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This work investigates a physics-informed
learning algorithm to solve the multi-dimensional
Schrodinger equation for nanostructures based on
the quantum element method (QEM) [1]. The QEM
selects generic building blocks of a group of
nanostructures as elements, each of which is trained
by proper orthogonal decomposition (POD) to
generate its basis functions (or POD modes). To
simulate a large structure, these trained elements are
then stitched together using the discontinuous
Galerkin method. Such a multi-element approach
minimizes the training effort, optimizes parallel
computing efficiency, and offers cost-effective
simulation and design of nanostructures.

POD trains the modes to maximize the mean
square inner product with the wave function (WF)
data collected from direct numerical simulation
(DNS) of the Schrodinger equation. Each element
is trained to account for variations of electric fields
or potentials and adjacent elements. This POD
process leads to the Fredholm equation [2],
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where 7; is the POD mode, i is the WF and 4 is an
eigenvalue. The eigenvalues of the POD modes
indicate the amount of information captured.

After generating the POD modes, the WF can be
formed via a linear combination of M modes,
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where g; is the weight. The weights are found via
the Galerkin projection of the Schrodinger equation
onto the POD modes. This projection provides
physical guidance based on the first principles to
reach an efficient and accurate learning method.

Using the QEM for a system of N,; elements,
the Hamiltonian equation in POD space is found,
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where T,, ;; and U, ;; are the interior Kkinetic
Npij Npiij

energy and potential energy matrixes for the pth
element composed of M, modes. By pq; is the
diagonal boundary kinetic energy matrix and Bp, ;;
is the off diagonal kinetic matrix [1].

Three GaAs/InAs quantum-dot (QD) structures
given in Fig. 1(a) are used to train 3 elements, 2
hexagon QD elements (see E2 and E3 in Fig. 2(a))
and one spacer element (El1 in Fig. 2(a)). Each
training structure in Fig. 1(a) is subjected to 10
single component electric fields in x and y varying
between [—35,35]kV /cm. At each field, only WFs
of the first 6 quantum states (QSs) are collected
from DNS with a mesh size of 14966. Data
collected from the same elements are combined to
generate POD modes to account for more variations
of BCs (i.e., adjacent elements).

To test the QEM method, a test electric field E
= (25% 4+ 159) kV /em was applied to the structure
in Fig. 1(b). Around the 7th to 15th mode, the POD
eigenvalues of all elements in Fig. 2(a) reduce from
the first mode by more than 3 orders of magnitude.
Figs. 2(b) and 2(c) reveal that the POD least square
(LS) error is near 1% (or 2%) using just 10-15 (or
8-12) modes per element and the eigenenergies
from QEM and DNS are nearly identical. WF
profiles of several QSs given in Fig. 3 illustrate the
excellent agreement between the QEM and DNS
using only a handful of modes (DoF) per element.
This study found that the QEM offers a 2-order
reduction in computational time, compared to DNS.
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Fig. 1. (a) Three training structures used to train the 3 elements shown in Fig. 2.(b) Test structure used to verify the QEM model.
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Fig. 2. (a) Eigenvalues of the three generic elements. (b)LS error for QSs 1-6. (c) Error in the QEM eigenenergy relative to DNS.
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Fig. 3. (a) Profile plots in x (top row) and y (bottom row) for the WFs of QSs 1,2 ,5 and 6 along the horizonal and vertical plotting
paths (red lines) shown in (b). The paths were selected to show the maximum probability density in the state.



