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Abstract. In this note we prove an estimate on the level sets of a function with (p, q) growth that
depends on the difference quotient of a bounded weak solution to a nonlocal double phase equation.
This estimate is related to a self improving property of these solutions.

1. Introduction and Main Results

This note is a companion to the article [6], in which the authors study regularity properties of
weak solutions u to

(1.1) Lu(x) = f(x) ,

where for measurable functions u : Rn → R and for x ∈ Rn the nonlocal double phase operator L
is defined as

Lu(x) := P.V.

ˆ
Rn

|u(x)− u(y)|p−2

|x− y|n+sp
(u(x)− u(y)) + a(x, y)

|u(x)− u(y)|q−2

|x− y|n+tq
(u(x)− u(y)) dy .

Throughout, we assume n ≥ 2 and the integrability indices p, q belong to (1,∞) with p ≤ q and
differentiability indices s, t belong to (0, 1). The abbreviation P.V. stands for principal value.

The operator L is the archetype of a class of nonlocal double phase operators first introduced
in [2], in which the Hölder continuity of bounded viscosity solutions to Lu = f with bounded data
f was obtained. In the work [6] the authors demonstrate regularity of solutions on a different scale;
that under suitable assumptions on the data f , the modulating coefficient a(·, ·), and a certain ratio
of integrability and differentiability exponents solutions u to Lu = f exhibit a self-improvement
property. Precisely, distributional solutions u belonging to the fractional Sobolev space W s,p(Rn)
in fact belong to a Sobolev space with higher exponents of integrability and differentiability.

For ease of reference, we summarize the relevant definitions, assumptions, properties and results
found in [6]. We assume that the modulating coefficient a is measurable, and satisfies

(A1) a(x, y) ∈ L∞(R2n) , 0 ≤ a(x, y) ≤ M , a(x, y) = a(y, x) .

We also require that

(A2) p ≤ q , t ≤ s ,
1

p′
≤ tq

sp
≤ 1 ,

where p′ is the Hölder conjugate of p: 1
p +

1
p′ = 1. Additionally we will restrict ourselves to the case

(A3) sp < n .
1
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The higher differentiability and integrability described above and in [6] applies to bounded
solutions u ∈ W s,p(Rn) of a weak formulation of the equation (1.1), that is

(1.2) E(u, φ) =
ˆ
Rn

f(x)φ(x) dx , for any φ ∈ C∞
c (Rn) ,

where the form E(u, φ) is defined as

E(u, φ) :=
ˆ
Rn

ˆ
Rn

|u(x)− u(y)|p−2

|x− y|n+sp
(u(x)− u(y))(φ(x)− φ(y))

+ a(x, y)
|u(x)− u(y)|q−2

|x− y|n+tq
(u(x)− u(y))(φ(x)− φ(y)) dy dx .

(1.3)

We assume the data f belongs to a Lebesgue space with sufficiently high exponent. Precisely, for
a given δ0 > 0

f ∈ L
p∗s+δ0
loc (Rn) ,

where we are using standard notation for Hölder and Sobolev exponents; that is, for any r ∈ (1,∞)
and any σ ∈ (0, 1) we write

r′ =
r

r − 1
, r∗ = r∗σ =

nr

n− σr
, r∗ = r∗σ =

nr′

n+ σr′
= (r∗)′ .

(The dependence of the embedding exponents on σ will be suppressed whenever it is clear from
context.)

Weak solutions u are assumed to be a priori bounded, a point clarified by the following
definition:

Definition 1.1. A function u ∈ W s,p(Rn)∩L∞(Rn) is a bounded weak solution to (1.1) with data
f if the nonlocal double phase energy E(u, u) < ∞ and if u satisfies (1.2).

If we denote the integrand of E(u, u) by P (x, y, u) so that

E(u, u) =
ˆ
Rn

ˆ
Rn

P (x, y, u) dy dx ,

then by definition of u as a bounded weak solution the function P (·, ·, u) belongs to L1(R2n). The
following theorem concerning P constitutes the main result of [6]:

Theorem 1.2. Let p, q ≥ 2 and s, t ∈ (0, 1) satisfy (A2)-(A3) and let a(x, y) satisfy (A1). Fix

δ0 > 0, and let f ∈ L
p∗s+δ0
loc (Rn). Let u ∈ W s,p(Rn)∩L∞(Rn) be any bounded weak solution to (1.1)

with data f . Then there exists ε0 ∈ (0, 1) depending only on n, p, q, s, t, M , δ0 and ∥u∥L∞(Rn)

such that for every τ ∈ (0, ε0)

P (·, ·, u) ∈ L1+τ
loc (R2n) .

In particular, there exist positive constants ε1 and ε2 such that u ∈ W s+ε1,p+ε2
loc (Rn), and if (s +

ε1)(p+ ε2) > n then u is locally Hölder continuous.

To prove Theorem 1.2 we use an argument developed by Kuusi, Mingione and Sire announced
in [3] and presented in [4] that builds a nonlocal fractional Gehring lemma in order to prove a self-
improvement result for solutions to a class of monotone operators with quadratic growth related
to the fractional Laplacian. The arguments in [6] and in this note are heavily based on the work
and presentation done for the case p = 2 in [4]. While it is apparent from a careful reading of that
work that their methods apply to functionals with more general p-growth, the precise treatment
of such classes of operators does not appear in the literature. Since we are further working with
operators of mixed (p, q) growth, in [6] and in this note we have written the arguments of [4] for a
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general exponent p so that the robustness of their technique and as well as results can be clearly
seen as applicable in a wealth of contexts. One such instances is an extension of these arguments
to vector-valued solutions of nonlocal systems. A specific example is the strongly coupled system
of nonlinear equations studied in [5]. We also would like to mention a sequence of recent papers
in [9, 10] where the same argument is applied to obtain higher Sobolev regularity estimates for
nonlocal equations with VMO coefficients corresponding to the case p = 2.

The fractional Gehring lemma relies on a level set estimate of a quantity related to the solution,
and its proof is the main contribution of this note. If a reader of [6] accepts the level set estimate
as true then the rest of the proof in [6] of the Gehring lemma follows in a straightforward way.
However, because the proof of the estimate itself is quite technical and very closely resembles the
argument from [4], we have written it here instead of in [6].

Due to its technical nature we do not write a statement of the level set estimate precisely until
the beginning of Section 4. To ensure there is no interruption in the thread of reasoning between
this work and [6], the prerequisite results are given in Section 3 as a summarized version of their
counterparts in [6].

Following the structure introduced in [4], we define dual pairs of measures and functions (U, ν).
For small ε ∈ (0, 1/p) we define the locally finite doubling Borel measure in R2n

(1.4) ν(A) :=

ˆ
A

dx dy

|x− y|n−εp
, A ⊂ R2n measurable ,

and we define the function

(1.5) U(x, y) :=
|u(x)− u(y)|
|x− y|s+ε

.

It is then clear that

u ∈ W s,p(Rn) if and only if U ∈ Lp(R2n; ν) .

The integrand P (x, y, u) of the energy E(u, u) can be expressed in terms of U as

(1.6) [Up +A(x, y)U q]|x− y|−n+ϵp, where A(x, y) := a(x, y)|x− y|(s−t)q+ε(q−p).

We can therefore write the double phase energy E(u.u) in terms the dual pair as

(1.7) E(u, u) =
ˆ
R2n

(Up +A(x, y)U q) dν =:

ˆ
R2n

G(x, y, U) dν

where the integrand G(x, y, U) := Up +A(x, y)U q. Then it now becomes clear that

P (·, ·, u) ∈ L1(R2n) if and only if G(·, ·, U) ∈ L1(R2n; ν) .

Theorem 1.3 (Higher Regularity Result). With all the assumptions of Theorem 1.2, there exists
ε0 > 0 depending only on data such that for every δ ∈ (0, ε0) we have

(1.8) G(x, y, U) ∈ L1+δ
loc (R2d; ν) .

where data represents n, p, q, s, t,M, and ∥u∥L∞.

Theorem 1.2 is a simple consequence of the above theorem. In [6] we show (1.8) directly by
way of a fractional Gehring lemma applied to the dual pair of function and measure (G, ν). This
fractional Gehring lemma in turn relies on a kind of fractional reverse Hölder inequality; for the
exact statement see Theorem 3.3 below. This inequality holds only for diagonal sets of the type
B×B ⊂ R2n, and it is insufficient to apply tools traditionally used to prove Gehring’s lemma such
as the maximal function. Nevertheless, Kuusi, Mingione, and Sire in [4] used a novel localization
technique to show that the fractional reverse Hölder-type inequality over diagonal balls is sufficient
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to prove a special fractional version of Gehring’s lemma that is applicable for dual pairs of the
above type. A key ingredient of this localization technique is a level set estimate

1

λ2

ˆ
B(x0,β)∩{U>λ}

U2 dν ≾
1

λr

ˆ
B(x0,α)∩{U>λ}

U r dν + terms involving level sets of f, g

for some fixed r < 2 and for any λ ≥ λ0, where λ0 is a finite constant depending on the solution.
Here B = B×B, and B ⊂ Rn is a ball. We adapt the statement and proof of this level set estimate
to our setting; see Proposition 4.1. Key steps of the proof are described in Section 4, and we
additionally refer to the original discussions and summaries of the technique in [3, 4].

We finally remark that the fractional Gehring lemma incorporates the level set estimate, and
the proof of the fractional Gehring lemma itself is contained in [6].

This note is organized as follows: In the next section we identify notation and conventions.
The reverse Hölder inequality is proved in [6], and for reference is stated in Section 3. Section 4
contains the proof of the level set estimate in its entirety.

2. Preliminaries

Throughout, we denote positive constants by c, C, etc., and they may change from line to line.
We list the dependencies in parentheses after the constant when we wish to make them explicit,
i.e. if a constant C depends only on n, p and s, we write C = C(n, p, s). We will abbreviate the
following set of parameters as

data ≡ (n, p, q, s, t,M, ∥u∥L∞) .

In Rn, denote the open ball of radius R centered at x0 by

B(x0, R) = BR(x0) := {x ∈ Rn : |x− x0| < R} .
We will sometimes denote the ball B ≡ BR ≡ BR(x0) whenever the center and/or radius is clear
from context. If B is a ball centered at x0 with radius R, then σB is the ball centered at x0 with
radius σR. Given any measure µ, denote the average of a µ-measurable function h over a set A by

(h)A :=

 
A
hdµ =

1

µ(A)

ˆ
A
h(x) dµ .

In dealing with functions defined on R2n such as U , we consider the norm on R2n defined by

∥(x, y)∥ := max{|x|, |y|} ,
where | · | denotes the Euclidean norm on Rn. Denote the balls defined by this norm as

B(x0, y0, R) := {(x, y) ∈ Rn × Rn : ∥(x, y)− (x0, y0)∥ < R}
= B(x0, R)×B(y0, R) .

If we denote

BR2n(x0, y0, R) := {(x, y) ∈ Rn × Rn :
√︁

|x− x0|2 + |y − y0|2 < R} ,
then clearly

BR2n(x0, y0, R) ⊂ B(x0, y0, R) ⊂ BR2n(x0, y0, 2R) .

