

1 Planetary impacts: scaling of crater depth from 2 subsonic to supersonic conditions

3 **L. Allibert¹, M. Landeau², R. Röhlen¹, A. Maller², M. Nakajima³ and K.
4 Wünnemann¹**

5 ¹Museum für Naturkunde, Invalidenstrasse 43, Berlin, Germany

6 ²Institut de Physique du Globe de Paris, Université Paris Cité, 1 Rue Jussieu, Paris, France

7 ³University of Rochester, Department of Earth and Environmental Sciences, Rochester, NY, United
8 States

9 **Key Points:**

- 10 • The shock physics code iSALE is successfully benchmarked against subsonic wa-
11 ter impact experiments.
- 12 • A scaling law is proposed for the crater depth as a function of the Mach and Froude
13 numbers which are varied as independent parameters.
- 14 • In the limit of high Mach numbers, our scaling suggests that the maximum crater
15 depth is controlled by the sound velocity and gravity, but not by the impact speed.

16 **Abstract**

17 Planetary impacts have shaped the surfaces and interiors of planets. They were partic-
 18 ularly decisive in the last stage of planetary accretion, as they have eventually formed
 19 terrestrial planets. During these large supersonic collisions, shock waves melted the im-
 20 pactor and the target, and formed silicate magma oceans. Because the propagation of
 21 shock waves and the melting is faster than the excavation of an impact crater, the cra-
 22 tering stage can be considered as a purely hydrodynamic process. Here, we use both
 23 laboratory impact experiments in water and numerical simulations to investigate the crater
 24 dimensions resulting from the impact of a liquid impactor onto a liquid target. We show
 25 that our numerical models reproduce the laboratory experiments at subsonic impact ve-
 26 locities. We then explore the effect of both the Froude number, which is the ratio of the
 27 impactor kinetic energy to gravity, and the Mach number, which is the ratio of the im-
 28 pact speed to the sound speed. We vary these two parameters independently in impact
 29 simulations, going from subsonic to supersonic conditions. We obtain a new scaling law
 30 for the crater dimension that describes the transition from subsonic to supersonic im-
 31 pacts. Our results indicate that the transition between these two regimes results from
 32 a change in the partitioning of the impactor kinetic energy into potential energy in the
 33 crater and internal energy. Finally, our scaling suggests that, in the limit of large Mach
 34 numbers, the crater depth depends only on the sound velocity and gravity, and is inde-
 35 pendent of the impact speed.

36 **Plain Language Summary**

37 Planetary formation involved a large number of very energetic collisions. Such im-
 38 pacts generated shock waves which led to widespread melting and the formation of magma
 39 oceans. Understanding the dynamics of impacts into magma oceans is of great impor-
 40 tance as these collisions set the initial temperature and composition of terrestrial plan-
 41 etes and satellites. Laboratory experiments and numerical simulations have been used
 42 to investigate large impacts. However, each approach has pros and cons. Liquid impact
 43 experiments can produce the small scales responsible for the mixing between the impactor
 44 and the target, but they fail to reproduce shock waves and supersonic speeds. In con-
 45 trast, current numerical simulations reach supersonic conditions but produce a limited
 46 amount of turbulence and mixing. In this study, we bridge the gap between these two
 47 methods and improve our understanding of the effect of the impact velocity on the cra-

48 tering process. Using the code iSALE, we numerically reproduce water impact experiments
 49 at low subsonic velocities. We then explore supersonic conditions in impact simulations.
 50 We obtain a new scaling law that predicts the crater depth in realistic impact conditions
 51 and better constrains the transition regime from subsonic to supersonic impacts.
 52

53 1 Introduction

54 1.1 Motivation

55 Terrestrial planets experienced multiple large collisions during their formation (Chambers,
 56 Raymond et al., 2009; Walsh et al., 2011). During these energetic events, the shock
 57 compression caused substantial melting of the target and the impactor, generating magma
 58 ponds or global magma oceans (Tonks & Melosh, 1993; Elkins-Tanton, 2012; Nakajima
 59 et al., 2021; Manske et al., 2021). These large impacts events are though to have had
 60 important implications for the subsequent long-term thermochemical evolution of plan-
 61 etes, and eventually played a role on the dynamo evolution (e.g. Monteux & Arkani-Hamed,
 62 2014; O’Rourke & Stevenson, 2016; Badro et al., 2016).

63 Besides impact-induced heating of the planetary interior, understanding the dy-
 64 namics of large collisions is also important for the chemical composition of the core and
 65 mantle of terrestrial planets. With each collision, the liquid core of the impactor breaks
 66 apart, the fragments sink in the magma ocean, and eventually merge with the core of
 67 the planet. During its traverse through the magma ocean, liquid metal mixes, and hence
 68 equilibrates chemically, with liquid silicates (e.g., Rubie et al., 2003). The composition
 69 of metal and silicates after this equilibration depends on pressure, temperature and re-
 70 dox conditions but also on the mixing of metal and silicates upon impact (e.g., Rubie
 71 et al., 2003).

72 Previous studies on the sedimentation of iron drops in a magma ocean showed that
 73 efficient equilibration requires mixing down to small spatial scales on the order of 1cm
 74 (e.g., Ichikawa et al., 2010; Ulvrová et al., 2011; Samuel, 2012; Qaddah et al., 2019). Such
 75 scales are usually much smaller than the spatial resolution in numerical impact simu-
 76 lations . In contrast, laboratory impact experiments using liquids can produce the small
 77 scales responsible for turbulent mixing. In addition, considering the large energy involved
 78 in planetary impacts, water-like fluid target material and magma oceans are thought to

79 show comparable impact dynamics. Experiments have been used to quantify the mix-
 80 ing between metal and silicates during and after a large impact (e.g., Deguen et al., 2014;
 81 Lherm & Deguen, 2018; Landeau et al., 2021; Lherm et al., 2022). However, in existing
 82 experiments the velocity is limited to a few meters per second, which is more than two
 83 orders of magnitude smaller than the sound speed. Thus, the hypervelocity reached by
 84 natural impacts and the generation of shock waves cannot be addressed in such exper-
 85 iments. Yet, it is well known that supersonic velocities and shock waves control the ex-
 86 cavation of the crater (e.g., Melosh, 1989), which itself affects metal-silicate mixing (Kendall
 87 & Melosh, 2016; Lherm et al., 2022). In this study, we aim at investigating the effect
 88 of supersonic velocities and shock waves on impact cratering in a magma ocean. This
 89 is an important preliminary step towards ultimately extrapolating to supersonic condi-
 90 tions the mixing and the equilibration predicted by subsonic experiments to the super-
 91 sonic regime. .

92 However, the transition from subsonic to hypervelocity liquid impacts , and its ef-
 93 fect on cratering, have not been fully explored. During cratering, the maximum crater
 94 size depends on the Froude number Fr , which is the ratio of inertia to gravity forces, de-
 95 fined as $Fr = U^2/(gR)$, where R is the impactor radius (all variables are given in SI
 96 units) (Melosh, 1989). K. Holsapple and Schmidt (1982) showed that the scaling laws
 97 for the crater size obtained from hypervelocity impacts pass through the data for sub-
 98 sonic water-drop experiments. This successful extrapolation over six orders of magni-
 99 tude in Froude number is remarkable, however not well understood, in particular due
 100 to the fact that no data exist in between the two regimes. The shock waves generated
 101 by hypervelocity impacts drastically affect the mechanism of crater formation. It is there-
 102 fore unexpected that scaling laws for supersonic impacts agree with results from sub-
 103 sonic impacts. More importantly, previous scalings ignore the independent effect of the
 104 Mach number M , which is the ratio of the impact speed to the sound speed, in addition
 105 to the Froude number. This requires in depth investigation.

106 1.2 Scaling of crater size in liquids

107 Impact processes have shaped the solar system so profoundly that almost all im-
 108 ages of planetary bodies show landscapes peppered with crater structures. Studies have
 109 used impact simulations and laboratory experiments to understand these impact pro-
 110 cesses (e.g., Gault et al., 1974; Schmidt, 1977; K. Holsapple & Schmidt, 1980; Melosh,

111 1989; K. R. Housen & Holsapple, 2003; Güldemeister et al., 2015; K. R. Housen et al.,
 112 2018; Landeau et al., 2021). Previous scaling laws link the properties of an impact crater,
 113 such as its depth and diameter, to the impact velocity, the impactor size and the ma-
 114 terial properties (e.g., K. Holsapple & Schmidt, 1982; K. A. Holsapple, 1993; Elbeshausen
 115 et al., 2009; K. R. Housen & Holsapple, 2011). The objective of these scaling laws is to
 116 deduce the conditions of impact from a given observable crater, or vice versa, to predict
 117 the shape of a crater that a certain impactor at a given velocity would produce. The sub-
 118 ject has received much attention over the years. Different impact conditions (material,
 119 speed, angle) and outcomes (crater depth, crater radius, crater volume) have been stud-
 120 ied. A variety of dimensionless numbers involving impact parameters have been intro-
 121 duced and linked to various outcomes (see K. Holsapple & Schmidt, 1982, for a review)
 122 from the crater shape and size (e.g., K. R. Housen & Holsapple, 2003) to the ejecta lay-
 123 ering produced around the crater (e.g., K. Housen et al., 1983; K. R. Housen & Holsap-
 124 ple, 2011; Hyodo & Genda, 2020). In the planetary impact community, the π -group scal-
 125 ing is generally used (e.g., K. Holsapple & Schmidt, 1982; Melosh, 1989). This formal-
 126 ism describes the crater morphometry using dimensionless ratios corresponding to ge-
 127 ometric parameters: the crater efficiency, defined as $\pi_v = \rho V/m$, but also $\pi_D = D(\rho/m)^{1/3}$
 128 for the crater diameter and $\pi_d = d(\rho/m)^{1/3}$ for the crater depth, where ρ is the tar-
 129 get material density, m the impactor mass, D the transient crater diameter and d the
 130 transient crater depth. Another important parameter, often called the gravity-scaled size,
 131 is defined as $\pi_2 = 1.61(gL)/U^2$ where g is the gravitational acceleration, L the impactor
 132 diameter and U the impact speed. Previous investigations on liquid impacts most com-
 133 monly used the Froude number (e.g., Pumphrey & Elmore, 1990; Bisighini et al., 2010;
 134 Ray et al., 2015; Landeau et al., 2021; Lherm et al., 2022). With this formalism, the Froude
 135 number scales as $1/\pi_2$. We therefore use the Froude number, instead of π_2 , in this study.

136 Impact outcomes have been measured in numerical simulations (e.g., Güldemeister
 137 et al., 2015; Hyodo & Genda, 2020) and laboratory experiments (e.g., Gault & Sonett,
 138 1982; Schmidt & Housen, 1987). Crater formation upon impact is difficult to reproduce
 139 in the laboratory, especially because the velocity and size of impactors are limited in ex-
 140 periments. For example, the faster the impactor velocity, the smaller the projectile since
 141 it is technically very complicated to launch more than mm-sized competent compact pro-
 142 jectiles at supersonic velocities. Indeed, to reach a given velocity, launching a larger pro-
 143 jectile requires more energy, hence larger devices and it becomes technically increasingly

hard as the projectile size increases. Impact velocities are typically limited to a maximum of ~ 6 km/s, while impacts in the solar system reach up to tens of km/s (e.g., Wetherill, 1996; Raymond et al., 2009). In solid impact experiments, the Froude number is orders of magnitude larger than expected for planetary-scale impacts. In addition, in solids, subsonic velocities are very hard to accomplish because of the material strength. In contrast, impact experiments of a solid projectile into a liquid can explore both subsonic and supersonic regimes (Engel, 1967; Gault & Sonett, 1982; Schmidt & Housen, 1987; Landeau et al., 2021). For impacts into liquid targets, as for impacts into solid targets, the larger the impact launch speed, the smaller the mass and size of the projectile, hence the larger the Froude number. This usually implies to have experiments performed in conditions where the Froude number is way larger than the range expected for large craters (typically $1 < Fr < 500$). High-velocity solid-into-liquid impact experiments have provided insightful results on the physical processes of crater formation in a liquid material (e.g., Gault & Sonett, 1982; Schmidt & Housen, 1987). In particular, Gault and Sonett (1982) have performed hypervelocity impacts of spherical projectiles into water. The projectiles are millimeter-sized pyrex grains and they are launched at velocities ranging from 1.25 to 6 km/s with a vertical light-gas gun. The cratering processes have been captured by a high-velocity camera, enabling the tracking of the crater depth as a function of time during the crater opening. In these experiments, the Mach number, $M = U/U_s$, where U_s is the sound speed in the target, ranges between 0.85 and 4.08 while the Froude number ranges from 10^8 to 4×10^9 . Most of these experiments are comprised between $M = 1$ and $M = 2$ and only two experiments are conducted at $M > 2$. Peak shock pressures produced in the projectile and water target are in the range of 250 to 300 GPa. Results from these impact experiments have been compared to water drop experiments (see figure 9. in K. Holsapple & Schmidt, 1982). They show that the best-fit scaling for the crater volume in hypervelocity impacts perfectly fits the water drop experiments once extrapolated over more than 6 orders of magnitude in the Froude number. This remarkable extrapolation is however not fully understood. In particular, the transition regime from subsonic to supersonic crater formation has not been explored, and our current knowledge of energy and momentum transfer upon impacts does not explain such an extrapolation.

