COUNTING INTERSECTION NUMBERS OF CLOSED GEODESICS ON SHIMURA

CURVES
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ABSTRACT. Let I' C PSL(2,R) correspond to the group of units of norm 1 in an Eichler order O of an
indefinite quaternion algebra over Q. Closed geodesics on I'\H correspond to optimal embeddings of real
quadratic orders into O. The weighted intersection numbers of pairs of these closed geodesics conjecturally
relates to the work of Darmon-Vonk on a real quadratic analogue to the difference of singular moduli. In
this paper, we study the total intersection number over all embeddings of a given pair of discriminants.
We precisely describe the arithmetic of each intersection, and produce a formula for the total intersection.
This formula is a real quadratic analogue of the work of Gross and Zagier on factorizing the difference of
singular moduli. The results are fairly general, allowing for a large class of non-maximal Eichler orders, and
non-fundamental /non-coprime discriminants. The paper ends with some explicit examples illustrating the

results of the paper.
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The PSL(2, Z)-invariant j—function outputs algebraic numbers given quadratic imaginary inputs. These

values generate certain ring class fields, and are known as singular moduli. In the celebrated work of Gross and

Zagier in [GZ85], a formula for the factorization of a difference of singular moduli is given. More concretely,

let D1, Dy be coprime negative fundamental discriminants, and they define the quantity J(Dy, D2)? € Z,
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which is essentially the norm to Q of j(71) — j(72), for quadratic imaginary 7; of discriminant D;. All primes
p dividing J (D1, D3)? are shown to satisfy
DDy — z?

Pl=—
for some integer x < v/D1 Dy, and the exponents of such primes are computed in terms of Kronecker symbols
(for more details, see [GZ85] or Section 2.5). One proof of this result involved counting endomorphisms
between elliptic curves, which boiled down to an “intersection” computation on definite quaternion algebras.
This work was generalized to allow for any distinct negative discriminants Dy, Do by Lauter and Viray in
[LV15].

On the other hand, a satisfactory analogue of the difference of singular moduli for positive discriminants
has remained elusive. A programme begun by Darmon and Vonk in [DV21] is to p—adically construct a
quantity J,(D1, D2) for positive discriminants Dy, Do, which is conjecturally algebraic and belonging to the
compositum of ring class fields associated to D;, Ds. Furthermore, this quantity appears to have a similar
factorization to the formula of Gross and Zagier!

The conjectural analogue of v, (J (Dy, D2)2) is a weighted intersection number of a pair of closed geodesics
on a Shimura curve. The aim of this paper is to explore these intersections in as much generality as possible.
The main result is Theorem 63 (a simplified version is Theorem 10), which counts all intersections of geodesics
corresponding to a pair of positive discriminants D, Ds. We work in a fairly general setting, and are also
able to count intersections with extra arithmetic information. These formulae are a generalization of the
main results in [Ric21a], which studied intersection numbers of closed geodesics in PSL(2, Z)\H.

Along the way, we developed algorithms in PARI/GP ([PAR23]) to compute (weighted) intersection
numbers of closed geodesics (see Section 2.6). These algorithms were crucial in providing evidence towards
the connection with the work of Darmon and Vonk, as well as demonstrating and verifying the main counting

results of this paper.

2. OVERVIEW OF THE PAPER

This section is dedicated to introducing the setup and notation required to precisely present the main
results. A simplified version of the main result is Theorem 10, which adds a few conditions to achieve a nicer
presentation. A detailed account of the connection to the work of Gross-Zagier and Darmon-Vonk is given

in Section 2.5

2.1. General intersection numbers. Let H denote the upper half plane and let I" be a discrete subgroup

of PSL(2,R), which acts on H via (‘; g) z = ijrrz Geodesics on the orbifold T'\H are the image of geodesics

on H, and closed geodesics correspond to elements of I" that are not a non-trivial power of another element

of I', and have two distinct real roots. Call such elements primitive hyperbolic.
Let v € PSL(2,R) be a hyperbolic matrix. We label one root to be the first (attracting) root v¢, and the
other to be the second (repelling) root +,, via the equations

lim +"(z) := Vs lim 7" (z) == s,

n—oo n—0o0

for any x € P*(R) that is not a root of 4. In particular, y~! has the same roots as v, but with the first and

second roots swapped.



For 2,25 € H:= HUP! (R), let £,, ,, denote the geodesic segment running from z; to z2, where we do

not include the endpoints z1, z2. Define szz =4 2, U{z1}. If v € T is primitive and hyperbolic, define

by =Ly, s

which is called the root geodesic of . For any z € £, the image of ZZWZ in I'\H is a closed geodesic, denoted
by Zv- The image of £, in I'\H runs over ZA, infinitely many times.

If 41 is not conjugate to either 4o or 75 ! in T, then the closed geodesics E% and 272 intersect in finitely
many places. Otherwise, the geodesics completely overlap each other. To get rid of such issues, we refer to

transversal intersections.

Definition 1. Given primitive hyperbolic matrices vy, € I', define
6’71 M g’m

to be the (finite) set of transversal intersections of £., and /., in T'\H. Singular points (i.e. having non-trivial

stabilizer in I") are counted with multiplicity: fix a local lift of 0., and the multiplicity is the number of local

Y1
lifts of £, that intersect transversely with the first lift. If £,, and /., do not overlap, then this is the size of
the stabilizer of the singular point.

Let f be any function defined on transversal intersections. The weighted intersection number of v,y is
defined to be

Int'{:('ylmg) = Z f(2).

zeZq,l mzw

In this paper, we consider the unsigned intersection number (f = 1), the signed intersection number (f =

the sign of intersection), and the g—weighted intersection number (see below Definition 7).

2.2. Optimal embeddings. Let B be an indefinite quaternion algebra over Q of discriminant 2, let O be
an Eichler order of level 91, fix an embedding ¢ : B — Mat(2,R), and let Op be the unique quadratic order
of discriminant D (lying in Q(v/D)). For an integer r, define

O":={z € O :nrd(z) =r},
the set of elements of reduced norm 7 in O. Note that O! is a group under multiplication, and let
I'=To :=(0")/{£1}
be the image of O! in PSL(2,R), a discrete subgroup.

Definition 2. An embedding of Op into O is a ring homomorphism ¢ : Op — O. Call the embedding
optimal if it does not extend to an embedding of a larger order into O. Note that if D is a fundamental

discriminant, then all embeddings of Op into O are optimal.

When D < 0, call the embedding ¢ positive definite if 1(¢(v/D))21 > 0 (the lower left entry of the
matrix is positive), and negative definite otherwise. This notion corresponds to whether the first root of
1(¢(v/D)) (defined similarly to the hyperbolic case) lies in the upper half plane or not. While the individual
definitenesses depend on the choice of ¢, whether two optimal embeddings of negative discriminants have the

same or opposite definiteness is independent of ¢.



If ¢, ¢' are optimal embeddings, we define them to be equivalent if there exists 2 € O! such that
¢ = ¢ = xpx L.

Denote the equivalence class of ¢ by [¢]. The notion of equivalence can be extended to pairs of optimal

embeddings as follows:
O1,P2) ~ (;5' , ¢’ if there exists an z € O such that xqﬁix_l = (b’- fori=1,2.
1 2 [

For a fixed discriminant D, define Emb(O, D) to be the set of equivalence classes of optimal embeddings of
Op into O, which is a finite set (see Proposition 23).

If D is a positive discriminant, let ep > 1 be the fundamental unit with positive norm in Op. If ¢ is an
optimal embedding of Op into O, then t(¢(ep)) is a primitive hyperbolic element of T' (in fact, all primitive

hyperbolic elements of I' arise in this fashion). Define 4 to be £,(4(c))-

Definition 3. Let ¢1, ¢2 be optimal embeddings of positive discriminants Dy, Dy, and let v; = ¢(¢:(ep,))
for ¢ = 1,2. For any function f defined on transversal intersections, the weighted intersection number of
@1, P2 is defined to be

It (¢1, d2) = Int{io (71,72)-

Note that the intersection number only depends on the equivalence classes of ¢1, ¢o. In Proposition 1.8 of
[Ric21a], an alternate interpretation of the intersection number is given. At each transversal intersection, we
can lift the point and the local geodesic to the upper half plane. This corresponds to a pair of transversely
intersecting root geodesics ¢y, , {s,, where o; ~ ¢; for i = 1,2. The obstruction to uniqueness is the choice
of lifted intersection point, which is only defined up to I'-equivalence. Equivalently, the pair (o1, 02) is only

defined up to simultaneous equivalence. This is formalized in the following proposition.

Proposition 4. An alternate interpretation of the intersection number is

It} (61, ¢2) = > f(o1,02).
(o1,02)€([p1]X[¢2])/~
o oy =1

Each intersection point z gives rise to a I'—equivalence class of points in H, as well as a unique intersection

angle, measured from the tangent to ¢,, at z to the tangent to ¢, at z.

2.3. x-linking. Proposition 4 still requires ¢ and €p to pass to the upper half plane. To make everything

contained within the quaternion algebra, we introduce the notion of x—linking.
Definition 5. Let x be any integer such that x? # D; D,. Call the pair (¢1, ¢2) r—linked if

v = 5 0d(61(vDr)oa(V/D2)).

In particular, if (¢1, ¢2) is z—linked, then every pair in the equivalence class (of simultaneous equivalence)
[(¢1,P2)] is x—linked.

The case 22 = D; D, is a degenerate case, and will not be relevant here. If (¢1, ¢2) are z—linked, then
2 = D1 Dy (mod 2). Whether two optimal embeddings intersect is completely determined by their z—linking,

as demonstrated in the following proposition (proven in Section 4).
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Proposition 6. Assume that (¢1,¢2) are x—linked optimal embeddings of positive discriminants Dy, Ds.

Then the root geodesics Ly, , Ly, intersect transversely if and only if
CE2 < D1Ds.

In this case,

(i) The intersection point is the upper half plane root of t(¢1(v/D1)d2(v/D2)), and so it corresponds to
an (not necessarily optimal) embedding of the negative quadratic order Oy2_p, p,.
(i) The angle of intersection 0 satisfies

x
COS(G) = \/ﬁ

Define
Emb(o7¢17¢25$) = {(01702> % g ¢1;0-2 ~ ¢2a (017U2> are x—hnked}/ ~,

the equivalence classes of x—linked pairs of embeddings similar to ¢1, ¢2. Going further, write
Emb(O, Dy, Dy, z) :={(01,02) : [0;] € Emb(O, D;), (01, 02) are z—linked}/ ~
= U Emb(07¢1,¢2,x).
[¢:]€Emb(0,D;)
In particular, the intersection number can be rephrased without reference to ¢ or the fundamental units
as follows:

Wl (6= Y ) f(01,02).

22 <D1 D> [(o1,02)]€Emb(O,¢1,¢2,7)
z=D1Ds (mod 2)

Thus, an intersection of ¢; with ¢o can be thought of as an xz—linked pair (o1, 03), with || < /D1 Da

and g; ~ (;Sz

Definition 7. Let 01 X 0y denote the unique optimal embedding which satisfies

o1 XO’Q(.T—F $2—D1D2):0'1(\/D71)0'2<\/D72>.

The sign of the intersection (o1, 02), denoted sg(oy,02), is 1 if o1 X 09 is positive definite, and —1 otherwise
(it is left undefined if 22 > D; D5). The level of the intersection, denoted £(cy,03), is £ > 0 where o1 X 09 is
an optimal embedding of discriminant ﬁ#.

Define Emb(O, Dy, Da, x,¢) to be the set of pairs of intersections in Emb(O, Dy, D, x) that have level ¢,

and if 2 < D Dy, define Emb™ (O, Dy, Dy, x,£) to be the subset of pairs that also have positive sign.

Using the notion of sign and level, we can describe three different intersection functions f

(1) When f(o1,02) = 1, Int]] is called the unsigned intersection number, and is denoted Into.
(2) When f(o1,02) = sg(o1,02), Inté is called the signed intersection number, and is denoted Int.
(3) When ¢ is a prime and f(o1,02) = sg(o1,02)(1 + v4(£(01,02))), Inté is called the g—weighted

intersection number, and is denoted Intd,.

Remark 8. The intersection sign can equivalently be defined as the topological intersection sign of the

corresponding root geodesics.



2.4. Main result. The e function defined in Gross and Zagier ([GZ85]) is very important for z—linking. We

recall its definition here (see Definition 43 for a slight generalization).

Definition 9. Let D;, Dy be coprime fundamental discriminants, and let p be a prime for which (%) #*
—1. Define

D
<1> if p and D are coprime;
p

e(p) ==

D
(2> if p and Dy are coprime.
p

Note that e is well defined if pt D1 D5 (as 1 = (DlpD2 ) ), and it is defined on all prime factors of %"’*:’32.

The “holy grail” of counting intersection numbers would be to identify the constituent terms in
Emb+(0,q51,<;527ﬂc,€)7 though this seems nonviable (at least with the current approach). Thus, we settle
for the more general term, where we replace the embedding ¢; with its discriminant D;. A simplified version

of our main result is the following theorem.

Theorem 10. Let Dy, Dy be positive coprime fundamental discriminants, and let x be any integer such that
x = D1Dy (mod 2). Then there is precisely one quaternion algebra B over Q which contains a mazimal

order O such that there exists x—linked optimal embeddings from Op, into O. Furthermore, factorize

DlDQ — I’Z - 2¢,+1 u 2f. i .
: :inieL-&- Hqiszwiglv
=1 =1 =1

where the p; are the primes for which e(p;) = —1 that appear to an odd power, q; are the primes for which
€(q;) = —1 that appear to an even power, and w; are the primes for which e(w;) = 1. If B has discriminant
D, then:

(i) v is even and ® = [[,_, p;.
(ii) The size of Emb(O, Dy, Do, x) is 2"t [['_, (g: + 1).
(iti) The set Emb(O, Dy, Do, x, ) is non-empty if and only if

T s t ,

_ € i 9i

= [t TTo T ot
i=1 i=1 i=1

where 29} < g;.
(iv) Assume the above holds, and let n be the number of indices for which 2g. < g;. Then

| Emb(O, Dy, Dy, 2, £)| = 2"+,
If 22 < D Ds, then exactly half of these embeddings have positive sign.