Often we will need to consider balls in R2n centered at a point on the “diagonal,” that is, a point of
the form (x0, x0) for x0 ∈ Rn. In this case we abbreviate B(x0, x0, R) ≡ B(x0, R). We will also use
the abbreviations B(x0, R) ≡ BR(x0) ≡ BR ≡ B whenever the center and/or radius is clear from
context. Whenever there is no ambiguity we write B(x0, σR) = σB. We also denote

Diag := {(x, x) : x ∈ Rn} .
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We will use the elementary inequality

(2.1) 2kr
∞∑︂

j=k−1

2−jr ≤ 4r

r ln(2)
, for k ≥ 1 and r ∈ (0,∞) .

The cardinality of a finite set A is denoted by #A. The set of nonnegative integers {0, 1, 2, . . .}
is designated by Z+.

For any domain Ω ⊂ Rn, 0 < σ < 1 and r ∈ [1,∞) the fractional Sobolev spaces are defined
by the Gagliardo seminorm

W σ,r(Ω) :=

{︃
u ∈ Lr(Ω) : [u]Wσ,r(Ω) :=

ˆ
Ω

ˆ
Ω

|u(x)− u(y)|r

|x− y|n+σr
dy dx < ∞

}︃
with norm ∥·∥rWσ,r(Ω) := ∥·∥rLr(Ω) + [·]rWσ,r(Ω).

We will also use the following fractional Poincaré-Sobolev-type inequalities throughout the
note. A proof of the first can be found in several places; see for instance [1, 8]. The second can be
found in [7, 11].

Theorem 2.1 (Fractional Poincaré-Sobolev Inequality). Let r ∈ [1,∞), 0 < σ < 1. Let B =
BR(x0) for some R > 0, x0 ∈ Rn. Then there exists C = C(n, r, σ) > 0 such that(︄ 

B

⃓⃓⃓⃓
v(x)− (v)B

Rσ

⃓⃓⃓⃓r∗σ
dx

)︄1/r∗σ

≤ C

(︃ˆ
B

 
B

|v(x)− v(y)|r

|x− y|n+σr
dy dx

)︃1/r

for every v ∈ W σ,r(B).

Theorem 2.2 (Fractional Poincaré Inequality). Let r ∈ [1,∞), 0 < σ < 1. Let B = BR(x0) for
some R > 0, x0 ∈ Rn. Then there exists C = C(n, r) > 0 such that(︃ 

B

⃓⃓⃓⃓
v(x)− (v)B

Rσ

⃓⃓⃓⃓r
dx

)︃1/r

≤ C

(︃ˆ
B

 
B

|v(x)− v(y)|r

|x− y|n+σr
dy dx

)︃1/r

for every v ∈ W σ,r(B).

3. Sobolev Inequality for Dual Pairs and Reverse Hölder Inequality

3.1. The Dual Pair Measure. We summarize some basic properties of the measure ν defined
in (1.4). These properties are natural extensions of those established in [4, Proposition 4.1]; their
proof is sketched in [6].

Theorem 3.1. For any ε ∈ (0, 1/p), the measure ν defined as

ν(A) :=

ˆ
A

1

|x− y|n−εp
dy dx , A ⊂ R2n ,

is absolutely continuous with respect to Lebesgue measure on R2n. Additionally,

• For B = BR(x0)×BR(x0),

(3.1) ν(B) = c(n, p, ε)Rn+εp

ε
,

where c(n, p, ε) is a constant depending only on n, p and ε that satisfies 1/˜︁c(n, p) ≤
c(n, p, ε) ≤ ˜︁c(n, p), where ˜︁c is another constant depending only on n and p.
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• For every x ∈ Rn and for R ≥ r > 0,

(3.2)
ν(B(x,R))

ν(B(x, r))
=

(︃
R

r

)︃n+εp

.

• For every a ≤ 1, R > 0 and x ∈ Rn, there exists a constant Cd = Cd(n, p) such that

(3.3)
ν(B(x,R))

ν(K1 ×K2)
≤ Cd

a2nε

for any two cubes K1, K2 ⊂ BR(x) with sides parallel to the coordinate axes and such that
|K1| = |K2| = (aR)n.

3.2. Reverse Hölder Inequality. Recall that

(3.4) U(x, y) =
|u(x)− u(y)|
|x− y|s+ε

, and define F (x, y) := |f(x)| .

Then F ∈ Lp∗+δ
loc (R2n) for every δ ∈ (0, δ0), as a direct calculation using the properties of measure

ν.

We now report the compatibility of the Sobolev-Poincaré inequality with the definition of
U . Given B = BR(x0), define τ ∈ (0, 1), and η ∈ (1,∞) to be differentiability and integrability
constants respectively that have yet to be fixed. Letting ε ∈ (0,min{ s

p , 1− s}) and using (3.1),
 
B

ˆ
B

|u(x)− u(y)|η

|x− y|n+τη
dy dx =

CRεp

ε

 
B
Uη dν

so long as

τ +
εp

η
= s+ ε .

Since ε ∈ (0, sp) and ε < 1 − s the exponent τ remains in (0, 1) for every η ∈ (1,∞). With this

choice of τ , by the fractional Sobolev inequality, Theorem 2.1,(︃ 
B

⃓⃓⃓⃓
u(x)− (u)B

Rτ

⃓⃓⃓⃓m
dx

)︃1/m

≤ C

(︃ 
B

ˆ
B

|u(x)− u(y)|η

|x− y|n+τη
dy dx

)︃1/η

for every m ∈ [1, η∗τ ] with η ∈ (1,∞). We choose η to satisfy the relation

(3.5) p = η∗τ =
nη

n− τη
=

nη

n− η(s+ ε− εp
η )

⇐⇒ η =
np+ εp2

n+ sp+ εp
.

This choice of η is a valid Lebesgue exponent; note that η < p for all n ≥ 1 and for all p ∈ (1,∞),
and that η > 1 so long as p ≥ 2. Taking m = η∗τ we summarize this discussion in the following
lemma:

Lemma 3.2. Let ε ∈ (0, s/p) with ε < 1− s and p ≥ 2. Define η = np+εp2

n+sp+εp . Then(︃ 
B
|u(x)− (u)B|p dx

)︃1/p

≤ CRs+ε

ε1/η

(︃ 
B
Uη dν

)︃1/η

,

where C = C(n, s, p). The same inequality holds when the ball B is replaced by a cube Q with sides
of length R and with B replaced by Q×Q.

Recall that G(x, y, U) = Up+A(x, y)U q. We have the following L1
loc estimate for G which will

lead us to a scale-invariant reverse Hölder’s inequality. The statement is precisely [6, Proposition
4.3] and its proof can be found in the same paper.
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Proposition 3.3. Let p ∈ [2,∞), and let ε < 1− s with ε ∈ (0,min{s( tqsp − 1
p′ ),

s
p}). (This choice

is possible by Assumption A2). Let η be given by the formula in (3.5), Let B = BR(x0) be a ball
with R ≤ 1. Then there exists a constant C depending only on data such that for any solution
u ∈ W s,p(Rn) ∩ L∞(Rn) to (1.1) and for any σ ∈ (0, 1)(︄ 

1
4
B
G(x, y, U) dν

)︄1/p

≤ C

ε1/η−1/p

[︄
1

σ

(︃ 
B
Uη dν

)︃1/η

+ σ

∞∑︂
k=0

(︁
2
−k( sp

p−1
−s−ε)

+ 2
−k( tq

p−1
−s−ε))︁(︃ 

2kB
Uη dν

)︃1/η
]︄

+
C[εν(B)]

θ
p−1

ε
(1/p∗−1/p′) 1

p−1

[︄(︃ 
B
F p∗ dν

)︃1/p∗
]︄1/(p−1)

,

(3.6)

where

θ :=
s− ε(p− 1)

n+ εp
> 0 .

Remark 3.4. We make some remarks. The upper bound in (3.6) can be simplified down to just one
series. Since sp ≥ tq

2
−k( sp

p−1
−s−ε) ≤ 2

−k( tq
p−1

−s−ε)
, k ∈ Z+ ,(3.7)

so we can replace the infinite series on the right-hand side of (3.6) with

Cσ

ε1/η−1/p

∞∑︂
k=0

αk

(︃ 
2kB

Uη dν

)︃1/η

,

where

(3.8) αk := 2
−k( tq

p−1
−s−ε)

.

Moreover, in the case a ≡ 0 one simply takes αk = 2
−k( s

p−1
−ε)

. In any case, since ε ≤ min{s( tqsp −
1
p′ ),

s
p} the series

∑︁∞
k=0 αk < ∞ and as a consequence

∞∑︂
k=0

αk

(︃ 
2kB

Uη dν

)︃1/η

≤
∞∑︂
k=0

αk

(︃ 
2kB

Up dν

)︃1/p

= C(ε, p, s)
∞∑︂
k=0

αk

(︃ˆ
2kB

ˆ
2kB

|u(y)− u(x)|p

|x− y|n+sp
dxdy

)︃1/p

≤ R−n/p−ϵC(ε, p, s)

(︃ˆ
Rn

ˆ
Rn

|u(y)− u(x)|p

|x− y|n+sp
dxdy

)︃1/p

< ∞.

The following corollary establishes a genuine scale-invariant reverse Hölder inequality for an
appropriately scaled version of the integrand G. This quantity will satisfy a self-improving result.

Corollary 3.4.1. Let ε ∈
(︂
0,min{s( tqsp − 1

p′ ),
s
p}
)︂
. (This choice is possible by Assumption A2).

Let B = BR(x0) be a ball with R ≤ 1. Define H(x, y, U) := G(x, y, U)(p−1)/p. Then there exists
a constant C depending only on data such that for any solution u ∈ W s,p(Rn) ∩ L∞(Rn) to (1.1)
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and for any σ ∈ (0, 1)(︄ 
1
4
B
H(x, y, U)p

′
dν

)︄1/p′

≤ C

σε1/γ−1/p′

(︃ 
B
H(x, y, U)γ dν

)︃1/γ

+
Cσ

ε1/γ−1/p′

∞∑︂
k=0

αk

(︃ 
2kB

H(x, y, U)γ dν

)︃1/γ

+
C[ν(B)]θ

ε1/p∗−1/p′

(︃ 
B
F p∗ dν

)︃1/p∗

,

(3.9)

where γ := η
p−1 = p′ · n+εp

n+sp+εp < p′ and θ := s−ε(p−1)
n+εp .

Remark 3.5. If a ≡ 0 one can see from careful inspection of the proofs they need not assume
u ∈ L∞(Rn) in Proposition 3.3 and Corollary 3.4.1.