Table 1. Typical values of the Mach and Froude numbers for planetary impacts, the experiments and simulations of this study and the impact experiments onto water from Gault and Sonett (1982).

Dimensionless Number	Typical values for large planet-building impacts	Experiments (this study)	Experiments in Gault and Sonett (1982)	iSALE simulations (this study)
$Fr = U^2/(gR)$	1 - 500	6 & 93	$\sim 10^6 - 10^9$	$1 - 10^4$
$M = U/U_s$	1 - 10	9×10^{-4} & 3.6×10^{-3}	1 - 4	$10^{-3} - 8$

175 1.3 Objective of the study and summary

176 To investigate the impact-cratering process in liquid-liquid impacts at subsonic to
 177 supersonic velocities, we combine laboratory experiments (section 2.1) and impact nu-
 178 matical simulations (section 2.2). Most of the previous studies on impact cratering search
 179 for scaling laws for the crater diameter because this property is straightforward to com-
 180 pare with crater observations at the surface of planets. However, the crater diameter strongly
 181 depends on an arbitrary criterion that defines the crater edge. Thus, in this study, we
 182 choose to analyse the crater depth, instead of the diameter, because this quantity is more
 183 objectively defined as the lower edge of the crater and it can be measured in both ex-
 184 periments and simulations with a higher accuracy. Yet, crater diameter estimates from
 185 our simulations are discussed in Appendix B.

186 We first compare laboratory impact experiments at low velocities ($M < 1$) with nu-
 187 matical simulations in similar impact conditions (section 3). Our comparison validates
 188 the accuracy of the shock physics code iSALE for subsonic water-into-water impacts. iSALE
 189 is further used to test the influence of the Mach number on the maximum crater depth
 190 with a particular attention on the transition between the sub- and supersonic collisions
 191 (section 5). We finally discuss the transfer of energy upon planetary impacts (section 6)
 192 and its implications for the understanding of the cratering process (section 7).

193 2 Methods

194 In this section, we describe the methods for both water impact experiments and
 195 the numerical simulations used in our study. Table 1 gives the values of the Mach and
 196 Froude numbers explored in this study along with their typical values in planetary im-

197 pacts. These values are compared against those previously explored by Gault and Sonett
 198 (1982).

199 **2.1 Water-impact experiments**

200 Two experiments were chosen for this study. They are analogues for large impacts
 201 into a magma ocean. The experimental setup has been developed such that the dynam-
 202 ical regime in experiments is as close as possible to that of planetary impacts: the Froude
 203 number is within the range expected for large planet-building impacts (table 1) and in-
 204 eria is large compared to viscous forces and surface tension, as detailed in Landeau et
 205 al. (2021). Previous experiments investigate the impact of millimetric drops onto a deep
 206 pool (e.g. Engel, 1967; Pumphrey & Elmore, 1990; Bisighini et al., 2010; Ray et al., 2015;
 207 Santini et al., 2017; Lherm et al., 2022). In contrast, we use much larger impactors with
 208 a radius $R \simeq 3$ cm. Because this size is large compared to the capillary length, surface
 209 tension is negligible and does not affect the cratering dynamics in our experiments. This
 210 result has been tested and quantified in Landeau et al. (2021) (see their section 4.2). Two
 211 different Froude numbers are used: $Fr = 6$ and $Fr = 93$. They correspond to the two ex-
 212 treme values that can be reached in this experimental setup and hence cover the entire
 213 experimental range. However, both experiments are subsonic with a Mach number M
 214 $< 3 \times 10^{-3}$.

215 The experimental setup is the same as the one presented in Landeau et al. (2021).
 216 The target is a pool of fresh water contained in an acrylic tank with a width of 75 cm.
 217 The water depth of the tank is 50 cm. The impactor is also made of fresh water. An im-
 218 pacting water volume of radius $R \simeq 3$ cm is initially held in a latex balloon at a con-
 219 trolled height above the target surface. The balloon latex membrane is broken by a nee-
 220 dle at a height of less than 30 cm above the target surface. This release process ensures
 221 that the impacting water volume maintains a nearly spherical shape upon impact. The
 222 balloon little affects the crater formation process because it is tied to a string that pre-
 223 vents it from falling into the target. In some experiments, small pieces of balloon fall in
 224 the target but we do not observe any significant effect on the crater depth, as shown in
 225 Landeau et al. (2021). The two different Froude numbers are achieved by varying the
 226 release height that controls the impact speed. The velocity is 1.35 ± 0.1 m/s for the ex-
 227 periment with $Fr = 6$ and 5.3 ± 0.3 m/s for the experiment with $Fr = 93$. This change
 228 in impact velocity also affects the Mach number, but it remains much smaller than unity:

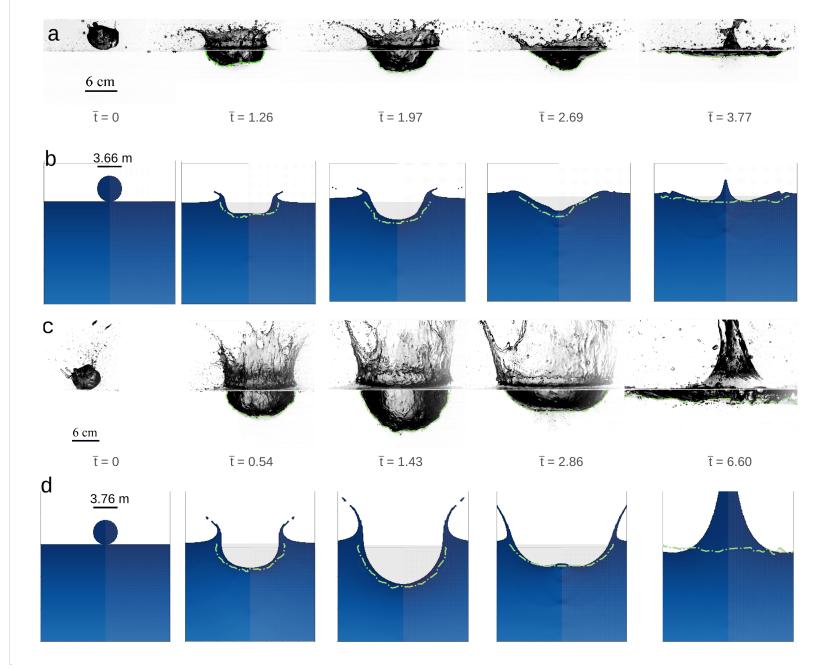
229 $M = 9 \times 10^{-4}$ for $Fr = 6$ and $M = 3.6 \times 10^{-3}$ for $Fr = 93$. Since water impacts onto wa-
 230 ter in our experiments, the density difference between the target and the impactor is not
 231 explored in this study. There is no difference in viscosity either. The gravity is that at
 232 Earth surface: $g = 9.81 \text{ g.m.s}^{-2}$. The detailed parameters for the two experiments are
 233 given in the appendix A. The impact parameters and the maximum crater depth in these
 234 two experiments, E1 & E2, are summarized in table 2.

235 2.2 Numerical modelling with iSALE

236 iSALE is a grid-based shock physics code that is well suited for planetary impacts
 237 modelling (Amsden et al., 1980; Collins et al., 2002; Wünnemann et al., 2005). iSALE
 238 has already been widely benchmarked and validated against observations in the hyper-
 239 velocity regimes (e.g., Gündemeister et al., 2013; Kowitz et al., 2013). Its applicability
 240 to subsonic impact velocities has, however, not yet been investigated. We employ iSALE
 241 to model the impact of a liquid impactor into a liquid target and use a setup that cor-
 242 responds to the conditions in the experiments presented in subsection 2.1. Due to the sym-
 243 metry of vertical impacts we use iSALE-2D with a cylindrical axisymmetric grid. In a
 244 first step we carried out a suite of simulations at subsonic conditions to validate our mod-
 245 els by benchmarking them against the experiments presented in section 2.1. In a second
 246 step we conducted a systematic study of numerical impact experiments at supersonic im-
 247 pact velocities. Several materials are studied for comparison (water, aluminium, iron and
 248 basalt) however the simulations are purely hydrodynamical as we do not consider any
 249 material strength. We only consider homogeneous projectiles. The impact angle is kept
 250 constant in this study; all our experiments and simulations are head-on impacts. For wa-
 251 ter, aluminium, iron and basalt, the Tillotson (Tillotson, 1962) equation of state (EoS)
 252 is used. We use the planar target approximation, which assumes that the target's free
 253 surface is an infinite horizontal plane, hence excluding any geometrical effects of the tar-
 254 get's curvature. We focus here on the formation and collapse of the impact crater. , which
 255 is why we did not run the models until the very end of the crater formation process, when
 256 the target is fully equilibrated. Instead, we stop most of our simulations after the ex-
 257 cavation stage, at some time during the modification stage, to save computation time.
 258 The spatial resolution varies from 20 to 25 CPPR (Cells Per Projectile Radius). For
 259 the sake of simplicity, the thermal profile in the target is considered uniform before the
 260 impact. All simulations analyzed in this study are listed in table 2 and table 3.

Table 2. Data used in this study, including the experiments E1 & E2 and the entire set of iSALE numerical simulations. The first column, ID, refers to the name that are given to the different experiments/simulations. The type indicates whether it corresponds to a water impact experiment or to an impact simulation with iSALE. The material corresponds to the Tillotson equation of state that has been used for both the target and impactor in the case of iSALE simulations. In the experiments, the target and impactor material is water. For each experiment and simulation, the values of the impact velocity, U , the impactor radius, R , the Mach number, M , and the Froude number, Fr , are given. The gravity is $g = 9.81 \text{ m.s}^{-2}$ in all simulations and experiments. The respective sound velocities for water, basalt, aluminium and iron are: 1481 m/s, 4472 m/s, 5277 m/s and 4051 m/s. Resolution for water simulations is 20 CPPR. For all other simulations, resolution is 25 CPPR.

