigations with data. This instructional change 
demonstrated to teachers the importance of teaching with data in science. Sita noted,

We need virtual labs where they can collect data [when we are teaching online]. And we can 
have these conversations [about data]. Because they’re just analyzing a data set, or they’re 

Figure 4. Average teacher upper and lower boundaries for self-efficacy of data practices across the DBR 
phases.
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watching me collect, it’s so hard. I think the big support we need is, if we’re truly in this study 
with computational thinking and self-regulated learning focusing on data, we have to have 
support to know how it is we’re going to get data for these students.

Elizabeth also noted “I think what was interesting was how the focus was different. Knowing 
that the data was perfect because it was virtual, . . . they were two different lenses.”

During EP, the teachers’ self-efficacy scores dipped slightly (Time 3 in Figure 4) but then 
raised to the IEP level (Time 4 in Figure 4), indicating that they initially had less self-efficacy 
for data practices during the implementation of the lessons than they did for planning the 
lessons.

Local Impact phase (LIP)
When lessons were converted to SPIN during LIP, teachers aligned their lessons 
explicitly to instruct students in all five data practices (a requirement in SPIN). 
A trend that was noted was that the data practice of prepare needed to be added or 
enhanced in the lessons for it to fit into the data practice tabs for SPIN. All of the 
other four data practices were well represented and consistent with the conceptual 
framework. This evidence indicates that although teachers knew about data prepara
tion, they were not yet engaging students in the practice. As Miles stated, “ . . . 
collecting and creating we tend to do a lot in terms of data practices; manipulating, 
we do sometimes, but more often we will visualize and analyze the data.” Teachers’ 
familiarity, use, and value for all of the data practices were maintained at the same 
high level (see Time 4 on Figure 3) and their self-efficacy boundaries for data practices 
also maintained at a high level (see Times 5 and 6 on Figure 4). The boundaries 
between high and low self-efficacy for data practices narrowed slightly as the DBR 
phases proceeded.

Computational thinking

CT was a newer content area for teachers and there were mixed perceptions related to its 
value and applicability throughout the project. Overall, teachers saw CT as important but 
challenging to integrate, especially during hybrid and online learning. Overall, they grew in 
their knowledge of and confidence of how CT might be integrated into high school science.

Informed Exploration phase (IEP)
Scores from the CT Knowledge and Application assessment before and after the IEP 
indicate that teachers improved their CT knowledge (1.9 out of 4 in the pretest, ranging 
from 1 to 3, and 3.1 out of 4 in the post test, ranging from 2 to 4). Similarly, teachers 
reported their familiarity with specific CT practices was minimal prior to the PD. 
Decomposition was the only practice that nearly half of the teachers felt familiar with at 
the beginning of the project.

ThatCT was new to the teachers was evident in their interviews, self-efficacy scores, 
and familiarity, use, and value scores. Teachers had the lowest scores for average 
familiarity, use, and value (1.95) compared with data practices (2.45) and SRL (2.25) 
and the lowest self-efficacy scores for CT (59.12 out of 100) compared with other 
content areas (66.30 for data practices and 62.09 for SRL). However, having experienced 
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the Year 1 PD opportunities, they quickly saw the importance of CT, as when Jace 
described, “the big takeaway for me from the computational thinking part was, this is, 
this is how, like, this is how smart people solve problems [. . .] how do we take this and 
turn it into the teaching of the, the practices.” Their familiarity increased from a 2.3 to 
a 2.8, on a scale from 1 to 3 after IEP (see Times 1 and 2 in Figure 5). As familiarity 
with CT increased, so did self-efficacy for both upper and lower boundaries, as can be 
seen in Times 1 and 2 in Figure 6. Following the IEP, teachers felt comfortable with 

Figure 5. Average teacher familiarity, use, and value of CT across the DBR phases.

Figure 6. Average teacher upper and lower boundaries for self-efficacy of CT across the DBR phases.
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both decomposition and pattern-finding and were confident that they already promoted 
these practices in their lessons.

Enactment phase (EP)
The EP focused on continuing to build teacher knowledge while also working with 
teachers to design and implement lessons that incorporated CT into data practices. 
Self-efficacy for CT dipped slightly between Time 2 and Time 3 for both lower and 
upper reporting ranges, indicating slightly less self-efficacy for CT as they began to 
initially try out lessons and integrate CT within their classrooms (see Figure 6). As 
teachers shifted from planning lessons to actual implementation within their class
rooms, they identified areas they wanted further support. For example, Carla, 
a biology teacher, reported,

I think I’ve struggled to implement the algorithm and automation practices because I honestly 
don’t really understand them very well myself. I hate to admit that this far along in the process. 
I don’t really know what tools to use with students to implement the algorithm and automation 
practice.