4. Proof of the Level Set Estimate

We are now ready to state and prove the level set estimate. It is stated precisely in Proposition
4.1 below, and this section is devoted to its proof. We first define the following: using the notation
of Corollary 3.4.1, for any x0 ∈ Rn and R > 0 set

(4.1) Θ(x0, R) := Υ0(x0, R) + Tail(x0, R) + Ψ1(x0, R) ,

where

Υ0(x0, R) :=

(︄ 
B(x0,R)

F p∗+δf dν

)︄1/(p∗+δf )

, with δf ∈ (0, δ0) to be determined,

Tail(x0, R) :=
∞∑︂
k=0

2
−k( tq

p−1
−s−ε)

(︄ 
B(x0,2kR)

Hγ dν

)︄1/γ

,

(4.2)

and, for any constant M ≥ 1,

(4.3) ΨM (x0, R) :=

(︄ 
B(x0,R)

Hp′ dν

)︄1/p′

+M
[ν(B(x0, R))]θ

ε1/p∗−1/p′

(︄ 
B(x0,R)

F p∗ dν

)︄1/p∗

;

we write ΨM with M = 1 as Ψ1.

Proposition 4.1. Assume (A1), (A2), and (A3). Assume that ε > 0 satisfies

(A4) ε ∈ (0, s/p) , ε < s

(︃
tq

sp
− 1

p′

)︃
, ε < 1− s .

Let u ∈ W s,p(Rn) ∩ L∞(Rn) be a bounded weak solution to (1.1), and let f ∈ Lp∗+δ0(Rn) for given
δ0 > 0. Let U and F be as in (3.4). Let B(x0, ϱ0) ⊂ R2n with 0 < ϱ0 ≤ 1, and let α and β be such
that ϱ0 < β < α < 3

2ϱ0 so that we have

B(x0, ϱ0) ⊂ B(x0, β) ⊂ B(x0, α) ⊂ B
(︁
x0,

3

2
ϱ0
)︁
.

Then there exist constants Cα = Cα(data) > 0, Cf = Cf (data, ε) ≥ 1 and κf = κf (data, ε) ∈
(0, 1), with positive constants

(4.4) ϑ :=
3(p′ − γ)

γ
, ϑf := (p∗ + δf )

(︃
p∗θ

1− p∗θ

)︃
, ˜︁ϑf :=

p∗(1 + θδf )

1− p∗θ
,



LEVEL SET ESTIMATE 9

such that

(4.5)
1

λp′

ˆ
B(x0,β)∩{H>λ}

Hp′ dν ≤ Cα

εϑλγ

ˆ
B(x0,α)∩{H>λ}

Hγ dν +
Cfλ

ϑf

0

λ
˜︁ϑf

ˆ
B(x0,α)∩{F>κfλ}

F p∗ dν

for every λ ≥ λ0, where λ0 is defined as

(4.6) λ0 :=
Ca

ε

(︃
ϱ0

α− β

)︃2n+p

Θ(x0, 2ϱ0) ,

and where Ca = Ca(data) and Θ has been defined in (4.1). (see also (4.2) and (4.3)).

For p = 2, this proposition is proved in Section 5 of [4]. Our proof is essentially the same as
the proof found in [4]. However, we are writing the proof to make sure that the choice of the other
parameters in (4.4) are correctly made and to emphasize the robustness of the arguments in [4] and
how they can be used for more general nonlinear operators. As it has been explained in [4], the
main difficulty in proving (4.5) is that the reverse Hölder inequality (3.9) only holds on diagonal
balls of the type B(x0, x0, R). Thus maximal function arguments cannot be used, and we must
resort to more direct arguments. We use a Calderón-Zygmund decomposition to decompose the
level set {H > λ} into dyadic cubes. These cubes are then sorted into cubes situated on or near the
diagonal (called “diagonal” cubes) and cubes far from the diagonal (called “off-diagonal” cubes).
What is meant by “far from” will be quantified below. The level set estimate for the diagonal
cubes are handled using the reverse Hölder inequality (3.9). It turns out that Sobolev functions
automatically satisfy a type of reverse Hölder inequality on off-diagonal cubes, and we use this to
obtain the level set estimate for said cubes.

4.1. Vitali Covering. Just as in [4], we begin with an exit-time argument. The goal is to cover
the portion of the set {H > λ} that lies on or near the diagonal {(x, x) : x ∈ Rn}. Let κ ∈ (0, 1]
be a constant that will be chosen later, in (4.64); all arguments in the paper up until then are
independent of the choice of κ. Define

(4.7) λ1 :=
1

κ
sup

α−β
40n

≤R≤ ϱ0
2

sup
x∈B(x0,β)

{ΨM (x,R) + Υ0(x,R) + Tail(x,R)} .

For the same κ and for λ ≥ λ1, define the “diagonal” level set of the functional ΨM by

(4.8) Dκλ :=

⎧⎨⎩(x, x) ∈ B(x0, β) : sup
0<R<α−β

40n

ΨM (x,R) > κλ

⎫⎬⎭ .

Then by definition of λ1 we have

(4.9) ΨM (x,R) ≤ κλ1 ≤ κλ , for each (x, x) ∈ B(x0, β) , R ∈
[︃
α− β

40n
,
ϱ0
2

]︃
,

and so it follows that for every (x, x) in the diagonal level set Dκλ there exists an exit time

R(x) ∈ (0, α−β
40n ) such that

(4.10) ΨM (x,R(x)) ≥ κλ while at the same time sup
R(x)<R<α−β

40n

ΨM (x,R) ≤ κλ .

Thus the collection {B(x, 2R(x))} forms a cover of Dκλ, so by the Vitali covering theorem we can
find a countable subcollection {B(xj , 2R(xj))} such that

(4.11)
⋃︂

(x,x)∈Dκλ

B(x, 2R(x)) ⊂
⋃︂
j

B(xj , 10R(xj)) , B(xj , 2R(xj)) are mutually disjoint .
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We hereafter use the abbreviations

(4.12) Bj := B(xj , R(xj)) , σBj := B(xj , σR(xj)) , σ > 0 .

The quantity
∑︁

ν(Bj) is treated by the diagonal estimates in the next section. Note that since

xj ∈ B(x0, β) and R(xj) ≤ α−β
40n we have 10Bj ⊂ B(x0, α) for every j. By (4.10) and by the doubling

property of the measure ν in (3.2) we also have

(4.13)
∑︂
j

ˆ
10Bj

Hp′ dν ≤
∑︂
j

ν(10Bj)[ΨM (xj , 10R(xj))]
p′ ≤ 10n+εpκp

′
λp′
∑︂
j

ν(Bj) .

4.2. Analysis On the Diagonal. By (4.10) it follows that at least one of two inequalities hold:
either

(4.14)

(︄ 
Bj

Hp′ dν

)︄1/p

≥ κλ

2

or

(4.15)
M [ν(Bj)]

θ

ε1/p∗−1/p′

(︄ 
Bj

F p∗ dν

)︄1/p∗

≥ κλ

2
.

Case 1: If (4.14) occurs, then by the Reverse Hölder inequality (3.9)
(4.16)

κλ ≤ C

σε1/γ−1/p′

(︄ 
4Bj

Hγ dν

)︄1/γ

+
σ

ε1/γ−1/p′

∞∑︂
k=0

αk

(︄ 
2k+2Bj

Hγ dν

)︄1/γ

+
C[ν(Bj)]

θ

ε1/p∗−1/p′

(︄ 
4Bj

F p∗ dν

)︄1/p∗

,

where σ ∈ (0, 1] has yet to be chosen and C = C(data). Choose the unique m ∈ Z+ such that

2−mϱ0 ≤ R(xj) < 2−m+1ϱ0. Since R(xj) <
α−β
40n and 0 < α − β < ϱ0/2, we have m ≥ 3. Further,

α−β
40n ≤ ϱ0

2·40n ≤ 2m−1R(xj), so by (4.7)

(4.17) Υ0(xj , 2
m−1R(xj)) + Tail(xj , 2

m−1R(xj)) ≤ κλ1 .

This allows us to estimate Tail. The first m− 2 terms can be handled by the exit-time condition
(4.10); that is,

(4.18)

(︄ 
2kBj

Hγ dν

)︄1/γ

≤ κλ if 1 ≤ k ≤ m− 2 .
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Then by (4.17) and (4.18), and recalling that αk = 2
−k( tq

p−1
−s−ε)

,

∞∑︂
k=0

αk

(︄ 
2k+2Bj

Hγ dν

)︄1/γ

=
1

α2

∞∑︂
k=2

αk

(︄ 
2kBj

Hγ dν

)︄1/γ

=
1

α2

m−2∑︂
k=2

αk

(︄ 
2kBj

Hγ dν

)︄1/γ

+
1

α2

∞∑︂
k=0

αk+m−1

(︄ 
2k+m−1Bj

Hγ dν

)︄1/γ

≤ 1

α2

[︄
κλ

m−2∑︂
k=2

αk + αm−1Tail(xj , 2
m−1R(xj))

]︄

≤ 1

α2

[︄
κλ

m−2∑︂
k=2

αk + αm−1κλ1

]︄

≤ κλ
∞∑︂
k=0

αk ≤ 4
tq

p−1
−s−ε

κλ

( tq
p−1 − s− ε) ln(2)

≤ 4qκλ

s(p′ − 1)( tqsp − 1
p′ ) ln(2)

:= C1κλ ,

(4.19)

where in the last line we used (2.1) and the bound ε < s( tqsp −
1
p′ ) in (A4). The constant C1 depends

only on data. Now using the fact that m ≥ 3 we gain that 2R(xj) ≤ 1
2ϱ0, so by the exit-time

condition (4.10)

(4.20)
C[ν(Bj)]

θ

ε1/p∗−1/p′

(︄ 
4Bj

F p∗ dν

)︄1/p∗

≤ C
ΨM (xj , 2R(xj))

M
≤ C2κλ

M
, C2 = C2(data) .

Combining (4.19) and (4.20) in (4.16) gives

(4.21) κλ ≤ C

σε1/γ−1/p′

(︄ 
4Bj

Hγ dν

)︄1/γ

+
C1σκλ

ε1/γ−1/p′
+

C2κλ

M
.

Now we choose σ ∈ (0, 1) and M ≥ 1, and absorb the last two terms. We set

(4.22) σ :=
ε1/γ−1/p′

4C1
, M := 4C2 ,

and so we have for C = C(data)

(4.23) κλ ≤ C

ε2/γ−2/p′

(︄ 
4Bj

Hγ dν

)︄1/γ

⇒ ν(Bj) ≤
C

ε2−(2γ)/p′(κλ)γ

ˆ
4Bj

Hγ dν .

Now, let ˜︁κ > 0 be a constant, to be fixed in a moment. Using the doubling property (3.2),

C

ε2−(2γ)/p′(κλ)γ

ˆ
4Bj

Hγ dν ≤ C

ε2−(2γ)/p′(κλ)γ

ˆ
4Bj∩{H≤˜︁κκλ}Hγ dν +

C

ε2−(2γ)/p′(κλ)γ

ˆ
4Bj∩{H>˜︁κκλ}Hγ dν

≤ C3ν(Bj)˜︁κγ
ε2−(2γ)/p′

+
C3

ε2−(2γ)/p′(κλ)γ

ˆ
4Bj∩{H>˜︁κκλ}Hγ dν ,

(4.24)

where C3 = C3(data). Choose

(4.25) ˜︁κ =
ε2/γ−2/p′

(2C3)1/γ
,
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and then substituting (4.24) into (4.23)2 and absorbing the term gives

(4.26) ν(Bj) ≤
C4

ε2−2γ/p′κγλγ

ˆ
4Bj∩{˜︁κκλ}H

γ dν , C4 = C4(data) .

