A NOTE ON ESTIMATES OF LEVEL SETS AND THEIR ROLE IN
DEMONSTRATING REGULARITY OF SOLUTIONS TO NONLOCAL
DOUBLE PHASE EQUATIONS

TADELE MENGESHA AND JAMES M. SCOTT

ABSTRACT. In this note we prove an estimate on the level sets of a function with (p, q) growth that
depends on the difference quotient of a bounded weak solution to a nonlocal double phase equation.
This estimate is related to a self improving property of these solutions.

1. INTRODUCTION AND MAIN RESULTS

This note is a companion to the article [6], in which the authors study regularity properties of
weak solutions u to

(1.1) Lu(z) = f(z),

where for measurable functions u : R” — R and for x € R” the nonlocal double phase operator L
is defined as

Lu(e) =PV [ [u(@) — (@)™

|z — [+t

ju(z) — uly)>
o oy

(u(x) — u(y)) + al(z,y) (u(z) = u(y)) dy .

Throughout, we assume n > 2 and the integrability indices p, ¢ belong to (1,00) with p < ¢ and
differentiability indices s, ¢ belong to (0,1). The abbreviation P.V. stands for principal value.

The operator L is the archetype of a class of nonlocal double phase operators first introduced
in [2], in which the Hélder continuity of bounded viscosity solutions to Lu = f with bounded data
f was obtained. In the work [6] the authors demonstrate regularity of solutions on a different scale;
that under suitable assumptions on the data f, the modulating coefficient a(-, -), and a certain ratio
of integrability and differentiability exponents solutions u to Lu = f exhibit a self-improvement
property. Precisely, distributional solutions u belonging to the fractional Sobolev space W*P(R™)
in fact belong to a Sobolev space with higher exponents of integrability and differentiability.

For ease of reference, we summarize the relevant definitions, assumptions, properties and results
found in [6]. We assume that the modulating coefficient a is measurable, and satisfies

(A1) a(z,y) € LOO(RZ"), 0<a(z,y) <M, a(z,y) = aly,x).

We also require that

1t
(A2) p<gq, t<s, 5 <—<1,
p sp
where p’ is the Holder conjugate of p: % + 1% = 1. Additionally we will restrict ourselves to the case

(A3) sp<m.
1
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The higher differentiability and integrability described above and in [6] applies to bounded
solutions u € W*P(R") of a weak formulation of the equation (1.1), that is

(1.2) E(u,p) = - f(@)p(z)dx, for any ¢ € C°(R"™),

where the form E(u, ¢) is defined as

u(x) — u(y)]92
y)| (\x) y‘izi)t’q (u(z) —u(y))(p(z) — ¢(y)) dydz.

We assume the data f belongs to a Lebesgue space with sufficiently high exponent. Precisely, for
a given §g > 0

(1.3)

+ a(x,

f c LP*5+50 (Rn)

loc

where we are using standard notation for Holder and Sobolev exponents; that is, for any r € (1, 00)
and any o € (0,1) we write

, r . nr nr

r = T =T = 7"*:7"* = —
r—1’ n—or’ 7 n+or

= (r*).

(The dependence of the embedding exponents on ¢ will be suppressed whenever it is clear from
context.)

Weak solutions u are assumed to be a priori bounded, a point clarified by the following
definition:

Definition 1.1. A function u € W*P(R"™) N L>(R") is a bounded weak solution to (1.1) with data
f if the nonlocal double phase energy &(u,u) < oo and if u satisfies (1.2).

If we denote the integrand of £(u,wu) by P(z,y,u) so that

E(u,u) / / (z,y,u)dydx,

then by definition of u as a bounded weak solution the function P(-,-,u) belongs to L!(R?*"). The
following theorem concerning P constitutes the main result of [6]:

Theorem 1.2. Let p, ¢ > 2 and s, t € (0,1) satisfy (A2)-(A3) and let a(x,y) satisfy (Al). Fiz
do >0, and let f € Lp“ﬂs0 (R™). Let u € WSP(R™)NL>(R"™) be any bounded weak solution to (1.1)

loc
with data f. Then there exists eg € (0,1) depending only on n, p, q, s, t, M, dy and HUHLOO(R”)
such that for every T € (0,&q)

P( ) c L1+T(R2n)

loc
In particular, there exist positive constants €1 and €2 such that u € I/VlSjL‘El’ers2 (R™), and if (s +
€1)(p+e2) > n then u is locally Holder continuous.

To prove Theorem 1.2 we use an argument developed by Kuusi, Mingione and Sire announced
in [3] and presented in [4] that builds a nonlocal fractional Gehring lemma in order to prove a self-
improvement result for solutions to a class of monotone operators with quadratic growth related
to the fractional Laplacian. The arguments in [6] and in this note are heavily based on the work
and presentation done for the case p = 2 in [4]. While it is apparent from a careful reading of that
work that their methods apply to functionals with more general p-growth, the precise treatment
of such classes of operators does not appear in the literature. Since we are further working with
operators of mixed (p, q) growth, in [6] and in this note we have written the arguments of [4] for a
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general exponent p so that the robustness of their technique and as well as results can be clearly
seen as applicable in a wealth of contexts. One such instances is an extension of these arguments
to vector-valued solutions of nonlocal systems. A specific example is the strongly coupled system
of nonlinear equations studied in [5]. We also would like to mention a sequence of recent papers
in [9,10] where the same argument is applied to obtain higher Sobolev regularity estimates for
nonlocal equations with VMO coefficients corresponding to the case p = 2.

The fractional Gehring lemma relies on a level set estimate of a quantity related to the solution,
and its proof is the main contribution of this note. If a reader of [6] accepts the level set estimate
as true then the rest of the proof in [6] of the Gehring lemma follows in a straightforward way.
However, because the proof of the estimate itself is quite technical and very closely resembles the
argument from [4], we have written it here instead of in [6].

Due to its technical nature we do not write a statement of the level set estimate precisely until
the beginning of Section 4. To ensure there is no interruption in the thread of reasoning between
this work and [6], the prerequisite results are given in Section 3 as a summarized version of their
counterparts in [6].

Following the structure introduced in [4], we define dual pairs of measures and functions (U, v).
For small € € (0,1/p) we define the locally finite doubling Borel measure in R?"

dzd
(1.4) v(A) = / %, A C R* measurable,
e
and we define the function
[u(z) — u(y)|
1.5 U =
(1.5) (z,y) P

It is then clear that
u e WHP(R"™) if and only if U c LP(R*™;v).
The integrand P(x,y,u) of the energy £(u,u) can be expressed in terms of U as
(1L6) U7+ A, Uz — y| ™, where A(z,y) = alz, y)|z — y|~OrtelaD),

We can therefore write the double phase energy £(u.u) in terms the dual pair as

(1.7) E(u,u) = /RQ"(UP + A(z,y)U?) dv =: o G(z,y,U)dv

where the integrand G(z,y,U) := UP + A(x,y)U9. Then it now becomes clear that
P(-,-,u) € LY(R®") if and only if G(-,-,U) € L*(R*;v).

Theorem 1.3 (Higher Regularity Result). With all the assumptions of Theorem 1.2, there exists
go > 0 depending only on data such that for every 6 € (0,e9) we have

(1.8) G(z,y,U) € LIO(R?;v) .

loc

where data represents n,p,q,s,t, M, and ||u|| -

Theorem 1.2 is a simple consequence of the above theorem. In [6] we show (1.8) directly by
way of a fractional Gehring lemma applied to the dual pair of function and measure (G,v). This
fractional Gehring lemma in turn relies on a kind of fractional reverse Holder inequality; for the
exact statement see Theorem 3.3 below. This inequality holds only for diagonal sets of the type
B x B C R?", and it is insufficient to apply tools traditionally used to prove Gehring’s lemma such
as the maximal function. Nevertheless, Kuusi, Mingione, and Sire in [4] used a novel localization
technique to show that the fractional reverse Holder-type inequality over diagonal balls is sufficient
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to prove a special fractional version of Gehring’s lemma that is applicable for dual pairs of the
above type. A key ingredient of this localization technique is a level set estimate

1 1

= / Uldv 3 — /

A% JB(wo,8)N{U>A} A" JB(wo,0){U>A}
for some fixed r < 2 and for any A > Ao, where \q is a finite constant depending on the solution.
Here B = B x B, and B C R™ is a ball. We adapt the statement and proof of this level set estimate

to our setting; see Proposition 4.1. Key steps of the proof are described in Section 4, and we
additionally refer to the original discussions and summaries of the technique in [3,4].