General information		Impact conditions					Crater
ID	Type	material	U (m/s)	R (m)	M	Fr	Z_c (m)
E1	experiment	water	1.35E+00	3.05E-02	9.00E-04	6.00E+00	5.03E-02
E2	experiment	water	5.30E+00	3.08E-02	3.60E-03	9.30E+01	9.97E-02
E1_1	simulation	water	1.05E+01	1.83E+00	7.00E-03	6.00E+00	3.26E+00
E1_2	simulation	water	1.14E+01	2.21E+00	7.7E-03	6.00E+00	3.86E-03
E1_3	simulation	water	1.29E+02	2.85E+00	8.75E-03	6.00E+00	4.99E-03
E1_4	simulation	water	1.77E+01	5.37E+00	1.20E-02	6.00E+00	9.33E-03
E1_5	simulation	water	2.07E+01	7.30E+00	1.40E-02	6.00E+00	1.26E-02
E1_6	simulation	water	1.48E+02	3.73E+02	1.00E-01	6.00E+00	6.52E-01
E1_7	simulation	water	1.48E+03	3.73E+04	1.00E+00	6.00E+00	6.20E+04
E2_1	simulation	water	4.14E+02	1.88E+00	2.80E-02	9.30E+01	6.25E-03
E2_2	simulation	water	6.37E+01	4.40E+00	4.30E-02	9.30E+01	1.47E-02
E2_3	simulation	water	4.88E+01	2.62E+00	3.30E-02	9.30E+01	8.70E+00
E2_4	simulation	water	5.55E+01	3.38E+00	3.75E-02	9.30E+01	1.13E+01
E2_5	simulation	water	7.85E+01	6.75E+00	5.30E-02	9.30E+01	2.25E+01
E2_6	simulation	water	8.89E+01	8.60E+00	6.00E-02	9.30E+01	2.87E+01
E2_7	simulation	water	1.48E+02	2.40E+01	1.00E-01	9.30E+01	7.99E-02
E2_8	simulation	water	3.70E+03	1.50E+04	2.50E+00	9.30E+01	4.62E+04
E2_9	simulation	water	7.41E+03	6.01E+04	5.00E+00	9.30E+01	1.55E+05
E2_10	simulation	water	4.44E+02	2.16E+02	3.00E-01	9.30E+01	7.29E+02
E2_11	simulation	water	7.41E+02	6.01E+02	5.00E-01	9.30E+01	2.02E+03
E2_12	simulation	water	1.04E+03	1.18E+03	7.00E-01	9.30E+01	3.98E+03
sim170	simulation	water	3.11E+03	9.76E+03	2.10E+00	1.01E+02	3.12E+04
sim18	simulation	water	1.93E+03	4.66E+03	2.10E+00	8.10E+01	1.47E+04
simv2_213	simulation	water	4.59E+03	3.26E+04	3.10E+00	6.60E+01	8.90E+04
sim3	simulation	water	1.63E+03	8.70E+03	1.10E+00	3.10E+01	2.18E+04
simv22	simulation	water	7.41E+03	4.66E+03	5.00E+00	1.20E+03	2.29E+04
simv27	simulation	water	8.89E+03	4.70E+03	6.00E+00	1.70E+03	2.40E+04
v3Fr5	simulation	water	1.00E+04	1.02E+03	6.75E+00	1.00E+04	7.39E+03
v1Fr2	simulation	water	1.00E+03	1.02E+03	6.75E-01	1.00E+02	3.44E+03
Al_M10-3	simulation	aluminium	5.28E+00	5.00E-01	1.00E-03	5.68E+00	8.62E-01
Al_M10-2	simulation	aluminium	5.28E+01	1.00E+01	1.00E-02	2.84E+01	2.53E+01
Al_M10-1	simulation	aluminium	5.28E+02	1.00E+03	1.00E-01	2.84E+01	2.53E+03
Al_M0-5	simulation	aluminium	2.64E+03	1.00E+04	5.00E-01	7.10E+01	3.14E+04
Al_M1	simulation	aluminium	5.28E+03	1.00E+04	1.00E+00	2.84E+02	4.21E+04
Al_M2	simulation	aluminium	1.06E+04	1.00E+04	2.00E+00	1.14E+03	5.39E+04
Al_M3	simulation	aluminium	1.58E+04	5.00E+04	3.00E+00	5.11E+02	2.17E+05
Al_M4	simulation	aluminium	2.11E+04	5.00E+04	4.00E+00	9.09E+02	2.36E+05


Table 3. Data used in this study, including the experiments E1 & E2 and the entire set of iSALE numerical simulations. The first column, ID, refers to the name that are given to the different experiments/simulations. The type indicates whether it corresponds to a water impact experiment or to an impact simulation with iSALE. The material corresponds to the Tillotson equation of state that has been used for both the target and impactor in the case of iSALE simulations. In the experiments, the target and impactor material is water. For each experiment and simulation, the values of the impact velocity, U , the impactor radius, R , the Mach number, M , and the Froude number, Fr , are given. The gravity is $g = 9.81 \text{ m.s}^{-2}$ in all simulations and experiments. The respective sound velocities for water, basalt, aluminium and iron are: 1481 m/s, 4472 m/s, 5277 m/s and 4051 m/s. Resolution for water simulations is 20 CPPR. For all other simulations, resolution is 25 CPPR.

General information		Impact conditions					Crater	
ID	Type	material	U (m/s)	R (m)	M	Fr	Z_c (m)	
A1_M5	simulation	aluminium	2.64E+04	5.00E+04	5.00E+00	1.42E+03	2.22E+05	
A1_M6	simulation	aluminium	3.17E+04	5.00E+04	6.00E+00	2.04E+03	2.09E+05	
A1_M7	simulation	aluminium	3.69E+04	5.00E+04	7.00E+00	2.78E+03	2.71E+05	
A1_M8	simulation	aluminium	4.22E+04	5.00E+04	8.00E+00	3.63E+03	2.64E+05	
A1_M9	simulation	aluminium	4.75E+04	5.00E+04	9.00E+00	4.60E+03	2.38E+05	
Ba_M10-3	simulation	basalt	4.47E+00	5.00E-01	1.00E-03	4.08E+00	7.99E-01	
Ba_M10-2	simulation	basalt	4.47E+01	1.00E+01	1.00E-02	2.04E+01	2.33E+01	
Ba_M10-1	simulation	basalt	4.47E+02	1.00E+03	1.00E-01	2.04E+01	2.33E+03	
Ba_M0-5	simulation	basalt	2.24E+03	1.00E+04	5.00E-01	5.10E+01	2.89E+04	
Ba_M1	simulation	basalt	4.47E+03	1.00E+04	1.00E+00	2.04E+02	3.92E+04	
Ba_M2	simulation	basalt	8.94E+03	1.00E+04	2.00E+00	8.15E+02	5.03E+04	
Ba_M3	simulation	basalt	1.34E+04	5.00E+04	3.00E+00	3.67E+02	2.00E+05	
Ba_M4	simulation	basalt	1.79E+04	5.00E+04	4.00E+00	6.52E+02	2.16E+05	
Ba_M5	simulation	basalt	2.24E+04	5.00E+04	5.00E+00	1.02E+03	2.27E+05	
Ba_M6	simulation	basalt	2.68E+04	5.00E+04	6.00E+00	1.47E+03	2.35E+05	
Ba_M7	simulation	basalt	3.13E+04	5.00E+04	7.00E+00	2.00E+03	2.28E+05	
Ba_M8	simulation	basalt	3.58E+04	5.00E+04	8.00E+00	2.61E+03	2.24E+05	
Ba_M9	simulation	basalt	4.02E+04	5.00E+04	9.00E+00	3.30E+03	2.35E+05	
Fe_M10-1	simulation	iron	4.05E+02	1.00E+03	1.00E-01	1.67E+01	2.22E+03	
Fe_M0-5	simulation	iron	2.03E+03	1.00E+04	5.00E-01	4.18E+01	2.77E+04	
Fe_M1	simulation	iron	4.05E+03	1.00E+04	1.00E+00	1.67E+02	3.75E+04	
Fe_M2	simulation	iron	8.10E+03	1.00E+04	2.00E+00	6.69E+02	4.81E+04	
Fe_M3	simulation	iron	1.22E+04	5.00E+04	3.00E+00	3.01E+02	1.90E+05	
Fe_M4	simulation	iron	1.62E+04	5.00E+04	4.00E+00	5.35E+02	2.06E+05	
Fe_M5	simulation	iron	2.03E+04	5.00E+04	5.00E+00	8.36E+02	2.15E+05	
Fe_M6	simulation	iron	2.43E+04	5.00E+04	6.00E+00	1.20E+03	1.98E+05	

261 **3 Subsonic impacts: validation of numerical simulations against ex-
262 periments**

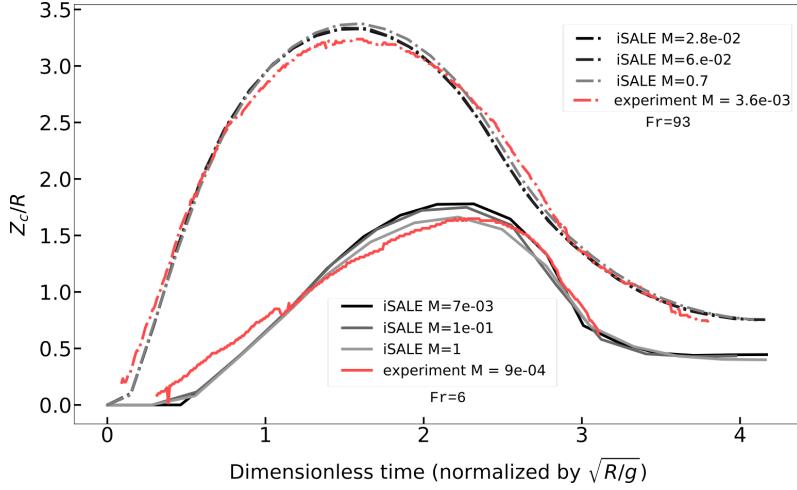
263 **3.1 Qualitative description**

264 The two experiments that are described in section 2.1 are qualitatively compared
265 with iSALE simulations at subsonic impact velocities ($M < 1$) and at the same Froude
numbers. Figure 1 shows the dynamics in these experiments and simulations. The up-

Figure 1. Snapshots of laboratory experiments (a and c) and iSALE simulations (b and d) for subsonic impacts ($M \ll 1$) at $Fr = 6$ (a and b) and $Fr = 93$ (c and d). The Mach number is $M = 9 \times 10^{-4}$ in a, $M = 7 \times 10^{-3}$ in b, $M = 3.6 \times 10^{-3}$ in c and $M = 2.8 \times 10^{-2}$ in d. b shows snapshots from the simulation E1_1 and d snapshots from E2_1 (see table 2). The different shades of blue refer to the pressure field. The light green curves correspond to the crater profile from the experiments superposed onto the simulation snapshots, once rescaled to the impactor radius. The dimensionless time, $\bar{t} = \frac{t}{\sqrt{R/g}}$, is displayed for each snapshot.

266

267 per panel corresponds to the impact with $Fr = 6$ in both experiments and simulations
268 while the lower panel shows the case $Fr = 93$. Although the numerical simulations and
269 the laboratory experiments have the same Froude and Mach number the dimensions de-
270 viate. To make the snapshots comparable, we normalise the time by the $\sqrt{R/g}$. In all
271 cases, the first snapshot shows the pre-impact conditions. The second snapshot shows
272 the cratering state after a few milliseconds, as the impactor penetrates through the tar-


get and opens a crater. This stage lies in between the contact and compression stage and the crater excavation stage of impact cratering (Melosh, 1989). . However, in the case of a subsonic impact, there is no compression stage, which is defined as the duration needed for the shock wave and subsequent rarefaction wave to travel through the entire projectile. Thus, no material compression occurs in the impacts shown in figure 1, and the crater starts opening because the kinetic energy of the impactor is converted into flow motions in the target. The third snapshot illustrates the time when the crater has reached its maximum depth . This corresponds approximately to the end of the crater excavation stage (even if the crater may still grow laterally) and the beginning of the crater modification stage during which the crater collapses. Finally, on the last snapshot, the formation of a jet is observed in both experiments and numerical modelling. In summary, the snapshots in figure 1 demonstrate that iSALE simulations qualitatively reproduce the laboratory experiments. The crater shape, together with the crater depth are very similar in simulations and experiments (see green dotted curves on figure 1).

3.2 Crater depth as a function of time

To quantify the agreement between experiments and simulations, figure 2 shows the evolution of the crater depth normalised by the impactor radius as a function of the dimensionless time normalised by $\sqrt{R/g}$. The experimental results are shown in red (dotted line for $Fr = 93$ and plain line for $Fr = 6$). Curves with different shades of gray show simulation runs for different Mach numbers, ranging from $M = 2.3 \times 10^{-2}$ in dark gray to $M = 0.7$ in light gray. All simulations shown in figure 2 are at subsonic conditions. They are indistinguishable from one another, and from the experimental curves. Both the trend and amplitudes are similar, which confirms that iSALE is applicable to simulate subsonic liquid impacts. It also shows that, in the subsonic case, the effect of the Mach number is negligible and only the Froude number controls the cratering process.