Case 2: If (4.15) occurs then(︃
κλ

2

)︃p∗

≤ Mp∗ [ν(Bj)]
p∗θ−1

ε1−p∗/p′

ˆ
Bj

F p∗ dν ,

which implies

(4.27) ν(Bj) ≤
(︃

2M

ε1/p∗−1/p′κλ

)︃p∗/(1−p∗θ)
(︄ˆ

Bj

F p∗ dν

)︄1/(1−p∗θ)

where we used the inequality p∗θ < 1 which follows from the definition of θ that p∗θ ≤ nsp
(n+sp)(n+εp) <

p
p+1 . Moreover, since p ≥ 2, we have that 3 ≤ 1

1−p∗θ
= 1+ p∗θ

1−p∗θ
. This decomposition of the exponent

will allow us to incorporate the level set of F in the integrand, and then remove the exponent on
the integral. To that end, with a constant ˆ︁κ ∈ (0, 1) to be determined, we split the integral as

(4.28)

(︄ˆ
Bj

F p∗ dν

)︄ 1
1−p∗θ

≤

(︄ˆ
Bj∩{F>ˆ︁κκλ} F p∗ dν + (ˆ︁κκλ)p∗ν(Bj)

)︄ 1
1−p∗θ

.

Now, since ϱ0 ≤ 1,

ν(B(x0, 2ϱ0) ≤
C(n)2n+εp

ε
:= L = L(n, p, ε) .

Then by noting that Bj ⊂ B(x0, 2ϱ0) we can estimate

[ν(Bj)]
1

1−p∗θ ≤ [ν(B(x0, 2ϱ0))]
p∗θ

1−p∗θ ν(Bj) ≤ L
p∗θ

1−p∗θ ν(Bj) .

Then using the elementary inequality (a+ b)r ≤ 2r−1(ar + br) for any r ≥ 1 in (4.28) and using the

estimate above for [ν(Bj)]
1/(1−p∗θ) we have(︄ˆ

Bj

F p∗ dν

)︄ 1
1−p∗θ

≤ 2p∗θ/(1−p∗θ)

(︄ˆ
Bj∩{F>ˆ︁κκλ} F p∗ dν

)︄ 1
1−p∗θ

+ (2(L+ 1))
p∗θ

1−p∗θ (ˆ︁κκλ) p∗θ
1−p∗θ ν(Bj) .

(4.29)

Combining (4.27) and (4.29), and using that θ ≤ 1,

ν(Bj) ≤
(︃

22M

ε1/p∗−1/p′κλ

)︃p∗/(1−p∗θ)
(︄ˆ

Bj∩{F>ˆ︁κκλ} F p∗ dν

)︄1/(1−p∗θ)

+

(︃
22M(L+ 1)ˆ︁κ
ε1/p∗−1/p′

)︃p∗/(1−θp∗)

ν(Bj) .

Now set ˆ︁κ ∈ (0, 1) to satisfy

(4.30)

(︃
4M(L+ 1)ˆ︁κ
ε1/p∗−1/p′

)︃p∗/(1−p∗θ)

≤ 1

2
⇒ ˆ︁κ ≤

(︃
1

2

)︃(1−p∗θ)/p∗ ε1/p∗−1/p′

4M(L+ 1)
.

Then

ν(Bj) ≤ 2

(︃
4M

ε1/p∗−1/p′κλ

)︃ p∗
1−p∗θ

(︄ˆ
Bj∩{F>ˆ︁κκλ} F p∗ dν

)︄ 1
1−p∗θ

.
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Writing
(︂´

Bj∩{F>ˆ︁κκλ} F p∗ dν
)︂ 1

1−p∗θ =
(︂´

Bj∩{F>ˆ︁κκλ} F p∗ dν
)︂(︂´

Bj∩{F>ˆ︁κκλ} F p∗ dν
)︂ p∗θ

1−p∗θ let us trans-

fer some of the “decay” from the integrand to the cutoff λ0, and in so doing remove the exponent
from the integral.ˆ

Bj∩{F>ˆ︁κκλ} F p∗ dν ≤ (ˆ︁κκλ)p∗ ˆ
Bj∩{F>ˆ︁κκλ}

(︃
Fˆ︁κκλ
)︃p∗+δf

dν

≤ ν(2m−1Bj)

(ˆ︁κκλ)δf
 
2m−1Bj

F p∗+δf dν

≤ ν(B(x0, 2ϱ0))
(ˆ︁κκλ)δf [Υ0(xj , 2

m−1R(xj))]
p∗+δf ≤ Lλ

p∗+δf
1

(ˆ︁κκλ)δf .

Therefore, powering the above inequality by p∗θ
1−p∗θ

on both sides we obtain that

(4.31) ν(Bj) ≤
C5λ

(p∗+δf )θp∗/(1−p∗θ)
1

(ˆ︁κκλ)(1+θδf )p∗/(1−p∗θ)

ˆ
Bj∩{F>ˆ︁κκλ} F p∗ dν ,

where

(4.32) C5 := 2

(︃
4M(L+ 1)

ε1/p∗−1/p′

)︃p∗/(1−p∗θ)

.

Combining (4.26) and (4.31),

ν(Bj) ≤
C4

ε2−2γ/p′κγλγ

ˆ
4Bj∩{H>˜︁κκλ}Hγ dν +

C5λ
ϑf

1

(ˆ︁κκλ)˜︁ϑf

ˆ
Bj∩{F>ˆ︁κκλ} F p∗ dν ,

and since {Bj} is a disjoint collection whose members are all contained in B(x0, α) we have

(4.33)
∑︂
j

ν(Bj) ≤
C4

ε2−2γ/p′κγλγ

ˆ
B(x0,α)∩{H>˜︁κκλ}Hγ dν +

C5λ
ϑf

1

(ˆ︁κκλ)˜︁ϑf

ˆ
B(x0,α)∩{F>ˆ︁κκλ} F p∗ dν ,

where the constants C4 = C4(data), C5(data, ε), ˜︁κ and ˆ︁κ have been chosen to satisfy (4.26), (4.32),
(4.25) and (4.30) respectively. The constant κ ∈ (0, 1] defined in (4.64) will be fixed in the course
of the off-diagonal estimates below.

4.3. Analysis Off the Diagonal. The analysis far from the diagonal is much more technical.
We begin with defining the collections of dyadic cubes and summarizing their properties that will
be used repeatedly. We then define two dimensional constants that will be used throughout the
analysis of cubes far from the diagonal. In Section 4.3.3 we recall the classical Calderón-Zygmund
decomposition and adapt it to decompose the level set {H > λ} into the aforementioned dyadic
cubes. In Section 4.3.4 we analyze the cubes near the diagonal and show they can be covered
by the collection {Bj}. In the remaining sections we treat the cubes far from the diagonal using
the “almost-reverse” Hölder inequality in Lemma 4.6, a careful choice of the constant κ, and
combinatorial information about the cubes coming from their size and distance from the diagonal.

4.3.1. Dyadic Cubes. The following contains information regarding cubes arising from a Calderón-
Zygmund decomposition of Euclidean space. The dyadic cubes considered here are centered at x0
and their size has been changed so as to be compatible with the starting ball B(x0, β). We will
consider cubes with side length 2−k for integers k ≥ k0, where

(4.34) k0 :=

⌊︃
− log2

(︃
α− β

n40n+1

)︃⌋︃
+ 1 .
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Here, ⌊·⌋ denotes the floor function. For each k ≥ k0, let Ck be the disjoint collection of half-open
cubes in Rn centered at x0 with side length 2−k whose closures intersect B(x0,

1
2(α− β)). That is,

Ck := {x0 + 2−kz + [0, 2−k)n : z ∈ Zn , (x0 + 2−kz + [0, 2−k)n) ∩B(x0,
1

2
(α− β)) ̸= ∅} .

Then by (4.34) we have

(4.35) B(x0, β) ⊂
⋃︂

K∈Ck

K ⊂ B(x0, α) .

Note that every cube K ∈ Ck+1 has a unique “predecessor” ˜︁K ∈ Ck such that K ⊂ ˜︁K. With these
cubes, we can define dyadic cubes on R2n, denoted by

(4.36) ∆k := {K := K1 ×K2 : K1,K2 ∈ Ck} , ∆ :=
⋃︂
k≥k0

∆k .

Denote the diagonal cubes ∆d
k := {K ×K : K ∈ ∆k}. Then

B(x0, β) ⊂
⋃︂

K∈∆k

K ⊂ B(x0, α) .

Note that these product cubes in R2n satisfy all of the same properties as the cubes. Numerous
times a cube K ∈ ∆ will be given; there exists K1, K2 ∈ Ck such that K = K1×K2, and we denote

k(K) = k .

We denote the cube projections for a cube K = K1 ×K2 by

π1K := K1 ×K1 , and π2K := K2 ×K2 .

Proposition 4.2. Let K = K1 ×K2 ∈ ∆. The following hold:

• π1K, π2K ∈ ∆.
• ν(π1K) = ν(π2K) and k(K) = k(π1K) = k(π2K).
• If H ∈ ∆ and H ⊂ K, then k(K) ≤ k(H).

• If ˜︁K = ˜︁K1 × ˜︁K2 is the predecessor of K, then

(4.37) dist( ˜︁K1, ˜︁K2) ≤ dist(K1,K2) .

• The following hold:

(4.38) dist(K1,K2) =
1√
2
dist(π1K, π2K) .

(4.39) dist(K,diag) =
1√
2
dist(K1,K2) =

1

2
dist(π1K, π2K) .

Note that for two sets A1 and A2 ⊂ R2n the definition of dist(A1,A2) uses the traditional
Euclidean norm.

4.3.2. Two Dimensional Constants. In the analysis that follows we will often compare the sizes of
the cubes with their distance to the diagonal. This leads us to define two dimensional constants
independent of ε that will be used repeatedly. The existence of these constants follows from
geometric arguments.
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Lemma 4.3. There exists a constant Cdd depending only on n such that for h ∈ {1, 2}
(4.40)

Cdd ≥ sup
K∈∆

{︄
1

ε

(︃
dist(K1,K2)

2−k

)︃n−εp ν(K)

ν(πhK)

}︄
+ sup

K∈∆
dist(K1,K2)≥2−k

{︄
ε

(︃
dist(K1,K2)

2−k

)︃εp−n ν(πhK)

ν(K)

}︄
,

where k = k(K).

Proof. Without loss of generality assume dist(K1,K2) > 0. By definition of ν

ν(πhK) ≥ C(n)(2−k)n+εp

ε
, while ν(K) ≤ 2(−k)2n

dist(K1,K2)n−εp
.

Thus the first quantity is bounded;

1

ε

(︃
dist(K1,K2)

2−k

)︃n−εp ν(K)

ν(πhK)
≤ C(n) .