U"dv + terms involving level sets of f, g

We finally remark that the fractional Gehring lemma incorporates the level set estimate, and
the proof of the fractional Gehring lemma itself is contained in [6].

This note is organized as follows: In the next section we identify notation and conventions.
The reverse Holder inequality is proved in [6], and for reference is stated in Section 3. Section 4
contains the proof of the level set estimate in its entirety.

2. PRELIMINARIES

Throughout, we denote positive constants by ¢, C, etc., and they may change from line to line.
We list the dependencies in parentheses after the constant when we wish to make them explicit,
i.e. if a constant C' depends only on n, p and s, we write C' = C(n,p, s). We will abbreviate the
following set of parameters as

data = (n,p,q,s,t, M, ||u| ;) -
In R™, denote the open ball of radius R centered at xzg by
B(zo, R) = Br(zo) :={x € R" : |z — x| < R}.

We will sometimes denote the ball B = Br = Bg(xp) whenever the center and/or radius is clear
from context. If B is a ball centered at xy with radius R, then 0B is the ball centered at xy with
radius o R. Given any measure u, denote the average of a u-measurable function h over a set A by

1
(h)a .:]{‘hd,uzﬂ(A)/Ah(x)d,u.

In dealing with functions defined on R?" such as U, we consider the norm on R?" defined by

(2, )l := max{|x], [y},
where | - | denotes the Euclidean norm on R™. Denote the balls defined by this norm as
B(xo, yo, R) := {(z,y) € R" xR - [|(2,y) — (x0,%0)| < R}
= B($07 R) X B(yOa R) :

If we denote

Bian (20,90, B) i= {(2,y) € R x R : /[z — 20 + |y — yol? < R}
then clearly
Bren(xo,y0, R) C B(zo, Yo, R) C Bgr2n (0, Y0, 2R) .
Often we will need to consider balls in R?" centered at a point on the “diagonal,” that is, a point of
the form (xo,zo) for zy € R™. In this case we abbreviate B(xg, zo, R) = B(xo, R). We will also use

the abbreviations B(xo, R) = Br(zo) = Br = B whenever the center and/or radius is clear from
context. Whenever there is no ambiguity we write B(xo,0R) = o8. We also denote

Diag := {(z,z) : x € R"}.
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We will use the elementary inequality

o r

: 4
(2.1) 2kr Y 27 < SNOR for k>1 and 7€ (0,00).
j=k—1

The cardinality of a finite set A is denoted by #.A. The set of nonnegative integers {0, 1,2, ...}
is designated by Z .

For any domain @ C R", 0 < 0 < 1 and r € [1,00) the fractional Sobolev spaces are defined
by the Gagliardo seminorm
u(z) — u(y)|"
W (Q ::{UELTQ : ulwor ::/ ‘—dydzn<oo
@ @) ¢ [ o= [ [ O
with norm [|[yye.r ) = [l @) + [Tiyer ()

We will also use the following fractional Poincaré-Sobolev-type inequalities throughout the
note. A proof of the first can be found in several places; see for instance [1,8]. The second can be
found in [7,11].

Theorem 2.1 (Fractional Poincaré-Sobolev Inequality). Let r € [1,00), 0 < 0 < 1. Let B =
Br(zg) for some R >0, g € R™. Then there exists C = C(n,r,0) > 0 such that

rr AT o) =@l .\
][ dz <C ( / sty d:r)
B BB |v—y["ror

for every v € Wo(B).
Theorem 2.2 (Fractional Poincaré Inequality). Let r € [1,00), 0 < 0 < 1. Let B = Bpg(xo) for
some R >0, xg € R™. Then there ezists C = C(n,r) > 0 such that

v(z) = (v)p]| )”* ( [v(z) = v(y)" )”T
(L[] ae) <[ 1, e
for every v e W' (B).

v(z) = (v)B
Ro

3. SOBOLEV INEQUALITY FOR DUAL PAIRS AND REVERSE HOLDER INEQUALITY

3.1. The Dual Pair Measure. We summarize some basic properties of the measure v defined
n (1.4). These properties are natural extensions of those established in [4, Proposition 4.1]; their
proof is sketched in [6].

Theorem 3.1. For any ¢ € (0,1/p), the measure v defined as

V(A) :z/ldydx, ACR™,
Al —

y|n—ep

is absolutely continuous with respect to Lebesque measure on R*™. Additionally,

e For B = Bg(xzg) x Br(xo),

c(n,p,e)R"teP
(3.1 () = PR

where c¢(n,p,e) is a constant depending only on n, p and € that satisfies 1/¢(n,p) <
c(n,p,e) < ¢(n,p), where ¢ is another constant depending only on n and p.
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o For every x € R™ and for R > r > 0,
v(B(z,R)) (R>"+Ep
v(B(x,r)) r ’
e For everya <1, R>0 and x € R", there exists a constant Cq = Cq(n,p) such that
V(B(z.R)) _ Cy
V(Kl X KQ) — a?re

for any two cubes K1, Ko C Bg(z) with sides parallel to the coordinate azes and such that
[Ki| = [Ky| = (aR)"™.

3.2. Reverse Holder Inequality. Recall that

(3.4) Ulz,y) = W and define F(z,y) := | f(z)|.

Then F € Lf . c+6 (R2") for every & € (0,680), as a direct calculation using the properties of measure
v.

We now report the compatibility of the Sobolev-Poincaré inequality with the definition of
U. Given B = Bpr(zg), define 7 € (0,1), and n € (1,00) to be differentiability and integrability
constants respectively that have yet to be fixed. Letting € € (0, min{%, 1 — s}) and using (3.1),

_ 7 ep
[ [ gy T g,
BJp |z —y[vtm e Jp

so long as

T+@:S+E.
U

Since ¢ € (0,2) and € < 1 — s the exponent 7 remains in (0,1) for every n € (1,00). With this
choice of 7, by the fractional Sobolev inequality, Theorem 2.1,
u(z) = (wp

moo\Ym lu(z) — uly)|" 1
dx <C ][ — 7 d dx>
(J{B R ) ( BJB | —y["tTn Y

for every m € [1,n*7] with n € (1,00). We choose 7 to satisfy the relation

. nn _ np+ep?

= = = _ .
n—1n n-—n(s+e— L) n+ sp+ep

n

(3.5) p=n

This choice of 7 is a valid Lebesgue exponent; note that 7 < p for all n > 1 and for all p € (1, 0),
and that 7 > 1 so long as p > 2. Taking m = n*™ we summarize this discussion in the following
lemma:

Lemma 3.2. Let € € (0,s/p) withe <1—s and p > 2. Define n = %};ﬁj. Then

1/p ste 1/n
<][ lu(z) — (u) P dx> < G <][ o dy> ,
B gl/m B

where C = C(n,s,p). The same inequality holds when the ball B is replaced by a cube Q with sides
of length R and with B replaced by Q x Q.

Recall that G(z,y,U) = UP + A(z,y)U9. We have the following L} _estimate for G which will

loc
lead us to a scale-invariant reverse Holder’s inequality. The statement is precisely [6, Proposition

4.3] and its proof can be found in the same paper.
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Proposition 3.3. Let p € [2,00), and let € <1 — s with € € (0, mln{s(g - %) 21). (This choice
is possible by Assumption A2). Let n be given by the formula in (3.5), Let B = Bgr(xo) be a ball
with R < 1. Then there exists a constant C' depending only on data such that for any solution

u € WSP(R™) N L>®(R™) to (1.1) and for any o € (0,1)

1/p C 1 1/n
A el n
<]€BG(x,y,U) dl/) < i | o (éU du>

o0

o 4 1/n
(3.6) +o 3 (27T 4 g kG ) <][ g du> ]
2kB

1
0[61/(8 ]p—l f l/p* /(p 1)
: FP+dy ,
(1/p«=1/p) 57 B
where
_s—elp—1)
n + ep

Remark 3.4. We make some remarks. The upper bound in (3.6) can be simplified down to just one
series. Since sp > tq

(3.7) o MGH 59 < g b e gy

so we can replace the infinite series on the right-hand side of (3.6) with

Co e 1/
—_ Und
gl/n=1/p kzzoak (]ikzs V) 7

where
(3.8) ay =2 M)

. . k(= . .
Moreover, in the case a = 0 one simply takes oy = 2 S any case, since € < mm{s(i—g —

I%), %} the series Y 72 ;o < oo and as a consequence

s I/n 1/p
oy un dV) < oy (7[ Ur dl/)
> (£, oL,

=Cle,p,s ak / / )|p dxdy v
T 2kB J2kB |95 - |"+5p
1/
< RMPEC(e [uy) = (@) 5 4 p<oo
p7 n n ‘x _ ‘n+sp y .