Theorem 63 is a generalization of this result, where we allow for Eichler orders, drop the requirement of
fundamentalness, and weaken the coprimality condition. By adding an additional assumption, in Corollary

68 we also consider orientations (see Section 3.4) of the optimal embedding pairs in Emb™ (O, Dy, Do, z, ().
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2.5. Connection to other work. In [GZ85], Gross and Zagier take D, Dy to be negative fundamental
coprime discriminants, and define the integral quantity J(D1, D2)?, which is essentially the norm to Q of

j(71) — j(72). Their Theorem 1.3 says

DDy — 22
J(D1,Dy)? = & 11 Fgz <1Z> :

z%2<D1 Dy
x=D1D3 (mod 2)

for the function
Faz(m)= ] n™.
nn’=m,n>0
Let D1, Dy be positive coprime fundamental discriminants, and let O be a maximal order of an indefinite
quaternion algebra B of discriminant ® over Q. A consequence of Proposition 6 and Theorem 10 is that the

total unsigned intersection of discriminants D1, Dy into O is

Into(Di, Da) = Y. Y Into(dr.¢2)

[¢1]€Emb(D1,0) [¢p2]EEmb(D2,0)

_ Z F(DlDz_x2>.

12 <Dy1Ds
z=D1Ds (mod 2)

In particular, this naturally takes the exact same form (albeit with product replaced by sum). Taking the

factorization as in Theorem 10, we have

o F (M) # 0 if and only if ® = []\_, p;;
e If this holds, then

D1D2 _'%2 r+1 : r4+1
F(4> =2 H(gz-+1)=2 > ).
i=1 D1 Dgy—a2
=75
On the Gross-Zagier side, take the same factorization as above, and take ¢ to be a prime. Then
o v (FGZ (M)> #0if and only if ¢ = [],_, p; (i.e. 7 =1 and p; = ¢);
e If this holds, then

DDy — 22 -
vy <F(;z (1133)) (e1+1) H git+1)=(e1 +1) Z e(d).
i=1

R
In particular, this cements the analogy between the two situations.

Analogy 11. The total intersection number of positive discriminants, Into (D1, D2), behaves like the expo-

nents of primes in the factorization of J(Dy, D3)? for negative discriminants.

The individual intersection numbers Into (¢, ¢2) should then have an analogy involving the exponents of
primes above ¢ in the factorization of j(m1) — j(72). To make such a connection concrete, we require a real
quadratic analogue of j(71) — j(72), and not just the exponents. This connection is the goal of Darmon-Vonk
in [DV21].

In this work, given 71, 75 real quadratic points corresponding to coprime fundamental discriminants Dy, Do
and a prime p < 13, they construct a p-adic quantity J,(D;,D2), which is conjecturally algebraic and

belonging to the compositum of ring class fields associated to Dy, Ds.
7



Conjecture 12 (Conjecture 4.26 of [DV21]). Let q lie above the integer prime q # p. If q is split in Q(v/D1)
or Q(v/Dy), then ordg(Jy(71,72)) = 0. Otherwise, let O be a mazimal order in the quaternion algebra ramified
at p,q. Then there exist optimal embeddings ¢1, 2 of discriminants Dy, Do into O for which

ordg (Jp(71,72)) = Intd (41, ¢2).

In other words, the exponents of primes above q in the factorizations of J,(11,72) are given by q—weighted
intersection numbers associated to optimal embeddings of D1, Do into a mazximal order in the indefinite

quaternion algebra ramified at p, q.

Besides the compelling analogy between Gross-Zagier, Darmon-Vonk, and this work, we have extensive
computational evidence. I computed the intersection numbers Intd, (¢1, ¢2) for all pairs with Dy = 5,13 and
Dy <1000, and compiled it into a 600 page document. On the other side, Jan Vonk computed the g—adic

valuations of J,(71,72) for many of these examples, and the data matched perfectly.

2.6. Computational aspects. Everything described in this paper has been implemented by the author in
PARI/GP ([PAR23]), and the corresponding package can be found on GitHub at [Ric21c]. In particular, this

includes algorithms to:

o Initialize a quaternion algebra B over QQ of a specified ramification, as well as an Eichler order O of
a given level;

e Compute representatives of the equivalence classes in Emb(O, D), divide them into classes by their
orientation, and sort these classes by the action of C1+(D);

e Compute the sets Emb(O, ¢1, ¢2, x), and the corresponding signs and levels.

e Compute all non-trivial unsigned, signed, and g—weighted intersection numbers of a given pair of
discriminants D1, Ds.

As mentioned in the last section, these computations were essential to establishing the connection to the

work of Darmon and Vonk.

2.7. Plan of attack. Section 3 recalls and proves some basic results on quaternion algebras that will be
useful later. Section 4 covers some basic results on intersection numbers. Section 5 studies the conditions on
which there exist x—linked optimal embeddings of a given pair of discriminants. In Section 6, we count the
Eichler orders containing a given pair of z—linked embeddings. Section 7 assembles all of the ingredients to
prove the generalization of Theorem 10. The paper ends by providing some explicit examples demonstrating

the main results.

3. QUATERNIONIC BACKGROUND

In this section we recall properties of quaternion algebras and Eichler orders that are required in Sections
4 and beyond. The main focus will be on optimal embeddings. For a full exposition on quaternion algebras,
see [Voi2l].

3.1. Local and global quaternion algebras. Let I’ be a field of characteristic 0, and a,b € F*. Take

B= (%) to be the quaternion algebra associated to a, b, F'. As an additive vector space, this is of dimension

4 over F', with basis 1,1, j, k, and general element of the form

x=-e+ fi+gj+ hk, wheree, f,g,h € F.
8



The multiplicative structure is determined by the standard equations
i“ = a, j“=b, k=1ij = —ji.
The standard involution on B is denoted by an overline, and explicitly defined by
T:=e— fi—gj— hk.

The quaternion algebra also comes equipped with the reduced trace trd : B — F and the reduced norm
nrd : B — F, defined by

nrd(z) ;=27 = €* — af? — bg* + abh?;
trd(z) :=x + T = 2e.

When F' = R, there are exactly two quaternion algebras up to isomorphism: Mat(2, R), and the Hamilton

quaternions (%) (which is a division algebra). Similarly, over Q,, there are two quaternion algebras up

to isomorphism: Mat(2,Q,), and a division algebra. The division algebra can be written as (ge), where e
P

is any integer such that (%) = —1, and (5) is the Kronecker symbol.

Let B = (%’) be a quaternion algebra over Q. Much of the structure of B is determined by its local
behaviour, i.e. the local quaternion algebras B, = B® Q, = (TQ%’), where v is a place of Q and Q. = R.
Call v ramified in B if B, is division, and call v split otherwise. Define the Hilbert symbol (a,b), to be 1 if
p is split in B, and —1 if B is ramified. The set of ramified places is both finite and of even size, and we say
that B has discriminant ®, where ® is the product of all ramifying places.

The quaternion algebra B over Q is uniquely determined (up to isomorphism) by the set of ramifying
places, and furthermore, any finite even sized set of places corresponds to a quaternion algebra over Q. We
call B indefinite if oo is split, hence B is ramified at an even number of finite primes. We will generally be
working with indefinite quaternion algebras over Q, although some results work in more generality.

An order O of B is a lattice that is also a subring. A maximal order is an order which is not properly
contained within another order. All maximal orders of Mat(2,Q,,) are conjugate, whereas the division quater-
nion algebra over @, has a unique maximal order, consisting of all integral elements. Globally, all maximal
orders in an indefinite quaternion algebra over Q are conjugate.

If F = Q,Q,, then an order O is always a dimension four Op = Z,Z,—module (respectively). Let

aq, o, a3, a4 be a basis of O, and define the discriminant of O to be
disc(O) = —d(aq, a2, a3, ) := — det(trd(a;a)i 5)-
This is always a square, and the reduced discriminant of O is defined by
discrd(0)? = disc(O).

The reduced discriminant is only defined up to O}, so over Q we take the convention that it is positive, and
over Q, we take it to be of the form p® with e > 0. It follows that if F' = Q, then

discrd(0O) = H discrd(O,),
P

where the product is taken over all primes p and O, = O ® Z,, is the corresponding local order in B,,.
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Over ' = Q, an order is maximal if and only if its reduced discriminant is equal to the finite part of D,
the discriminant of the quaternion algebra. A general order O will have discrd(O) = D9, where 9 is called
the level of the order.

Working locally will be essential, so we will state the local-global correspondence for lattices (which also

holds for orders in a quaternion algebra).

Theorem 13 (Variant of Theorem 9.1.1 of [Voi21]). Let V' be a finite dimensional Q—wvector space, and let
M CV be a Z-lattice. Then the map N — (Np), gives a bijection between Z—lattices N C V and collections
of Zy-lattices (N,), indexed by the primes which satisfy M, = N, for all but finitely many primes p.

An Eichler order O of B is an order that is the intersection of two (uniquely determined) maximal orders.
Over F' = Qp, if B is division there is exactly one maximal order, hence this is the only Eichler order.
Otherwise, B = Mat(2,Q,), and there exist Eichler orders of levels p© for all e > 0. They are all conjugate,
and we define the standard Eichler order of level p® to be

Ly Ly '
PLy Ly

Following the local-global principle of orders, when F' = Q, an order O is Eichler if and only if O, is Eichler
for all primes p.
Furthermore, if B is indefinite, a consequence of strong approximation is that all Eichler orders of the

same level are conjugate over B*.
3.2. Normalizer of an Eichler order. Take B to be a quaternion algebra over F' = Q or F' = Q,,.

Definition 14. Let O be an order in B, and define the subgroup of & € B* for which zOz~! = O to be
Npx(0O), the normalizer group of the order O.

Clearly F*0O* C Npx(0). As we will see in Proposition 17, this is a finite index subgroup.

Lemma 15. Let © € B — F. Then the set Cp(x) := {v € B : vx = zv} is an F—algebra and a two

dimensional F—wvector space spanned by 1,x. We call it the centralizing algebra of x.
Proof. This follows immediately from Proposition 7.7.8 of [Voi21]. O

Corollary 16. Let x1,22 € B> — F* have the same separable minimal polynomial. Then the set

Cp(x1,22) :={v € B : vy = x2v} is a two dimensional F—wvector space.

Proof. By Corollary 7.7.3 of [Voi2l], the equality of the minimal polynomials of x1,xo implies that there

L = 2. Thus

exists a w € B* with wziw™
v e Cp(zy,x) & vw try = zpvw™!,
so the corollary follows from Lemma 15. |

We now describe the normalizer groups of Eichler orders over Q,.

Proposition 17. Let B be a quaternion algebra over Q, with Eichler order O. If B is division, we have

Np«(0) = B,
10



Otherwise, write B = Mat(2,Q,) and take O = (p?gp %Z ) Let w := (fz),e 0), and then

NBX (O) = Q;OX<W>

Proof. If B is division, then O is the unique maximal order. Since conjugates of O are also maximal orders,
it is stabilized under conjugation by all of B*. When B is not division, this is Proposition 23.4.14 of [Voi21]

(the definition of w has been adjusted so that it has positive norm). ]

Note that if B is not division and O is maximal, then Npx (O) = Q; O*. Translating the above proposition

into the global case yields the following proposition.

Proposition 18. Let B be an indefinite quaternion algebra over Q with discriminant ©, and let O be an
Fichler order of B of level M. Then there exists a collection of elements {w, : p | DMoo} with nrd(w,) =
p?®M) for p < 0o and nrd(we) = —1 for which
Npx(0) Z
Tpror = o= 11 oz
p|DMioco
Proof. By combining Proposition 18.5.3 and Equation 23.4.20 of [Vo0i21] with the fact that O has class
number one, we get the isomorphism
Npx(0) N H Z
Qxox 27"
p|OM
By taking a set of generators and looking locally, we can use Proposition 17 to show that we can find an

p'up(’}Di)ﬁ

equivalent set of generators {w,},pom which satisfy nrd(w,) = ) for p < oo. Finally, we can pull out

the oo by using O* = O' U O™, and O~ ! = wO! for any ws, € 071, O

3.3. Towers of Eichler orders. The Bruhat-Tits tree provides a combinatorial aspect to the theory of
maximal/Eichler orders of B = Mat(2,Q,). Vertices of the graph are maximal orders in B, and there exists
an edge between O and O’ if and only if O N0’ is an Eichler order of level p. A summary of the main facts
of the graph (see Section 23.5 of [Voi21]) are:

e The graph is connected and has no cycles, hence it is a tree (as the name implies);

e Every vertex has degree p + 1;

e Let O1,05 be maximal orders, and let O = O; N O3 be the corresponding Eichler order of level p°.
Then O corresponds to the unique path between O; and Os. This path has length e, and the vertices

on the path are precisely the e + 1 maximal orders which contain O.

Focusing on one Eichler order O of level p®, we define the “inverted triangle” of superorders of O as

follows:

e It is a graph consisting of all (necessarily Eichler) superorders O’ O O as vertices;

e The vertices are arranged into e + 1 rows, where the i'" row from the top (starting with row 0)
consists of the Eichler orders of level p’ containing O.

e There is an edge between orders Oy, O if and only if one order contains the other and they are in

adjacent rows.

It follows directly from the Bruhat-Tits tree that there are e + 1 —i vertices in the i*? row, and the graph can

be drawn in the plane so that each vertex (besides those in row 0) is connected to the two closest vertices in
11



the row above it. An Eichler order is the intersection of the two orders it is connected to in the above row.

As an example, the inverted triangle for an Eichler order of level p® is displayed in Figure 1.

Level p°

pl

2

3

hS

4

hS!

5

hS)

FIGURE 1. Inverted triangle of level p°.

The inverted triangle of O allows one to count superorders of O of a specified level which do not contain

certain given superorders (which is required in Section 6.2).