3.3 Maximum crater depth: effects of the Froude number

As shown in previous studies (e.g., K. Holsapple & Schmidt, 1982; K. A. Holsapple, 1993; O'Keefe & Ahrens, 1993; Landeau et al., 2021), the normalised maximum crater depth Z_c/R increases with the Froude number. This is illustrated in figure 3, which shows all the iSALE runs performed with $Fr = 6$ and $Fr = 93$ for water impacts. The different Mach numbers are indicated by using varying shades of gray. In this section, we fo-

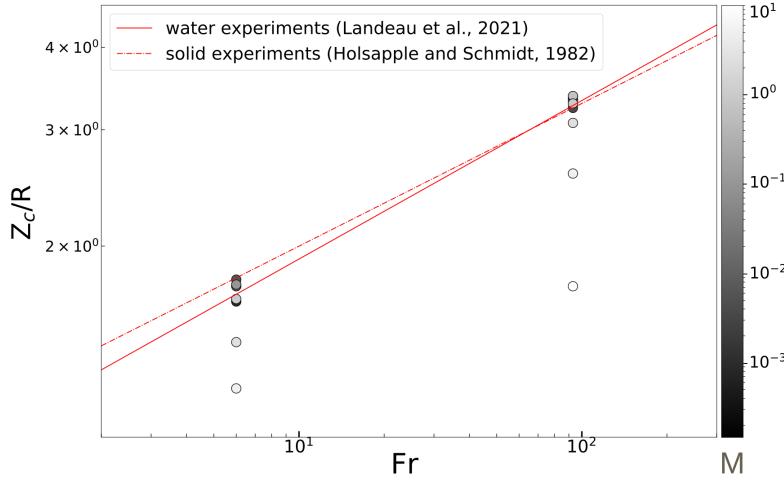


Figure 2. Comparison between crater growth in laboratory experiments and numerical simulations. The crater depth Z_c is normalised by the impactor radius R and time is normalised by $\sqrt{R/g}$, so that both parameters are dimensionless (see section 2.1). The two red curves correspond to two experiments with Froude number $Fr = 6$ (plain curve) and $Fr = 93$ (dotted curve). Both are subsonic ($M < 1$). Gray curves are results for subsonic impact simulations with the same Froude numbers as the experiments (plain curves for $Fr = 6$ and dotted curves for $Fr = 93$). The different shades of gray correspond to different Mach numbers.

304 cuss on subsonic impacts, and hence only on the darker gray points in figure 3. When the
 305 Mach number is below unity, the data from iSALE simulations agree well with the scal-
 306 ing for subsonic impacts into water (Landau et al., 2021). This scaling is a power-law
 307 of the form $Z_c/R = a Fr^\mu$, where $a = 1.1 \pm 0.05$ and $\mu = 0.24 \pm 0.01$ are imperically
 308 determined fitting parameters. This scaling however neglects the effect of the Mach num-
 309 ber. This may explain why the results of our simulations with $M > 1$ do not fall on the
 310 red dashed lines in figure 3. To better understand these findings, we need to investigate
 311 the transition from the subsonic to the supersonic regime.

312 4 Supersonic impacts: effect of the Mach number

313 In the supersonic case, a shock wave is generated upon impact. This is visible in
 314 figure 4 where different snapshots of a supersonic case (Ba_M5, see table 3) are shown.
 315 The pressure field in the target is shown in blue. The shock wave generation and prop-
 316 agation is visible as the shock corresponds to a jump in pressure. Behind the shock front,
 317 the rarefaction wave is also visible as a decrease in pressure. The rarefaction propagates
 318 faster than the shock wave and eventually catches up with the shock front. The crater
 319 depth keeps growing until a dimensionless time $\bar{t} = t/\sqrt{R/g}$ of about 1.4, after which

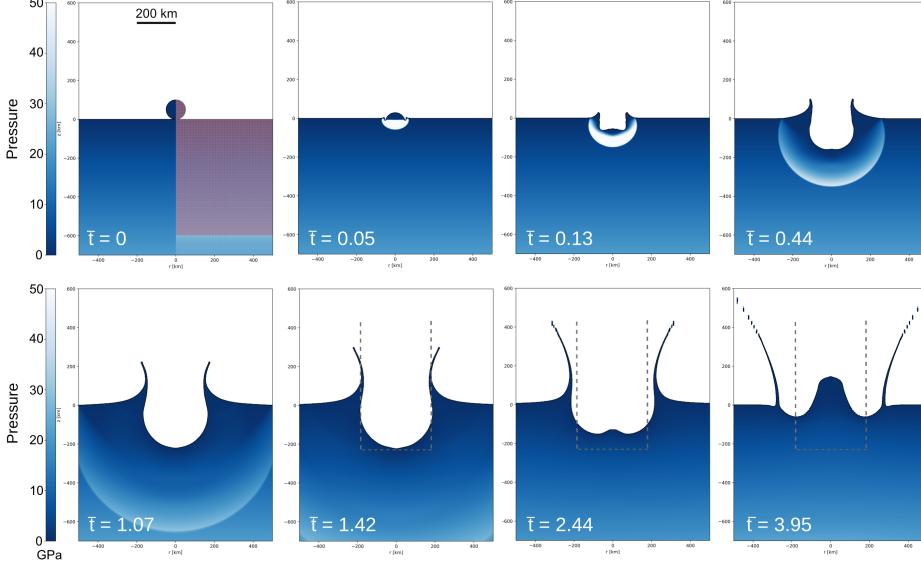


Figure 3. Maximum crater depth, Z_c , normalised by the impactor radius R , as a function of the Froude number for different numerical simulations of water into water impacts performed with iSALE and with $Fr = 6$ and $Fr = 93$. Two scaling laws from the litterature are shown by red lines: $Z_c/R = 1.216 \times Fr^{0.216}$ for hypervelocity impacts of solid projectiles into water (K. Holsapple & Schmidt, 1982), and $Z_c/R = 1.1 \times Fr^{0.24}$ for subsonic impacts of water volumes into water (Landeau et al., 2021). The shade of gray inside each symbol indicates the value of the Mach number.

it starts collapsing, while the horizontal extent of the crater close to the surface still increases. Subsequently, at $\bar{t}=2.44$ the crater floor collapses and a central peak starts to rise ($\bar{t}=3.95$). Regarding the crater depth, figure 5 shows that the subsonic and the hypersonic cases are undistinguishable at early times ($\bar{t} < 0.5$ for $Fr = 93$ and $\bar{t} < 1$ for $Fr = 6$). However, at later times, the crater depth grows less rapidly at higher Mach numbers (discussed in section 5). Light gray symbols in figure 3 and gray curves in figure 5 show that the maximum crater depth decreases with increasing Mach number when $M > 1$. This suggests that the effect of the Froude number and the Mach number on the cratering process must be considered independently from one another, and the scaling laws for the maximum crater depth should be adjusted accordingly.

5 Crater depth scaling: transition from subsonic to supersonic impacts

In subsonic impacts, the normalised maximum crater depth, Z_c/R , has been shown to scale as the Froude number to the power $1/4$ (e.g., Melosh, 1989; Pumphrey & Elmore, 1990; Miranda & Dowling, 2019). This scaling arises from an energy balance reasoning. Assuming that the impactor kinetic energy from the projectile is fully converted into gravitational potential energy in a hemispherical crater, one obtains that: $m_i U^2 \propto \rho_t g Z_c^4$,

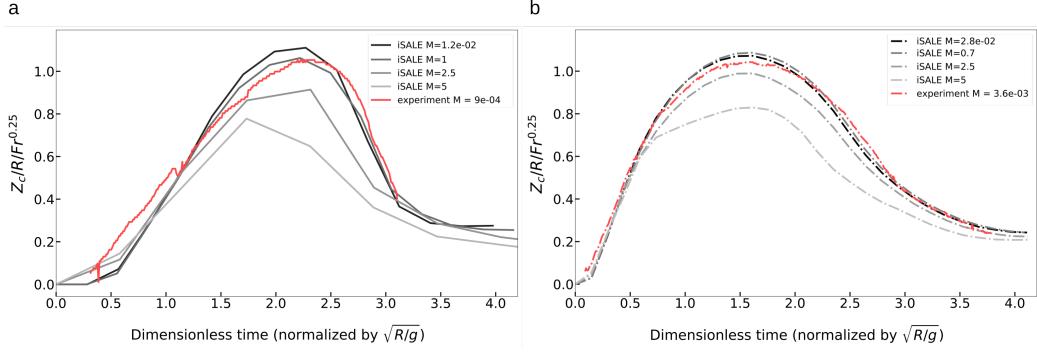
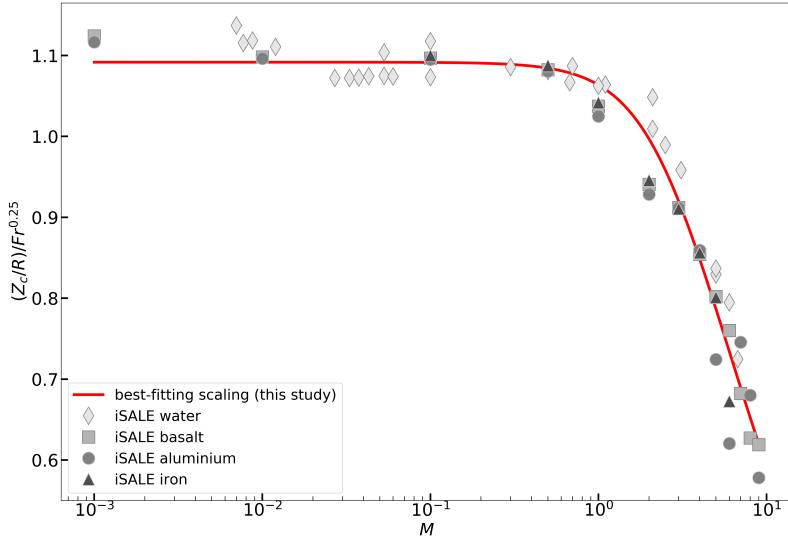


Figure 4. Snapshots of the crater evolution in the iSALE simulation *Ba_M5* (cf table 3). The blue colorbar corresponds to the pressure in the material. The dimensionless time $\bar{t} = t/\sqrt{R/g}$ is indicated in each snapshot. The first snapshot highlights the computational domain grid on the right hand side. The maximum crater depth, and the associated crater diameter, are shown by gray dashed lines at a dimensionless time, \bar{t} , of 1.42 by grey dashed lines. These lines are reported on the later snapshots for comparison.


336 where m_i is the impactor mass, ρ_t the target density and g the target gravity. This re-
 337 lationship can be rewritten as $Z_c^4 \propto \frac{\rho_i R^3 U^2}{\rho_t g}$, with ρ_i the impactor density. As, in this
 338 study, the densities of the impactor and the target are the same, we obtain

$$Z_c/R \propto Fr^{1/4} \quad (1)$$

339 It is well accepted that this pure energy scaling holds for subsonic impacts but breaks
 340 under supersonic conditions (Melosh, 1989; K. A. Holsapple, 1993). In order to analyse
 341 the transition regime from subsonic to supersonic impacts in more details, we therefore
 342 divide the normalised maximum crater depth Z_c/R by $Fr^{0.25}$. This normalisation is par-
 343 ticularly useful when comparing impacts with various Froude and Mach numbers. With
 344 this normalization we remove the effect of the Froude number on the maximum crater
 345 depth and emphasize the sole effect of the Mach number. This is illustrated in figure 5
 346 where the time-evolution of the crater depth normalised by $Fr^{1/4}$ is shown for our two
 347 experiments and for iSALE simulations at different Mach numbers. In this figure, the
 348 different Froude number cases are hardly distinguishable from one another when M is
 349 below unity. This demonstrates that the subsonic scaling (1) is well satisfied by our ex-

Figure 5. Time-evolution of the normalized crater depth in laboratory experiments and numerical simulations for $Fr = 6$ (a) and $Fr = 93$ (b). The red curves show the experiments while the gray curves correspond to different iSALE impact simulations. The figure is similar to figure 2, but the dimensionless crater depth Z_c/R is further normalized by the Froude number to the power $1/4$ to ensure that the deviation from the subsonic cases when increasing the Mach number is not due to a change in the radius of the projectile (that has to be increased to increase M while conserving Fr). Note that the curves corresponding to the two highest M for $Fr = 6$ (i.e. panel a, $M = 2.5$ and $M = 5$) are less resolved (as suggested by the "broken" appearance of the curves). In that particular case, they are simply used for the comparison to subsonic cases at $Fr = 6$ but excluded from the data set used in the final fit (2).