The following corollary establishes a genuine scale-invariant reverse Holder inequality for an
appropriately scaled version of the integrand G. This quantity will satisfy a self-improving result.

Corollary 3.4.1. Let € € <O mln{s(— - }%) g}) (This choice is possible by Assumption A2).

Let B = Bg(xg) be a ball with R < 1. Define H(z,y,U) := G(z,y,U)P~V/P. Then there exists
a constant C' depending only on data such that for any solution uw € W*P(R™) N L>®(R"™) to (1.1)
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and for any o € (0,1)

) 1/p C 1/~

p g

]{BH(%@/, U)P dv S (]iH(I,y, U) dV)
4
Co &
3.9 -7
(3:9) + el/y=1/p' kzzjoak < 9k
C[V(B)]G - 1/ps«
+ el/p—1/p' ][BF dv ’

.M _ .. _ntep / . s—<(p—1)
where v 1= 51 =P nrsprep <P and 6 = e

1/y
H(x,y,U)" du>

Remark 3.5. If a = 0 one can see from careful inspection of the proofs they need not assume
u € L*®(R™) in Proposition 3.3 and Corollary 3.4.1.

4. PROOF OF THE LEVEL SET ESTIMATE

We are now ready to state and prove the level set estimate. It is stated precisely in Proposition
4.1 below, and this section is devoted to its proof. We first define the following: using the notation
of Corollary 3.4.1, for any x¢p € R™ and R > 0 set

(4.1) O(xo, R) = To(xo, R) + Tail(.%'(), R) + ¥y (z9, R),

where

1/(p«+6y)
Yo(zo, R) := (7{3( o FPetos dy> , with 6¢ € (0,0p) to be determined,
Z0,

(4.2) 1n
H” d1/> ,

Tail(zo, R) =Y 9 k(5T —5-) (7[
k=0 B(

and, for any constant M > 1,

1/p 0 1/p«
(4.3) Upr(xo, R) := HY dv + MM FP+dv ;
. 9 . B(xO7R) 5]~/p*_1/p/ B($O7R) )

we write W, with M =1 as ¥;.

20,28 R)

Proposition 4.1. Assume (Al), (A2), and (A3). Assume that € > 0 satisfies

1
(A4) e €(0,s/p), €<S<zj?_p’)’ e<l—s.

Let u € W*P(R™) N L®(R") be a bounded weak solution to (1.1), and let f € LP~T%(R™) for given
80 > 0. Let U and F be as in (3.4). Let B(zo, 00) C R®™ with 0 < g9 < 1, and let o and B be such
that oo < B < a < %go so that we have

B(x(h QO) C B(l’o,ﬁ) - B(ZL‘0,0&) C B(ajOa ;QO) .

Then there exist constants Co = Cy(data) > 0, Cy = Cy(data,c) > 1 and Ky = K¢(data,e) €
(0,1), with positive constants

_ 30 =) _ p+f 5, .= P14 0%)
(4.4) L Al G Syl L s pr ek
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such that

9
1 , N Cry’

(4.5) / HY dv < (j/ H’de/—irff)/ FP dy

A ) B(zo,B)N{H>A} VAT JB(wo,0)n{H>A} N5 JB(ao,)n{F>rpA}

for every X > Ao, where Xy is defined as

Ca 2n+p
(4.6) Ao i= (90> O(z0, 200) ,

c a—pf

and where Cy = Cy(data) and © has been defined in (4.1). (see also (4.2) and (4.3)).

For p = 2, this proposition is proved in Section 5 of [4]. Our proof is essentially the same as
the proof found in [4]. However, we are writing the proof to make sure that the choice of the other
parameters in (4.4) are correctly made and to emphasize the robustness of the arguments in [4] and
how they can be used for more general nonlinear operators. As it has been explained in [4], the
main difficulty in proving (4.5) is that the reverse Holder inequality (3.9) only holds on diagonal
balls of the type B(zo, o, R). Thus maximal function arguments cannot be used, and we must
resort to more direct arguments. We use a Calderén-Zygmund decomposition to decompose the
level set {H > A} into dyadic cubes. These cubes are then sorted into cubes situated on or near the
diagonal (called “diagonal” cubes) and cubes far from the diagonal (called “off-diagonal” cubes).
What is meant by “far from” will be quantified below. The level set estimate for the diagonal
cubes are handled using the reverse Holder inequality (3.9). It turns out that Sobolev functions
automatically satisfy a type of reverse Holder inequality on off-diagonal cubes, and we use this to
obtain the level set estimate for said cubes.

4.1. Vitali Covering. Just as in [4], we begin with an exit-time argument. The goal is to cover
the portion of the set {H > A} that lies on or near the diagonal {(x,z) : = € R"}. Let x € (0, 1]
be a constant that will be chosen later, in (4.64); all arguments in the paper up until then are
independent of the choice of k. Define

1
(4.7 Al:=—  sup sup {Un(z,R)+ Yo(z,R) + Tail(z,R)} .
K ZT_T{BSRS%) z€B(z0,B)

For the same x and for A > A1, define the “diagonal” level set of the functional ¥,; by

(4.8) Dyy = (z,x) € B(xo,B) :  sup Yz, R) > KA
0<R<4:?

Then by definition of A\; we have

40 7 2
and so it follows that for every (z,z) in the diagonal level set D,y there exists an exit time
R(z) € (0, iT_nﬁ) such that

(4.10) Upr(z, R(x)) > KA while at the same time sup Uar(z, R) < KA.
R(x)<R<(ZT_f

(4.9) Uar(z, R) < kA1 < KA, for each (z,z) € B(zo,08), RE€ {a —5 QO} ,

Thus the collection {B(z,2R(x))} forms a cover of D), so by the Vitali covering theorem we can
find a countable subcollection {B(x;,2R(x;))} such that

(4.11) U B(z,2R(x)) C UB(xj, 10R(x5)), B(xj,2R(x;)) are mutually disjoint .
(z,2)EDy J
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We hereafter use the abbreviations
(412) Bj = B(xj,R(xj))7 O'Bj = B(QS‘j,O‘R(xj))a o>0.

The quantity ) v(B;) is treated by the diagonal estimates in the next section. Note that since
xj € B(zo, f) and R(z;) < %;f we have 10B; C B(zo, a) for every j. By (4.10) and by the doubling
property of the measure v in (3.2) we also have

(4.13) Z /1 . HY dv < Z v(108;)[¥as (5, I0R(x;))]” < 10" PRV NS " 0(B;).

J J

4.2. Analysis On the Diagonal. By (4.10) it follows that at least one of two inequalities hold:
either

1/p
(4.14) Y av| >
B; 2
or
1/p«
M{v(B;)]° - KA

Case 1: If (4.14) occurs, then by the Reverse Holder inequality (3.9)
(4.16)

1/~ [e'e} 1/ 1/p-
C o Clv (B’ ][
A< o~ Hd .z H7d L e F FPxd
RS e 1Y (iBj V) +51/7_1/p/ kz—oak <]£k+28j V) +€1/p*_1/p, 4B; ’ ’

where o € (0,1] has yet to be chosen and C' = (C(data). Choose the unique m € Z, such that
27™gy < R(zj) < 27™Tlgy. Since R(z;) < ‘iaf and 0 < o — 8 < 0o/2, we have m > 3. Further,

asB < S8 < 9m1R(x;), s0 by (4.7)

(4.17) Yo(zj, 2™ ' R(x;)) + Tail(x;, 2" ' R(z;)) < w); .

This allows us to estimate T'ail. The first m — 2 terms can be handled by the exit-time condition
(4.10); that is,

1/~
(4.18) ( H7dy> <gr\N f1<k<m-2.
2 B;



LEVEL SET ESTIMATE 11

tg

Then by (4.17) and (4.18), and recalling that oy = 9 k(= —s¢)

)

(4.19)

00 1/~ | & 1/
Zozk ][ HYdv :—Zak ][ HYdv

k=0 2k+28j a2 —9 2168].