Remark 19. The inverted triangle of O is essentially the same concept as branches of orders, as found in
[AC13] and [AACC18].

3.4. Optimal embeddings. Let B be a quaternion algebra over F' = Q or F' = Q,,, and let O be an order
in B. If F'= Q,, we call an embedding of Op into O optimal if it does not extend to an embedding of Op 2
(which is automatic if D/p? is not a discriminant). In particular, if F = Q, an embedding ¢ into O is optimal

if and only if the corresponding embeddings ¢, into O, are optimal for all primes p.

Definition 20. For a discriminant D, define pp € {0,1} to be the parity of D. Let the field discriminant of
Q(v/D) be Dfund,

Since Op =7 [M} , an embedding of Op into O is equivalent to picking an element x = ¢ (%5) €
O which has the same characteristic polynomial as 22 2@7 i.e. an element z satisfying z2 —ppx+ pD;D =0.

In certain proofs, it will be useful to assume that an optimal embedding takes a certain form. Corollary
22 allows us to do this.

Lemma 21 (Exercise 2.5 of [Voi2l]). Let B be a quaternion algebra over a field F of characteristic not

equal to 2, and assume x € B\F satisfies 2 = n € F*. Then there exists an m € F* and an isomorphism
0:B — (&) satisfying 6(z) = i.

Proof. Consider the inner product defined as (u,v) = %trd(uﬁ). Pick any y such that B is generated as
an F'—algebra by x,y, and by applying the Gram-Schmidt orthogonalization process, we can assume that

0 = (1,y) = (x,y). This implies that y*> = m € F* and 2y = —yz, whence we have the result. |

Corollary 22. Let ¢ : Op — O be an (optimal) embedding into an order of the quaternion algebra B. Then
there exists a quaternion algebra B’ with order O' and an isomorphism 0 : B — B’ taking O to O’ such
that 0 o ¢ : Op — O is an (optimal) embedding with 6 o $(v/D) = ig:. In particular, given an (optimal)

embedding, we can choose coordinates so that the image of /D is i.

Proof. Take x = ¢(v/D) in Lemma 21, and consider the corresponding map 6. Let O’ = 6(0), and then O’

is an isomorphic order for which 6 o ¢ is an (optimal) embedding into. O
12



We would like to count the set Emb(O, D), and Chapter 30 of [Voi21] provides an excellent exposition
of this in a more general context. We now restate the relevant results in our setting, and expand upon the
notion of equivalence classes of the localized embeddings (which we refer to as orientation). If O is an Eichler
order in a quaternion algebra B over @, or R (O = B if over R), define Emb(O, D) analogously to over Q
(Section 2.2).

Proposition 23. Let D be a discriminant, let B an indefinite quaternion algebra over Q, and let O an

FEichler order. Let h* (D) denote the narrow class number of discriminant D. Then,

| Emb(O, D)| = h*(D) [ [ | Emb(O,, D),
where the product is over all places of Q.

Proof. The class number of any Eichler order over QQ is one, and the result then follows from Theorem
30.7.3 of [Voi2l] and the surrounding results. See also Sections 4.4 and 4.5 of [Ric21b] for an alternate

presentation. O
In particular, | Emb(O, D)| is ™ (D) up to local factors. The local factors are as follows.

Proposition 24. Let D be a discriminant, and let B a quaternion algebra over R or Q.
(i) If B =0 = Mat(2,R), then
|Emb(O, D)| =1+ 1p<o.

(i) If B is division over Qp, with mazimal order O, then

0 z'fp2 | %;
|Emb(O, D)| = D
1-— () else.
p
(111) If B =Mat(2,Q,), O is an Eichler order of level p°, and ged(p®, D) = 1, then

1 if e =0;
| Emb(0, D)| =
1+ (i) ife>0.

Proof. The first part follows easily from the Skolem-Noether theorem. The second part follows from Propo-
sition 30.5.3 of [Voi21] in the case of p? { %. Otherwise, since O is the set of all integral elements in B,
any embedding of Op extends to an embedding of Opsna. The third part follows from Propositions 30.5.3
and 30.6.12 of [Voi21]. O

The above proposition omits the case of B = Mat(2,Q,), O is an Eichler order of level p® with e > 0 and
p | D. This case is much more complicated, and its description will not be of use to us. If desired, see Lemma
30.6.17 of [Voi21] for the details.

Definition 25. Assume B is indefinite over QQ, and let ¢ be an optimal embedding into an Eichler order O.

For all places v, let 0,(¢) denote the local equivalence class of ¢,,. The orientation of ¢ is defined to be

0(6) = (0,(9))u : v is & place,

the set of equivalence classes of the corresponding local embeddings.
13



If ged(D, M) = 1, then all local embedding equivalence classes have size either 1 or 2. In particular, write
0,(¢) = 0 or 0,(¢) = £1 for the one or two local equivalence classes (this is non-canonical and depends on

an initial choice when there are two local classes).

Definition 26. For each orientation o of an optimal embedding of Op into O, we denote by Emb, (O, D)

the equivalence classes of optimal embeddings with orientation o.

Note that we can restrict the orientation to places p | Moo, since Proposition 24 implies that there is
one local orientation at all other places. At those places, it will be useful to have a more explicit way to

determine orientation.

Lemma 27. Let B be a quaternion algebra over Q, with Eichler order O of level M, let D be a discriminant,

and let ¢ : Op — O be an optimal embedding.

(i) If B is division, let p be the mazimal ideal of O. Then the orientation of ¢ is determined by
6 (225Y2) (mod p).

(i) If B = Mat(2,Q,), O is the standard Eichler order of level p® with e > 0, and p { D, then the
orientation of ¢ is determined by ¢ (M) . (mod p®).

Proof. If B is division, then O/p ~ F,2 is commutative. Thus, equivalent embeddings give the same value
of ¢ (M) (mod p). If p | D we are done, and otherwise, note that ¢ (defined by ¢(z) := ¢(z)) is an
optimal embedding with

—(pp+VD pp+ VD

¢ <D2> Z ¢ <D2 (mod p),

since this is equivalent to ¢(v/D) Z 0 (mod p). As there are two equivalence classes of optimal embeddings,
it follows that the class is determined by ¢ (M) (mod p).

If B = Mat(2,Q,), then a direct computation shows that ¢ (M)l = v (M)l ) (mod p°)

)

for u € O' (see Equations (7.1) and (7.2) for this computation). As in the previous case, ¢ is an optimal

embedding with

s (W) % ¢ (W) (mod p°),

since p{ D. As there are two equivalence classes of optimal embeddings, it follows that the class is determined
by ¢ (M) (mod p°). 0
1,1

For p | ®Moo, we can use the elements w, € N3 (O) as described in Proposition 18 to pass between

orientations.

Proposition 28. Let B be an indefinite quaternion algebra over Q of discriminant © with Fichler order O

of level M, and let ¢ : Op — O be an optimal embedding. Then we have

e 0,(¢¥r) = 0,(¢) for all places v # p;
o 0p(6°7) = —0y(@) if pt ged(D,M).

In other words, the optimal embedding ¢“» only swaps orientation at p.

Proof. If v | D, let v be the maximal order of O,. Since O/v ~ F,2 is commutative, the result follows for

p # v as nrd(wy) € Z). If p = v, then we can assume that p { D, as the result is trivial otherwise. By
14



Proposition 24, (%) = —1, whence we can write B}, = (]?@,,D) It suffices to prove the proposition for w, =1

and ¢,(v/D) = j, and we indeed find that

; +vD +igi! —Jj +Jj +VvD
¢p<pD2 )pr 2] :pD2J$épD2J:¢p<pD2 >(m0dp).

By Lemma 27, the embeddings have opposite orientation.
Next, take v | 9, and assume that O, is the standard Eichler order of level v¢. If p # v, then the

computations in Equations (7.1) and (7.2) still hold true, and so we are done by Lemma 27. If p = v, then
it suffices to take w), = (_(;)e (1)) If ¢y (%) =(,¢ b ), then a direct computation shows that

p°c pp—a

w Pp—a —cC
e )
—p©h a

whence by Lemma 27, the embeddings have the opposite orientation if and only if a # pp — a (mod p®).
Assume otherwise, so that 2a — pp = 0 (mod p®). If p = 2, then D is odd, and this is not possible. If p
is odd, then by doubling the matrix expression for ¢, we see that —(2a — pp)? = D (mod p°), hence this
cannot be zero, as desired.

Finally, if v = oo, then this follows directly by definition and an explicit computation. |

If ged(D, M) = 1, then by successively conjugating an embedding by the elements w, for p | DMoo, we

can pass between all possible orientations. In particular, this implies that for all orientations o,
| Emb, (O, D)| = b (D).

In fact, more is true: there is a simply transitive action of the narrow class group C17(D) on Emb,(O, D),
valid for all discriminants D for which Emb(O, D) is non-empty. See Section 4.5 of [Ric21b], or the discussion
below Definition 4.22 of [DV21] for more details.

4. BASIC RESULTS ON INTERSECTION NUMBERS

With the background out of the way, we turn our focus to intersection numbers. Proposition 1.10 of
[Ric21a] gives nice descriptions of when root geodesics of hyperbolic matrices in SL(2,R) intersect. We state

the relevant parts here (and change the expression for tan(f) into cos(9)).

Proposition 29 (Proposition 1.10 of [Ric21a]). Let My, My € SL(2,R) be hyperbolic matrices with respective
upper half plane root geodesics €1,4s, and let Z; = M; — % Id fori=1,2. Then

(i) L1405 intersect transversely if and only if
det(M; My — My M7) > 0.
(i) In all cases,
det(My My — MoM,y) = det(Z, Zo — ZyZ1) = 4det(Z1 Z5) — (Tr(Z1 7))

(11i) If €1, 05 intersect transversely, then

(a) the intersection point is the fized point of Z1Zs that lies in H.
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(b) the intersection angle 6 (measured counterclockwise from the tangent to ¢y to the tangent to {s)

satisfies
cos(f) = (21 25)

- 2/det(Z12,)

In particular, Proposition 6 is a corollary of this proposition.

Proof of Proposition 6. Assume that (¢1,¢s) are z—linked optimal embeddings of positive discriminants
Dy, Dy. Let M; = u(¢;(ep,)) for i = 1,2, where the fundamental units can be written as ep, = M,
with (7}, U;) being the smallest positive integer solution to 7% — D;U? = 4. In particular, Ly, = l; fori =1,2.
It follows that Z; = Z:u(¢;(v/D;)), hence

_uU2D,
4

Tr(Z125) = U12ng.

det(Zi) =

Therefore
UU2
4det(Z,Z,) — (Tr(Z125))? = 14 2 (DD, — 2?),

and the root geodesics intersect transversely if and only if £2 < D;D,. This proves the first claim.

Assume the root geodesics intersect transversely, and let T = ¢1(v/D1)¢2(+/D2); the intersection point is
the upper half plane fixed point of (7). Since T satisfies T? — 22T + D1 Dy = 0, T acts as x + /22 — D1 Ds.
AsT € (20+pp,)(20+pp,) C 20 +pp, p,, T corresponds to an embedding of O,2_p, p, into O, which is
part i. This also implies that = DDy (mod 2).

Finally, the angle of intersection satisfies

U1U21'/2 X
cos(f) = = )
2\/U?U3D1D>/16  V/DiDs
and the proof is finished. O

This implies that we can replace “study intersections of £4,,€4,” by “study Emb(O, ¢1, ¢, x) for 22 <
DDy

While the sets Emb(O, ¢1, ¢2,x) can be computed in practice, it is a much harder task to access their
theoretical properties. Instead, from now on we will focus on Emb(O, Dy, Do, z), for positive discriminants
D1, Dy, which captures all possible z—linking of optimal embeddings of discriminants D;, Dy into O.

While we will eventually characterize and count Emb(O, Dy, D, x), we can already prove a strong neces-

sary condition for this set to be non-empty.

Lemma 30. Let vi,v9 € O. Then
DM | nrd(vivy — vavy).

Proof. Let p | D9, and consider completing B at p. We can assume that the completion O, is either the
unique maximal order if B, is division, or the standard Eichler order of level p® otherwise. In the first case,

let the unique maximal ideal of O, be p, and then % ~ [F,2 is a field. Thus

v1vg = vov;  (mod p),

which implies that vivy — vav; € p, and so p | nrd(vive — vovy).
The second case follows from the fact that looking modulo p®, we have upper triangular matrices. The

diagonal of their product is unchanged when we swap the order of multiplication, and the result follows. [
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Corollary 31. If (¢1,d2) are x—linked, then

DDy — z?
DM | et et
4
In particular, for a fized pair of discriminants D1, Da, there is a finite set of non-isomorphic pairs (B, O) of
an indefinite quaternion algebra B over Q with Fichler order O for which there exist optimal embeddings of

D+, D5 into O giving a non-zero unweighted intersection number.

Proof. Let v; = %\/Dﬁ, and using Lemma 30 and a computation analogous to Proposition 29ii, we compute

DM | nrd(p(v1)Pa(ve) — Pa2(va)d1(v1))

_ nrd(¢1 (v D1)d2(vDa2) — ¢2(vV/D2)d1(v/Dh)) _ DiDs — z?
16 4 '

Intersections come from the finite set of  for which 22 < D;Ds, and this calculation shows that for each
such x there are finitely many pairs (D,9%) that satisfy the divisibility condition (in Theorem 44 we will
show that © is in fact uniquely determined from Dy, Dy, x). Therefore, there are finitely many Eichler orders

for which there exist intersections of optimal embeddings of discriminants D1, Ds. O

5. EXISTENCE OF X-LINKED PAIRS

Rather than study the set Emb(O, Dy, Dy, x) directly, we invert the setup. That is, we start with a
pair of x—linked embeddings into B, and consider the possible Eichler orders which admit these (optimal)
embeddings. We study this problem locally, and show how to lift the local results to global results. In this

section, we we start this process by studying which quaternion algebras admit x—linked embeddings.

5.1. Simultaneous conjugation. The fact that we are only allowing conjugation by elements of O and

not all of B* is crucial to z—linking.