This type of feedback was useful in providing further support to teachers throughout the EP.
During the EP, the COVID pandemic created an unprecedented shift in the teaching 

methods for all participants. While the teachers in this study continued to participate 
actively, their classrooms shifted to online or hybrid which impacted several perceptions 
related to CT. In the interviews, teachers discussed the challenges of trying to integrate CT 
with data practices and SRL in an online environment as well as the broader concerns about 
engaging their students. Jayla shared, “I’ve recognized [. . .] how challenging it [teaching 
CT] was to do this in a virtual environment and how important it is to get students to really 
engage with the data” and Zeke stated, “if you have them engage in the computational 
thinking if they’re online, you’re leading them up to a meltdown.” In addition, teachers were 
less sure about their knowledge of abstraction and algorithmic thinking after EP.

Teachers keenly felt the importance of students thinking computationally but found it 
to be more challenging to incorporate outside of a traditional classroom learning 
environment. This was also evident in the data trends for familiarity, use, and value. 
As seen in Figure 5, teachers’ value for CT increased while their frequency and utility for 
CT decreased. The main challenge discussed was lack of conversations and collaboration 
while online. Despite these struggles, teacher self-efficacy for CT remained consistent 
(Time 4 in Figure 6). By the end of the EP, students began to return to the classroom, 
and teachers’ use of CT in their own lesson plans increased from 2.15 to 2.26 on a scale 
from 1 to 5.

Local Impact phase (LIP)
During LIP, teachers’ lesson plans were transferred to SPIN and they had the opportunities 
to engage in these lessons as both teachers and students, exploring the potential issues and 
affordances of the software for supporting the instruction and integration of CT in small 
iterations. Overall, teachers’ self-efficacy for CT continued to incrementally rise (see 
Figure 6, Times 4, 5, and 6) and familiarity, use, and value for CT practices were maintained 
at the same high level (see Time 4 on Figure 5) as they tested the tool. They began 
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incorporating more abstraction and algorithmic thinking into the lessons, based on the 
lesson plan artifacts.

Self-regulated learning

Across the three phases of DBR, the teachers improved their understanding of the role of 
SRL in supporting data practices and CT during student investigations and indicated that 
they wanted more opportunities for students to self-regulate learning.

Informed Exploration phase (IEP)
The scores on the SRL knowledge and application assessment showed that the science 
teachers had some knowledge of SRL prior to the PD (1.8 out of 4.0, with scores ranging 
from 1 to 3). However, during the IEP, the teachers consistently reported that learning data 
practices and CT was a priority, as they could see the applicability in the classroom. SRL was 
not prioritized as a learning goal for the first year mainly because teachers were at capacity 
learning about data practices and CT and did not have any additional cognitive energy to 
take on another topic. For example, Elizabeth discussed her initial implementation of SRL 
in IEP,

At this point, I don’t think I’ve used it enough to have any kind of effect. Like it wasn’t negative, 
it wasn’t positive. And because I’m not sure if I had implemented it in the best way that it could 
have had an effect.

Even though the teachers did not prioritize SRL during IEP, their familiarity and use of SRL 
increased (as seen in Times 1 and 2 in Figure 7). Similar to teachers’ value of data practices 
and CT, their value for SRL decreased in Time 2 when the classrooms started moving 
online. Regarding self-efficacy, teachers’ scores markedly increased by the end of IEP in 
both lower and upper boundaries (Figure 8).

Enactment phase (EP)
The COVID pandemic changed teaching platforms in their school district from in-person 
to online or hybrid in the EP and the interviews at the end of the second year over
whelmingly indicated that teachers found SRL to be a higher priority than CT; however, 
they still held top priority for teaching data practices in their classrooms. Teachers reported 

Figure 7. Average teacher familiarity, use, and value of SRL across the DBR phases.
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that they saw how important motivation and engagement were to learning when they were 
not with students in person. As Eileen stated, “I put more emphasis on [SRL] because that 
was something that I needed; I needed the kids to be better learners, better at managing their 
learning.” Quantitative data also showed the increase in teachers’ value of SRL, as seen in 
Time 3 in Figure 7.