1 1/ | & 1/
:—Zak H"dv —I——Zak+m_1 ][ H"dv
(%)) 2kB; (%)) pr 2k+m—1p;

k
1 m—2
< o [n)\ Z ok, + am-1Tail(z;,2" ' R(z;))
2 k=2
1 m—2
< —
% [/i)\ Z oy + ozmm)\l]
k=2
tq
> 4p=17FR\ 49K\
< KAZO% < m r < p tqﬂ T = C1RA,
=0 (55 —s—¢)In2) — s(' = 1(5} — ) In(2)

where in the last line we used (2.1) and the bound € < s(z—g - I%) in (A4). The constant C; depends

only on data. Now using the fact that m > 3 we gain that 2R(z;) < %go, so by the exit-time
condition (4.10)

1/ps
Combining (4.19) and (4.20) in (4.16) gives
C YT Crord | Cor
(4.21) NS <7{15j HY du) + oy
Now we choose o € (0,1) and M > 1, and absorb the last two terms. We set
(4.22) o= M, M :=4Cy,
4C4

and so we have for C = C(data)

1/~
C C
= v Ve = v
(4.23) NS S (]{mj H du) = v(B) < 5y oy /4 . H'dv.

Now, let K > 0 be a constant, to be fixed in a moment. Using the doubling property (3.2),
(4.24)

C C

- | Hdv<-— Hdv+ - H7d

c2=CN/P (k)Y AB], Y= =@ () /wjn{ngHA} v e2=CN/P (gAY /wjm{bm} v
Cgl/(Bj)’l‘\{7 03 H,Y dv

= @i T i ey /mwm}
where C3 = C3(data). Choose
g2/v=2/p

(4.25) K= (2C3)17
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and then substituting (4.24) into (4.23)2 and absorbing the term gives

G / Hdv,
2720V KINY 4B, nginny

Case 2: If (4.15) occurs then

* * . *0—1
RN MBI
2 51_17*/17 B

J

(4.26) v(Bj) < Cy = Cy(data).

which implies

— /(1=p«0)
2M p+/(1=px0) !

. D
(4.27) v(Bj) < <€1/p*1/p,/€)\> /B]- FP-dv

where we used the inequality p.# < 1 which follows from the deﬁnltlon of 6 that p.0 < W&%m

. This decomposition of the exponent

p+1 Moreover, since p > 2, we have that 3 < T =142 -

will allow us to incorporate the level set of F' in the 1ntegrand and then remove the exponent on
the integral. To that end, with a constant k € (0,1) to be determined, we split the integral as

T—p«0 T—p«0
(4.28) / FP dv < / FP= dv + (RENP1(B;) .
B; B;n{F>RkA}

J
Now, since gg < 1,
C(n)Qn—i—ap

v(B(xo,200) < :=L=L(n,p,¢).
Then by noting that B; C B(x,200) we can estimate
%0 %0
V(B < [v(Blao, 200))] 77 1(By) < LT (B)).

Then using the elementary inequality (a+b)" < 2""1(a" +b") for any r > 1 in (4.28) and using the
estimate above for [v(B;)]"/(177+0) we have

e o
/ P dy < 9p«0/(1—px0) / P+ dy
(4.29) B, B Bjn{F>RrA}

+ AL+ 1) 757 RN T v(B)).
Combining (4.27) and (4.29), and using that 0 < 1,

—pxb _
B.) < 22M p«/(1=ps0) g 1/(1=p-) 22M(L + 1)7% p«/(1=6px) 5.
v(B;) < el/p=1/P" i\ B;N{F>RkA} Y * cl/p—1/p' v(B;).

Now set & € (0,1) to satisfy

AM (L + )R\ P/ U=p-0

AM a0 o
) <2 ——7— Fred '
v(Bj) < <61/p*1/p/,£)\> /Bjm{F>Em} :

1\ A=20)/p 1/p.—1/p/
- o<(3)

2 AM(L+1)°

N =

Then
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px6

1
. . Top0 . . T—pa0
Writing (fBjm{F>Em} s d1/> = (fBjm{F>m)\} s dy) (fBjﬂ{F>Rm} s dy) let us trans-
fer some of the “decay” from the integrand to the cutoff Ay, and in so doing remove the exponent
from the integral.

/ FPdv < (Ef@)\)p*/ (,\) dv
B,n{F>RrkA} B;n{F>RrA} \KKA

< V(2m_18j) ][ Fp*+5f dV

B (//%K?)\)éf 2m—13].

1)
v(B(z0,200)) . 5. LA
< P EY .’2m Rx: p*+f<17.
= (/K\:K;)\)(;f [ 0(1'] (1..7))] — (//%K])\)(Sf

ps«0
1—ps«0

Therefore, powering the above inequality by on both sides we obtain that

C5>\§p*+5f)9p*/(1—p*9)

. P
(4:31) v(Bj) < (Rr) (14007 )p</(1=p-0) Bjﬁ{F>En>\}F v
where
L (AM(L 4 1)\ 00

Combining (4.26) and (4.31),

Iy
v(Bj) < 2204/ %/ v,
eV RINY JuB, > RRA} (REX)?1 B0 {F>RrA}

and since {B;} is a disjoint collection whose members are all contained in B(zg, &) we have

H7dv +

Oy
r 2721V YN JB(2o,0){H>FrA} (REXN)?# JB(z,0)n{F>RRA}

where the constants Cy = Cs(data), C5(data,c), k and k have been chosen to satisfy (4.26), (4.32),
(4.25) and (4.30) respectively. The constant x € (0, 1] defined in (4.64) will be fixed in the course
of the off-diagonal estimates below.

4.3. Analysis Off the Diagonal. The analysis far from the diagonal is much more technical.
We begin with defining the collections of dyadic cubes and summarizing their properties that will
be used repeatedly. We then define two dimensional constants that will be used throughout the
analysis of cubes far from the diagonal. In Section 4.3.3 we recall the classical Calderén-Zygmund
decomposition and adapt it to decompose the level set {H > A} into the aforementioned dyadic
cubes. In Section 4.3.4 we analyze the cubes near the diagonal and show they can be covered
by the collection {B;}. In the remaining sections we treat the cubes far from the diagonal using
the “almost-reverse” Holder inequality in Lemma 4.6, a careful choice of the constant x, and
combinatorial information about the cubes coming from their size and distance from the diagonal.

4.3.1. Dyadic Cubes. The following contains information regarding cubes arising from a Calderén-
Zygmund decomposition of Euclidean space. The dyadic cubes considered here are centered at xg
and their size has been changed so as to be compatible with the starting ball B(xg,3). We will
consider cubes with side length 27% for integers k > ko, where

(4.34) ko = {— log, (M)J +1.
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Here, |-| denotes the floor function. For each k > ko, let Cx be the disjoint collection of half-open
cubes in R" centered at 2 with side length 27% whose closures intersect B(zo, (o — 38)). That is,

Cri={zo+27F2+[0,27F)" : 2 € Z", (xo+27%240,27%)") N B(xo, %(a —0)) #0}.

Then by (4.34) we have

(4.35) B(xo,8) € | J K C B(zo,0).
KeCy

Note that every cube K € Cjy1 has a unique “predecessor” K e Ci such that K C K. With these
cubes, we can define dyadic cubes on R?", denoted by

(436) Ay = {IC =K x Ky : Kl,KQGCk}, A= U Ay .
k>ko

Denote the diagonal cubes A¢ := {K x K : K € Ag}. Then

B(xo,8) C | K C B(xo,0).
KeAy

Note that these product cubes in R?" satisfy all of the same properties as the cubes. Numerous
times a cube K € A will be given; there exists Ky, Ko € Ci such that = K; x K5, and we denote

E(K)=Fk.
We denote the cube projections for a cube K = K7 x Ks by
™= K1 x Ky, and ol = Ko X K.
Proposition 4.2. Let K = K1 x Ko € A. The following hold:

o 7T1/C, 7T2]C e A.
e v(mK) =v(mk) and k(K) = k(mK) = k(mK).
e IfHeA and H CK, then k(K) < k(H).
o If K = K1 x Ky is the predecessor of K, then
(4.37) dist(Ky, K2) < dist(K1, Ks) .
e The following hold:
(4.38) dist (K1, Ks) = \}i dist (71K, 75K) .
(4.39) dist (K, diag) = — dist(K1, K») = ~ dist(m1/C, mK)
. , =—— , == Tk, mk) .
g NG 1,482 5 1 2

Note that for two sets Ay and Ay C R?" the definition of dist( Ay, As) uses the traditional
FEuclidean norm.