Lemma 32. Let B be a quaternion algebra over a field F, and let (x1,x2) and (y1,y2) be pairs of elements
of B* for which:

o z;,y; € F fori=1,2;

e x; and y; have the same irreducible minimal polynomial over F for i =1,2;

e 115 and y1y2 have the same minimal polynomial over F.

Then the pairs are simultaneously conjugate over B*, i.e. there exists an r € B* for which rx1r™' = x4

and ryir~t = ys.

Proof. The F—algebras Flx1,xs] and Fly1,ys] are F—subalgebras of B of (equal) dimension 2 or 4. If they
have dimension 4, then they are equal to B, and are thus simple. Otherwise, they are equal to F[z;] and
F[y1], which are again simple algebras since the minimal polynomials were irreducible.

Consider the map 0 : F[z1, z2] — Fly1,y2] defined by 6(x;) = y; for ¢ = 1,2. The equality of the minimal
polynomials of z;,y; and z1zs,y1y2 implies that the map is indeed a well defined isomorphism. By the

Skolem-Noether theorem, this map is inner in B (Corollary 7.7.2 of [Voi21]), and this implies the result. [

Applying Lemma 32 to optimal embeddings produces the following corollary.
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Corollary 33. Let B be a quaternion algebra over F' = Q or Qp, and let (¢1,d2), (¢}, P5) be pairs of
x—linked embeddings from Op,,Op, respectively into B. Then V = {v € B : v¢,, = ¢,v forn=1,2} is a
1-dimensional F-vector space, generated by an element of B with non-zero norm. In particular, the pairs of

embeddings are simultaneously conjugate over B*.

Proof. Let V,, = {v € B : v¢,, = ¢,,v} for n = 1,2; by Corollary 16, this is a two dimensional F-vector
space. Furthermore, we have V,, = r,(F + ¢,(v/D,,)F) for n = 1,2 for some 71,72 € B*. We claim that
V1 and Vy are distinct: otherwise, right multiplication by ¢1(v/D1) on V; remains in Vj, hence it is true
for Vo as well. This implies that ¢1(v/Dy1) € F + ¢2(v/D2)F, and therefore ¢;(y/D;) is a scalar multiple of
d2(v/D2) (by taking traces). Writing ¢1(v/D1) = fo2(y/D2) for f € F*, squaring gives us D; = f2D, and
z = 1trd (¢1(v/D1)¢2(vD3)) = fDs. Thus 2? = f2D3 = D;D,, which is a contradiction by definition of
r—linkage.

Since V' = V3 NV, V has dimension 0 or 1 as Vi, V5 are distinct. We apply Lemma 32 to the images
of \/D1,v/Dy under (¢1,¢2) and (¢}, ¢%) respectively. The minimal polynomials satisfy the requirements,

whence the lemma implies that V' has an invertible element. Thus V' has dimension 1, as desired. ]

5.2. Orders containing x-linked pairs. Given a pair of embeddings ¢; : Op, — B (i = 1,2), there does
not need to be an order that contains the images of both Op,. The following definition and lemma describe
when there is such an order.
Definition 34. Let (D1, D2, ) be a triple of integers. We call the triple admissible if the following hold:

e D; and D, are positive discriminants;

o T = D1D2 (mod 2) and 1‘2 # D1D2.

A consequence of the following lemma is that there exists an order containing given x—linked embeddings

of discriminants Dy, Dy if (D1, Do, ) is admissible.

Lemma 35. Let F = Q or Q,, and let B be a quaternion algebra over F. Let ¢; : Op, — B be embeddings
of the orders of discriminants D1, Do into B, and take v; = ¢; (%) for i = 1,2. Assume that

z = 1 trd(¢1(vVD1)d2(v/D2)) € pp,p, +20F and x* # D1D. Then
O¢17¢2 = <15U1,U27U102>0F

is an order of B, necessarily the smallest order of B for which both ¢1 and ¢o embed into. Furthermore,

D1Dy — 2?
discrd(Ogp,,¢y) = %
Proof. For ease of notation write O = Oy, 4,. First,
PD,PD, T T —PD1D
trd(v1v2) = 1 22 =Pp,D, + 5 122 ¢ OF,

and nrd(vive) = nrd(vy) nrd(vs) € OF, whence v1vs is integral. We will demonstrate that vev; € O, and the

rest of the equations to prove that O, ¢, is closed under multiplication can be deduced from this and the
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minimal polynomials for v, vo. We compute

_ pDyDy + 0D, $2(VD2) + pp,d1 (VD)

V1V2 + VU1 =

2
N $1(v/D1)$2(v/D2) + ¢2(v/Da)p1(v/D1)
4
=pp,V2 + PD,V1 + %Z&’

whence vov7 lies in O, as claimed.
The fact that O is an order will follow from computing its reduced discriminant, and seeing that it is

non-zero. To ease our calculations, write

1 1 0 0 0 1
¢1(v/Dr) | —pp, 2 0 0 v
¢2(v/D3) | e, 0 2 0| v |

¢1(vV'D1)¢2(V D) PD.PD,  —2PD, —2pp, 4) \viv2

and we have the equation

d(1, ¢1(v/D1), $2(v/ D), $1(v/D1)d2(v/D2)) = det(M)2d(1, v1,v2, v1v2),

where M is the transition matrix above. We compute det(M) = 16 and

2 0 0 2x

0 2D, 2 0
d(1,61(v/D1), ¢2(v/Da), ¢1(v/D1)2(v/Ds)) = det

0 2x  2Ds 0

2x 0 0 422 —-2D;D,
== —16<D1D2 - $2)2.

Since diserd(0)? = —d(1, vy, vq,v1v2), the reduced discriminant is as claimed (and is non-zero by the as-
sumption of 22 # D1 Dy).
It is immediate that O is the smallest order for which ¢1, ¢ embed into, as such an order must contain

{1,v1,v2}, and O is generated as an O algebra by these elements. O

Lemma 35 has some historical connections. The proof of Theorem 2’ in [Kan89] details a similar compu-
tation in a definite quaternion algebra. Furthermore, as noted by Gross, this definite computation leads to
a simple argument that a prime p dividing Nm(j(m1) — j(72)) must satisfy p | %2*“"2 for 22 < D1 Dy (see
Theorem 65 and Proposition 66 of [Gis20] for the full argument).

Our first application of Lemma 35 is to show that z—linked pairs of embeddings can be detected locally.

Lemma 36. Let B be an indefinite quaternion algebra over Q, let O be an FEichler order in B, and
let (Dy,Do,2) be an admissible triple. Then the set Emb(O, Dy, Do, x) is non-empty if and only if
Emb(O,, D1, D2, x) is non-empty for all finite primes p.

Proof. If such a pair (¢1, ¢2) € Emb(O, D1, Dy, x) exists, then the corresponding maps to the completions
gives elements of Emb(O,, D1, D2, z) for all p.
To prove the opposite direction, assume that (o, 5,) € Emb(O,, D1, Do, z) for all p. A consequence

of Proposition 23 is that there exists an embedding ¢; of Op, into B. By Corollary 22, we can assign
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coordinates so that ¢1(v/D1) = i. In this case, we are considering the existence of a map ¢, such that
¢2(v/D2) = fi+ gj + hk, where

nrd(fi+ gj + hk) = —Do and 2x = trd(i(fi + gj + hk)) = 2fDy.

With the substitution of f = Dil, the equation nrd (Dilz +97+ hk:) + Dy = 0 is a quadratic form in
g, h. This will have a solution in R since B is indefinite, and it will have a solution in @Q, for all p since

Emb(O,, D1, D, x) is non-empty. By Hasse’s principle, it has a solution over Q; let the corresponding map
be ¢o.

Following Lemma 35, let O’ = Oy, 4, be the smallest order for which ¢1, ¢2 embed into. By Corollary 33,
for all finite primes p there exists an r, € B¢ for which r,(a, 5p)r;1 = (¢1,p, ¥2,p). By the definition of O’,
it follows that Of, C r,Opr, . For all primes p,

e let s, =1, if O}, # Oy or p | D1 Da;

o let s, = 1 otherwise.
Consider the sequence of local orders {s,0,s, },. Since 0;, = Oy, holds for all but finitely many primes, by
Theorem 13 there exists an order O” of B which completes to spOps,, ! for all primes p. In particular, we
note that O” is an Eichler order of level 9, and ¢1, ¢2 give embeddings into O”. When p | D1 D5 the local
embeddings are optimal since (a,,, 8,) were optimal, hence ¢1, ¢2 are optimal embeddings into O”. Since all
Eichler orders of the same level are conjugate, let rO”r~1 = O, and then [r(¢1, ¢2)r~t] € Emb(O, Dy, Do, x),

as required. O
In particular, the non-emptyness of Emb(O, Dy, Dy, x) can be studied locally.

5.3. Local x-linking. While we were concerned with orders in Lemma 36, we will drop this for now and

instead consider embeddings into the entire quaternion algebra.

Definition 37. Let (D1, D3, x) be an admissible triple, and define Emb(B, D1, Do, x) to be the set of all
pairs (¢1, ¢2) of z—linked embeddings of discriminants D1, Dy into B.

Note that Lemma 36 also applies to the sets Emb(B, D1, Do, ) and Emb(B,, D1, D2, x). Our next goal
is to determine when Emb(B,, D1, D2, z) is non-empty. Before getting into these local computations, we

require a lemma about the solutions to Pell’s equation over Z,.

Lemma 38. Let p be a prime, let A be a non-zero integer, and let D be a positive discriminant coprime to

p. Then the equation
(5.1) X2 _-DY?=A

has a solution (X,Y) € Z?J if and only if one of the following conditions hold:
. (%) =1, and if p = 2 we additionally have vo(A) # 1;

o (%) = —1 and v,(A) is even.

Proof. If (%) =1, then VD € Z, (noting that if p = 2 then D = 1 (mod 8) as it is a discriminant). By
factoring (X — v DY )(X + /DY) = A = uv, this will always have a solution if p is odd. If p = 2, then we

require u and v to have opposite parity, which gives vy(A) # 1.
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Otherwise, (@p(\/ﬁ) is the unramified degree 2 extension of Q,, and X2 — DY? is the norm form from
Z,[V/D] to Z,. The result follows, e.g. by Chapter 2, Section 4 of [Lan94]. O

We start the local calculations by considering the division algebra case. Recall the Hilbert symbol (a, b),,
which has an alternate characterization via Hilbert’s criterion: (a,b), = 1 if and only if az? + by? = 1 has
solutions with z,y € Q, (see Section 12.4 of [Voi2l]).

Lemma 39. Let (D1,Ds,2z) be an admissible triple, and let B be the division algebra over Q,.Then
Emb(B, D1, Do, ) is non-empty if and only if

(D1,1'2 — .Dl.DQ)p = —]..

D DDy — 2?
(1> = —1 and v, (M> 15 odd.
p 4

Proof. If there does not exist an embedding of Op, into B, then the same is true for O phund. By Proposition
24ii, (Dind) = 1, and therefore by Hilbert’s criterion, (D1, N), = 1 for all N # 0. In particular, (D;,z? —
D, Dy), # —1, as desired.

Otherwise, by Corollary 22 we can write B = (%:) for some non-zero e € Z,, where ¢1(v/Dy) =i and
(D1, e), = —1. Writing ¢2(v/D2) = fi+ gj + hk, it suffices to solve the equations

If pt Dy, this is equivalent to

D1f2+692 —D16h2 :Dg, J,‘ZfDl
Therefore f = Dil, and the first equation rearranges to

D1D2 — SC2
6D1 ’
If this has a solution with A = hy, then by Hensel’s lemma there will be a solution with h = hy + p* for large

(5.2) g*> — D1h?* =

enough k. In particular, they correspond to distinct g’s, so we can solve the equation with the assumption

that g # 0. Equation (5.2) then rearranges to

D1D2—$2 2
—(1 =1
6D1 ( /g) )

which is in the format of Hilbert’s criterion. The properties of the Hilbert symbol imply that

Dy(h/g)* +

D1Ds — 22
1= (Dh 16;1) = (D1, (2® = D1Dy)e), = —(Dy,2° — D1Ds),,
P

from which the first result follows.

If p ¥ Dy, then (%) = —1, and we claim that v,(e) is odd. If p is odd this follows immediately, since
(a,b), = 1if ptab. If p = 2, then D; =5 (mod 8), and this follows by computing (D, b)» for all b € Q5 /Q5Z,
and seeing that (D1,b)s = 1 if v5(b) is even (see Table 12.4.16 of [Voi21] for this computation).

Scaling Equation (5.2) by powers of p, it is equivalent to solve
D1Dy — 22 9
TP )
for r > 0 and g, h € Z,. Lemma 38 implies that Equation (5.3) has a solution if and only if

D1D2 - 11,‘2 o
Up < €D1 p
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is even, which is equivalent to our condition. O
Now we consider non-division algebras.

Lemma 40. Let (D1, D2, x) be an admissible triple. Then Emb(Mat(2,Q)), D1, D2, ) is non-empty if and
only if
(l)l,{I}2 - D1D2)p =1.

If pt Dy this is equivalent to either

D1 D1 DlDQ — 1'2 .
— | =1 or — | =-1and v, | ———— | is even.
p P 4

Proof. Since embeddings of a fixed discriminant are all conjugate over B*, we can fix the first embedding

to be ¢1(v/D1) = (9 21), and write ¢2(v/D2) = (; fe) € Mat(2,Q,). We will have a solution if and only if

e? + fg = Do, Dig+ f = 2x.

This implies that f = 2z — D1g, and plugging this into the first equation and rearranging gives

Let X =eand Y =g — Dil, and then the equation is

D1 D2 — I2
X2-_Dyi="° "
1 D
The rest of the proof is analogous to Lemma 39, where Lemma 38 completes the characterization of the

solubility when p t D;. a
Lemmas 39 and 40 immediately imply the following corollary

Corollary 41. Let (D1, D2, x) be an admissible triple, and let B be the division algebra over Q,. Then
exactly one of B and Mat(2,Q,,) admits x—linked embeddings of Op,,Op,, and which one is determined by
if (D1,2% — D1Ds),, is —1 or 1, respectively.