On the other hand, if x ∈ K1 and y ∈ K2 then

dist(K1,K2) ≤ |x− y| ≤ dist(K1,K2) + 2
√
n(2−k)

≤ 2
√
n(dist(K1,K2) + 2−k) .

Thus by definition of ν

ν(K) ≥ (2−k)2n

(2
√
n)n−εp(dist(K1,K2) + 2−k)n−εp

.

Since

ν(πhK) =
C(n)

ε
(2−k)n+εp ,

we have

ε

(︃
dist(K1,K2)

2−k

)︃εp−n ν(πhK)

ν(K)
≤ c(n)

(︃
dist(K1,K2)

2−k

)︃εp−n (dist(K1,K2) + 2−k)n−εp

(2−k)n−εp

≤ c(n)

(︃
dist(K1,K2)

2−k

)︃εp′−n (dist(K1,K2))
n−εp

(2−k)n−εp
≤ C(n) ,

where in the second inequality we used that dist(K1,K2) ≥ 2−k. Thus the second term is bounded
by a dimensional constant as well, and so (4.40) holds for some constant Cdd depending only on
n. □

Lemma 4.4. There exists a constant Cddd depending only on n such that

(4.41) sup

{︄
ν(˜︁K)

ν(K)
: ˜︁K is the predecessor of K , dist(˜︂K1, ˜︂K2) ≥ 2−k(K)

}︄
≤ Cddd .

Proof. The triangle inequality gives

(4.42) |x− y| ≤ 2
√
n2−k(K)+1 + dist(˜︂K1, ˜︂K2) ≤ 8

√
n dist(˜︂K1, ˜︂K2) ,

whenever x ∈ K1, y ∈ K2 and dist(˜︂K1, ˜︂K2) ≥ 2−k(K). Therefore,

ν(˜︁K) ≤ dist(˜︂K1, ˜︂K2)
−n−εp|˜︂K1||˜︂K2|

= 4n dist(˜︂K1, ˜︂K2)
−n−εp

ˆ
K1

ˆ
K2

dx dy

(4.42)

≤ 4n8
√
n

ˆ
K1

ˆ
K2

1

|x− y|n−εp
dx dy = C(n)ν(K) .
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□

4.3.3. Calderón-Zygmund Covering and Sorting of Dyadic Cubes. Here we write down a version
of the classical Calderón-Zygmund decomposition adapted for use in our context. The proof is
virtually identical to the classical proof, taking into account that the measure is doubling and
absolutely continuous with respect to Lebesgue measure; see [4, 12].

Theorem 4.5. Let Q0 ⊂ R2n be a cube and let V ≥ 0 be a function in L1(Q0). Let ˜︁λ be a number
such that  

Q0

V dν ≤ ˜︁λ .

Then there exists a collection of at most countable cubes {Qi} that are pairwise disjoint with sides
parallel to those of Q0 such that

˜︁λ <

 
Qi

V dν and

 
˜︁Qi

V dν ≤ ˜︁λ for every Qi ,

where ˜︁Qi is the predecessor of Qi, and

V ≤ ˜︁λ almost everywhere in Q0 \
⋃︂
i

Qi .

We will use this theorem to cover the level set of H. Define

(4.43) λ2 := max

{︄
λ1, sup

K∈∆k0

(︃ 
K
Hp′ dν

)︃1/p′
}︄

.

Recall that λ1 and k0 have been defined in (4.7) and (4.34) respectively. Note that by (4.35) the
cubes {K}K∈∆k0

cover B(x0, β). For λ ≥ λ2 apply Theorem 4.5 with Q0 = K0 for each and every

cube K0 ∈ ∆k0 . We obtain a pairwise disjoint family of cubes Qi(K0) such that

(4.44) λp′ <

 
Qi(K0)

Hp′ dν and

 
˜︁Qi(K0)

Hp′ dν ≤ ˜︁λp′ for every Qi(K0) ,

where ˜︁Qi(K0) denotes the predecessor of Qi(K0), and

H ≤ λ a.e. in K0 \
⋃︂
i

Qi(K0) .

Thus, we get a countable collection of disjoint dyadic cubes

Hλ :=
⋃︂

K0∈∆k0

{Qi(K0)} = {K}

that satisfy

(4.45) λp′ <

 
K
Hp′ dν and

 
˜︁K Hp′ dν ≤ λp′ for every K ∈ Hλ

where ˜︁K denotes the predecessor of K and such that

(4.46) H ≤ λ a.e. in B(x0, α) \
⋃︂

K∈Hλ

K .
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4.3.4. Nearly Diagonal Cubes. It turns out that the cubes whose distance to the diagonal is smaller
than their size can be covered by diagonal balls Bj chosen in the exit-time argument above, see
(4.10)-(4.11). This leaves us to deal with the cubes that are “far” from the diagonal in the next
section.

To begin, we define the family of “nearly diagonal” cubes

Hd
λ := {K ∈ Hλ : dist( ˜︁K1, ˜︁K2) < 2−k(K) , ˜︁K = ˜︁K1 × ˜︁K2 is the predecessor of K} .

With K ∈ Hd
λ, let (˜︁x, ˜︁x) ∈ Diag such that dist((˜︁x, ˜︁x), ˜︁K) = dist(Diag, ˜︁K) and a diagonal ball B(˜︁x,R)

such that

R ≥ 5
√
n

2
dist( ˜︁K1, ˜︁K2) + 5

√
n2−k(K)+1 .

Using (4.39) for ˜︁K, it follows that ˜︁K ⊂ B(˜︁x,R). Thus, the diagonal ball B ≡ B(˜︁x, 24√n2−k(K))
satisfies B ⊂ K. Now note that by (3.3) in Theorem 3.1 there exists a constant Cd = Cd(n, p) such
that

1 ≤ ν(B)
ν(K)

≤ Cd

ε
.

Thus if K ∈ Hd
λ then the lower bound in (4.45) gives

λp′ <

 
K
Hp′ dν ≤ ν(B)

ν(K)

 
B
Hp′ dν ≤ Cd

ε

 
B
Hp′ dν .

By choosing the number κ ∈ (0, 1] introduced in (4.7) to satisfy

(4.47) κ ∈ (0, κ0] , κ0 :=
ε1/p

′

(2Cd)1/p
′ ,

we have therefore proved that

For every K ∈ Hd
λ there exists BK = BK ×BK such that κp

′
λp′ <

 
BK

Hp′ dν with K ⊂ BK .

Denote the center of BK by ˜︁x. Then by the choice (4.34) for the lower bound on k(K), it follows

that the radius of the ball B ≡ B(˜︁x, 24√n2−k(K)) is smaller than α−β
40n . Therefore we can apply

the exit time condition (4.10) to obtain that (˜︁x, ˜︁x) ∈ Cκλ and then BK ⊂ B(˜︁x,R(˜︁x)). By (4.11) it
follows that

(4.48)
⋃︂

K∈Hd
λ

K ⊂
⋃︂
j

10Bj .

4.3.5. Off-Diagonal Reverse Hölder Inequalities. Since the nearly diagonal cubes Hd
λ have been

covered by the diagonal cover, we need only consider the off-diagonal cubes

(4.49) Hnd
λ := {K ∈ Hλ : dist( ˜︁K1, ˜︁K2) ≥ 2−k(K) , ˜︁K = ˜︁K1 × ˜︁K2 is the predecessor of K} .

By (4.37) we also have

dist(K1,K2) ≤ 2−k(K) for every K ∈ Hnd
λ .

Our objective now is to categorize and estimate sums of the measures of cubes in Hnd
λ . We will

use the following lemma to do so. This lemma states that for off-diagonal cubes an “almost reverse
Hölder inequality” holds automatically regardless of whether the function u solves an equation.
However, diagonal cubes appear in the estimate, which must be treated by a combinatorial argument
in subsequent sections.



18 TADELE MENGESHA AND JAMES M. SCOTT

Lemma 4.6. Let k ≥ k0 and let K = K1×K2 ∈ ∆k. Then there exists a constant Cnd = Cnd(data)
independent of ε such that if dist(K1,K2) ≥ 2−k then

(︃ 
K
Hp′ dν

)︃1/p′

≤ Cnd

(︃ 
K
Hγ dν

)︃1/γ

+
Cnd

ε1/γ

(︃
2−k

dist(K1,K2)

)︃(p−1)(s+ε)
[︄(︃ 

π1K
Hγ dν

)︃1/γ

+

(︃ 
π2K

Hγ dν

)︃1/γ
]︄
,

(4.50)

with γ defined as in Corollary 3.4.1. In particular, (4.50) holds whenever K ∈ Hnd
λ .

Proof. First, there exist x1 ∈ K1 and y1 ∈ K2 such that dist(K1,K2) = |x1 − y1|. Then for any
(x, y) ∈ K,

|x− y| ≤ dist(K1,K2) + |x1 − x|+ |y1 − y|

≤ dist(K1,K2) + 2
√
n2−k

≤ 3
√
n dist(K1,K2) ,

since dist(K1,K2) ≥ 2−k. Therefore,

(4.51) 1 ≤ |x− y|
dist(K1,K2)

≤ 3
√
n for all (x, y) ∈ K ;

the first inequality is a consequence of the definition of dist(K1,K2). Next, by definition of ν we
have

(4.52)
1

C(n, p)

4−nk

dist(K1,K2)n−εp
≤ ν(K) ≤ C(n, p)

4−nk

dist(K1,K2)n−εp
.

We therefore have, using (4.51) and (4.52),(︃ 
K
Hp′ dν

)︃1/p′

=

(︃
1

ν(K)

ˆ
K1

ˆ
K2

|u(x)− u(y)|p

|x− y|n+sp
+ a(x, y)

|u(x)− u(y)|q

|x− y|n+tq
dy dx

)︃1/p′

≤ C

[︃(︄
dist(K1,K2)

n−εp−(n+sp)

4−nk

ˆ
K1

ˆ
K2

|u(x)− u(y)|p dy dx

)︄

+

(︄
dist(K1,K2)

n−εp−(n+tq)

4−nk

ˆ
K1

ˆ
K2

|u(x)− u(y)|q dy dx

)︄]︃1/p′
≤ C dist(K1,K2)

−(p−1)(s+ε)

[︃ 
K1

 
K2

|u(x)− u(y)|p dy dx

+ dist(K1,K2)
sp−tq

 
K1

 
K2

|u(x)− u(y)|q dy dx
]︃1/p′

,

(4.53)

where C = C(data). Using (4.35) we can estimate

dist(K1,K2)
sp−tq ≤ (2α)sp−tq ≤ (3ϱ0)

sp−tq ≤ 3sp−tq ≡ C(data) ,

and we also have 
K1

 
K2

|u(x)− u(y)|q dy dx ≤ (2 ∥u∥L∞(Rn))
q−p

 
K1

 
K2

|u(x)− u(y)|p dy dx

≤ C(data)

 
K1

 
K2

|u(x)− u(y)|p dy dx .
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Combining these two estimates with (4.53) yields

(4.54)

(︃ 
K
Hp′ dν

)︃1/p′

≤ C dist(K1,K2)
−(p−1)(s+ε)

(︃ 
K1

 
K2

|u(x)− u(y)|p dy dx
)︃1/p′

,

where C = C(data). Now, using Minkowski’s inequality,(︃ 
K1

 
K2

|u(x)− u(y)|p dy dx
)︃1/p

≤
(︃ 

K1

|u(x)− (u)K1 |p dx
)︃1/p

+

(︃ 
K2

|u(x)− (u)K2 |p dx
)︃1/p

+ |(u)K1 − (u)K2 | .