When discussing how online and hybrid classes affected the implementation of 
SRL, teachers’ responses showed a theme. For teachers who could foster their 
students’ SRL skills to some extent before the pandemic, moving to online classes 
positively affected SRL implementation because online learning environments gave 
students more opportunities to practice what they have learned or opportunities to 
work more on their own. For teachers who did not foster SRL in their students 
before the pandemic or did not know the students in-person, the change negatively 
affected SRL implementation. Those teachers felt the need to foster SRL in students 
but said it was hard for them to do so in online classes. Interestingly, Lyla said that 
initially online learning positively affected the enactment of SRL due to the need for 
SRL, then negatively affected because students lost motivation for learning. She said 
that her students felt “it’s Ok” not to try their best. Despite the divergence in 
teachers’ perceptions of how online classes affected the implementation of SRL, 
overall, teachers’ self-efficacy for SRL decreased and then roughly stayed the same 
in EP (Times 3 and 4, Figure 8) compared to the end of IEP (Time 2, Figure 8). 
Those changes might indicate that teachers faced some unexpected situations while 
implementing SRL in EP, which they were not aware of when planning the lessons 
in IEP.

Figure 8. Average teacher upper and lower boundaries for self-efficacy of SRL across the DBR phases.

16 E. E. PETERS-BURTON ET AL.



Local Impact phase (LIP)
Teachers’ familiarity, use, and value for SRL increased or maintained at the same high level 
(see Time 4 in Figure 7). Teachers’ self-efficacy boundaries for SRL increased (Time 5 in 
Figure 8), then slightly decreased (Time 6 in Figure 8). The difference between upper and 
lower boundaries for self-efficacy of SRL narrowed across the DBR phases indicating 
teachers gained more confidence in supporting SRL for students whom teachers perceived 
as academically struggling students compared to the gain in supporting advanced or 
successful students. During the LIP, teachers noted they wanted more opportunities for 
students to reflect on their learning during the data practices in SPIN, indicating their value 
in seeking additional PD.

Integration of data practices, CT, and SRL

Examining how teachers integrated their learning about data practices, CT, and SRL gives 
insight into how teacher educators might go about designing PDs that have many different, 
yet integrated, components. We found three overarching findings across the DBR phases: 
(a) teachers felt that integrating three components was too much to take on initially, but 
using multiple examples of integration alleviated their concerns (b) contextual components 
such as type of learning platform can shift priorities of the teachers, and (c) collaboratively 
working toward a common educational product (SPIN) motivated teachers to continue the 
long-term PD.

Informed Exploration phase (IEP)
During the IEP, teachers noted that they could not integrate all three components and chose 
to learn how to integrate data practices and CT since these topics were most relevant to 
science. As Lyla stated,

I think CT practices are not separate from data practices. CT uses student inquiry and 
investigations and apply their knowledge to solve problems and it also involves critical 
thinking, project-based learning, and it’s basically identifies content related research question 
and then, which eventually needs to, it needs to do with data collection.

Enactment phase (EP)
During the EP interviews, 14 teachers reported that they understood how data practices, 
CT, and SRL were intertwined, but they needed extra support to integrate the three content 
areas. During this time, it was easier for the teachers to integrate CT with data practices than 
to integrate SRL with CT as evidenced in the lesson artifacts created during the EP. CT and 
data practices integrated: 2.43 out of 3 (range = 0.56); SRL and CT integrated: 1.92 out of 3 
(range = 0.49).

Local Impact phase (LIP)
During LIP, teachers tested modular components of SPIN as they were being developed. 
The fragmentation of the development, while necessary, could have caused teachers to have 
difficulty understanding how the integration occurred in the online tool. However, when 
testing the completed beta version of SPIN, teachers were able to identify data practices, CT, 
and SRL as they were integrated in SPIN (see Figure 9). Teachers noted that when they 
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tested SPIN with students, the separation of each data practice with tabs in the notebook 
was helpful to teach students about data practices explicitly.