Figure 6. Evolution of the normalized maximum crater depth as a function of the Mach number M . The maximum crater depth Z_c is normalized by the pure energy scaling $R Fr^{1/4}$, which is expected for subsonic impacts (e.g., K. Holsapple & Schmidt, 1982; K. A. Holsapple, 1993). We fit our data by a function of the form $(Z_c/R)/Fr^{0.25} = a(1+bM^2)^{-c}$ (Miranda & Dowling, 2019). Using the method of least squares, we obtain the following best-fit coefficients: $a = 1.092 \pm 0.006$, $b = 0.11 \pm 0.03$ and $c = 0.25 \pm 0.03$. Different materials are tested in order to cross-check the behavior, using different equations of state.

350 experiments and simulations with $M < 1$. However, iSALE results for hypervelocity im-
 351 pacts (at $M = 2.5$ and $M = 5$) deviate from the subsonic cases: the maximum crater depth
 352 decreases with increasing Mach number. Light gray symbols in figure 3 also illustrates
 353 this trend. Figure 5 additionally confirms that this trend results from the effect of the
 354 Mach number and not from a change in impactor size in the simulations.

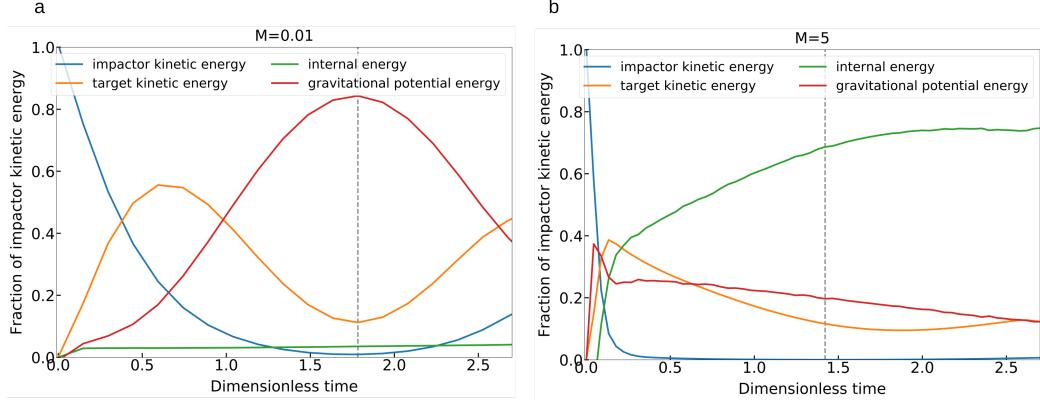
355 To describe this effect of the Mach number, independently of the Froude number,
 356 we follow the approach proposed by Miranda and Dowling (2019) for impacts into gran-
 357 ular material. They proposed a relationship between the crater diameter, the Froude num-
 358 ber and the Mach number based on energy partitioning and dimensional analysis. They
 359 analysed crater dimensions from numerous existing experiments in granular materials
 360 and, in agreement with previous studies (e.g., Schmidt, 1980; K. A. Holsapple, 1993),
 361 found that the crater diameter in supersonic impacts increases more slowly with the Froude
 362 number than in the subsonic case. This suggests an additional sink of energy in super-
 363 sonic impacts, which decreases the energy available for the excavation of the crater. To
 364 describe this relative decrease in crater diameter, they assume that the crater diameter
 365 scales as $Fr^{1/4} f(M)$, where $f(M)$ is only a function of the Mach number. To further spec-
 366 ify $f(M)$, they make an analogy with the loss of total pressure across a shock wave in
 367 a perfect gas. Total pressure is an analogue for the impactor kinetic energy per unit vol-
 368 ume. Based on this analogy, they suggest that the fraction of the impactor energy that
 369 is partitioned into the excavation of the crater scales as $(1 + bM^2)^{-c}$, where a and c
 370 are positive coefficients to be determined empirically. This implies that the fraction of
 371 energy that goes into the crater excavation decreases with increasing Mach number. The
 372 scaling also implies that the dimensionless crater diameter scales as $Fr^{1/4}(1+aM^2)^{-c}$
 373 (equation (11) in Miranda and Dowling (2019)).

374 The rationale by Miranda and Dowling (2019) also holds for impacts into a liquid.
 375 We therefore assume that the crater depth follows the scaling

$$376 \quad (Z_c/R)/Fr^{1/4} = a(1 + bM^2)^{-c}, \quad (2)$$

377 where a , b and c are best-fit parameters. Applying the method of least squares to our
 378 numerical data, we find that $a = 1.092 \pm 0.006$, $b = 0.11 \pm 0.03$ and $c = 0.25 \pm 0.03$.
 379 We obtain a good fit of our data with a coefficient of determination, R^2 , of 0.959. We
 380 computed the coefficients a , b and c for each material used in our simulations (water,

381 basalt, aluminium and iron) but we did not find any significant difference in their val-
 382 ues for different materials.


383 Figure 6 shows the maximum crater depth, normalised by $R Fr^{1/4}$ from iSALE nu-
 384 matical simulations performed for different materials (water, basalt, aluminium and iron)
 385 as a function of the Mach number. All data points collapse on the same trend, which is
 386 well described by equation (1). For $M < 1$, figure 6 and scaling (2) shows that the pure
 387 energy scaling (1) is well satisfied by our data. However, for $M > 1$, the normalised crater
 388 depth Z_c/R decreases with increasing Mach number. This suggests that some frac-
 389 tion of the kinetic energy of the impactor goes into the generation and propagation of
 390 a shock wave. The energy that is initially consumed by the shock wave transitions into
 391 heat dissipation, material compression/destruction and the formation of a high veloc-
 392 ity hot ejecta plume. In particular, the mass and kinatic energy that are transferred to
 393 the ejecta (some even gravitationally escaping the entire system) are lost from the sys-
 394 tem, and hence likely contribute to the difference in crater depth between subsonic and
 395 supersonic cases. When the supersonic regime starts at $M > 1$, scaling (2) together with
 396 the positive value of c , indicate that the fraction of energy that is partitioned into the
 397 shock wave increases with increasing Mach number. To confirm this hypothesis in the
 398 following subsection, we analyse in detail the energy partitioning in our simulations com-
 399 paring the regimes $M < 1$ and $M > 1$.

400 6 Analysis of the energy partitioning with time

401 The diminution of Z_c/R observed when $M > 1$ (figure 6) could result from an in-
 402 crease in the compression of the impacting and target materials. In the hypervelocity
 403 regime, the crater excavation is controlled by nonisentropic shock compression of the ma-
 404 terial instead of an incompressible displacement of the material (i.e. target kinetic en-
 405 ergy). This is further discussed in section 7.1.

406 To estimate the energy partitioning with time in iSALE simulations, we com-
 407 pute the kinetic energy in the impactor, the kinetic energy in the target, and the inter-
 408 nal energy in the target (as detailed in appendix C). We assume that the difference be-
 409 tween the initial impactor kinetic energy and these energies corresponds to the gravita-
 410 tional potential energy which is given by the crater size, the kinetic energy of the ejecta
 411 and the jet. The results are shown in figure 7 for two simulations of a basaltic projec-
 412 tile impacting onto a basaltic target layer. The left panel (fig. 7a.) shows the energy par-

413 titioning in a subsonic case while the right panel (fig. 7b.) shows a supersonic case at
 414 $M=5$.

Figure 7. Energy partitioning upon impact (a) shows Ba_M10-2 (see table 3), a basalt-into-basalt collisions at low Mach number ($M = 10^{-2}$) and (b) shows Ba_M5 (see table 3), a supersonic case with $M = 5$. Colors show the different energy fractions relative to the initial impactor kinetic energy. The results are shown as a function of the dimensionless time $t/\sqrt{R/g}$. The gray dashed lines locate the time of maximum crater depth.

415 Under subsonic conditions (figure 7a), the impactor kinetic energy is smoothly trans-
 416 ferred into the target as the target material is pushed aside and displaced upon projec-
 417 tile. After some time, the displacement of the target stops and the crater reaches its max-
 418 imum size around a dimensionless time of 1.78. This time corresponds to the maximum
 419 in gravitational potential energy and a local minimum in target kinetic energy. The ki-
 420 netic energy then increases again as target material starts to rise forming a central splash
 421 or jet. At this stage, the velocity is orientated upward instead of downward. The con-
 422 sumption of energy by the formation of the jet also explains the increase in the impactor
 423 kinetic energy as both target and impactor materials are entrained into the jet. Only a
 424 very low fraction of internal energy is produced when $M < 1$.

425 Figure 7b. reveals different dynamics in the supersonic case $M = 5$. The most strik-
 426 ing difference is the high values of the internal energy (green curve). Additionally, the
 427 impactor kinetic energy drops more rapidly and is quickly transferred into the target,
 428 mostly as internal energy. After $\bar{t} \simeq 0.1$, both the fractions of gravitational potential en-
 429 ergy and target kinetic energy decrease as they are also transferred into internal energy.
 430 The target kinetic energy keeps decreasing, until $\bar{t} \simeq 1.7$, which corresponds to the point
 431 in the time when the maximum crater depth is reached. This is due to the lateral growth

432 of the crater, which lasts longer than the vertical crater growth. The time evolution of
 433 the internal energy, and especially the relative partitioning between compression and heat-
 434 ing requires further investigation and will be the focus of a follow-up study.

435 **7 Discussion and implications**

436 **7.1 Maximum crater depth for very large Mach number**

437 Our new scaling (2) for the maximum crater depth has important implications for
 438 impact cratering in the limit of large Mach numbers. When the Mach number is large
 439 enough, the term bM^2 becomes larger than 1 in equation (2), and the crater depth sat-
 440 isfies

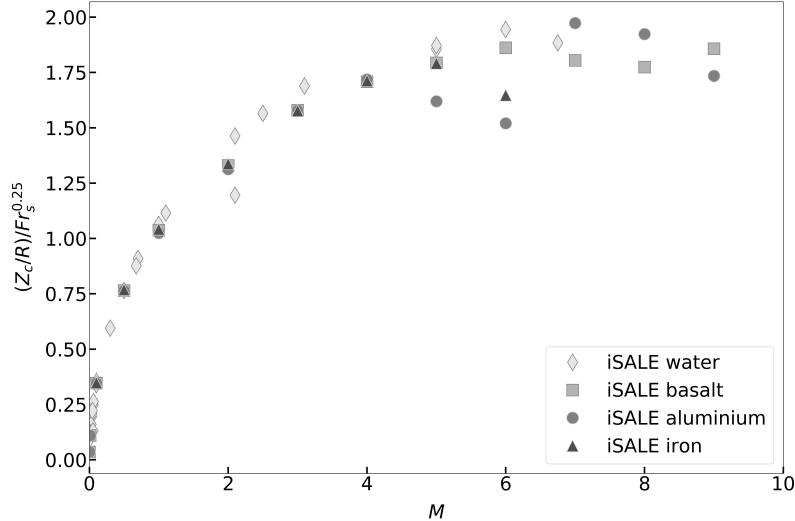
$$441 \frac{Z_c}{R} \propto Fr^{1/4} M^{-2c}. \quad (3)$$