Remark 42. The first half of Lemmas 39, 40 and Corollary 41 still holds when p = co, where Q,, = R.

5.4. Global x-linking. Fix an admissible triple (Dy, Ds, ). Corollary 41 combined with Lemma 36 implies
that there is precisely one quaternion algebra B over Q for which there exist embeddings ¢; of Op, into B
that are z—linked, and it can be given by
Dy,2%2 — D1 Dy
(P72)
We describe the ramification of this quaternion algebra by using a generalization of the e function (Definition
9).

Definition 43. Let D, D> be discriminants, and let p be any prime such that

Dfundeund
ptged(Dy™, D) and (1 2 )75—1.
p
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Define

Dfund
( L ) if p and Df"»d are coprime;
p

e(p) :==

Dfund )
( 2 ) if p and D54 are coprime.
p

Theorem 44. Let (D1, Dy, x) be an admissible triple. Then the only quaternion algebra over Q that admits

x—linked embeddings from Op,,Op, is

B= <D1,CE2 Dng) .
Q

Furthermore, let N = ged(D{nd, DEW) and factorize

D D N x2 T s t
1 Z :iNIHp$Ei+1Hqi2fi legl’
i=1 i=1 =1

where N’ is minimal so that %ﬁ,,‘mz is coprime to N, p; are the primes for which ¢(p;) = —1 that appear
to an odd power, q; are the primes for which €(¢;) = —1 that appear to an even power, and w; are the primes

for which e(w;) = 1. Then B is ramified at
{plaPQa cee 7pr} U {p 'p ‘ va (DlaxQ - D1D2)p = _]-}

Proof. 1t suffices to compute (D1, 2% — D1Ds), for p | %"‘_mz satisfying p 1 N'. If p ¥ D1, Lemmas 39 and
40 imply that the Hilbert symbol is —1 if and only €(p) = —1 and v, (%2_“2) is odd, i.e. p = p; for some
i. Since
(Dy,2* — D1Ds), = (Da,x* — D1Da),,
the same holds for p { Dy. As we assume that p { N’, the final case is (without loss of generality) p { D{"nd
and p | Dy, Do. By Lemma 51, we can replace (Dy, Do, x) by (D1/p?, D2, 2/p), and repeat. O
In particular, if ged(Dfnd, Dfnd) = 1 then B is ramified at exactly {p1,p2,...,pr}-

Remark 45. The value of (D1, 2% — D1 Ds),, for p | N’ is full of technical casework, and there is little benefit

in listing the cases out.

Remark 46. To work with an explicit z—linked pair, take B = (W), and define

o1 (VD) =i, a(VDy) = TE

D,

This pair is —linked and corresponds to ¢1 X ¢2(v/a? — D1 Ds) = j.

6. COUNTING EICHLER ORDERS CONTAINING X-LINKED PAIRS

Thanks to Theorem 44, we have a good description of quaternion algebras that exhibit z—linking. We
now turn our focus to describing Eichler orders that admit z—linked pairs, i.e. Eichler superorders of Oy, ¢,.

Once again, it suffices to do this locally.
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6.1. Local Eichler orders containing x-linked pairs. Up until now, we have mostly worked in full
generality. However, as evidenced by the end of Theorem 44, this generality can (and will) start to make
results rather unwieldy. As such, we would like to find a middle ground between a pleasant exposition and

full generality. The following definition is our choice for such a middle ground.

Definition 47. Given an an admissible triple (D1, D2, ), we call it nice if
ng (Dl, D27 D1D2 — .I‘2) =1.

Note that a nice triple has at least one of Dy, Dy being odd.
More generally, if p is a prime, we call p nice (with respect to (D1, Da,x)) if

p{ged (D17D27D1D2 - 552) .
From now on, we will mostly be working with nice triples/nice primes.

In order to determine if an order is Eichler or not, we consider the Eichler symbol (see Section 24.3 of
[Voi21]). Working in B = ( ) for a € B, define

A() = trd(a)? — 4nrd(a) = 4(af? + bg® — abh?),

Aa)
p

where « = e+ fi+ gj + hk. For an order O of B, define (O, p) to be the set of values that ( ) takes as

a ranges over O, where (;}) is the Kronecker symbol.

Lemma 48. The set (O,p) determines the possible Fichler superorders of O as follows:
e The order O is Eichler and non-mazimal if and only if (O,p) = {0,1} (i.e. O is “residually split”).

e If —1€(0,p), then O is contained in precisely one maximal order.

Proof. The first point is a direct consequence of Lemma 24.3.6 of [Voi2l]. For the second point, if O is
a superorder of O, then (O,p) C (O',p). In particular, no superset has (O,p) = {0,1}, whence O is not
contained in a non-maximal Eichler order. If O were contained in two maximal orders, it would be contained

in their intersection, a non-maximal Eichler order, contradiction. ([
Lemma 48 allows us to compute the Eichler orders containing Og, 4, .

Lemma 49. Let (D1, D2, x) be admissible, and let ¢1,¢pa be x—linked embeddings of discriminants Dy, Dy
into B, a quaternion algebra over Q,, where p is nice. Let O = Oy, ¢,, and then:
(i) If p 2rl2=z 22 then O is mazimal;

(i) If e(p) = —1, then O is contained in a unique mazimal order;
(11i) If e(p) = 1, then O is FEichler.

Proof. By Lemma 35, the reduced discriminant of O is D1D72‘ Thus if p{ D 1D 2—a” , O is maximal.
Now, assume that p | %2_12, which implies that p“’Q”2 ®) | 22 — Dy Ds. As p is nice, it follows that
p 1t ged(Dy, Ds), so without loss of generality assume that p 4 D;. Take B, ¢; as in Remark 46, and then by

Lemma 35, a general element of O is of the form

‘ D .
o= Ay+ AL E pPDa ¥ (@ ER)/D1 | o]
2 2 2
_ PD, PD, A Bf g i
= (A0+4 2 755 >+< +2D1> IRt ap
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for Ay, A, B,C € Z,. Therefore

Bz’ 2 2 2 B?
A(Oz) :D1 A+E +($ _DlDQ)C —Dl(a: —Dng)ﬁ,
1
whence
Bz\* 1+2v2(p)
Ale)=D; A+ oo (mod p T=v2P)),
1
Thus (O, p) = {0,¢(p)}, which by Lemma 48 completes the second and third points. O

Lemma 49 implies that locally, there is a minimal Eichler order containing Og, 4,,,, Which is either the
order itself, or the unique maximal order it is contained within. Therefore the result is true globally, and we

make this a definition.

Definition 50. Let ¢1, ¢ be x—linked embeddings of discriminants D1, Dy into B, an indefinite quaternion
algebra over Q or Qp, where (D1, D5, z) is nice. Then there exists a minimal Eichler order containing Og, 4,,

Eich
denoted O¢i‘f¢2 .

Since we are concerned with the optimality of embeddings, we need to determine which orders containing

Ogicgz admit ¢1, @2 as optimal embeddings.

Lemma 51. Let (Dq, Dy, x) be admissible, and let ¢1,da be x—linked embeddings of D1, Dy into B, an
indefinite quaternion algebra over Q. Let p be a prime for which p | %, and let ¢ be the corresponding
embedding of Op, /p2 into B that agrees with ¢1 on Op,. Then (¢}, $2) are & —linked embeddings into B if

and only if p | %"’_Iz.

Proof. Since
b (4 (VD7) o (V) -

(P}, P2) are %—linked embeddings if and only if % is an integer congruent to 2 ;ZD
If this is the case, then by Lemma 35 the reduced discriminant of Oy, 4, is %{Iz, which implies that

2 modulo 2.

— 2 .
D | DlD#, as required.

If p | M, first assume that p is odd. Then p | 2%, whence p | z, and Z is an integer with the same
1 p

parity as 2 ;? 2 as required.

If p=2, then 8 | D1 Dy — 2. If Dy is even or 8 | Dy, then 8 | D1 D5, so 8 | 22, and hence 4 | z. Therefore
£ =0= 22 (mod 2), as required. Otherwise, 4 || Dy and D, is odd. As D;/4 is a discriminant, it is
equivalent to 1 (mod 4), and so D;Dy = 4 (mod 16). This implies that 22 = 4 (mod 8), and so z = 2
(mod 4). Then £ =1 = 2122 (mod 2), which completes the proof.

We are now able to study the optimality of embeddings in OF} ., as well as the level of this order.
Definition 52. Let Dy, D5 be discriminants. Define a prime p to be potentially bad (with respect to D1, D)
if

D1 Dy
D{und Dgund .

Define PB(D1, D3) to be the product of all potentially bad primes. In particular, D; and D, are both
fundamental if and only if PB(D;, D2) = 1.

|

It suffices to consider the optimality of (¢, ¢2) at potentially bad primes.
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Proposition 53. Let ¢, ¢o be x—linked embeddings of discriminants D1, Dy into B, an indefinite quaternion

algebra over Q, where (D1, D2, x) is nice. Factorize

t
DDy — z? B el T 21 )
4 ::tl |p?81+1 I |qlf1 | wal7
=1 =1 i=1

where p; are the primes for which €(p;) = —1 that appear to an odd power, q; are the primes for which
€(q;) = —1 that appear to an even power, and w; are the primes for which e(w;) = 1. Then

(i) The order OgiCEZ is Bichler of level T\, w?;

(ii) The embeddings ¢1,d2 are optimal embeddings into 021022 if and only if none of primes p; and q;

are potentially bad.

Proof. Let O = Oy, 4, and OFit = OEifhz. Lemma 35 computes the reduced discriminant of O to be
%ﬁ, so it suffices to compute the change in reduced discriminant between O and OF", which can be
done locally. Lemma 49 implies that O, = Ogi‘:h for p = w;, hence those prime factors remain in the level. For
P = Di, qi, Op is contained in a unique maximal order, hence those prime factors disappear. This completes
the first point.

For optimality, assume that ¢; is not optimal with respect to OFi", Thus there exists a p | % for
which ¢(Op, /,2) lands inside O¥i". Let ¢} denote this embedding (which agrees with ¢ on Op), and then

(¢, ¢2) are £—linked. By definition, we have
O g O¢'1,¢2 g OEiCh,

2
. Therefore p = p;, ¢;, w;, so assume

and Lemma 35 says that the reduced discriminant of Oy 4, is 21222
1 P

that p = w;. By Lemma 49, O, = OEiCh, hence this is equal to Oy 4, , as well, which contradicts the fact
that the level of Oy 4, differs from the level of O by the factor p?. Therefore p = p; or p = ¢;, as claimed.
To finish, it suffices to show that if p | %, %2*“"2 satisfies ¢(p) = —1, then the embedding ¢; is

not optimal into OFh. As above, let ¢} denote the embedding of Op, /p2 corresponding to ¢. By Lemma

D

51, (¢, @2) are %—linked7 so by Lemma 35, Oy 4, is an order of reduced discriminant Dszz_ﬁ. Since

O C Oy ¢, and O, is contained in a unique maximal order, this must be the same maximal order that

: Eich _ ()Eich / ; Eich : ; Eich
contains Oy 4, - Therefore Oy'" = O¢,17¢2,p, and so ¢; embeds into O,"", hence it embeds into O™,

which proves that ¢; is not optimal. O

OEich

To finish off with optimality, we need to consider the optimality of ¢1, ¢9 into superorders O’ of e

Assume that none of the p;, ¢; are potentially bad, so that ¢1, ¢o are optimal in OE;CEQ The only way that ¢,
would fail optimality in O’ is if O’ admitted the embedding ¢} of discriminant ODl/wf (some 1 < j < t) that
agrees with ¢ on Op,. The pair (¢}, ¢2) i wij—linked by Lemma 51, and Ogi‘:gz is an Eichler order of level
w%? [1._, w¥ by Proposition 53i. Therefore O’ admits ¢; as an optimal embedding if and only if O’ 2 Og,icgz

Definition 54. With notation and assumptions as above, let Sy, 4, be the (possibly empty) set of orders

Eich Eich ; ; ; | _Dy | _Dg ;
Od>’1,d>2 and O¢1-,d>'2’ each of which corresponds to a 1 < j <t for which w; | prosa OF W, | D respectively.

The above discussion is the proof of the following proposition.

Proposition 55. Take the notation as in Proposition 53, and assume that none of p;, q; are potentially bad.

Then a superorder O' of OEich

"6, admits ¢1, 2 as optimal embeddings if and only if it does not contain any

order in S, ¢, -
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6.2. Local x-linking with level. Given an admissible triple (D1, Da, x), Theorem 44 determines the unique
quaternion algebra for which there exists x—linked optimal embeddings. Under the additional restriction of
niceness, Propositions 53 and 55 determine the possible Eichler orders that an x—linked pair of embeddings

becomes optimal in. In this section, we study the possible levels of such embeddings.

Lemma 56. Let B be a quaternion algebra over F' = Q or Q. Let vy, v, v3 € B be such that (1,v;, vj,v:v5)0p
is an order for (i,7) = (1,2),(1,3),(2,3). Then

O = (1,v1,v2,v3, V1V2, V1V3, V2V3, V1V2V3) O
is an order.

Proof. It suffices to show that any product v = v;, ---v;, lands in O for any sequence i1,...,7; with i; €
{1,2,3} for all j. This is accomplished via induction: the base case of k = 0 is trivial. For the inductive step,
assume it is true up to k —1 > 0. If 4; # 1 for all j, then v € (1, va,vs, v2v3) 0, (as this is an order), and we
are done. Otherwise, take the last occurrence of 1, say ip,. If i,,—1 = 1, then v;,,_,v;,, = v} € (1,v1)0,, and
by replacing it we are done by induction. Otherwise, if m > 1, then 4,,—1 = j # 1, hence v;,,_,v;,, = vjv1 €
(1,v1,v;,v1vj) 0, . By writing v;,, ,v;,, in this basis and using induction, we see that it suffices to prove the
claim when we swap v;,, and v; , ,. By successively repeating this process, we can assume that v starts with
a v and has no other terms v;. But then v, - - - v;, lies in (1, v2, v2, v2v3) 0, and a left multiplication by vq

still lands us in O, as desired. ]

The generalization of Oy, 4, is the following.