4.3.2. Two Dimensional Constants. In the analysis that follows we will often compare the sizes of
the cubes with their distance to the diagonal. This leads us to define two dimensional constants
independent of € that will be used repeatedly. The existence of these constants follows from
geometric arguments.
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Lemma 4.3. There exists a constant Cqq depending only on n such that for h € {1,2}
(4.40)

cdmup{l(diswmy* v(K) }+ up {E(Wf“vw@},

Kea | € 27k v(mhK) KeA 27k
dist(K,K2)>2"F

where k = k(KC).

Proof. Without loss of generality assume dist(K71, K2) > 0. By definition of v

~kyn+tep —k)2n
v(mpK) > O(n)(i), while v(K) < dist(IQ(fl,f)(g)”gp .
Thus the first quantity is bounded;
1 (dist(Ky, K2)\"™ " v(K)
€ ( 2k >
On the other hand, if z € K7 and y € K5 then
dist (K1, K») < |z —y| < dist(K1, K2) 4+ 2¢/n(27F)

< 2v/n(dist(K1, Ko) +27%) .

Thus by definition of v

,/(]C) - (2714)271
= (2y/n)n—ep(dist(K, Ko) + 2—F)n—ep

Since

(k) = S by,
we have

dist (K1, K2) \ ™" v(m:K) dist (K1, K2)\ ™" (dist (K7, Ko) + 27F)n—ep
(FH) G s (M) R
<o) ()T BRI < o),

where in the second inequality we used that dist(K7, K3) > 2%, Thus the second term is bounded
by a dimensional constant as well, and so (4.40) holds for some constant Cyy depending only on

n. ]
Lemma 4.4. There exists a constant Cyqq depending only on n such that

v(K) = (R RO > o—k(K)
(4.41) sup oK) : IKC is the predecessor of IC, dist(K1, K2) > 2 < Cydd -

v

Proof. The triangle inequality gives
(4.42) |z — y| < 2v/n27 P 1 dist (K7, Ky) < 8v/ndist(Kq, Ky)
whenever x € K1, y € Ky and dist([?l, IA(;) > 27k(K) " Therefore,

v(K) < dist(K7, Kz) ™" |K1|| K|

:4”dist([fi,]/€2)"5p/ / dz dy
K1 J Ko

(4.42

) 1
§4n8\/ﬁ/ / ——dzdy=C(n)v(K).
Ky Ji |2 =y ()
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O

4.3.3. Calderon-Zygmund Covering and Sorting of Dyadic Cubes. Here we write down a version
of the classical Calderén-Zygmund decomposition adapted for use in our context. The proof is
virtually identical to the classical proof, taking into account that the measure is doubling and
absolutely continuous with respect to Lebesgue measure; see [4,12].

Theorem 4.5. Let Qo C R be a cube and let V > 0 be a function in L'(Qo). Let X be a number
such that

degX.
Qo

Then there exists a collection of at most countable cubes {Q;} that are pairwise disjoint with sides
parallel to those of Qo such that

X<][ Vdv and ﬁ le/SX for every Q; ,

@ 2

where @l is the predecessor of Q;, and

V<X almost everywhere in Qo \ U Qi .

We will use this theorem to cover the level set of H. Define

1/p
(4.43) A2 :=max< A1, sup <][ H? du) )
’CEAkO I

Recall that A; and ko have been defined in (4.7) and (4.34) respectively. Note that by (4.35) the
cubes {K}xe Ay, cover B (0, 3). For X\ > Ay apply Theorem 4.5 with Qg = Ky for each and every
cube Ky € Ay,. We obtain a pairwise disjoint family of cubes Q;(Kp) such that

(4.44) o< ][ HY dv and ][ H? dv < M for every Q;(Ko),
Qi(Ko) Qi(Ko)
where Q;(Ko) denotes the predecessor of Q;(Ko), and

H<X ae inKo\|JQi(Ko).

Thus, we get a countable collection of disjoint dyadic cubes

Hy= () {QilKo)} = {K}

KOGAkO

that satisfy
(4.45) N < ][ HY dv  and ][~le dv < v for every IC € H),
K K

where K denotes the predecessor of K and such that

(4.46) H <X ae. in B(zg,a)\ U K.
KCeH
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4.3.4. Nearly Diagonal Cubes. It turns out that the cubes whose distance to the diagonal is smaller
than their size can be covered by diagonal balls B; chosen in the exit-time argument above, see
(4.10)-(4.11). This leaves us to deal with the cubes that are “far” from the diagonal in the next
section.

To begin, we define the family of “nearly diagonal” cubes
HY = {K € Hy : dist(K1, Ky) < 27*%) | K = K| x K; is the predecessor of K} .

With K € H{, let (z,7) € Diag such that dist((z, Z), K) = dist(Diag, K) and a diagonal ball B(Z, R)
such that

R> 5\2/ﬁ dist(K1, K3) 4 5y/n2 F0O+1

Using (4.39) for K, it follows that K C B(Z, R). Thus, the diagonal ball B = B(Z,24/n2 *K))
satisfies B C IC. Now note that by (3.3) in Theorem 3.1 there exists a constant Cy = Cy(n,p) such
that

)
v(K) = e
Thus if £ € H{ then the lower bound in (4.45) gives

AP’<][HP’dug v(B) ][Hp’dygcdfm’du.
K v(K) Jg € Jg

By choosing the number € (0, 1] introduced in (4.7) to satisfy
gl/pl

(QCd)l/p/ ’

1<

(4.47) k € (0, ko], Ko i=
we have therefore proved that

For every K € H¢ there exists BX = BX x BF such that x?' X' < HY dv with K c B*.
BK
Denote the center of BX by Z. Then by the choice (4.34) for the lower bound on k(K), it follows
that the radius of the ball B = B(Z, 24y/n2 %X)) is smaller than ZT]B. Therefore we can apply
the exit time condition (4.10) to obtain that (z,7) € C,y and then BX C B(Z, R(z)). By (4.11) it
follows that

(4.48) U kclJ108;.

Kend J

4.3.5. Off-Diagonal Reverse Holder Inequalities. Since the nearly diagonal cubes 7-[3{ have been
covered by the diagonal cover, we need only consider the off-diagonal cubes

(4.49)  HY = {K € Hy : dist(Ky, Ko) > 27FK) | £ = K| x Ky is the predecessor of K} .
By (4.37) we also have
dist (K7, Ky) < 9 k(K) for every K € ’H&Ld.

Our objective now is to categorize and estimate sums of the measures of cubes in Hﬁd. We will
use the following lemma to do so. This lemma states that for off-diagonal cubes an “almost reverse
Hoélder inequality” holds automatically regardless of whether the function u solves an equation.
However, diagonal cubes appear in the estimate, which must be treated by a combinatorial argument
in subsequent sections.
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Lemma 4.6. Let k > ko and let K = K1 x Ko € Ay. Then there exists a constant Cqg = Cpq(data)
independent of € such that if dist(K7, Ko) > 2=k then

(4.50)

Y 1
(][ H? dy> < Cha (7[ H”’du)
K K
Cnd 2—k (p—1)(s+e) X 1/~ , 1/~
T el/v (dist(Kl,K2)> <][ " dV) (][ " dV) ’

with v defined as in Corollary 3.4.1. In particular, (4.50) holds whenever K € ”Hi\ld.

Proof. First, there exist 1 € K1 and y; € K3 such that dist(K;, K2) = |21 — y1]. Then for any
(z,y) €K,

|z —y| < dist(K1, K2) + |z — 2] + |y1 —
< dist(K1, K») + 2y/n27%
< 3y/ndist(Kq, Ko),
since dist(K1, K3) > 27F. Therefore,

[z =y
4.51 1< —< fi 11 :
(4.51) S Tt ) S 3vn  for all (z,y) € K;

the first inequality is a consequence of the definition of dist(K, K3). Next, by definition of v we
have

1 4—nk 4—nk
4.52 <viK)<C .
( ) (n p) dlSt(Kl,KQ)n Ep — V( ) — (n?p) dist(Kl,KQ)n_Ep
We therefore have, using (4.51) and (4.52),

N u(x) — u(y)? Ju(z) — u(y)|? v
<]{CHP dy) = ( /I<1 /K2 |x_ |n+sp + a(z,y) o — g dyd:p>
n ep—(n+sp)
< C’[ dist(K1, Ko) _ / / )P dy de
4- K, J K,

n ep—(n+tq) 1/p'
(45 ¥ (dlSt(Kl L / / I dy dx) ]
K1 J K>

godist<K1,K2>—<p—1><s+e>[][ f fu(z) — uly)[P dy de
K1 JK»