442 Our best-fit coefficient $c = 0.25 \pm 0.03$ suggests that

$$443 \frac{Z_c}{R} \propto Fr^{1/4} M^{-1/2}. \quad (4)$$

444 Replacing the Mach number and the Froude number by their respective expressions, one
 445 gets

$$446 \frac{Z_c}{R} \propto \left(\frac{U^2}{gR} \right)^{1/4} \left(\frac{U}{U_s} \right)^{-1/2}, \quad (5)$$


447 with U_s the sound velocity in the pre-shocked material. This finally yields

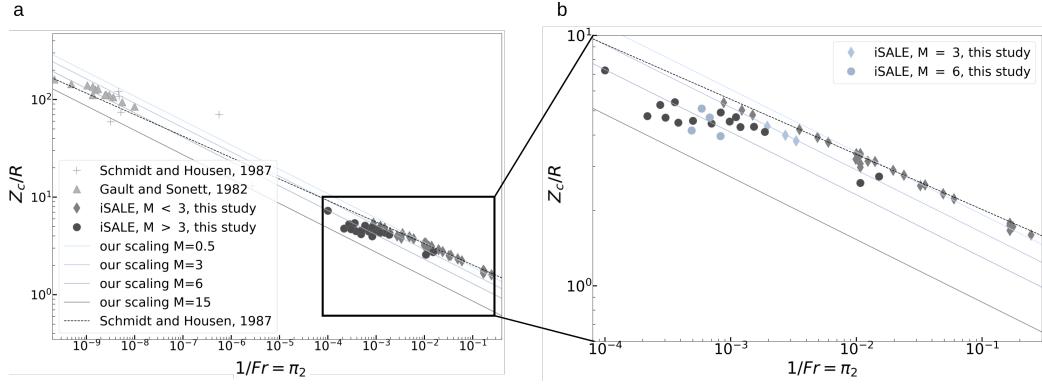
$$448 \frac{Z_c}{R} \propto (gR)^{-1/4} U_s^{1/2}. \quad (6)$$

449 Relation (6) suggests that, when the Mach number approaches infinity, the crater ex-
 450 cavation becomes independent of the impact velocity and is instead limited by the sound
 451 velocity of the impacted material. To check whether this change in regime is visible in
 452 our iSANE simulations, we introduce a "sound Froude" number that is defined as $Fr_s = U_s^2/gR$.
 453 Equation 6 then becomes:

$$454 \frac{Z_c}{R} \propto Fr_s^{1/4}. \quad (7)$$

455 Relation (7) implies that, in the limit of large Mach numbers, the crater depth is con-
 456 trolled by the ratio of the sound speed squared to the weight of the impactor. We test
 457 this behavior in figure 8, which shows Z_c/R normalised by $Fr_s^{1/4}$ as a function of the
 458 Mach number. As the Mach number increases, the increase in $Z_c/(RFr_s^{1/4})$ gets slower.
 459 The data approaches a plateau for $M > 5$. The plateau in figure 8 agrees with scaling (7)
 460 and confirms that the maximum crater depth is limited by the sound velocity for large
 461 Mach numbers. This limitation in crater depth is likely related to the compression stage.

Figure 8. Maximum crater depth normalised by $R\text{Fr}_s^{0.25}$ as a function of the Mach number for the different iSALE simulations performed for different materials, with $\text{Fr}_s = U_s^2/(gR)$ for all the simulations performed.


In a fluid, the sound velocity is $\sqrt{K/\rho}$, where K is the bulk modulus. The bulk modulus is a measure of the resistance of a given material against compression. Accordingly, the larger K , the higher the sound velocity and the resistance against compression. During an impact, if the impact velocity is much larger than the sound speed, it is rather intuitive that the crater excavation should be limited by the capacity of a material to resist compression. This behavior is consistent with the previous sections, which suggest that, at large Mach numbers, the crater opening is mostly controlled by the compression during the shock instead of the kinetic energy in the target. Above a certain impact velocity, further addition of kinetic energy does not generate more compression because the degree of compressibility of the material has been over-passed already. No matter how much more energy is brought to the system, it cannot be transferred in compression anymore, and is thus expected to be transferred into heat in the target. We therefore speculate that for very large impact-to-sound speed ratios, adding more kinetic energy to the system would result in more heating and more melting and/or vaporization, but not in a further increase of the crater depth.

477 **7.2 Comparison to previous studies and to the π -group scaling**

478 As mentioned in section 1.2, one of the most remarkable results from previous stud-
 479 ies on impacts into a liquid target is the successful extrapolation, to subsonic impacts,
 480 over several orders of magnitude in Froude or π_2 number, of the hypervelocity scaling
 481 for the crater efficiency (K. Holsapple & Schmidt, 1982) . The hypervelocity data used
 482 in this scaling are reported in figure 9 (Gault & Sonett, 1982). Along with those data,
 483 we show our scaling law (2) for different Mach numbers in figure 9. Indeed, in the scal-
 484 ing equation (2), the Froude number, and hence π_2 , is independent from the Mach num-
 485 ber. The Mach number is between 1 and 4 in the impact experiments of Gault and Sonett
 486 (1982). Meanwhile, π_2 varies in the range $2 \times 10^{-9} - 10^{-8}$ in the data set used by Gault
 487 and Sonett (1982) and in the range $10^{-4} - 10^{-2}$ in the subsonic impacts to which K. Hol-
 488 sapple and Schmidt (1982) extrapolate into the hypervelocity regime. Figure 9 shows
 489 that, for M in the range 1-4, the crater depth deviates by only $\sim 20\%$ from the pure en-
 490 ergy scaling at $M < 1$. This deviation is small compared to the variation of more than
 491 one order of magnitude in crater depth due to the variation in π_2 between the hyper-
 492 velocity data used by Gault and Sonett (1982) and the subsonic impacts. This explains
 493 why the extrapolation of the hypervelocity scaling to subsonic impacts gives reasonable
 494 estimates of the crater efficiency and the crater depth. However, figure 9 also demon-
 495 strates that, for more accurate predictions, the effect of the Mach number should be taken
 496 into account. In particular, in the regime $10^{-4} < \pi_2 < 1$, corresponding to large plan-
 497 etary impacts (figure 9.b), the data with $M > 3$ deviate significantly from the pure en-
 498 ergy scaling or the π -group scaling of Schmidt and Housen (1987) (see dark gray circu-
 499 lar points on figure 9) .

500 **7.3 Different materials**

501 As discussed previously, the nature of the material will influence the maximum crater
 502 depth through the sound speed. However, data from different materials collapse on the
 503 same master curve when plotted as a function of the impact-to-sound speed, i.e. the Mach
 504 number (figure 6). This suggests that differences in the equation of state of the differ-
 505 ent materials have a negligible effect on the crater depth.

Figure 9. Normalised maximum crater depth, Z_c/R , as a function of $1/\text{Fr} \propto \pi_2$. The data from previous studies (Schmidt & Housen, 1987; Gault & Sonett, 1982) are shown along with different light-blue-shaded lines corresponding to scaling (2) for different values of the Mach number. The dashed black line shows the scaling law $Z_c/R = 1.216\text{Fr}^{0.22}$ given by Schmidt and Housen (1987) for supersonic impacts into a liquid. Panel (a) shows all data while the panel (b) zooms on $1/\text{Fr}$ between 10^{-4} and 0.2, which lies in the range expected for large planet-building impacts. In (b), iSALE simulations at $M = 3$ and $M = 6$ are shown using the same colors as the corresponding scalings at these Mach values (plain curves).

8 Conclusion

In this study, we explore how more accurately impact experiments in water at subsonic velocity can be used to describe the dynamics of planetary-scale impacts during planetary formation. Combining numerical modelling of impacts and laboratory water impact experiments, we investigate the transition from subsonic to supersonic collisions onto a liquid target. The use of iSALE, initially developed and benchmarked for hypervelocity physics (e.g., Amsden et al., 1980; Collins et al., 2002; Wünnemann et al., 2005; Gündemeister et al., 2013; Kowitz et al., 2013), has been validated against experiments at subsonic conditions. We then use iSALE simulations to analyse the transition between subsonic and hypersonic collisions by systematically varying the Froude and Mach numbers as two independent parameters. We show that different materials with different equations of state assuming hydrodynamic behavior, exhibit approximately the same maximum crater depth scaling as a function of the Mach number. In the supersonic regime ($M > 1$), the normalised crater depth decreases with increasing Mach number. The numerical results for the maximum crater depth are fitted with a scaling law that depends on both the Froude and Mach numbers, as deduced from the energy balance argument following Miranda and Dowling (2019). Our best-fit scaling agrees well with experimental and numerical data over four orders of magnitude in Mach number within the range of Froude num-

bers expected for planet-building collisions. The scaling we propose here applies to the gravity regime of crater formation, i.e. when the cohesive strength of the material is negligible and hydrodynamic behavior can be assumed. Our scaling suggests a dependence of the cratering process on the Mach number that was previously neglected in the formalism of the π -group scaling (e.g., K. Holsapple & Schmidt, 1982; K. A. Holsapple, 1993) but was recognized to affect crater formation in granular materials (Miranda & Dowling, 2019). In particular, our scaling explains the remarkable extrapolation over orders of magnitude in Froude number between hypervelocity experiments and subsonic experiments (K. Holsapple & Schmidt, 1982). This extrapolation is reasonably accurate for Mach numbers smaller than 3. For larger Mach numbers, the π -group scaling deviates from the data by more than 20%. The change in crater depth scaling from subsonic to supersonic impacts results from a difference in the energy partitioning with more energy going into the shock wave generation and propagation in the hypervelocity case. In addition, our scaling law suggests that the maximum crater depth is limited by the ratio of the sound speed squared to the impactor weight for very large Mach numbers. In this regime, an increase in the impact kinetic energy does not cause an increase in the crater size because a large fraction of the incoming energy is transferred into internal energy in the target material. The energy and momentum transfer upon impact from subsonic to hypersonic regimes have to be further explored. In particular the distribution of internal energy into compression and heating requires further investigation.

Our results additionally suggest that the current understanding on crater formation on Mars, Earth, the Moon and Mercury may be revised. In particular, estimates of the impactor sizes to form a given crater observed on a planetary surface may deviate from previous assumptions based on scaling laws where the effect of the Mach number was not taken into account. The significance increases for sufficiently large Mach numbers. For instance, the average velocity on Mars is about 10 km.s^{-1} (e.g., Ivanov, 2001), which correspond roughly to a Mach number of 2.24 if Mars surface is assumed to be basaltic. In this case, figure 9 suggests that the Froude number would have to be superior to ~ 1000 to predict an accurate (within a few percents) impactor size with the π -group scaling. This means that for any impactor projectile larger than $\sim 25 \text{ km}$ in radius, the projectile size would be under-estimated by the π -group scaling. In the case of Mercury, for which the average impact velocities are estimated to be between 17 km.s^{-1} (Borin et al., 2009) and 20.5 km.s^{-1} (Cintala, 1992), corresponding to Mach numbers

557 in between 3.8 and 4.6, the sizes of the projectiles would have to be smaller than 4 km
 558 for the π -group scaling. For example, for an impact on Mars with a Froude number of
 559 500, at a speed of about $10\text{km}\cdot\text{s}^{-1}$, the error on the relative crater size estimate would
 560 be of about 10%. Finally, previous studies have shown that the cratering process affects
 561 the mixing between the impactor core and the target silicates (Landau et al., 2021; Lherm
 562 et al., 2022). As we find that the Mach number affects the excavation of the crater, our
 563 results suggest that the Mach number might also affect the mixing. This will be inves-
 564 tigated in a follow-up study.

565 Open Research Section

566 Numerical simulations are produced with the iSALE-2D shock physics code ([https://isale-](https://isale-code.github.io/)
 567 [code.github.io/](https://isale-code.github.io/)). In particular, we use the iSALE-2D Dellen release of the iSALE shock
 568 physics code (Amsden et al., 1980; Collins et al., 2004; Wünnemann et al., 2006). The
 569 iSALE-2D Dellen release is distributed on a case-by-case basis to academic users in the
 570 impact community, strictly for non-commercial use. Scientists interested in using or de-
 571 veloping iSALE may apply to use iSALE at <https://isale-code.github.io/access.html>. Data
 572 are further processed with python 2.7. Figures were made with Matplotlib version 3.2.1
 573 (Caswell et al., 2020; Hunter, 2007). Some plots in this work were created with the pySALE-
 574 Plot tool written by Tom Davison. All data to produce the figures and the iSALE in-
 575 put files in this work can be accessed in this document, in table 2 and table 3 for the sim-
 576 ulations and in the appendix A1 for the experiments.