Definition 57. Let ¢1, ¢2 be z—linked embeddings from Op,,Op, to B. Let £ € Z* be such that ”2_4#
is a discriminant, and define Oy, 4,(f) to be the smallest order for which Op,,Op,, O(z2—p, p,)/e> embed

into via ¢1, @2, d1 X P respectively, if it exists.

Lemma 58. Let F = Q, and assume (D1, Da,x) is nice. Then Oy, 4,(0) exists if and only if £ | %"’*IQ,

and when it does, it has reduced discriminant %2{””2
Proof. Let D3 = ”ﬁ#, and let ¢3 : Op, — B be the embedding induced by ¢; X ¢o. Let w; = ¢;(/D;)
and v; = ¢; (%) for i = 1,2,3, and let x = %trd(wlwg) = D1Ds (mod 2) by assumption. We have

WiW2—T
L

wg = , whence

%trd(wlwg) = %trd <D1u}2€_xwl> =0.
Similarly, %trd(wgwg) = 0. If D3 is odd, then since Dy or Dy is odd, pp,p, =1 £ 0 (mod 2) for i =1 or 2,
whence (1, v;,v3,v;v3), is not an order, and Og, ¢,(¢) does not exist. Since D3 is a discriminant, if it is not
odd it must be a multiple of 4. In particular, we have that ¢? | %2*1’2. In this case, 0 = D; D3 (mod 2)
for ¢ = 1,2, and so by Lemma 35, (1,v;,v;,v,v;)z is an order for (i,7) = (1,2), (1, 3), (2, 3). Thus by Lemma
56, O = (1,v1, va, U3, V1Vg, V1V3, VaV3, V1 V2V3)7 is an order, necessarily the smallest order for which ¢; embeds

into for all 1 = 1,2, 3.
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Let p; = pp,, and compute

1 1 0 0 0

(%1 % % 0 0

v2 Bl 0 : 0 1

U3 - 0 0 0 i w,
b1v2 N % % % ﬁ w2
V103 0 5 % n w3
VU2v3 0 _4?2 z B2

V1U203 I2*8121D2 _pwa_ZPI D, plw-g;Zng p1p§+a;

Let this transition matrix be M. From the calculation in Lemma 35, we can compute that d(1, wy,ws,ws) =

252
(%)2 d(1, whwg,wlwg) = —W. It suffices to show that the rows of M generate a Z—lattice with

(D1 Dy—22)?

determinant 16 157> as then we have the discriminant of O being “—5Z7——, whence the reduced discriminant
is Dli’%, as desired. The calculation of the rowspace is done by hand in Appendix A. |

Remark 59. The statement £2 | %’F”}Q only requires (D1, D2, x) to be nice at p = 2. If it is not nice at
p = 2, then this does not need to hold. For example, take D1 = 20, Dy = 68, x = 2, and B to be ramified at
3,113. Then Oy, 4,(2) exists, but 22 § 2ila=z” _ 339

Since Og, 4, € Oy, ¢, (£), the inclusion holds when we complete at p. Considering Lemma 49, we find that
o If pt %2_9”2, then Oy, ¢y p(¢) is maximal;
o If e(p) = —1, then Oy, 4, ,(¥) is contained in a unique maximal order, necessarily the same maximal

order as the one containing Oy, 4, p;
e If €(p) = 1, then Oy, 4, »(¢) is Eichler.

In particular, this implies that there exists a minimal Eichler order containing O, ,(£), denoted OFih (¢).

$1,02
Factorize
t
D1D2 9 .
ot et B in?e +1Hq fi leg17
i=1
where p; are the primes for which e(pi) = -1 that appear to an odd power, ¢; are the primes for which
€(g;) = —1 that appear to an even power, and w; are the primes for which e(w;) = 1. The local conditions
imply that
S
Eich _ ()Eich i
051562 = Og1o6n (HP [Ia ) :
i=1
i.e. that the maximum possible level always occurs at the prime factors p of %"’*IZ for which e(p) = —1.

The analogous assessment of the prime factors p for which ¢(p) = 1 leads to the following proposition.

Proposition 60. Let (Dy, Dy, x) be nice, and let £ = [];_ lpfi I, qf Hl 1w , where e < e;, fI < f;,
and 2g} < g;. Then the Fichler order ng;z (£) has level 1_[Z L w9 Furthermore, assume that all the
Pi, q; are not potentially bad. Let

S ={w; : w; | PB(D1,D5)}
be the set of potentially bad primes among the w;. Then a superorder O" of 051022 (£) admits ¢1, P2 as optimal
embeddings if and only if O' does not contain OEith(wi) for all w; € S. This implies g, = 0 for all i such

that w; € S.
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Proof. The first half of the proposition has been proven in the above discussion. For the second half, the
optimality of ¢1,@2 can only fail if we have a w; for which ¢; (without loss of generality) descends to
an embedding of Op, /,2. Call this embedding ¢}, and as in Proposition 53 the order 05{622 has level
w%? [T._, w¥. Tt suffices to show that O04/,62,w; = Opy.62,w; (W5), as this means that picking up a factor of w
in the level is equivalent to killing optimality.

These Eichler orders have the same level, so it suffices to show inclusion only. However this is immediate,

as the embedding ¢} X ¢o corresponds to an embedding of discriminant % induced from

8, (v/Di1/p)ba(v/Da) = %@(JE)@(@»
O

An embedding pair having level exactly £ in O’ is equivalent to O’ containing Og, ¢, (¢) but not containing
Oy, 4, (p?) for any prime p. At long last, we can describe the levels and counts of Eichler orders admitting

@1, P2 as optimal embeddings.

Theorem 61. Let ¢q, po be xz—linked embeddings of discriminants Dy, Dy into B, an indefinite quaternion

algebra over Q, let £ be a positive integer, and assume that (D1, D2, x) is nice. Factorize

t
DyDy — a? T o1 TT 24 ;
1 :inieH- HqifLlegl7

i=1 i=1 i=1

where p; are the primes for which e€(p;) = —1 that appear to an odd power, q; are the primes for which

€(q;) = —1 that appear to an even power, and w; are the primes for which e(w;) = 1. Then,

(i) This setup is possible if and only if B is ramified at exactly p1,pa, ... Pr;
(i) There exists an Eichler order of level I for which ¢1,do are optimal embeddings into if and only if
both of the following are satisfied:
e None of the p;,q; are potentially bad;
e M= H:ﬁzl w;-qi with g; < g;.
(iti) Let I satisfy the above. The number of Eichler orders of level M for which ¢1,ds are optimal

embeddings into is

. gi+1—g; ifw;{PB(D1,Dy);
JIRE if wi | PB(Dy, D) and g, < g;;
i=1
1 if w; | PB(D1, D3) and ¢} = g;.

(iv) There exists an Eichler order of level M for which ¢1,¢s are optimal embeddings of into of level

exactly £ if and only we have

T s t .
o e . g;
o= I0 T Tt
=1 =1 =1

where 2g! < g; — g} and ¢ =0 if w; | PB(Dy, D2).
(v) Let MM, £ satisfy the above. Let n be the number of indices i for which 2g]' < g; — g}. Then the number

of Eichler orders of level I for which ¢1, @2 are optimal embeddings into of level exactly € is 2™.
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Proof. Part i is the content of Theorem 44, and the necessity of the conditions in part ii follows from
Proposition 53. To complete part ii, it suffices to prove it locally, and Proposition 55 implies that there is an
Eichler order of level wd* ™ whose containment must be avoided for each i such that w; | PB(Dy, Ds) (and
no other orders need be avoided).

Recall the inverted triangle of local Eichler orders, as described in Section 3.3. The local Eichler orders

Eich

containing Oy %, . form an inverted triangle with g; + 1 rows. There are g; + 1 — n Eichler orders of level

wl in the n'" row of the triangle, starting at n = 0 and ending at n = g;. Therefore if w; { PB(Dy, D2), there
are g; + 1 — g} possible Eichler orders of level wf;. If w; | PB(Dy, D3), then there is one when ¢} = g;, and
on all rows above it there are two, as the order that we cannot contain has level wig"'ﬂ. In particular, this
implies part ii as this is a non-zero number.

By the local-global principle for orders (Theorem 13), the total count for global orders is the product of
the local counts. The count in part iii follows from this and the previous paragraph.

For parts iv, v, Proposition 60 and the discussion surrounding it imply that ¢ has the prime factorization
as claimed. The necessity of 2g/ < g; — g} comes from the level of 051‘522 (w? 1{,) having valuation g; — 2g/" at
w;. Proposition 60 also implies that if w; | PB(D1, D2), then the valuation of ¢ at w; must be 0, i.e. g/ = 0.

To count this, we again work locally and use the local-global principle. The local count is unchanged at

the primes w; for which w; | PB(D1, D2). For primes w; not satisfying this, we no longer have to worry about
k

optimality. For ease of notation, if the level of the embedding pair is w;’, we say it has intersection level k.

The Eichler order ng?mw (w?) has level wf’i_Qn, and an intersection level is at least n if and only if the
order contains Ogicgzw (w?). Drawing the inverted triangle as before, it follows by induction that (noting

that all of the orders O%i‘ﬁz’wi (w?') are contained inside each other)

e In level wigﬁQ", there are 2n + 1 orders, of which there are 2 of each intersection level 0,1,...,n—1,
and one of intersection level n;
e In level wf"_QnH, there are 2n orders, of which there are 2 of each intersection level 0,1,...,n — 1.

In particular, there are 2 orders of intersection level g/ when 2¢g! < g; — g, and one when 2¢) = g, — ¢..
The condition coming from w; | PB(D1, D3) was there are two if ¢g; < g;, and one if we had equality. Since

g =0, this condition is absorbed by 2¢/’ < g; — g;. This completes parts iv, v. O

7. PROOF OF THE MAIN THEOREM

We are now ready to study Emb(O, Dy, Do, ).

7.1. Total x-linking into a given Eichler order. As alluded to at the start of Section 5, we need to pass
between Eichler orders containing a fixed pair of z—linked embeddings, and elements of Emb(O, D1, Ds, x).
This is accomplished in the “inversion theorem”, which we now set up for.

Let F' be Q or Qp, and let B be a quaternion algebra over F' of discriminant ©, which is indefinite if
F = Q. Let O be an Eichler order of level 9 in B. Assume that D;, Do are positive discriminants for which
Emb(B, Dy, Do, x) is non-empty, fix [(¢1, ¢2)] € Emb(B, Dy, Dy, z), let £2 | %2*“’2, and define

Tp1.0, (M) :={E : E is an Eichler order of B of level I
for which ¢1, ¢2 give optimal embeddings into};

Ty, (M, 0) :={E € Ty, 0, (M) such that (¢1, ¢p2) has level £ in E}.
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Proposition 62. We have

Npx(0)
|Emb(O,D1,D2,x,€)\ = FBinOl |T¢17¢2(ma£)‘7
and the analogous result without the £. If ' = Q, then
Npx(0) — quw(®M)+1
FxO! | '

Proof. By Corollary 33 and Eichler orders of the same level being conjugate, we have that T, ¢,(9) is
non-empty if and only if S = Emb(O, Dy, Dy, x) is non-empty. In particular, we can assume that (¢1, ¢2)
give a class in S, and we will use this pair to define a map 6 : S — Ty, 4,(9). Given optimal embeddings
(¢}, #4) representing a class in S, by Corollary 33, there exists an r € B* for which r¢}r—! = ¢; for i = 1,2.

Define
0((¢, ¢5)) = rOr~.

It is clear that rOr—1 € Ty, 4, (9), but we need to check that all choices were well defined. By Corollary 33,
the element 7 is defined up to multiplication by F*, which does not change rOr~1. If (¢!, ¢5) ~ (¢, #%) in
S, then there exists an s € Ol for which ¢} = s¢”s~! for i = 1,2. The corresponding element 7 can then
be taken to be ' = rs, and then r'Or'~! = rsOs~'r~! = rOr—!, as desired. Therefore the map 6 is well
defined.

Next, it is clear that 6 is surjective. Indeed, if E € Tj, ¢,(9), then there exists a b € B* for which
bEb~! = O. Then (4%, ¢3) € S, and this pair maps via 6 to E, as desired.
NIEXX(()?) -to-one map. Assume that 6((¢], ¢5)) = 0((¢7, %)), and
that the pairs correspond to r, s respectively. Then rOr~1 = sOs™1, hence t = r71s € Nz« (0O). Writing

Therefore, it suffices to show that 6 is a

s = rt, it follows that t~1¢/t = ¢, so it suffices to determine how t=1(¢}, #5)t varies as t ranges over

7

Npx(0). For a fixed t, by Corollary 33, the set of elements conjugating (¢}, ¢45) to any form in the class of
t=1(¢], ¢h)t is Ot~ F* = t~1F*O!. Thus, for distinct t1, 2, they correspond to the same image if and only
if

tT FXO = t; P FX0!,
which is equivalent to tgtl_l € F*O'. This proves the first claim without the £. It is clear that the level of
intersection remains constant under 6, hence the statements remain true when we add in the level /.

When F' = Q, Proposition 18 yields
Npx(0) Z
~ 11

Q*x0t — 27"

p|DMoo

which implies the final result. O

Combining Proposition 62 with Theorem 61 produces the count of x—linking.

Theorem 63. Let B be an indefinite quaternion algebra over Q of discriminant ®, let O be an Fichler order

of level M, let (D1, Do, ) be nice, and let ¢ be a positive integer. Factorize

K t
DDy — a? - 2¢;+1 - 2f; .
=D T T

i=1 i=1 i=1

where the p; are the primes for which e(p;) = —1 that appear to an odd power, q; are the primes for which

€(q;) = —1 that appear to an even power, and w; are the primes for which e(w;) = 1. Then
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(i) The set Emb(O, D1, Dy, x) is non-empty if and only if all of the following hold:
o D =][ipis
e None of the p;, q; are potentially bad;
e M= ]_[::1 wfg with g, < g;.