1/p
—}—dist(Kl,Kg)Sp_tq][ ][ y)|? dydx] ,
Ko

where C' = C(data). Using (4.35) we can estimate
dist (K7, K2)® 7" < (2a)P71 < (39)*P 7" < 371 = (C(data),

and we also have

f. . ) - v ayas < @ ulegp) ' f f u(y)lP dyda
K1 K2 K2
C(data) ][ ][ y)[Pdydex.
K1 J Ko
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Combining these two estimates with (4.53) yields

, 1/p 1/p'
(4.54) (7[ H? dy> < Cdist(K, Kq)~(P~D(s+2) <][ ][ lu(z) — u(y)|P dy dx) ,
K Ky JKo

where C' = C(data). Now, using Minkowski’s inequality,

+ (i@ lu(@) — (u) K, 7 d$> h + (WK, — (w)ks| -

Then using the Sobolev embedding theorem in Lemma 3.2 adapted for U and v and applied to
cubes, we have

1/p 2~ k(s+e) 1/n
(£, o - @par) "< ZE (o)L he 2.0 = Clus),
Ky € /m TRIC

Next, using Holder’s inequality and repeatedly using (4.51) and (4.52),

(Wi = @i < £ Jule) ~ uly)| dy s
K, JKs
1/n

<(f f '”dy“)

K, J K,

1/n
77

C<d15t(K1,K2 =Py (K /Kl /I(g vl dydm)

1/ 1/n
<c (7[ () — u(y)|77du> < Cdist(Ky, Ky)™ <][ U dz/> ,
K K

where C' = C(data). Combining the three above inequalities with (4.54) and using the inequality
(a+b+c)" <3 Ha" +b" + ") valid for r > 1 and a, b, ¢ > 0 gives

, 1/p' (p=1)/n
(fwa)” <cu(f o)
K K
Cra o—k (p—1)(s+e) : (p—=1)/n (p—1)/n
d md )
* 5(p71)/77 (diSt(K17 K2)> <]{r1/€ v V) * <]{r2/€ v V)

To see that (4.50) follows, recall that v = "; and that by definition U” < H” pointwise. O

Note that this lemma holds for all functions v € W*P(R™) N L*>°(R"™) and for every integer k,
and in the case a = 0 it holds for every u € W*P(R™). We now apply it in order to begin the level
set estimate.

Corollary 4.6.1. Let k > ko be an integer, and suppose that K € Ay, satisfies dist(K7, Ko) > 27F.

Assume that
, 1/p'
<][ H? du) > A,
K

and that the constant k introduced in (4.7) satisfies
el

(4.55) k€ (0,r1], K1 = 30,
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where Cpg = Cpa(data) has been defined in Lemma 4.6. Then

(4.56)
37C7
v(K) < ”d/ H"dv
AV Jkn{H>rA}

N 3707, 9—k n(s+e)
eXY diSt(Kl,Kg)

v(K) / H7dv + v(K) / H7dv| .
V(M) Jokn{E>rA} v(m2kK) Jaokn{m>rA}

In particular, (4.56) holds whenever K € H}<.

Proof. Applying the inequality (a +b+¢)” < 3" 1(a” 4+ b" + ¢") to the conclusion (4.50) in Lemma
4.6 and recalling that (p — 1)y =, we get

(4 57) 2\ 1 2—k’ n(s+e)
. — < H7d - H7d H7d .
e, — ]{c Yt <dist(K1,K2)> (ilic v ]{rgzc V)

To estimate the integrals on the right-hand side, we use (4.55) to get
1

HYdv < kI + / HYdv
][E ! V(E) Jen{m>n}
for E € {K,m K, K}, and therefore
A7 I\ 1
A A / HY dv
37 Cnd € V(K:) KN{H>r\}

—k n(s+e)
YRS L U N
e \dist(K71, K2) V(M) Joikn{E>rA} v(m2K) Jrokn{m>rA}

Now the estimate (4.56) follows by using (4.55) in the above estimate and absorbing terms. O

H7dv

4.3.6. Collections of Off-Diagonal Cubes. We now split the collection Hgfd into collections where
the average of H7 is large and where the average of H?7 is small. The splitting is chosen based on
the first exit-time argument.

Consider
(4.58) g = {/c € Hye . ][ . HYdv < (mn)nﬂwm}
and h
(4.59) B = {IC cHM . ][ KH”’ dv > (10n)”+pm“’>\7}
Th

for h € {1,2} and x and ~ introduced in (4.7) and Corollary 3.4.1 respectively. We further define
G =9\ NYGE, and By = B\ U B .

We further split the set &) in order to remove cubes that are already covered by the diagonal balls
in (4.10)-(4.11):

(4.60) Bra=Ke® : Kc|J10B;p,  Bana=Pr\PBra-
J

Thus we have the decomposition into disjoint families
H&Zd =% U BxraN %A,nd .
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It turns out that the family ¢\ is “good” in the sense that the measures of cubes in this
collection are estimated by the u-measure of the level set {H > rkA}, where du := HY dv. The
cubes belonging to %) ,q are “bad” because there is no available control of the size of H? on
diagonal cubes via the exit-time argument. They will instead be dealt with using combinatorial
arguments, and the cutoff (10n)"PxY\7 is chosen for precisely this purpose.

Lemma 4.7 (First (easier) off-diagonal estimate). We have

Z v(K) < mfvgd/ H" dv
Ko, B(zo,)N{H>kA}
whenever the number k € (0, 1] satisfies
et/
(4.61) k € (0, ke, Ko 1= S0, (10m) 7/

The constant C,q has been defined in Lemma 4.6.

Proof. Since the cubes K € ¥ are disjoint and since (4.35) holds, it suffices to show that

67C)
(4.62) v(K) < ——nd / H” dv
AT Jkn{H>rA}
for every IC € 4. Since K € %), using (4.61) we have
(4.63)
gl -k (s+¢)
oL (Lt Y -
eAY dlSt(KviQ) (Whlc) TR KN{H >k}
3 c 3C),
”d ][ H'dv <v IC) (1011)”4"’/5’)\7 < (;C) .

Using this estimate for h € {1,2} in (4.56) and then absorbing terms gives (4.62). O

4.3.7. Determining k. At this point the constant s introduced in (4.7) can be completely deter-
mined. We choose

/P cl/v cl/v
(4.64) K := min{ko, K1, K2} = min ,

(2C)1/P " 21/73C,q  81/73C,q(10n)(n+p)/7
so that conditions (4.47), (4.55), and (4.61) are satisfied. Since the constant Cy defined in Theorem

3.1 depends only on n and p, and since C},; defined in Lemma 4.6 depends only on data, we
conclude that there exists Cy, = C\(data) such that

(4.65) K >

4.3.8. Summation in P nq. Dealing with the cubes from %) 4 requires delicate estimates and
combinatorial arguments. We will first set up notation designed to describe the cubes more precisely.
We will then demonstrate that the choice of cutoff (10n)"tPkY\7 gives us an upper bound on the
distance of a cube from the diagonal.

Define the “problematic” projections of the “bad” off-diagonal set
By = {m K K€ B}, he{l,2}.
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Since all cubes belonging to the collection m %) U2, are dyadic cubes, it follows that a disjoint
subfamily of cubes always exists. We denote this disjoint subfamily of w1 %\ U oA\ by n4y. By
definition, all cubes of 7%, belong to w18y U me %y and are therefore diagonal cubes.

Lemma 4.8. Let K € %) nq be a cube such that m,)C C M for some M € w5y and some h € {1,2}.
Then dist(K, Ky) > 27 FM),

Proof. First, consider M € w%,. Take the diagonal ball B(M) = B(zaq, 2~ FMHD) with 2,
being the center of M. Thus,

B(M) C M C /nB(M).
Thus, by (3.2), Holder’s inequality, and by the definition of 7%,

1/
(10n)(”+p)/7/£)\ < <][ H7 dy)
M

< (o £, )

, 1/p'
< oo (f )"
M

By the definition of D) in (4.8) we have (zaq, xa1) € Dy, and then the exit-time condition (4.10)
gives B(M) C B(zam, R(M)). We can use the exit time condition since the radius of the ball
10nB(M) is smaller than 2=2 which is in turn a consequence of the fact that k(M) + 1 > ko and

40"
ko has been chosen as in (4.34). Therefore, by (4.11)

(4.66) 10nB(M) C | J10B; .