Discussion

The learning patterns of teachers demonstrated learning gains and maintenance in data 
practices, CT, and SRL over the three years of the DBR project, even when faced with 
challenges associated with the COVID pandemic. Similar to Bannan (2013), across ILDF 
phases, teacher learning became progressively more sophisticated, complex, and con
textualized. DBR was used to design, implement, and broadly test an educational 
product, and the participating teachers persisted in the long-term PD because they 
were motivated to produce SPIN for use by other teachers. Evidence for their motivation 
lies in the features of SPIN that echo what has been documented in the literature related 
to data practices, which indicates that IEP is particularly effective in setting the stage for 
what teachers need in the PD. SPIN featured authentic learning scenarios, using real 
data sets, and engaged students with the entire cycle of data practices (Lesh et al., 2008; 
Newton, 2000). Additionally, it was found by Barton (1997) and Rogers (1997) that 
graphing technology helps students explore data easily and make meaning of data faster. 
Teachers incorporated features of CT and SRL that increased student support of 
visualizing data by helping students understand why they were creating graphs based 
on characteristics of the data set. Teachers also designed SPIN to help students use 
systematic approaches when they work with data, which was a need found by Kanari 
and Millar (2004) when they found that most students did not repeat measurements to 
check on their validity.

Engagement in DBR as PD also helped teachers incorporate more CT and SRL 
into their classroom cultures, as well as refining their already established data 
practices instruction, similar to the findings of Bannan et al. (2010). Because DBR 
used interactive cycles and multiple sources of feedback to track progress, the team 
was able to collaboratively converge on distinct definitions of CT used in the science 
classroom, as recommended by V. Barr and Stephenson (2011). The findings of this 
study confirmed the need for continuous CT PD in order to produce sustainable 

Figure 9. Screenshot of SPIN with data practices, CT, and SRL integration noted.
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shifts in teachers’ integration of CT (Ketelhut et al., 2020). Teachers had the lowest 
knowledge of CT at the beginning of the PD, but grew in knowledge and confidence 
for how to teach and integrate, as well as in their value of CT.

Teachers better understood how to foster SRL in students and value the roles of SRL in 
engaging with data practices across the three phases of DBR. By the end of LIP, teachers’ 
familiarity, use, and value as well as self-efficacy of SRL increased. Even after three years of 
the PD, teachers wanted more opportunities for students to engage in SRL, showing their 
commitment to implementing SRL. As seen in multiple research studies, although short- 
term PDs can change teachers’ perceptions, long-term PDs are needed for teachers to 
successfully implement SRL (Adler et al., 2019; S. Barr & Askell-Williams, 2020; 
Kramarski & Kohen, 2017; Kramarski & Michalsky, 2009, 2015; Lewis et al., 2011; 
Michalsky, 2012). This study corroborates those findings because teachers’ perceptions 
about SRL increased from the IEP to the EP (short-term), their understanding of student 
support for SRL improved in the LIP (long-term), when teachers found SRL to be a higher 
priority than CT.

Implications, limitations, and future research

DBR as PD consists of several characteristics of effective PD for science teachers, given 
the findings of the learning patterns for the teachers. First, the PD was long term 
(Darling-Hammond et al., 2017; Loucks-Horsley et al., 2010; Luft & Hewson, 2014; 
Vescio et al., 2008). During the three years, teachers learned new concepts, enacted new 
instructional strategies, reflected on their practice, adjusted dynamic learning environ
ments, and produced a web-based learning tool. Second, teachers had many opportu
nities to collaborate with other teachers, researchers, software developers, and students. 
A systematic literature review by Bancroft and Nyirenda (2020) showed most PD 
programs provide teachers with planned lessons instead of using teacher-authored 
lessons. The lack of teacher ownership might contribute to teachers not fully imple
menting intended learning experiences (Brown & Crippen, 2017). SPIN used teacher- 
authored lessons that gave teachers a sense of ownership but also facilitated the enact
ment of intended learning experiences. Because of the collaborative nature of DBR, the 
PD allowed for convergence on clear definitions of data practices, CT, and SRL for all 
stakeholders. By using CT and SRL as a means to support data practices, our PD 
proposed a systematic approach to implementing data practices that was co-created by 
educational researchers and teachers.

This study only examined the first three phases of DBR, and future work should take into 
account the entire process including whole class learning from the resulting instructional 
product. Additionally, future work could focus on DBR as PD in other contexts and with 
other stakeholders. Although this study provides initial information about how teacher high and 
low boundaries of self-efficacy for teaching diverse groups of students narrowed with contin
uous PD, more information about teacher ranges of self-efficacy for teaching different students 
is needed. This study also gives initial evidence that CT can be used as a means for learning other 
concepts. Future studies could examine how science teachers transfer what they have learned 
from using CT to support data practices to using CT to support student learning of other science 
practices.
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