(ii) Assume the above holds. Then

. |9it1—gi if witPB(D1, Dy);
| Emb(0, Dy, D, z)| = 22@¥W1 T { 2 if wi | PB(Dy, Dy) and g, < gi;

i=1

1 if w; | PB(D1, D3) and ¢, = g;.

(iti) The set Emb(O, Dy, Dy, x, ) is non-empty if and only if £ takes the form

T s t .
_ e; i 9i
e=ITe ITal TTwi"
i=1 =1 =1

where 2g! < g; — g, and ¢ =0 if w; | PB(D1, D2).
(iv) Assume the above holds. Let n be the number of indices i for which 2g! < g; — gi. Then

| Emb(O, Dy, Dy, 2, 0)| = 20(@P)Fn+1,

Most of Theorem 10 now follows by specializing Theorem 63 to the case of Dy, Dy being coprime, funda-
mental, and O being maximal. The only unproven claim is the final one about the signs of intersections, and

this is considered in the next section.

7.2. Orientations and sign of intersection. Up until now, the orientations of optimal embeddings and

the sign of intersection has been completely ignored; we now address this issue.

Lemma 64. Let B be an indefinite quaternion algebra over Q, let O be an Fichler order of level I, let
(¢1, d2) be x—linked optimal embeddings of positive discriminants D1, Dy respectively where (D1, Do, x) is
admissible, let v | DMoo, and let w, € N (0O) be as in Proposition 18. Then (¢7", ¢3") is an x—linked pair
of optimal embeddings into O with the same level as (¢1, o). Furthermore, if x> < DyDsy, then

e If v =00 then the orientations are the same, but the sign of intersection is opposite.

o [fv < oo, then the orientations are negated at v only, and the sign of intersection is the same.

Proof. It is clear that (¢}, ¢5") remains z—linked, optimal, has the same intersection level, and the orien-
tation follows from Proposition 28. Having opposite sign of intersection is equivalent to ¢ X ¢ swapping

orientation at co when conjugating by w,,, and this also follows from Proposition 28. O

In particular, any element of O~! (reduced norm —1) acts as an involution on Emb,, ,, (0, D1, D2, z,£),
dividing it into equal sized sets of intersection sign being 1 and —1. This completes the final claim of Theorem
10.

Definition 65. If 01, 02 are orientations of optimal embeddings, then attaching the subscript o1, 02 to any of

the sets defined as Emb(O, Dy, Do, ...) means we only take the pairs of optimal embeddings of the specified
+

orientations. Thus, Emb;

(O, D1, Do, z,f) counts the equivalence classes of pairs [(¢1,¢2)] of optimal

embeddings of discriminants D, Dy and orientations o1, 0o that are x—linked of level ¢ with positive sign.
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Lemma 66. Let B be an indefinite quaternion algebra over Q of discriminant ®, let O be an Fichler order of
level M, and let (D1, D2, ) be admissible. Assume that Emb(O, Dy, Ds, ) is non-empty, let o1 be a possible
orientation of an optimal embedding of Op, into O, and assume that gcd(D1Do, M) = 1. Then there exists
a [(¢1,¢2)] € Emb(O, Dy, Dy, x) for which ¢1 has orientation o1. For each p | ®M, we also have:

o Ifp{ Dy, then oy(¢2) is uniquely determined;
o Ifp| Dy but pt D, then o,(¢2) can be both 1 and —1.

Finally, there is a positive integer N such that for all orientations (01, 02), we have
| Emb01,02 (Oa Dla D27 z, 6)‘ € {07 N}a

and the same result holds with N/2 for Emb} , (0,Dy, Dy, 2,0) if 2> < D1 Ds.

01,02

Proof. Start with [(¢], ¢5)] € Emb(O, Dy, D, ), and from Lemma 64 we can conjugate the pair by w, for
p | DI to get (@1, P2) with ¢ having orientation o;.

If p | D1 but pt Ds, the local orientation result follows from from conjugating the embeddings by w,, as
0p(¢1) =0.

Next, assume p 1 D;. It suffices to prove this lemma locally, so first assume we have p | D, i.e. B, is
division. As in the proof of Lemma 39, write B, = (%f), with ¢1,(vVD1) =14, (D1,€), = —1, and v,(e)
being necessarily odd. Assume p is odd, let ¢3 ,(v/D2) = fi+gj+hk for f,g,h € Z,, and the trace condition
gives that f = 5-. Let p be the maximal order in Oy, and since p | nrd(j), nrd(k),

2.p(v/D2) = D— (mod p),

which only depends on z, D;. Therefore by Lemma 27, the local orientation of ¢5 at p is fixed. If p = 2, then

the analogous computations involving ¢ (w

Otherwise, assume that B, = Mat(2,Q,), and O, is the standard Eichler level of order p® with e > 0. Let

) imply the result.

e1 = e + va(p), and then working modulo p** we write

¢1(v/D1) = (a ' > (mod p), $2(v/Da) = (C _dc> (mod p).

0 —a 0
Therefore 2 = ac (mod p®), and since p{ a (else p | D1), we have ¢ = £ (mod p°*). By Lemma 27, the local
orientation of ¢ at p is fixed.
Finally, the above shows that we can pass between all pairs (01, 02) for which Emb,, ,,(O, Dy, D, x,0) is
non-empty via conjugation by w, for p | DM, hence these sets all have the same size. If 22 < D;Ds, then

exactly half of the pairs in a given set have positive intersection sign, which completes the lemma. O
We can say even more about how the possible z’s divide across a pair of orientations.

Proposition 67. Let B be an indefinite quaternion algebra over Q of discriminant ®, let O be an Fichler
order of level M, let D1, Do be positive discriminants, and let 01,09 be possible orientations of optimal
embeddings of discriminants Dy, Dy into O. Then there exists an integer x,, o, such that for all optimal
embeddings ¢; € Emb,, (O, D;) (i =1,2), we have

Yoror = 3 1d (601(vD1)éa(VD2))  (mod 20m)

In particular, the possible x—linkings across an orientation pair are all equivalent modulo 2D9IN.
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Proof. Fix another pair ¢, € Emb,, (O, D;), and say that ¢1, ¢2 are x—linked and ¢}, ¢4 are z'—linked. It
suffices to show that z = 2/ (mod 2091). We can work locally, so start with p | ©, and assume that ¢;, ¢/
now land in O,,. Let p be the unique maximal order of O,, and as the embeddings have the same orientation,
there exists uy,us € Ozl) for which ¢ = ¢ for i = 1,2. Since O,,/p ~ F)2 is commutative, when working

modulo p we can rearrange terms freely. Thus

w (poL\/lT) s (pp2+¢ﬁz>_¢ (pD1+m> (ppﬁrx/@)
! 2 2 )=l )T

5 (mod p).

Taking reduced traces implies that

lep[; +a' = lep[Qb tz (mod p).

If p # 2, it follows that 2’ = x (mod p), whence 2’ = = (mod p) by subtracting and taking the norm. If

p =2, then 2’ = x (mod 2p), and so subtracting and taking norms gives 8 | (2’ —z)?, hence x = 2’ (mod 4).
Next, assume that p® || 9 with e > 0, and assume that O, is the standard Eichler order of level p®. As
the embeddings have the same orientation, there exists ui, us € 0117 for which ¢ = ¢ for i = 1,2. Explicitly

write

. D; i b; i i
(7.1 m(“’l*v ): “ R Y
2 p°ci Pp, — a4 phs Kk

It follows that f;k; =1 (mod p¢). Modulo p¢, we compute

(72) ¢7ZJ7 (pDi ‘;\/E> = (ai fi(pDigi - 2giai + fzbz)> (mod pe).

0 le — a;
. .. . pDv+\/D7i . . . .
By taking the explicit expressions for ¢; (#), doubling and subtracting pp,, and multiplying together,
we find that
x = (2a1 — pp,)(2a2 — pp,) = ' (mod petv=)),

as claimed.

Combining the above shows that © = 2’ (mod 209M) if 2 | DM, and = = 2’ (mod DIM) otherwise. In
this case, © = pp,pp, = 2’ (mod 2), so the same conclusion follows. ]

If Dy is coprime to ®9M, then Lemma 66 and Proposition 67 can be used to show that for oy fixed, the
integers x,, o, are all distinct modulo 2091 across all orientations oq. If D; has factors in common with DI,
this no longer needs to be true at those primes. Furthermore, not all x’s satisfying the congruence condition
will necessarily appear as x—linkings, as this depends on the actual factorization of %ﬁ, and not just
on congruences. For example, this number will always be divisible by D91, but prime factors of ® could
appear to even powers.

Lemma 66 allows us to count the sizes of Ernbjl,o2 (0, Dy, Dy, z,¢), by dividing | Emb™ (O, Dy, Do, x, {)|

across the total number of orientations. We record this in the final corollary.

Corollary 68. Let B be an indefinite quaternion algebra over Q of discriminant ©, let O be an FEichler
order of level M, let (D1, Do, x) be nice, and let £ be a positive integer. Factorize

D1D2 — 1‘2 - ) o 2f. ¢ ]
T :in?€z+1Hqiszw§z7
i=1 i=1 =1
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where the p; are the primes for which ¢(p;) = —1 that appear to an odd power, q; are the primes for which
€(q;) = —1 that appear to an even power, and w; are the primes for which e(w;) = 1. Assume that
o ®=][_, pi;
None of the p; or q; are potentially bad;
e M= szl wfé with g; < g; and gcd(IM, D1Dy) = 1;
=TT, P T, qlf I, wfgl, where 29! < gi — g; and g/ =0 if w; | PB(Dy, Ds).

Let n be the number of indices i for which 2g% < g; — g.. If x> < D1Da, then for every pair of orientations

K2
(01,02), we have

|Emb, (O, Dy, Dy, z,0)| = 2" or 0.

01,02

If 22 > Dy Ds, then the same result holds without the + and n replaced by n + 1.

Proof. By Theorem 63, the count without the orientations or + is 20(®)+n+1 If 5 | DM, then since the
triple is nice and ged(9, D1D3) = 1, Lemma 66 implies that there are precisely 2 pairs (o,(¢1), 0p(¢2))
which admit z—linking. Hence we divide by 2 for all such p, eliminating the factor of 2¢(®¥)_ Finally, if

22 < D1Ds, exactly half of the embeddings have positive sign, which implies the result. O

Corollary 68 approaches the limits of what we can do with this approach. When non-empty, the set
Embjl)o2(O7D1,D2,m7£) has size 2", and distributes itself across the h*(D1)h™(D3) pairs of equivalence

classes of the specified orientations. A rough description of what we can say about this distribution is as

follows:

o Fix [(¢1,02)] € Embjl,o2 (O, D1, Do, x,£). Then the map 0 found in Proposition 62 combined with
the work on Ty, 4, (90) allows us to describe possible values of nrd(r) for r € O such that [(¢], ¢5)] €
Embjl_’02 (O, Dy, Dy, x,£) and [(¢7, ¢5)] # [(é1, ¢2)]; they are essentially products of powers of prime
divisors p of %2_””2 with €(p) = 1.

e The integers represented by the element of the class group C1*(D;) taking ¢; to ¢! correspond to
the norms of elements in O conjugating ¢; to ¢ (see Sections 4.4 and 4.5 of [Ric21b]).

e In particular, the distribution relates to the representations of products of primes p | %2712 with

€(p) =1 by binary quadratic forms of discriminants Dy, Ds.

Of course, even if we could make this more formal and explicit, it does not tell us how the distinct =

values interact, which is important for intersection numbers.

8. EXAMPLES

We present a few examples that illustrate the results of Theorem 63 and Corollary 68. All computations
were done in PARI/GP ([PAR23]), and the code to replicate these examples can be found in [Ric21c].

Example 69. Let D; = 5 and Dy = 381, so that Dy, D5 are coprime and fundamental. Since 43 < v/5 - 381 <

5:381—2?
4

44, to compute which algebras admit non-trivial intersections of Dy, Ds, it suffices to compute ® for

odd |z| < 43, and find €(p) for all prime divisors. The values of ¢(p) with p < 80 are in Table 1.
Table 2 displays the possible ramifications of the quaternion algebras, along with the corresponding
positive z’s (since x and —z correspond to the same algebra).
Let’s focus on B = (3(.%1), which is ramified at 2, 3. Let O = (1,14, j, WM’ which is maximal. There
are four orientations and h™(5) = 1, hence by Proposition 23 there are 4 embedding classes of discriminant
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TABLE 1. €(p) for D; =5, Dy = 381, p < 80.

p | 23|57 |17]|19|29 31|43 | 47 |59 |61 | 67 |79

ep) | -1 |-1|1|-1|-1]1 |1 |1 |—-1]-1]1|1]|-1]1

TABLE 2. Quaternion algebras admitting non-trivial intersections in a maximal order for

discriminants 5 and 381.

Ramifying primes 0 2,3 2,7 2,17 | 2,43 | 2,47

Positive 2’s 7,17,25,31 | 3,9,21,27,39 | 13,29,41,43 | 35 | 23 | 5

Ramifying primes 2,67 2,193 2,223 3,7 13,17 | 7,17

Positive x’s 37 19 11 15 33 1

5. Since h™(381) = 2 and 3 | 381, there are two orientations, and 4 total embedding classes of discriminant

381. Representative embeddings are given in Table 3.

TABLE 3. Optimal embedding classes for D = 5, 381.

D | 02(9) | 03(9) | ¢ (M)
5 1 1 1 itk
5 -1 1 icichk
5 | 1 | -1 | itk
5 | -1 | -1 | ik
381 1 0 1711i§3j+3k
381 1 0 1+9i723j+7k:
381 | -1 0 17111';33‘731@
381 1 0 1+9i—23j—7lc

The possible a’s have |z| = {3,9,21,27,39}. For each x, we factor W in Table 4, and determine the
possible levels.