Now, assume by contradiction that dist(K;, K») < 27*M) We will show that
(4.67) K € 10nB(M)

which then contradicts the assumption M € %) ,,q4 by (4.66). To show (4.67) we use Proposition
4.2 and that 7, K C M to get

dist (K, M) < dist(K, m,K) = dist(K7, Ka) < 27FM)

Again using Proposition 4.2 we have k(K) = k(m,K) and k(K) > k(M). Therefore, since M C
VnB(M) and the radius of B(M) is 2~ M+ then (4.67) must hold. O

Lemma 4.9 (Second (harder) off-diagonal estimate). There exists a constant C = C(data) such
that the estimate

C
(4.68) > wk) < i
KeB na
holds, where k is as in (4.64).

/ H" dv
B(zo,)N{H>kA}

Proof. Step 1: Classification. We classify cubes from %) ,,4 according to the location of their pro-
jections, their size, and their distance from the diagonal. Lemma 4.8, in summary, correlates the
distance of a cube from the diagonal with the location of its projection. This allows us to consider
only cubes in w4,

We will partition %) 4 into suitable disjoint subfamilies. Define the collections

B g = Brna N By, he{l,2}
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For every M € %), set
B pg(M) = {K € Brya : 1K C M}, he{l,2}.
Thus, we have the decomposition into disjoint subcollections
(469) ‘%Q,nd = U ‘%Q,nd(M) .
MEW@A

These subcollections are disjoint in the sense that for M1, My € 7.8, f%’;\"nd(/\/{ﬁﬂ%’f’nd(/\/lz) # 0

implies M1 = M. This follows from the definition of f%’;\‘n 4(M) and from the fact that all elements
in w98 are pairwise disjoint.

Next we classify cubes according to their size. For each K € @I/\l7nd(/\/l) we have k(K) =
k(mpKC) > k(M), so we can define the collections

(22 na(M)]i = {K € B a(M) = k(K) =i+ k(M)},  he{l,2}, i€Zy.
We again have a decomposition in mutually disjoint subcollections
’%I)F\L,nd(M) = U [‘%Q,nd(M)]lﬂ
€2y
in the sense that [} (M), N [BY ,(M)]i, # 0 implies that iy = iy.
We further classify the cubes according to their distance from the diagonal. We now use the

combinatorial information obtained from Lemma 4.8. Take M € 7%,. If K € %’ﬁf’nd(/\/l); that

is, if 7, C M, then by Lemma 4.8 it follows that dist(K;, K3) > 27%(M) This leads us to the
definition of the subcollections

[‘%x}\L,nd(M”%] = {,C € [‘@é\l,nd<MﬂZ : 2j_k(M) < diSt<K1’K2) < 2j+l_k(M)}7 h e {172}7 Z?] € Z+7
We yet again have the decomposition in mutually disjoint subcollections
‘@il,nd(M) = U [‘@i,nd(/\/l)]i,j
1,JEL
and these are mutually disjoint in the sense that [‘@Q,nd(M)]ilJl N [%’;\”nd(/\/l)}i%h # () implies that
(i1,71) = (i2,72). In summary, we have the decomposition

‘%I/\l,nd = U U [‘@Knd(M)]iJ ’
MernBy i,jEL4

Step 2: Summation and Further Partitioning. Fix M € 7%). Our goal in this step is to show that

for h € {1,2}

(4.70)

S | < S [y,
S/Cezgl M) v(m k) \dist(K1, Ks) T KN{H>KA} s MN{H>rA} '

To begin, note that for IC € %i\‘ g We have dist (K7, Kq) > 27+ "and so we can apply the inequality
from Lemma 4.3 to get that

1 v(K) o~k noep
- SCu\ v~
e v(mpK) dist(K1, K2)
for h € {1,2}, and further if K € [@’,{b,nd]i,j then
27k(K) 1 27kM) _ 1
dist(K7, Ko) 20 dist(Kq, Kq) — 245
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With these we can estimate

1 v(K) 9—k n(s+e)
- E ; H7 dv
€ KeFh (M) v(mpK) <d18t(K1,K2)> /7rhICm{H>m\}

Z ka n+n(s+e)—ep
= G () / HY dv
Kesh (M) dist(K71, K2) TR KO{H>kA}

i Z o—k n+n(s+e)—ep
=Cyq <) / H" dv
520 kel M dist (K1, K2) TR KN{H>KA}

00 1 n+n(s+e)—ep
<3 (55) )

1,7=0

(4.71)

HVdv.

kel (M, /TrhICﬂ{H>m\}

In order to evaluate the last sum we must further partition [%ﬁfnd(/\/l)]” In order to do so,
note that for each i € Z, the cube M contains precisely 22" disjoint dyadic cubes belonging to
Ajtr(m) and precisely 2" disjoint dyadic diagonal cubes from Airk( M) See the definition (4.36)
and the text immediately following. Thus, M contains at most 2™ dyadic cubes from the class

A?—&-k(/\/{) N (m1PBxrNmeABy). In any case we consider all the diagonal cubes from M in A?Jrk(M) and
label them as - N
{(MeA] iy MCMy={M[": 1<m <2},
so that
qni

(4.72) > / HYdv < / HYdv.
m=1 " MI*N{H>rA} MN{H>kKA\}

For any K € [%’f\’nd(/\/l)]” with h € {1,2} there exists a unique diagonal cube from the collection
A¢, which we denote by M™(K), such that 7, = M7 (K). Then we can split [%f\bnd(/\/l)]” into
subsets

(B pa(M)lijm = A{K € [BYa(M)]ij + Tl =M}, me{l,...,2"}.

Since '@/l\,nd is a family of dyadic cubes, if K1,Ks € [e%’ind(/\/l)]mm and K1 # Ka, then mkq N
mKo = 0, else the two cubes would coincide.

Thus for each i, 5 > 0 and for m € {1,...,2™} the number of cubes K of side length
2HRM) with dist(K7, Kq) € [207FM) 27H1=kM)) that project into M?" is bounded from above by
C(n) <1ength of half-open interval defining the distance from the diagonal) n' that is

cube side length

(4.73) #( B a(M)ijm < C(n)2"H) - he{1,2}.
Thus, using (4.72) and (4.73) we estimate
2ni
Z / HYdv = Z Z / HY dv
Kel#h, (M);,; N>R m=1KCe[Bh , (M) T M HZRAY
2ni
< C(n)2"t) N H" dv

m=1 MZ”O{H>H>\}

< C(n)2nt)) / HYdv.
MN{H>r\}
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Then using the series estimate (2.1) it follows that

o0 1\ vrlste)—ep
> (5%) )3

4,j=0 Ke[BY ,a(M)],

) i 1 n(s+e)—ep
<C(n < — ) / H7 dv
o \2 MA{H>rA}

/ H7 dv
TR KN{H>kK\}

on(s+e)—ep
/ H7dv
n(2)(n(s+¢) —ep) | Jmnga>er)

< Cn.p) 2/ H'Ydygc(nép)/ H7dv.
(s +¢) = epl* Jmnga>nr} s MA{H>kA}

In the last line we used that > 1 and that & < 2, which gives n(s+¢e)—ep > 2. Combining this
inequality with (4.71) results in (4.70).

< C(n)

Step 3: Further Summation. Let K € ‘%/I\,nd' Then, either K € 92 or K € %3 (see (4.58) and

(4.59)). If K € 42, then using the almost-reverse Holder inequality (4.56) along with the estimate
(4.63) for cubes in ¥ and reabsorbing terms,

6707 67C"Y 9~k (s+¢)
v(K) < ”d/ HYdy + —d ( . > v(K) / HYdv.
NS> R0 eAv  \dist(K7, Ka) v(mK) Jaikn{E>rA}
On the other hand, if K € %3 then we can use the almost-reverse Holder inequality(4.56) to obtain
3C)
v(K) < ”d/ H" dv
AT Jkn{H> RN}
_ (s+¢)
3nCy, 27k e
eXY diSt(Kl,Kg)

v(K) / o dy 4 ) / HYdv| .
V(ﬂ-llc) m KN{H>rA} V(WQIC) T KN{H>KA}

A similar reasoning holds for I € %i Summing over the cubes K € %) ,,q = ‘@}\,nd U %’/Q\md gives

us
6 C7
Z V( nd Z / HYdv
KETnna KEBx na KN{H>kr\}
67C), 9k =) LK)
LG 2 H7d
(4.74) eNY i Zl: <d1st(K1, Kg)) v(mK) /ﬂ-llCm{H>n)\} v
€%k,nd
0 _k n(s+e)
LIRS <2> v(K) / HYdv.
eNY > dlSt(Kl,Kg) V(WZIC) maKN{H>r\}
Ke%k,nd