Then using the Sobolev embedding theorem in Lemma 3.2 adapted for U and ν and applied to
cubes, we have(︃ 

Kh

|u(x)− (u)K1 |p dx
)︃1/p

≤ C2−k(s+ε)

ε1/η

(︃ 
πhK

Uη dν

)︃1/η

, h ∈ {1, 2} , C = C(n, s, p) .

Next, using Hölder’s inequality and repeatedly using (4.51) and (4.52),

|(u)K1 − (u)K2 | ≤
 
K1

 
K2

|u(x)− u(y)|dy dx

≤
(︃ 

K1

 
K2

|u(x)− u(y)|η dy dx
)︃1/η

≤ C

(︃
1

dist(K1,K2)n−εpν(K)

ˆ
K1

ˆ
K2

|u(x)− u(y)|η dy dx
)︃1/η

≤ C

(︃ 
K
|u(x)− u(y)|η dν

)︃1/η

≤ C dist(K1,K2)
s+ε

(︃ 
K
Uη dν

)︃1/η

,

where C = C(data). Combining the three above inequalities with (4.54) and using the inequality
(a+ b+ c)r ≤ 3r−1(ar + br + cr) valid for r ≥ 1 and a, b, c ≥ 0 gives(︃ 

K
Hp′ dν

)︃1/p′

≤ Cnd

(︃ 
K
Uη dν

)︃(p−1)/η

+
Cnd

ε(p−1)/η

(︃
2−k

dist(K1,K2)

)︃(p−1)(s+ε)
[︄(︃ 

π1K
Uη dν

)︃(p−1)/η

+

(︃ 
π2K

Uη dν

)︃(p−1)/η
]︄
.

To see that (4.50) follows, recall that γ = η
p−1 and that by definition Uη ≤ Hγ pointwise. □

Note that this lemma holds for all functions u ∈ W s,p(Rn) ∩ L∞(Rn) and for every integer k,
and in the case a ≡ 0 it holds for every u ∈ W s,p(Rn). We now apply it in order to begin the level
set estimate.

Corollary 4.6.1. Let k ≥ k0 be an integer, and suppose that K ∈ ∆k satisfies dist(K1,K2) ≥ 2−k.
Assume that (︃ 

K
Hp′ dν

)︃1/p′

≥ λ ,

and that the constant κ introduced in (4.7) satisfies

(4.55) κ ∈ (0, κ1] , κ1 :=
ε1/γ

21/γ3Cnd
,
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where Cnd ≡ Cnd(data) has been defined in Lemma 4.6. Then

ν(K) ≤
3γCγ

nd

λγ

ˆ
K∩{H>κλ}

Hγ dν

+
3γCγ

nd

ελγ

(︃
2−k

dist(K1,K2)

)︃η(s+ε)
[︄

ν(K)

ν(π1K)

ˆ
π1K∩{H>κλ}

Hγ dν +
ν(K)

ν(π2K)

ˆ
π2K∩{H>κλ}

Hγ dν

]︄
.

(4.56)

In particular, (4.56) holds whenever K ∈ Hnd
λ .

Proof. Applying the inequality (a+ b+ c)r ≤ 3r−1(ar + br + cr) to the conclusion (4.50) in Lemma
4.6 and recalling that (p− 1)γ = η, we get

λγ

3γ−1Cγ
nd

≤
 
K
Hγ dν +

1

ε

(︃
2−k

dist(K1,K2)

)︃η(s+ε)(︃ 
π1K

Hγ dν +

 
π2K

Hγ dν

)︃
.(4.57)

To estimate the integrals on the right-hand side, we use (4.55) to get 
E
Hγ dν ≤ κγ1λ

γ +
1

ν(E)

ˆ
E∩{H>κλ}

Hγ dν

for E ∈ {K, π1K, π2K}, and therefore

λγ

3γ−1Cγ
nd

≤ 3κγ1λ
γ

ε
+

1

ν(K)

ˆ
K∩{H>κλ}

Hγ dν

+
1

ε

(︃
2−k

dist(K1,K2)

)︃η(s+ε)
[︄

1

ν(π1K)

ˆ
π1K∩{H>κλ}

Hγ dν +
1

ν(π2K)

ˆ
π2K∩{H>κλ}

Hγ dν

]︄
.

Now the estimate (4.56) follows by using (4.55) in the above estimate and absorbing terms. □

4.3.6. Collections of Off-Diagonal Cubes. We now split the collection Hnd
λ into collections where

the average of Hγ is large and where the average of Hγ is small. The splitting is chosen based on
the first exit-time argument.

Consider

(4.58) G h
λ :=

{︃
K ∈ Hnd

λ :

 
πhK

Hγ dν ≤ (10n)n+pκγλγ

}︃
and

(4.59) Bh
λ :=

{︃
K ∈ Hnd

λ :

 
πhK

Hγ dν > (10n)n+pκγλγ

}︃
for h ∈ {1, 2} and κ and γ introduced in (4.7) and Corollary 3.4.1 respectively. We further define

Gλ := G 1
λ ∩ G 2

λ , and Bλ := B1
λ ∪ B2

λ .

We further split the set Bλ in order to remove cubes that are already covered by the diagonal balls
in (4.10)-(4.11):

(4.60) Bλ,d :=

⎧⎨⎩K ∈ Bλ : K ⊂
⋃︂
j

10Bj

⎫⎬⎭ , Bλ,nd := Bλ \ Bλ,d .

Thus we have the decomposition into disjoint families

Hnd
λ = Gλ ∪ Bλ,d ∩ Bλ,nd .



LEVEL SET ESTIMATE 21

It turns out that the family Gλ is “good” in the sense that the measures of cubes in this
collection are estimated by the µ-measure of the level set {H > κλ}, where dµ := Hp′dν. The

cubes belonging to Bλ,nd are “bad” because there is no available control of the size of Hp′ on
diagonal cubes via the exit-time argument. They will instead be dealt with using combinatorial
arguments, and the cutoff (10n)n+pκγλγ is chosen for precisely this purpose.

Lemma 4.7 (First (easier) off-diagonal estimate). We have∑︂
K∈Gλ

ν(K) ≤
6γCγ

nd

λγ

ˆ
B(x0,α)∩{H>κλ}

Hγ dν

whenever the number κ ∈ (0, 1] satisfies

(4.61) κ ∈ (0, κ2] , κ2 :=
ε1/γ

81/γ3Cnd(10n)(n+p)/γ
.

The constant Cnd has been defined in Lemma 4.6.

Proof. Since the cubes K ∈ Gλ are disjoint and since (4.35) holds, it suffices to show that

(4.62) ν(K) ≤
6γCγ

nd

λγ

ˆ
K∩{H>κλ}

Hγ dν

for every K ∈ Gλ. Since K ∈ Gλ, using (4.61) we have

3γCγ
nd

ελγ

(︃
2−k

dist(K1,K2)

)︃η(s+ε)
ν(K)

ν(πhK)

ˆ
πhK∩{H>κλ}

Hγ dν

≤
3γCγ

nd

ελγ
ν(K)

 
πhK

Hγ dν ≤ ν(K)
3γCγ

nd

ελγ
(10n)n+pκγλγ ≤ ν(K)

8
.

(4.63)

Using this estimate for h ∈ {1, 2} in (4.56) and then absorbing terms gives (4.62). □

4.3.7. Determining κ. At this point the constant κ introduced in (4.7) can be completely deter-
mined. We choose

(4.64) κ := min{κ0, κ1, κ2} ≡ min

{︄
ε1/p

′

(2Cd)1/p
,

ε1/γ

21/γ3Cnd
,

ε1/γ

81/γ3Cnd(10n)(n+p)/γ

}︄
,

so that conditions (4.47), (4.55), and (4.61) are satisfied. Since the constant Cd defined in Theorem
3.1 depends only on n and p, and since Cnd defined in Lemma 4.6 depends only on data, we
conclude that there exists Cκ = Cκ(data) such that

(4.65) κ ≥ ε1/γ

Cκ
.

4.3.8. Summation in Bλ,nd. Dealing with the cubes from Bλ,nd requires delicate estimates and
combinatorial arguments. We will first set up notation designed to describe the cubes more precisely.
We will then demonstrate that the choice of cutoff (10n)n+pκγλγ gives us an upper bound on the
distance of a cube from the diagonal.

Define the “problematic” projections of the “bad” off-diagonal set

πhBλ := {πhK : K ∈ Bh
λ} , h ∈ {1, 2} .
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Since all cubes belonging to the collection π1Bλ ∪ π2Bλ are dyadic cubes, it follows that a disjoint
subfamily of cubes always exists. We denote this disjoint subfamily of π1Bλ ∪ π2Bλ by πBλ. By
definition, all cubes of πBλ belong to π1Bλ ∪ π2Bλ and are therefore diagonal cubes.

Lemma 4.8. Let K ∈ Bλ,nd be a cube such that πhK ⊂ M for some M ∈ πBλ and some h ∈ {1, 2}.
Then dist(K1,K2) ≥ 2−k(M).

Proof. First, consider M ∈ πBλ. Take the diagonal ball B(M) ≡ B(xM, 2−(k(M)+1)) with xM
being the center of M. Thus,

B(M) ⊂ M ⊂
√
nB(M) .

Thus, by (3.2), Hölder’s inequality, and by the definition of πBλ

(10n)(n+p)/γκλ <

(︃ 
M

Hγ dν

)︃1/γ

≤
(︃
ν(10nB(M))

ν(B(M))

 
M

Hγ dν

)︃1/γ

≤ (10n)(n+p)γ

(︃ 
M

Hp′ dν

)︃1/p′

.

By the definition of Dκλ in (4.8) we have (xM, xM) ∈ Dκλ, and then the exit-time condition (4.10)
gives B(M) ⊂ B(xM, R(M)). We can use the exit time condition since the radius of the ball

10nB(M) is smaller than α−β
40n , which is in turn a consequence of the fact that k(M) + 1 ≥ k0 and

k0 has been chosen as in (4.34). Therefore, by (4.11)

(4.66) 10nB(M) ⊂
⋃︂
j

10Bj .

Now, assume by contradiction that dist(K1,K2) < 2−k(M). We will show that

(4.67) K ⊂ 10nB(M) ,

which then contradicts the assumption M ∈ Bλ,nd by (4.66). To show (4.67) we use Proposition
4.2 and that πhK ⊂ M to get

dist(K,M) ≤ dist(K, πhK) = dist(K1,K2) ≤ 2−k(M) .