577 Acknowledgement

578 This work was supported by the German Research Science Foundation DFG (SFB-
 579 TRR170, subproject C2). This is TRR-170 contribution 190. We acknowledge the de-
 580 velopers of iSALE-2D, including Gareth Collins, Kai Wünnemann, Dirk Elbeshausen,
 581 Boris Ivanov and Jay Melosh. M.L. was supported by the Programme National de Planétologie
 582 (PNP) of CNRS- INSU, co- funded by CNES. M.L. would like to thank the Isaac New-
 583 ton Institute for Mathematical Sciences, Cambridge, for support and hospitality during
 584 the programme "Frontiers in dynamo theory: from the Earth to the stars" where work
 585 on this paper was undertaken. This work was supported by EPSRC grant no EP/R014604/1.
 586 M.N. was supported in part by the National Aeronautics and Space Administration (NASA)
 587 grant numbers 80NSSC19K0514, and 80NSSC22K0107. Partial funding for M.N. was also
 588 provided by NSF EAR-2102143 and EAR-2237730 as well as the Center for Matter at

589 Atomic Pressures (CMAP), an NSF Physics Frontier Center, under Award PHY-2020249.
 590 Any opinions, findings, conclusions or recommendations expressed in this material are
 591 those of the authors and do not necessarily reflect those of the National Science Foun-
 592 dation. M.N. was also supported in part by the Alfred P. Sloan Foundation under grant
 593 G202114194.

594 References

595 Amsden, A., Ruppel, H., & Hirt, C. (1980). *Sale: A simplified ale computer pro-*
 596 *gram for fluid flow at all speeds* (Tech. Rep.). Los Alamos Scientific Lab., NM
 597 (USA).

598 Badro, J., Siebert, J., & Nimmo, F. (2016). An early geodynamo driven by exsolu-
 599 tion of mantle components from earth's core. *Nature*, 536(7616), 326–328.

600 Bisighini, A., Cossali, G. E., Tropea, C., & Roisman, I. V. (2010). Crater evolu-
 601 tion after the impact of a drop onto a semi-infinite liquid target. *Physical Re-*
 602 *view E*, 82(3), 036319.

603 Borin, P., Cremonese, G., Marzari, F., Bruno, M., & Marchi, S. (2009). Statistical
 604 analysis of micrometeoroids flux on mercury. *Astronomy & Astrophysics*,
 605 503(1), 259–264.

606 Caswell, T. A., Droettboom, M., Lee, A., Hunter, J., Firing, E., Sales De Andrade,
 607 E., ... others (2020). matplotlib/matplotlib: Rel: v3. 3.1. *Zenodo*.

608 Chambers, J. E. (2004). Planetary accretion in the inner solar system. *Earth and*
 609 *Planetary Science Letters*, 223(3-4), 241–252.

610 Cintala, M. J. (1992). Impact-induced thermal effects in the lunar and mercurian re-
 611 goliths. *Journal of Geophysical Research: Planets*, 97(E1), 947–973.

612 Collins, G. S., Melosh, H. J., & Ivanov, B. A. (2004). Modeling damage and de-
 613 formation in impact simulations. *Meteoritics & Planetary Science*, 39(2), 217–
 614 231.

615 Collins, G. S., Melosh, H. J., Morgan, J. V., & Warner, M. R. (2002). Hydrocode
 616 simulations of chixculub crater collapse and peak-ring formation. *Icarus*,
 617 157(1), 24–33.

618 Deguen, R., Landeau, M., & Olson, P. (2014). Turbulent metal–silicate mixing, frag-
 619 mentation, and equilibration in magma oceans. *Earth and Planetary Science*
 620 *Letters*, 391, 274–287.

621 Elbeshausen, D., Wünnemann, K., & Collins, G. S. (2009). Scaling of oblique
 622 impacts in frictional targets: Implications for crater size and formation mecha-
 623 nisms. *Icarus*, 204(2), 716–731.

624 Elkins-Tanton, L. T. (2012). Magma oceans in the inner solar system. *Annual Re-*
 625 *view of Earth and Planetary Sciences*, 40, 113–139.

626 Engel, O. G. (1967). Initial pressure, initial flow velocity, and the time depen-
 627 dence of crater depth in fluid impacts. *Journal of applied physics*, 38(10),
 628 3935–3940.

629 Gault, D. E., Quaide, W. L., & Oberbeck, V. R. (1974). Impact cratering mechanics
 630 and structures. *A primer in lunar geology*, 177–189.

631 Gault, D. E., & Sonett, C. P. (1982). Laboratory simulation of pelagic asteroidal
 632 impact: Atmospheric injection, benthic topography, and the surface wave
 633 radiation field.

634 Güldemeister, N., Wünnemann, K., Durr, N., & Hiermaier, S. (2013). Propagation
 635 of impact-induced shock waves in porous sandstone using mesoscale modeling.
 636 *Meteoritics & Planetary Science*, 48(1), 115–133.

637 Güldemeister, N., Wünnemann, K., & Poelchau, M. (2015). Scaling impact crater
 638 dimensions in cohesive rock by numerical modeling and laboratory experi-

639 ments. *Geological Society of America Special Papers*, 518, 17–29.

640 Holsapple, K., & Schmidt, R. (1980). On the scaling of crater dimensions: 1. explosive
641 processes. *Journal of Geophysical Research: Solid Earth*, 85(B12), 7247–
642 7256.

643 Holsapple, K., & Schmidt, R. (1982). On the scaling of crater dimensions: 2. impact
644 processes. *Journal of Geophysical Research: Solid Earth*, 87(B3), 1849–1870.

645 Holsapple, K. A. (1993). The scaling of impact processes in planetary sciences. *Annual
646 review of earth and planetary sciences*, 21, 333–373.

647 Housen, K., Schmidt, R., & Holsapple, K. (1983). Crater ejecta scaling laws: Fundamental
648 forms based on dimensional analysis. *Journal of Geophysical Research: Solid Earth*, 88(B3), 2485–2499.

649 Housen, K. R., & Holsapple, K. A. (2003). Impact cratering on porous asteroids. *Icarus*,
650 163(1), 102–119.

651 Housen, K. R., & Holsapple, K. A. (2011). Ejecta from impact craters. *Icarus*,
652 211(1), 856–875.

653 Housen, K. R., Sweet, W. J., & Holsapple, K. A. (2018). Impacts into porous aster-
654 oids. *Icarus*, 300, 72–96.

655 Hunter, J. D. (2007). Matplotlib: A 2d graphics environment. *Computing in science
656 & engineering*, 9(03), 90–95.

657 Hyodo, R., & Genda, H. (2020). Escape and accretion by cratering impacts: For-
658 mulation of scaling relations for high-speed ejecta. *The Astrophysical Journal*,
659 898(1), 30.

660 Ichikawa, H., Labrosse, S., & Kurita, K. (2010). Direct numerical simulation of an
661 iron rain in the magma ocean. *Journal of Geophysical Research: Solid Earth*,
662 115(B1).

663 Ivanov, B. A. (2001). Mars/moon cratering rate ratio estimates. *Space Science Re-
664 views*, 96(1-4), 87–104.

665 Kendall, J. D., & Melosh, H. (2016). Differentiated planetesimal impacts into a ter-
666 restrial magma ocean: Fate of the iron core. *Earth and Planetary Science Let-
667 ters*, 448, 24–33.

668 Kowitz, A., Gündemeister, N., Reimold, W., Schmitt, R., & Wünnemann, K. (2013).
669 Diaplectic quartz glass and sio₂ melt experimentally generated at only 5 gpa
670 shock pressure in porous sandstone: Laboratory observations and meso-scale
671 numerical modeling. *Earth and Planetary Science Letters*, 384, 17–26.

672 Landeau, M., Deguen, R., Phillips, D., Neufeld, J. A., Lherm, V., & Dalziel, S. B.
673 (2021). Metal-silicate mixing by large earth-forming impacts. *Earth and
674 Planetary Science Letters*, 564, 116888.

675 Lherm, V., & Deguen, R. (2018). Small-scale metal/silicate equilibration during core
676 formation: The influence of stretching enhanced diffusion on mixing. *Journal
677 of Geophysical Research: Solid Earth*, 123(12), 10–496.

678 Lherm, V., Deguen, R., Alboussière, T., & Landeau, M. (2022). Rayleigh–taylor
679 instability in impact cratering experiments. *Journal of Fluid Mechanics*, 937,
680 A20.

681 Manske, L., Marchi, S., Plesa, A.-C., & Wünnemann, K. (2021). Impact melting
682 upon basin formation on early mars. *Icarus*, 357, 114128.

683 Melosh, H. J. (1989). Impact cratering: A geologic process. *New York: Oxford Uni-
684 versity Press; Oxford: Clarendon Press*.

685 Miranda, C. S., & Dowling, D. R. (2019). Mach number scaling of impact craters in
686 unconsolidated granular materials. *Icarus*, 325, 84–93.

687 Monteux, J., & Arkani-Hamed, J. (2014). Consequences of giant impacts in early
688 mars: core merging and martian dynamo evolution. *Journal of Geophysical Re-
689 search: Planets*, 119(3), 480–505.

690 Nakajima, M., Golabek, G. J., Wünnemann, K., Rubie, D. C., Burger, C., Melosh,
691 H. J., ... Hull, S. D. (2021). Scaling laws for the geometry of an impact-
692 induced magma ocean. *Earth and Planetary Science Letters*, 568, 116983.

693

694 O'Keefe, J. D., & Ahrens, T. J. (1993). Planetary cratering mechanics. *Journal of*
 695 *Geophysical Research: Planets*, 98(E9), 17011–17028.

696 O'Rourke, J. G., & Stevenson, D. J. (2016). Powering earth's dynamo with magne-
 697 sium precipitation from the core. *Nature*, 529(7586), 387–389.

698 Pumphrey, H. C., & Elmore, P. A. (1990). The entrainment of bubbles by drop im-
 699 pacts. *Journal of Fluid Mechanics*, 220, 539–567.

700 Qaddah, B., Monteux, J., Clesi, V., Bouhifd, M. A., & Le Bars, M. (2019). Dynam-
 701 ics and stability of an iron drop falling in a magma ocean. *Physics of the Earth*
 702 and *Planetary Interiors*, 289, 75–89.

703 Ray, B., Biswas, G., & Sharma, A. (2015). Regimes during liquid drop impact on a
 704 liquid pool. *Journal of Fluid Mechanics*, 768, 492–523.

705 Raymond, S. N., O'Brien, D. P., Morbidelli, A., & Kaib, N. A. (2009). Building
 706 the terrestrial planets: constrained accretion in the inner solar system. *Icarus*,
 707 203(2), 644–662.

708 Rubie, D., Melosh, H., Reid, J., Liebske, C., & Righter, K. (2003). Mechanisms of
 709 metal–silicate equilibration in the terrestrial magma ocean. *Earth and Plane-*
 710 *tary Science Letters*, 205(3-4), 239–255.

711 Samuel, H. (2012). A re-evaluation of metal diapir breakup and equilibration in ter-
 712 restrial magma oceans. *Earth and Planetary Science Letters*, 313, 105–114.

713 Santini, M., Fest-Santini, S., & Cossali, G. (2017). Experimental study of vortices
 714 and cavities from single and double drop impacts onto deep pools. *European*
 715 *Journal of Mechanics-B/Fluids*, 62, 21–31.

716 Schmidt, R. (1977). A centrifuge cratering experiment-development of a gravity-
 717 scaled yield parameter. In *Impact and explosion cratering: Planetary and ter-*
 718 *restrial implications* (pp. 1261–1278).