The point of this argument beginning in Step 3 is that terms involving the projections 7, appear
if and only if K € '@f\L,nd for h € {1,2}. We will now argue that the last two terms in the above
inequality coincide.
For a cube K = K7 x Ky € A, define
Symm(K) := Ky x Kj .
Then by definition
(475) 7T1(IC) = 7T1(K1 X K2) = 7T2(K2 X Kl) = Wg(Symm(lC)) .
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Further, by symmetry of H we have

/H’"dy:/ H" dv, r € [1,00)
K Symm(K)
and

(4.76) / H’"dy:/ H"dv, r € [l,00).
KN{H>r\} Symm(K)N{H>krA}

Therefore, by definition of %’f{

Ke# < Symm(K)e %3,
and vice versa, and so
(4.77) Ke#,, < SymmK)eB,q

and vice versa. It follows from (4.75)-(4.77) that the last two terms in (4.74) coincide. Recalling
the decomposition (4. 69) (4.74) can be written as

RS /,< Y dv

Ket@xynd ]CG})\ Q{H>H)\}
2—k )77(5+5) I/(IC) /
: B H"dv,
EX7 M;:EA KE%;\Z:d M) (dlSt(Kl,Kg) I/(7T1’C) T KN{H >k}

for a constant C = C (data) Using the estimate (4.70) proved in Step 2 yields
C
> v Z / H'dv+ ) / Hdv.
Ke&%,nd ICGVEA g ! KOLH>RA} A Mena, I MN{H>rA}

Then since the collections %) ,q and 7%, are comprised of mutually disjoint dyadic cubes all of
which are contained in B(xg, a) (see (4.35)) we can estimate

Z / HYdv + Z / HWdu§2/ HYdv.
TN KN{H>r\} MenB MN{H>kK\} B(zo,a)N{H>rA}

Thus (4.68) is proved, and the proof of Lemma 4.9 is complete. ]
4.3.9. Off-Diagonal Conclusion. The next lemma summarizes the off-diagonal estimate obtained
for H.

Lemma 4.10. The inequality

(4.78) HY dv < 10™PRP NN " u(B;) + CAP' / H" dv

J B(zo,0)N{H>KA\}

holds for a constant C' = C(data), while k has been chosen in (4.64) and satisfies (4.65).

/B(xo,ﬁ)ﬁ{H>)\}

Proof. We have the decomposition H) = H§ U Hfd with H4 = 4, U PBraU By ni- Recall from the
relation (4.48) and from the definition (4.60) that

U cuv U ICCUlOB

KeHé KeBx,a

U cwsu | kv | k.

KEH ) J Ked ’CE'@)\,nd

Thus
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Now, with this and with (4.46), we estimate

HY dv < / HY dv + / HY dv.
; 1 Z Kn{H>\}

/B(a:o,ﬁ)m{H>>\} 0B;N{H>\} KEDrUBy 1

Now, by the choice of Calderén-Zygmund splitting in (4.44), for IC € 9\ U %) na C H;\‘d

P dy L’E) P dy v(K) v
f,cH d Su(lo]{zﬂ W=

Since K € H&Ld it follows from the definition (4.49) that diSt(I?l,kQ) > 27k(K) 30 we can use the

geometric estimate (4.41) from Lemma 4.4 to obtain the bound Zgg < Cygq- In summary,

Ke% U ‘%)A,nd = Hp, dr < Cddd)\p,V(K:) .
KN{H>\}

Using this inequality in conjunction with (4.13) results in

/ HY dv < 10n+€pl<cpl)\p/ Z V(Bj) + Cddd)\p/ Z v(K).
B(xo,ﬁ)ﬂ{H>/\} i Ke%uﬂx,nd
Then (4.78) follows from the conclusions of Lemmas 4.7 and 4.9. O

4.4. Conclusion of the Proof. We now come to the conclusion of the proof of Proposition 4.1.
We start by combining the diagonal estimate (4.33) with the off-diagonal estimate (4.78). We use
the elementary estimate

Hp'dug)\f’"“Y/ H'ydl/ﬂ—/ Hp/dy;
B(zo,B)N{H>KKr\} B(xo,8)N{H>\}

recall that %, k € (0,1]. Then (4.33) and (4.78) give, after some elementary algebraic manipulations,
the estimate

/B(xo B)N{H>RrA}

, d
/ Y dv < - 20(,afa) (RN / HY dv
B(x0,B)N{H>Fk\} 2=/ (RR)P' = B(zo,a)N{H>RrA}
CsAY! /
RP' (/I%H)\)gf - B(zo,a)N{F>RrA\}

(4.79)
FP+dv.

Recall that Cs is defined in (4.32). We can reformulate this estimate as

/ HY dv < —— ,C~ A\ / HY dv
Blzo,A)N{H>A} e2-2/P (Rr)P = Blag,0){ H>A}
(4.80) .

+ oL FPdv.

A= /B(:vo,a)ﬁ{F>E>\/F€}
The constants C' and Cg satisfy the following dependencies:
C = C(data), Cs = Cg(data,z).

Since (4.79) holds for all A > Ay where Ay has been defined in (4.43) we have that (4.80) holds
for all A > KkAg. Recall again that &, K, k € (0,1] have been defined in (4.25), (4.30) and (4.64)
respectively.
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In order to conclude with the level set estimate (4.5) we need to estimate several constants. We
need to obtain the specific dependence on ¢ of the constant appearing in front of the first integrand
on the right-hand side. By using (4.25) and (4.64), we see that we can choose &, k to satisfy

g3/ =2/v
Rk = ———,

C

where C' = (C(data). With this choice, we can estimate the constant appearing in front of the
second integral in (4.80) and therefore arrive at a choice of ¥ exactly as in (4.4). We next set

Kf:=FRK/R,
and making note of (4.30) we can additionally choose & small so that x; € (0,1).

Last, we need to find an upper bound on the numbers A\; and Ay defined in (4.7) and (4.43)
respectively, so that the level set estimate (4.5) can be verified for the range prescribed by (4.6). If
x € B(:Uo,ﬁ) and ‘ZO;LB < R < %, then B(z, R) C B(xo,200). Recalling the doubling property (3.2),
whenever H is a v- integrable functlon we can estimate

][ ﬁdu<y(8(xo’2go))][ PNIdV<C’< & )”+5P][ Hdv
B(x,R) ~ v(B(@,R))  JB(wo200) - \a-8 B(z0,200)

where C' = C(n). Applying this inequality to H?', FP+, HY and FP+t9s as well as on different
balls 2¢B(z, R) C 2FB(z0, 200), we get

I{_l{\I/M(CC, R) 4+ Yo(z, R) + Tail(z, R) }

C n+ep .
(4.81) < m <ag—oﬂ) {\IJM(LU(),QQ()) + Yo(zo,200) —I—Tazl(xo,ng)}
C 00 n-+ep C QO 2n+p
>~ m <a — /B> @(‘T072Q0) < —_ — B @(‘T072Q0)7

where C' = C(data). We also used (4.64) to remove dependence on &, (4.22) to remove dependence
20 > (4.1). Thus we have
obtained the desired upper bound on A1. To estimate Ao, note that for K = K x Ky € Ay, with
ko as in (4.34) we have K C B(zo, o) C B(zo, 290) and therefore

- B)*" _
> n+€p/}(1/K2d dx n+€p , C=C(n,p).

Thus, for any cube K € Ay, we can estimate
(4.82)

1/p /v’ 2n/p’
<][ )2id dy> < ”(6(9”0’290))][ H? dv < 10, ( 2 ) ][ HY dv
V(IC) B(x0,200) € /p Q= B B(xo,200)

Then using (4.81) and (4.82) (also using that ¢ < 1 and aQ_OB > 2) we get that

C 2n+p
>\2 < — <aQOI3> @(170,2@0),

where C' = C(data). We therefore take Ao as in (4.6) so that A\g > max{\i, A2}. We finally arrive
at (4.5) with X prescribed as in (4.6), and the proof of Proposition 4.1 is complete.

1/p

Remark 4.11. Note that in the proof of Proposition 4.1 the off-diagonal analysis in Section 4.3
does not make use of the assumption (3.9). Thus, the conclusions of Lemma 4.10 hold for general
fractional Sobolev functions u, and not just solutions to (1.1).
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