Again using Proposition 4.2 we have k(K) = k(πhK) and k(K) ≥ k(M). Therefore, since M ⊂√
nB(M) and the radius of B(M) is 2−(k(M)+1), then (4.67) must hold. □

Lemma 4.9 (Second (harder) off-diagonal estimate). There exists a constant C = C(data) such
that the estimate

(4.68)
∑︂

K∈Bλ,nd

ν(K) ≤ C

λγ

ˆ
B(x0,α)∩{H>κλ}

Hγ dν

holds, where κ is as in (4.64).

Proof. Step 1: Classification. We classify cubes from Bλ,nd according to the location of their pro-
jections, their size, and their distance from the diagonal. Lemma 4.8, in summary, correlates the
distance of a cube from the diagonal with the location of its projection. This allows us to consider
only cubes in πBλ.

We will partition Bλ,nd into suitable disjoint subfamilies. Define the collections

Bh
λ,nd := Bλ,nd ∩ Bh

λ , h ∈ {1, 2}
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For every M ∈ πBλ, set

Bh
λ,nd(M) := {K ∈ Bλ,nd : πhK ⊂ M} , h ∈ {1, 2} .

Thus, we have the decomposition into disjoint subcollections

(4.69) Bh
λ,nd =

⋃︂
M∈πBλ

Bh
λ,nd(M) .

These subcollections are disjoint in the sense that forM1, M2 ∈ πBλ, Bh
λ,nd(M1)∩Bh

λ,nd(M2) ̸= ∅
implies M1 = M2. This follows from the definition of Bh

λ,nd(M) and from the fact that all elements
in πBλ are pairwise disjoint.

Next we classify cubes according to their size. For each K ∈ Bh
λ,nd(M) we have k(K) =

k(πhK) ≥ k(M), so we can define the collections

[Bh
λ,nd(M)]i := {K ∈ Bh

λ,nd(M) : k(K) = i+ k(M)} , h ∈ {1, 2} , i ∈ Z+ .

We again have a decomposition in mutually disjoint subcollections

Bh
λ,nd(M) =

⋃︂
i∈Z+

[Bh
λ,nd(M)]i ,

in the sense that [Bh
λ,nd(M)]i1 ∩ [Bh

λ,nd(M)]i2 ̸= ∅ implies that i1 = i2.

We further classify the cubes according to their distance from the diagonal. We now use the
combinatorial information obtained from Lemma 4.8. Take M ∈ πBλ. If K ∈ Bh

λ,nd(M); that

is, if πhK ⊂ M, then by Lemma 4.8 it follows that dist(K1,K2) ≥ 2−k(M). This leads us to the
definition of the subcollections

[Bh
λ,nd(M)]i,j := {K ∈ [Bh

λ,nd(M)]i : 2j−k(M) ≤ dist(K1,K2) < 2j+1−k(M)} , h ∈ {1, 2} , i, j ∈ Z+ ,

We yet again have the decomposition in mutually disjoint subcollections

Bh
λ,nd(M) =

⋃︂
i,j∈Z+

[Bh
λ,nd(M)]i,j

and these are mutually disjoint in the sense that [Bh
λ,nd(M)]i1,j1 ∩ [Bh

λ,nd(M)]i2,j2 ̸= ∅ implies that

(i1, j1) = (i2, j2). In summary, we have the decomposition

Bh
λ,nd =

⋃︂
M∈πBλ

⋃︂
i,j∈Z+

[Bh
λ,nd(M)]i,j .

Step 2: Summation and Further Partitioning. Fix M ∈ πBλ. Our goal in this step is to show that
for h ∈ {1, 2}
(4.70)

1

ε

∑︂
K∈Bh

λ,nd(M)

ν(K)

ν(πhK)

(︃
2−k

dist(K1,K2)

)︃η(s+ε) ˆ
πhK∩{H>κλ}

Hγ dν ≤ C(data)

s2

ˆ
M∩{H>κλ}

Hγ dν .

To begin, note that for K ∈ Bh
λ,nd we have dist(K1,K2) ≥ 2−k(K), and so we can apply the inequality

from Lemma 4.3 to get that

1

ε

ν(K)

ν(πhK)
≤ Cdd

(︃
2−k

dist(K1,K2)

)︃n−εp

for h ∈ {1, 2}, and further if K ∈ [Bh
λ,nd]i,j then

2−k(K)

dist(K1,K2)
=

1

2i
2−k(M)

dist(K1,K2)
≤ 1

2i+j
.
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With these we can estimate

1

ε

∑︂
K∈Bh

λ,nd(M)

ν(K)

ν(πhK)

(︃
2−k

dist(K1,K2)

)︃η(s+ε) ˆ
πhK∩{H>κλ}

Hγ dν

≤ Cdd

∑︂
K∈Bh

λ,nd(M)

(︃
2−k

dist(K1,K2)

)︃n+η(s+ε)−εp ˆ
πhK∩{H>κλ}

Hγ dν

= Cdd

∞∑︂
i,j=0

∑︂
K∈[Bh

λ,nd(M)]i,j

(︃
2−k

dist(K1,K2)

)︃n+η(s+ε)−εp ˆ
πhK∩{H>κλ}

Hγ dν

≤ Cdd

∞∑︂
i,j=0

(︃
1

2i+j

)︃n+η(s+ε)−εp ∑︂
K∈[Bh

λ,nd(M)]i,j

ˆ
πhK∩{H>κλ}

Hγ dν .

(4.71)

In order to evaluate the last sum we must further partition [Bh
λ,nd(M)]i,j . In order to do so,

note that for each i ∈ Z+ the cube M contains precisely 22ni disjoint dyadic cubes belonging to
∆i+k(M) and precisely 2ni disjoint dyadic diagonal cubes from ∆d

i+k(M); see the definition (4.36)

and the text immediately following. Thus, M contains at most 2ni dyadic cubes from the class
∆d

i+k(M) ∩ (π1Bλ ∩ π2Bλ). In any case we consider all the diagonal cubes from M in ∆d
i+k(M) and

label them as
{˜︂M ∈ ∆d

i+k(M) : ˜︂M ⊂ M} ≡ {Mm
i : 1 ≤ m ≤ 2ni} ,

so that

(4.72)

2ni∑︂
m=1

ˆ
Mm

i ∩{H>κλ}
Hγ dν ≤

ˆ
M∩{H>κλ}

Hγ dν .

For any K ∈ [Bh
λ,nd(M)]i,j with h ∈ {1, 2} there exists a unique diagonal cube from the collection

∆d
k, which we denote by Mm

i (K), such that πhK = Mm
i (K). Then we can split [Bh

λ,nd(M)]i,j into
subsets

[Bh
λ,nd(M)]i,j,m := {K ∈ [Bh

λ,nd(M)]i,j : πhK = Mm
i } , m ∈ {1, . . . , 2ni} .

Since B1
λ,nd is a family of dyadic cubes, if K1,K2 ∈ [Bh

λ,nd(M)]i,j,m and K1 ̸= K2, then π2K1 ∩
π2K2 = ∅, else the two cubes would coincide.

Thus for each i, j ≥ 0 and for m ∈ {1, . . . , 2ni} the number of cubes K of side length

2i+k(M) with dist(K1,K2) ∈ [2j−k(M), 2j+1−k(M)) that project into Mm
i is bounded from above by

C(n)
(︂
length of half-open interval defining the distance from the diagonal

cube side length

)︂n
; that is,

(4.73) #[Bh
λ,nd(M)]i,j,m ≤ C(n)2n(i+j) , h ∈ {1, 2} .

Thus, using (4.72) and (4.73) we estimate∑︂
K∈[Bh

λ,nd(M)]i,j

ˆ
πhK∩{H>κλ}

Hγ dν =
2ni∑︂
m=1

∑︂
K∈[Bh

λ,nd(M)]i,j,m

ˆ
Mm

i ∩{H>κλ}
Hγ dν

≤ C(n)2n(i+j)
2ni∑︂
m=1

ˆ
Mm

i ∩{H>κλ}
Hγ dν

≤ C(n)2n(i+j)

ˆ
M∩{H>κλ}

Hγ dν .
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Then using the series estimate (2.1) it follows that

∞∑︂
i,j=0

(︃
1

2i+j

)︃n+η(s+ε)−εp ∑︂
K∈[Bh

λ,nd(M)]i,j

ˆ
πhK∩{H>κλ}

Hγ dν

≤ C(n)
∞∑︂

i,j=0

(︃
1

2i+j

)︃η(s+ε)−εp ˆ
M∩{H>κλ}

Hγ dν

≤ C(n)

[︄
2η(s+ε)−εp

ln(2)(η(s+ ε)− εp)

]︄2 ˆ
M∩{H>κλ}

Hγ dν

≤ C(n, p)

[η(s+ ε)− εp]2

ˆ
M∩{H>κλ}

Hγ dν ≤ C(n, p)

s2

ˆ
M∩{H>κλ}

Hγ dν .

In the last line we used that η > 1 and that ε < s
p , which gives η(s+ ε)− εp > s

p . Combining this

inequality with (4.71) results in (4.70).

Step 3: Further Summation. Let K ∈ B1
λ,nd. Then, either K ∈ G 2

λ or K ∈ B2
λ (see (4.58) and

(4.59)). If K ∈ G 2
λ , then using the almost-reverse Hölder inequality (4.56) along with the estimate

(4.63) for cubes in G 2
λ and reabsorbing terms,

ν(K) ≤
6γCγ

nd

λγ

ˆ
K∩{H>κλ}

Hγ dν +
6γCγ

nd

ελγ

(︃
2−k

dist(K1,K2)

)︃η(s+ε)
ν(K)

ν(π1K)

ˆ
π1K∩{H>κλ}

Hγ dν .

On the other hand, if K ∈ B2
λ then we can use the almost-reverse Hölder inequality(4.56) to obtain

ν(K) ≤
3γCγ

nd

λγ

ˆ
K∩{H>κλ}

Hγ dν

+
3γCγ

nd

ελγ

(︃
2−k

dist(K1,K2)

)︃η(s+ε)
[︄

ν(K)

ν(π1K)

ˆ
π1K∩{H>κλ}

Hγ dν +
ν(K)

ν(π2K)

ˆ
π2K∩{H>κλ}

Hγ dν

]︄
.

A similar reasoning holds for K ∈ B2
λ. Summing over the cubes K ∈ Bλ,nd = B1

λ,nd ∪ B2
λ,nd gives

us ∑︂
K∈Bλ,nd

ν(K) ≤
6γCγ

nd

λγ

∑︂
K∈Bλ,nd

ˆ
K∩{H>κλ}

Hγ dν

+
6γCγ

nd

ελγ

∑︂
K∈B1

λ,nd

(︃
2−k

dist(K1,K2)

)︃η(s+ε)
ν(K)

ν(π1K)

ˆ
π1K∩{H>κλ}

Hγ dν

+
6γCγ

nd

ελγ

∑︂
K∈B2

λ,nd

(︃
2−k

dist(K1,K2)

)︃η(s+ε)
ν(K)

ν(π2K)

ˆ
π2K∩{H>κλ}

Hγ dν .