719 Schmidt, R. (1980). Meteor crater: Energy of formation-implications of centrifuge
 720 scaling. In *Lunar and planetary science conference proceedings* (Vol. 11, pp.
 721 2099–2128).

722 Schmidt, R., & Housen, K. (1987). Some recent advances in the scaling of impact
 723 and explosion cratering. *International Journal of Impact Engineering*, 5(1-4),
 724 543–560.

725 Tillotson, J. H. (1962). *Metallic equations of state for hypervelocity impact* (Tech.
 726 Rep.). General Dynamics San Diego CA General Atomic DIV.

727 Tonks, W. B., & Melosh, H. J. (1993). Magma ocean formation due to giant im-
 728 pacts. *Journal of Geophysical Research: Planets*, 98(E3), 5319–5333.

729 Ulvrová, M., Coltice, N., Ricard, Y., Labrosse, S., Dubuffet, F., Velímský, J., &
 730 Šrámek, O. (2011). Compositional and thermal equilibration of particles,
 731 drops, and diapirs in geophysical flows. *Geochemistry, Geophysics, Geosys-*
 732 *tems*, 12(10).

733 Walsh, K. J., Morbidelli, A., Raymond, S. N., O'Brien, D. P., & Mandell, A. M.
 734 (2011). A low mass for mars from jupiter's early gas-driven migration. *Nature*,
 735 475(7355), 206.

736 Wetherill, G. (1996). The formation and habitability of extra-solar planets. *Icarus*,
 737 119(1), 219–238.

738 Wünnemann, K., Collins, G., & Melosh, H. (2006). A strain-based porosity model
 739 for use in hydrocode simulations of impacts and implications for transient
 740 crater growth in porous targets. *Icarus*, 180(2), 514–527.

741 Wünnemann, K., Morgan, J., & Jödicke, H. (2005). Is ries crater typical for its size?
 742 an analysis based upon old and new geophysical data and numerical modeling.
 743 *Large meteorite impacts III*, 384, 67–83.

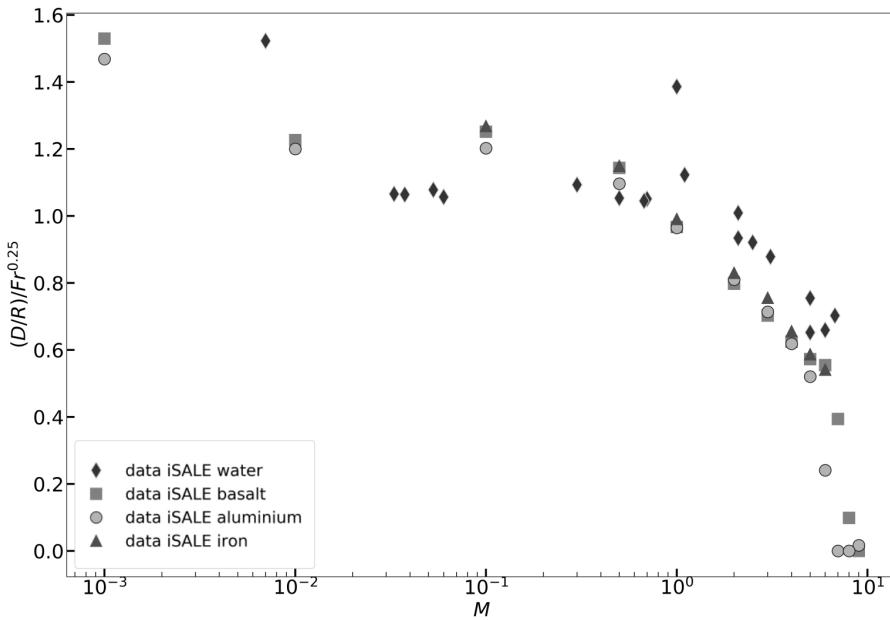
744 Appendix A Details on the two explored experiments

745 For both E1 and E2, the experimental setup is the following:

- 746 • The balloon is tied to a string, itself attached to the frame, so that the balloon
747 latex membrane does not fall into the target and hence, it does not affect the cra-
748 tering process.
- 749 • The density of the target and impacting liquid is 998.66 kg m^{-3} .
- 750 • We record the flow with a Photron SA1.1 monochrome high-velocity camera with
751 a resolution of 1024×1024 pixels and at a frame rate of 2000 frames per second.
752 The camera is placed at a horizontal distance of 2 m from the tank and at a height
753 of 1.4 m from the floor.
- 754 • We illuminate the tank from the back with a panel of red LEDs, which measures
755 $90 \text{ cm} \times 120 \text{ cm}$. To obtain a uniform light source, we place a diffusive screen be-
756 tween the panel and the tank. The length scale in experimental images is cali-
757 brated using a panel containing vertical and horizontal lines of dots spaced by 2
758 cm.
- 759 • Before each experiment, we compute the spherical radius R of the impactor from
760 the weight of the balloon and the density of the impacting liquid. We also com-
761 pute the impact velocity U and the crater depth from the experimental images
762 using routines written in python. We first subtract the backfield image to each
763 frame. We then select a constant pixel intensity threshold below which the pixel
764 intensity is set to 0 to remove the backfield noise. From each frame before the im-
765 pactor reaches the target, we locate the 2D centroid of the impactor. We fit the
766 position of this centroid as a function of time with a quadratic polynomial. From
767 this fit, we compute the velocity U at the time when the front of the impacting
768 liquid first touches the water target. From each frame after the impactor reaches
769 the target, we automatically detect the position of the crater floor and we extract
770 the crater depth Z_c . Uncertainties on U and Z_c are typically on the order of 5%.

771 E1 and E2 parameters, as well as the associated dimensionless numbers are sum-
772 marized in table A1.

Table A1. Parameter values in experiments E1 and E2 with no density difference. With U the impact speed, U_s the sound velocity in the medium, g the gravitational acceleration, R the impact radius, ν_t , ν_i and ν_a the target, impactor and air kinematic viscosity respectively, ρ_t , ρ_i and ρ_a the respective densities of the target, the impactor and air, σ_t , and σ_i , the respective target and impactor surface tensions, L the target width and H_t the target depth. The frame rate is 2000 frames per second in both movies from which data are then exploited.


Dimensionless number	Experiment E1	Experiment E2
U (meter/second)	1.35 ± 0.1	5.3 ± 0.3
U_s (meter/second)	1481.0	1481.0
R (meter)	0.0305 ± 0.00005	0.0308 ± 0.00005
g (m s ⁻²)	9.81	9.81
$Fr = \frac{U^2}{g R}$	6 ± 1	93 ± 10
$M = \frac{U}{U_s}$	$9 \times 10^{-4} \pm 5 \times 10^{-5}$	$3.6 \times 10^{-3} \pm 10^{-4}$
$Re = \frac{U R}{\nu_t}$	$4.1 \times 10^4 \pm 3 \times 10^3$	$1.6 \times 10^5 \pm 10^4$
$We = \frac{\rho_t U^2 R}{\sigma_t}$	760 ± 100	$1.2 \times 10^4 \pm 10^3$
$P = \frac{\rho_i - \rho_t}{\rho_t}$	0	0
ρ_t / ρ_a	830	830
ν_i / ν_t	1	1
ν_t / ν_a	0.0660	0.0660
σ_i / σ_t	1	1
L/R	25	25
H_t/R	16	16

Appendix B Crater diameter estimates

Among the extensive studies on cratering processes, the transient crater diameter is more studied as the crater depth itself. Thus, here, results for the crater diameter are also produced. In this case, to better compare with the π -group scaling (given for the

777 transient crater diameter), we take the crater diameter when the maximum crater depth
 778 is reached. Results are shown in figure. B1 and figure. B2.

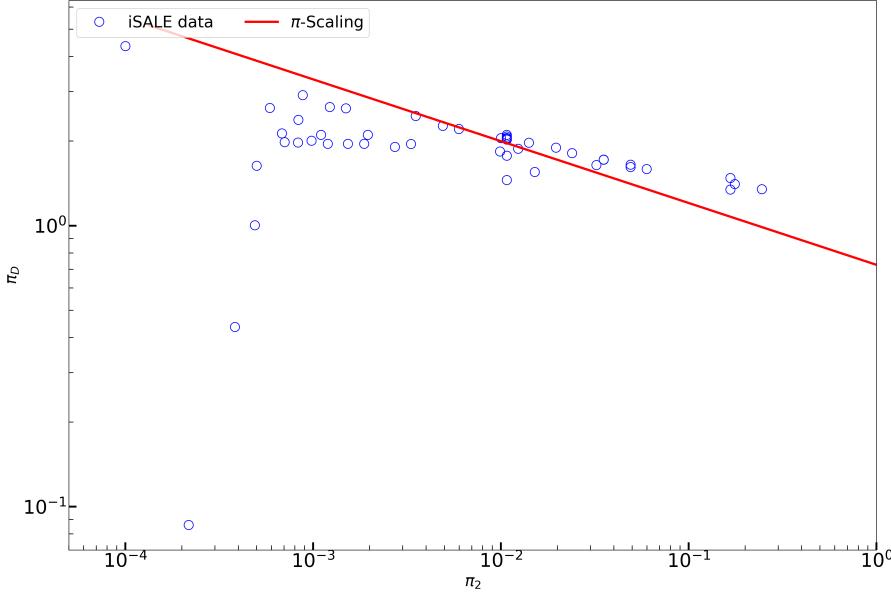

779 The figure. B1 is the equivalent for crater diameter of the figure. 6 previously given
 780 for the crater depth. It is visible that the data are sparser. That is due to the compli-
 781 cated estimates of the transient crater size within the simulations, notably for the higher
 782 impact velocities. However, the results overall show the same general trend as a func-
 783 tion of M as does the maximum crater depth. No good fit of the data could be produced
 784 in that case. We also compare our results to the pi-group scaling predictions in figure. B2.

Figure B1. Crater diameter D , measured at the time when the maximum crater depth is reached, normalised by $RFr^0.25$, as a function of the Mach number M .

785 **Appendix C Energy partitioning estimates: iSALE post-processing**

786 The impactor kinetic energy is simply calculated as $E_k^{imp} = \frac{1}{2}m_iU^2$. Then, for
 787 each timestep, the total kinetic energy in the target is estimated. To do so, the kinetic
 788 energy contained in each grid-cell is computed with $E_k^{cell} = \frac{1}{2}m_{cell}v_{cell}^2$, with m_{cell} the
 789 mass contained in one cell and v_{cell} the particle velocity in the cell. The mass contained
 790 in a given cell depends on the material density in the cell ρ_{cell} , which is affected by the
 791 shock, and the cell volume V_{cell} . The volume of each grid-cell is estimated beforehand
 792 by estimating the volume of a ring, according the the cylindrical geometry of the grid
 793 used here. The density depends on the depth and on the shock wave propagation and

Figure B2. π -D as a function of π -2 for our numerical simulations results. The π -group scaling is plotted as the red line.

thus evolves with both space and time during the simulation. The fraction of impactor to target material in each cell is also tracked by iSALE and stored in the data file that is post-processed. Accordingly, it is possible to deduce which kinetic energy contained in the cell belongs to impactor material or to target material. Both are tracked independently from one another and are estimated from the respective masses of the material in each cell $m_{mat} = \rho_{cell} V_{cell} f_{mat}$ with m_{mat} the mass of the material mat (impactor or target) in the cell and f_{mat} the mass fraction of that given material that is contained in the cell. The total kinetic energy transferred into the target is then estimated by summing over all cells the target kinetic energy contained in each of these. The procedure is similar for the kinetic energy remaining in the impactor material. iSALE also computes the specific internal energy within each cell. Initially, the target already contains a given amount of specific internal energy. To make sure that what we estimate is only resulting from the impact itself, we correct the specific internal energy of each cell (and for every timestep) by its initial value. This has to be translated into internal energy by multiplying it to the cell mass, after what the contribution of each independent cell is considered by summing over all of them. The required additional energy to ensure conservation of energy is assumed to be gravitational potential energy (it should result from both the crater opening and the ejecta).