It turns out that each x corresponds to a unique level, though this need not be the case in general. This
data says that |Embj1,02(07 5,381, z,¢)| should be 0 or 2 for |z| € {3,9,21}, and 0 or 1 for the |z| € {27,39}.
Let ¢1 be the first embedding of discriminant 5 as given in Table 3, and let o1, o2 be the first two embeddings
of discriminant 381 as given in the same table. For each intersection of ¢, with o;, we take a pair (¢}, ;)
representing the intersection, and record the data in Table 5 (the signed level is the product of the sign and

the level).
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TABLE 4. Factorization of 3382 for |z| = {3,9,21,27,39}

2| W [Ip | T1q)" | [Tw? | Possible levels | n
3 474 2131 791 1 1
9 456 2331 19! 2 1
21 366 2131 61! 1 1
27 294 2131 | 72 7 0
39 96 2531 4 0

TABLE 5. Intersection of ¢1 with oy, 0.

Intersections with oy Intersections with oo
o (%) x | Signed level o (%) x | Signed level

1713¢7§5j729k 3 1 1+i;j7k 3 1
1713i+1!2)7j7113k 3 1 1+101i+3259j7181k 3 1
1+31i+1231j+69k 9 92 1—i;j+k —9 —9
1+31i—4§9j+269k _9 9 1—4111—1245j+73k _9 9
1—87i—3273j—197k 91 1 1+i+gj—3k _91 1
177111'730231]'7159% 91 1 1+11i+;11j721k _91 1
1+223i+9253j+503k 97 7 173i7213j+7k 97 _7
17i;j+k 39 4 1729i+271j+29k 39 4

the 2’s are all negated.

For another interesting example, we consider a non-maximal Eichler order, and compare it to the results

for the maximal order.

Example 70. Let D, =

3, Do
number 1 each. Let B = (%»

of level 3, given by

1+

l+itj+k

<
2

37

This data agrees with the theoretical claim. It also satisfies Proposition 67, since the x—values are all

equivalent modulo 209t = 12. For the other orientation of 381, we have essentially the same data, except

=937, and x = 89. Then D;, D, are coprime, fundamental, and have class

which is ramified at 5,7. Let O be a maximal order and O’ an Eichler order

1435 14+i+j+k
2 .

, OH=<L@
), ;




There are 4 embedding classes into O and 8 embedding classes into O’ of each discriminant, each correspond-
ing to a distinct orientation. Since
73937 — 892
4
with €(5) = €(7) = —1 and €(2) = €(3) = 1 (the empty parentheses indicate the absence of ¢;’s), the sets
Emb(X,73,937,89) should be non-empty for X = O, 0’. Fix the optimal embeddings

5 <1+\/ﬁ> 1—2i+3j i’ <1+\/937> 1+ 14i + 5j — 4k
1 - s 2 =

= (5'"7)()(2*3%),

2 2 2 2 ’
which land in and are optimal with respect to both O and O’. Since

1

§trd(qbl(\/ﬁ)qbz(\/g?n)) = —-121=89 (mod2-3-5-7),

Into (¢, ¢2) and Intor(p1, d2) should have 89—linkage. As the class numbers are both one, this is all of the
89—linkage for the given orientations. Corollary 68 predicts the levels and counts, which is recorded in Table
6.

TABLE 6. Theoretical prediction for counts of levels.

¢ | |Emb}, . (0,73,937,89,)| | |Emb, . (0',73,937,89, )|
1 4 4
2 4 4
3 4 2
4 2 2
6 4 2
12 2 1

The difference in counts comes only at w; = 3, where 2¢g) < g; — g, = 3 — g/ is true for g/ = 0,1 when the
level is maximal, but is only true for g/ = 0 when g} = 1, the Eichler order of level 3.

We compute the 89—linkage of ¢1, ¢po. For each intersection with positive sign, we take a representative
pair (¢1, ¢5), and record ¢4 and the level in Tables 7 and 8.

This data agrees with Table 6.

For a final example, we introduce a non-fundamental discriminant.

Example 71. Let D; = 241 and D, = 2736, which are coprime, and let x = 324. Note that D; is

fundamental, but Dy = 223276, where 76 is fundamental. Take B = (%), which is ramified at 7,11.

Let O = (1,4, %)Z, which is maximal. We have h*(241) = 1 and h*(2736) = 4, and consider the 5
optimal embeddings in Table 9 (one being of discriminant 241, and the other 4 being one entire orientation
of discriminant 2736).

Factorize
241 - 2736 — 3242

4

= (T'111)()(2°3%5%),
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TABLE 7. Positive 89—linking of ¢; with ¢5 in O.

o) (147 o) (147 ‘
1+22559i+212061j712851k 1+119i+%17j769k 3
1+1769i+1§57j71009k 1+1428689i+1333449j7813783k 3
1+1769i+1gs7j+1009k 1+14i+219j78k 4
1+22559i+212061j+12851k 1+14i+219j+8k 4
1+584i+5251j+334k 1+6907484z’+64426991j—3934506k 6
1+584i+5251j—334k 1+4664z'+4i2’>59j+2658k 6
1+44i+;7j+26k 1+69074841’+64426991j+3934506k 6
1+44i+4217j726k 1+4664i+4359j72658k 6
1+119i+%17j+6‘9k: 1+179534i+16;571j7102264k 19
1+1428689i+1333449j+813783k 1+179534i+16;571]’-',-102264/@ 19
TABLE 8. Positive 89—linking of ¢; with ¢o in O’.
o) (147 o) (147 ‘
1+1769i+1(2557j+1009k 1+1428689i+1333449j+813783k 3
1+119i+él7j+69k: 1+119i+;17j769k 3
1+1428689i+1333449j—813783k 1+14i+219j—8k 4
1+22559i+212061j—12851k 1+179534i+16;571j+102264k A
1+44i+4217j+26k 1+6907484i+64426991j—3934506k 6
1+584i+5251j—334k 1+4664i+4€2’>59j—2658k 6
1+6907484i+64426991j+3934506k 1+179534i+16;571j7102264k 19
1+4664i+4§>59j+2658k

where €(7) = €(11) = —1 and ¢(2) = ¢(3) = ¢(5) = 1. As PB(241,2736) = 2 - 3, the primes 2,3 are
potentially bad and therefore cannot occur in the intersection level. In particular, for 324—linking, the only
valid intersection levels are 1,5 (whereas if Dy, Dy were fundamental, we could get all divisors of 30). The
table of predicted levels and counts is found in Table 10.

Since

%trdw(\/ﬁ)al(\/ma)) — 786 =324 (mod 2-7-11),
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intersections of ¢ with o; should exhibit the above 324—linking behaviour. We compute the possible positive
324—linking between ¢ and o; for ¢ = 1,2,3,4, and represent each intersection by a pair (¢,0;). The
corresponding data is found in Table 11.

This data agrees with the theoretical claim.

TABLE 9. Optimal embedding classes for D = 241, 2736.

Label | D | o7(¢) | 011(¢) | ¢ (#)
1+i—125+2k

¢ | 241 | 1 1 SR
o | 2736 | 1 IEES

o |2736| 1 1| o2t
o5 2736 | 1 1 B Sk

107—2815—31k

o1 2736 1 1| ==

TABLE 10. Theoretical prediction for counts of levels.

¢ | |Emb} _ (O,241,2736,324,0)]

01,02

1 8

) 4

TABLE 11. Positive 324—linking of ¢; with o;.

; /[ 14241 ; /[ 14+v241
! & (T) K ! (T ¢
1451079i4-8398275 —80937k 1-5i—895—9k
1 . 1|3 158919k 1
1439i—3975+4-23k 1-449i+453154-255k
1 1390 397) 423k 13 > 1
1+2433i—24 j+1 k 1-74 j+3k
1 +2433i 2575g+ 387 513 71+55;+3 5
1-17i412205—138k 1-87657i4-16159875+161959k
2 I 1Tetl220) 198k 14 - 1
) 1+2597,74’278()g+480k 11| 4 17212+3273]+37k 1
9 1+5z—§9]+9k' 51 4 1—13951+252706]+2576k 5
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APPENDIX A. HERMITE NORMAL FORM CALCULATION

We calculate the determinant of the row-space of the matrix

1 0 0 0
1
El 3 0 0
2 1
= 0 5 0
I 0 0 0 3
- pip2+x p2 p1 I3 ’
4 4 4 1
— D
I
0 —Do x Pz
a0 s 4
22—D1Dy  —paz—p1Ds  piz+peDi pipetw
87 8? 8¢ 8
where:
e Dy, Dy are discriminants with parities pi1, p2 respectively;
° ng (Dl, Dg, D1D2 — .132) =1
L] 442 | D1D2 - .Z‘2.
Let L be this rowspace, and label the rows r1,...,rs. Since L D Z* and Z* has determinant 1, we see that

the determinant of L is % for some positive integer N. Our aim is to show that N = 16¢. We can compute
N by tensoring our space with Z, for all primes p, and determining the power of p dividing the determinant
of the corresponding Z, lattice.

Note that all denominators of M divide 8¢. Hence p t 2¢ implies that L, = Zf), and so v,(N) = 0, as
desired.

Next, assume that p | 2 is odd. Thus p | £ | D1 Dy —22, which implies that D; and Dj are not both divisible
by p. The first four rows of M, span Z;l,, and the fifth row is already in this span. Since £ | £2 | D1 Dy — 22,
by removing the powers of 2 and applying row operations, the last three rows (labeled r§, %, r§ in order)

become

-z Dy
0 7 5 0
—Dy z
0 7 7 0
—p2z—p1 D2 piz+pa Dy
0 7 7 0

First, rg = parg + p1ry, so we can ignore r§. Next, we have

/ / ! Vi
arg — Dyry, Darg — xry, € (r1,72,73,74)7

p*

Without loss of generality assume that p t Dy, whence 17 € (ri,r2,73,74,76)z,. Then r3 € (r1,72,74,76)2

p?

and thus our basis is spanned by

1 0 0 0
01 0 0
0o =% Broo
0 0 0 1

The power of p dividing the denominator of this determinant is v,(¢) = v,(16£), as desired.
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The remaining case is p = 2. Let vo(¢) = k > 0, write £ = 2*/' with ¢’ odd, and without loss of generality,

assume that D; is odd. Working over Zs, we multiply out by odd factors to obtain the row-space

1 0 0 0
1 1
5 5 0 0
P2 1
2 0 2 0
\ 0 0 0 2
L= p2tx P2 1 g/2k72
4 4 4
0 —x D1 ﬂ
kT2 oF+2 1
0 —D> z p2l’
2k-+2 2k+2 4
22-DyDy  —ppx—Dy  z+pDy (pata)l
2k+3 2k+3 2k+3 8

We now find the span of the first 5 rows, and successively add in rows 6 through 8 in the various cases.

e If D5 is even,
—Ifk=0,

« If 2|| &, rows 1 to 5 give

3 500

0 3 1 1

00 Lo

00 o0 1
Rows 6 and 7 already lie in this span, and row 8 shifts to (12*# —D2 11 ) If 4 || Do,
it follows that 8 | D1 Dy — 22, and after a Z3 shift, row 8 becomes (0 4 % 1), which is
already in the span. Otherwise, 8 | Dy, and by a Zj shift we arrive at (404 1). Thus

rows 1 through 5 sufficed, we get the determinant 27%, so the power of two dividing the
denominator is 4 = k + 4, as desired.

« If 4| z, rows 1 to 5 give

O R O O

S O O w=
S O = o
W= k= O O

and the last three rows already lie in this span. The determinant is again 274, as desired.
— If k=1, then 16 | D1 Dy — 22
« If 2 || z, then 4 || D2 necessarily. The first 5 rows give

O v A= O

S O O e
O O M= N
= O O O

I
[}



Shifting the sixth row gives (0,+%, %, 1) (using D; =1 (mod 4)), which can replace row

two, giving
11 9 9
2 2
RN
0 0 5 0
0 0 O %

The seventh and eighth rows lie in this span, and the determinant is 275, as desired.

% If 4 | z, then 16 | Dy necessarily. The first 5 rows give

S O O v
S O = ow=
O Rk O O
v O O O

< LR L. hifta —z 1 1
Rows 7 and 8 already lie in this span, and row 6 shifts to (0, = 801

replace the second row, and if 8 |  we can replace the third row, giving

). If 4 || z we can

i 12 00 400
0 +5 3 3 4|01 oo
000 o™ oo Lz

4 8 4
0o 0 0 % 00 0 1

respectively. This gives determinant 275, as desired.
— If k > 2, then 64 | 22+2 | Dy D, — 2%, The last three rows shift to

0 —x D4
k2 2F+2

V4
4
0 —Ds T

2k+2 2k+2

0 — Do T zl’
2k+3 2k~+3 8

Since xrg — D177 lies in the span of the first four rows, so we can eliminate r; from consideration.
Similarly, %7“6 — Dyrg also lies in this span, so we can eliminate rg from consideration too; only
the first 6 rows are left.

« If 2 || z, rows 1 to 5 give us

2 0010
0 & 5 0
00 1 0
00 o0 1
We can replace ry with rg giving
2 0§ 0
0 oz ook g
o o i ol
0 0 0 3

which has determinant 5=, as desired (since vy(z) = 1).
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x If 4| z, rows 1 to 5 give us

11
5 3 00
0 1 0 0
00 % 0
00 0 1
In this case we can replace r3 with rg, giving
1 1
5 3 0 0
0 1 0 0
0 0 0 3

which has determinant 2?—@, as desired (since Dy is odd).
e If Dy is odd,
— If K =0, then the first 5 rows give us

S O O W=

o o afl e
O = oA O
v O AR O

The last three rows lie in this span, so we get determinant 274, as desired.
— If k > 1, the first five rows give

3 3 0 0
0+ =20
00 1 0
00 0 3%

The second row can be replaced by the seventh, giving

1 1
10 o0
0 7% 7= 1
0 0 1 0
1
o o o 1

This span also contains the sixth and eighth rows, hence is a valid basis. The 2—adic valuation

of this determinant is —(k + 4), as desired.
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