(4.74)

The point of this argument beginning in Step 3 is that terms involving the projections πhK appear
if and only if K ∈ Bh

λ,nd for h ∈ {1, 2}. We will now argue that the last two terms in the above
inequality coincide.

For a cube K = K1 ×K2 ∈ ∆, define

Symm(K) := K2 ×K1 .

Then by definition

(4.75) π1(K) = π1(K1 ×K2) = π2(K2 ×K1) = π2(Symm(K)) .
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Further, by symmetry of H we haveˆ
K
Hr dν =

ˆ
Symm(K)

Hr dν , r ∈ [1,∞)

and

(4.76)

ˆ
K∩{H>κλ}

Hr dν =

ˆ
Symm(K)∩{H>κλ}

Hr dν , r ∈ [1,∞) .

Therefore, by definition of Bh
λ

K ∈ B1
λ ⇔ Symm(K) ∈ B2

λ ,

and vice versa, and so

(4.77) K ∈ B1
λ,nd ⇔ Symm(K) ∈ B2

λ,nd ,

and vice versa. It follows from (4.75)-(4.77) that the last two terms in (4.74) coincide. Recalling
the decomposition (4.69), (4.74) can be written as∑︂

K∈Bλ,nd

ν(K) ≤ C

λγ

∑︂
K∈Bλ,nd

ˆ
K∩{H>κλ}

Hγ dν

+
C

ελγ

∑︂
M∈πBλ

∑︂
K∈B1

λ,nd(M)

(︃
2−k

dist(K1,K2)

)︃η(s+ε)
ν(K)

ν(π1K)

ˆ
π1K∩{H>κλ}

Hγ dν ,

for a constant C ≡ C(data). Using the estimate (4.70) proved in Step 2 yields∑︂
K∈Bλ,nd

ν(K) ≤ C

λγ

∑︂
K∈Bλ,nd

ˆ
K∩{H>κλ}

Hγ dν +
C

λγ

∑︂
M∈πBλ

ˆ
M∩{H>κλ}

Hγ dν .

Then since the collections Bλ,nd and πBλ are comprised of mutually disjoint dyadic cubes all of
which are contained in B(x0, α) (see (4.35)) we can estimate∑︂

K∈Bλ,nd

ˆ
K∩{H>κλ}

Hγ dν +
∑︂

M∈πBλ

ˆ
M∩{H>κλ}

Hγ dν ≤ 2

ˆ
B(x0,α)∩{H>κλ}

Hγ dν .

Thus (4.68) is proved, and the proof of Lemma 4.9 is complete. □

4.3.9. Off-Diagonal Conclusion. The next lemma summarizes the off-diagonal estimate obtained
for H.

Lemma 4.10. The inequality

(4.78)

ˆ
B(x0,β)∩{H>λ}

Hp′ dν ≤ 10n+pκp
′
λp′
∑︂
j

ν(Bj) + Cλp′−γ

ˆ
B(x0,α)∩{H>κλ}

Hγ dν

holds for a constant C ≡ C(data), while κ has been chosen in (4.64) and satisfies (4.65).

Proof. We have the decomposition Hλ = Hd
λ ∪Hnd

λ with Hnd
λ = Gλ ∪Bλ,d ∪Bλ,nd. Recall from the

relation (4.48) and from the definition (4.60) that⋃︂
K∈Hd

λ

K ∪
⋃︂

K∈Bλ,d

K ⊂
⋃︂
j

10Bj .

Thus ⋃︂
K∈Hλ

⊂
⋃︂
j

10Bj ∪
⋃︂

K∈Gλ

K ∪
⋃︂

K∈Bλ,nd

K .
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Now, with this and with (4.46), we estimateˆ
B(x0,β)∩{H>λ}

Hp′ dν ≤
∑︂
j

ˆ
10Bj∩{H>λ}

Hp′ dν +
∑︂

K∈Gλ∪Bλ,nd

ˆ
K∩{H>λ}

Hp′ dν .

Now, by the choice of Calderón-Zygmund splitting in (4.44), for K ∈ Gλ ∪ Bλ,nd ⊂ Hnd
λ

 
K
Hp′ dν ≤ ν(˜︁K)

ν(K)

 
˜︁K Hp′ dν ≤ ν(˜︁K)

ν(K)
λp′ .

Since K ∈ Hnd
λ it follows from the definition (4.49) that dist( ˜︁K1, ˜︁K2) ≥ 2−k(K), so we can use the

geometric estimate (4.41) from Lemma 4.4 to obtain the bound ν(˜︁K)
ν(K) ≤ Cddd. In summary,

K ∈ Gλ ∪ Bλ,nd ⇒
ˆ
K∩{H>λ}

Hp′ dν ≤ Cdddλ
p′ν(K) .

Using this inequality in conjunction with (4.13) results inˆ
B(x0,β)∩{H>λ}

Hp′ dν ≤ 10n+εpκp
′
λp′
∑︂
j

ν(Bj) + Cdddλ
p′

∑︂
K∈Gλ∪Bλ,nd

ν(K) .

Then (4.78) follows from the conclusions of Lemmas 4.7 and 4.9. □

4.4. Conclusion of the Proof. We now come to the conclusion of the proof of Proposition 4.1.
We start by combining the diagonal estimate (4.33) with the off-diagonal estimate (4.78). We use
the elementary estimateˆ

B(x0,β)∩{H>˜︁κκλ}Hp′ dν ≤ λp′−γ

ˆ
B(x0,β)∩{H>˜︁κκλ}Hγ dν +

ˆ
B(x0,β)∩{H>λ}

Hp′ dν ;

recall that ˜︁κ, κ ∈ (0, 1]. Then (4.33) and (4.78) give, after some elementary algebraic manipulations,
the estimate ˆ

B(x0,β)∩{H>˜︁κκλ}Hp′ dν ≤ C(data)

ε2−2γ/p′(˜︁κκ)p′−γ
(˜︁κκλ)p′−γ

ˆ
B(x0,α)∩{H>˜︁κκλ}Hγ dν

+
C5λ

ϑf

1ˆ︁κp′(ˆ︁κκλ)˜︁ϑf−p′

ˆ
B(x0,α)∩{F>ˆ︁κκλ} F p∗ dν .

(4.79)

Recall that C5 is defined in (4.32). We can reformulate this estimate asˆ
B(x0,β)∩{H>λ}

Hp′ dν ≤ C

ε2−2γ/p′(˜︁κκ)p′−γ
λp′−γ

ˆ
B(x0,α)∩{H>λ}

Hγ dν

+
C6λ

ϑf

1

λ
˜︁ϑf−p′

ˆ
B(x0,α)∩{F>ˆ︁κλ/˜︁κ} F p∗ dν .

(4.80)

The constants C and C6 satisfy the following dependencies:

C ≡ C(data) , C6 ≡ C6(data, ε) .

Since (4.79) holds for all λ ≥ λ2 where λ2 has been defined in (4.43) we have that (4.80) holds
for all λ ≥ ˜︁κκλ2. Recall again that ˜︁κ, ˆ︁κ, κ ∈ (0, 1] have been defined in (4.25), (4.30) and (4.64)
respectively.
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In order to conclude with the level set estimate (4.5) we need to estimate several constants. We
need to obtain the specific dependence on ε of the constant appearing in front of the first integrand
on the right-hand side. By using (4.25) and (4.64), we see that we can choose ˜︁κ, κ to satisfy

˜︁κκ =
ε3/γ−2/p′

C
,

where C ≡ C(data). With this choice, we can estimate the constant appearing in front of the
second integral in (4.80) and therefore arrive at a choice of ϑ exactly as in (4.4). We next set

κf := ˆ︁κ/˜︁κ ,
and making note of (4.30) we can additionally choose ˆ︁κ small so that κf ∈ (0, 1).

Last, we need to find an upper bound on the numbers λ1 and λ2 defined in (4.7) and (4.43)
respectively, so that the level set estimate (4.5) can be verified for the range prescribed by (4.6). If

x ∈ B(x0, β) and
α−β
40n ≤ R ≤ ϱ0

2 , then B(x,R) ⊂ B(x0, 2ϱ0). Recalling the doubling property (3.2),

whenever ˜︁H is a ν-integrable function we can estimate 
B(x,R)

˜︁H dν ≤ ν(B(x0, 2ϱ0))
ν(B(x,R))

 
B(x0,2ϱ0)

˜︁H dν ≤ C

(︃
ϱ0

α− β

)︃n+εp  
B(x0,2ϱ0)

˜︁H dν

where C = C(n). Applying this inequality to Hp′ , F p∗ , Hγ , and F p∗+δf , as well as on different
balls 2kB(x,R) ⊂ 2kB(x0, 2ϱ0), we get

κ−1
{︁
ΨM (x,R) + Υ0(x,R) + Tail(x,R)

}︁
≤ C

ε1/γ

(︃
ϱ0

α− β

)︃n+εp {︁
ΨM (x0, 2ϱ0) + Υ0(x0, 2ϱ0) + Tail(x0, 2ϱ0)

}︁
≤ C

ε1/γ

(︃
ϱ0

α− β

)︃n+εp

Θ(x0, 2ϱ0) ≤
C

ε

(︃
ϱ0

α− β

)︃2n+p

Θ(x0, 2ϱ0) ,

(4.81)

where C ≡ C(data). We also used (4.64) to remove dependence on κ, (4.22) to remove dependence
on M , that ε < 1, and that ϱ0

α−β ≥ 2. Recall also that Θ has been defined in (4.1). Thus we have

obtained the desired upper bound on λ1. To estimate λ2, note that for K = K1 ×K2 ∈ ∆k0 with
k0 as in (4.34) we have K ⊂ B(x0, α) ⊂ B(x0, 2ϱ0) and therefore

ν(K) ≥ C

ϱn+εp
0

ˆ
K1

ˆ
K2

dy dx =
C(α− β)2n

ϱn+εp
0

, C ≡ C(n, p) .

Thus, for any cube K ∈ ∆k0 we can estimate
(4.82)(︃ 

K
Hp′ dν

)︃1/p′

≤

(︄
ν(B(x0, 2ϱ0))

ν(K)

 
B(x0,2ϱ0)

Hp′ dν

)︄1/p′

≤ C

ε1/p′

(︃
ϱ0

α− β

)︃2n/p′
(︄ 

B(x0,2ϱ0)
Hp′ dν

)︄1/p′

.

Then using (4.81) and (4.82) (also using that ε < 1 and ϱ0
α−β ≥ 2) we get that

λ2 ≤
C

ε

(︃
ϱ0

α− β

)︃2n+p

Θ(x0, 2ϱ0) ,

where C ≡ C(data). We therefore take λ0 as in (4.6) so that λ0 ≥ max{λ1, λ2}. We finally arrive
at (4.5) with λ prescribed as in (4.6), and the proof of Proposition 4.1 is complete.

Remark 4.11. Note that in the proof of Proposition 4.1 the off-diagonal analysis in Section 4.3
does not make use of the assumption (3.9). Thus, the conclusions of Lemma 4.10 hold for general
fractional Sobolev functions u, and not just solutions to (1.1).
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