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Legged robots have a unique capability of traversing
rough terrains and negotiating cluttered environments.
Recent control development of legged robots has en-
abled robust locomotion on rough terrains. However,
such approaches mainly focus on maintaining balance
for the robot body. In this work, we are interested in
leveraging the whole body of the robot to pass through
a permeable obstacle (e.g., a small confined opening)
with height, width, and terrain constraints. This paper
presents a planning framework for legged robots manip-
ulating its body and legs to perform collision-free loco-
motion through a permeable obstacle. The planner in-
corporates quadrupedal gait constraint, biasing scheme,
and safety margin for the simultaneous body and foothold
motion planning. We perform informed sampling for the
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body poses and swing foot position based on the gait
constraint while ensuring stability and collision avoid-
ance. The footholds are planned based on the terrain
and the contact constraint. We also integrate the plan-
ner with robot control to execute the planned trajectory
successfully. We validated our approach in high-fidelity
simulation and hardware experiments on the Unitree Al
robot navigating through different representative perme-
able obstacles.

1 INTRODUCTION

Legged robots have been highlighted as promising
machines for locomotion over complex terrains [1} 2, |3}
4,15, 16} [7, 18, 19]. Quadruped robots, in particular, are
proven to serve as a multipurpose robot platform that can
be easily adapted to suit all challenging environments.
They are superior to wheeled robots in terms of their loco-



Fig. 1.
our proposed planning framework. Support video: https://
youtu.be/xpARKN_LWwk

Unitree A1 robot traversing small a confined opening with

motion performance. Moreover, the increase in mobility
of quadruped robots allows them to overcome obstacles,
such as steps and stairs, with statically and dynamically
stable gaits. Most control development for legged robots
focuses on robust locomotion on rough terrains.
However, many situations require machines to go through
a small opening on a damaged surface or collapsed build-
ing due to an earthquake. This challenge requires de-
velopments for locomotion control and motion planning
for the entire robot body to allow the robot to navigate
through confined spaces.

In this paper, we seek to address the problem of
quadruped robots negotiating permeable obstacles (e.g.,
an irregular-shaped opening in the wall). These obstacles
are commonplace in search rescue missions, and rescue
dogs are often trained for such scenarios. However, when
legged robots encounter this kind of obstacle, common
motion planning approaches would ignore such possibil-
ity of the robot going through a confined opening but treat
it as an obstacle to avoid. This would mean that a portion
of a building might become inaccessible to the robot in a
time-critical context. Therefore, We present a sampling-
based motion planning framework for the legged robot
to leverage its entire body to negotiate permeable obsta-
cles, such as an irregular-shaped hole on a wall surface.
We specifically address permeable obstacles with height,
width, and terrain constraints, requiring the robot to plan
a short path to traverse through the opening.

Our approach samples the 6D body pose and foot
placement for every walking step simultaneously, uti-
lizing the full-body motion of the robot to go through
a confined obstacle while obeying kinematic, stability,
collision-free and contact constraints.

The framework also accounts for the model dif-
ference between planning and execution by introducing
safety margin to the planner. This is a general approach
that can adapt to any quadruped robot model, and we val-
idated our framework on the Unitree Al robot in high-
fidelity simulation and hardware experiments.

The main contributions of the paper are as follows:

1. We proposed a motion planning framework for
legged robots to negotiate permeable obstacles with
width, height, and terrain constraints by planning a
short trajectory to traverse through it. It allows simul-
taneous body and foothold motion planning based
on a preset quadrupedal walking gait while enforc-
ing kinematic and stability constraints and account-
ing for model difference with a safety margin.

2. The proposed framework utilizes the perception
data for the planner to select appropriate sample bi-
asing, which accelerates the search significantly.

3. We validated our approach on the Unitree A1 robot
using multiple scenarios.

The rest of the paper is organized as follows. Sec.
discusses related work. Sec.[3|presents our integrated mo-
tion planning and control framework for legged robots
navigating confined openings. Numerical and experimen-
tal validation are presented in Sec.

2 RELATED WORK

There has been extensive research in the field of robot
motion planning. For example, utilize trajectory
optimization to ensure collision avoidance while reaching
the goal state. Sampling-based methods are also widely
used for motion planning.

Many variants of Probabilistic Roadmaps (PRMs)
, and Rapidly-exploring Random Trees (RRTs) have
been developed such as
and have sub-optimality
bounds.Sampling based methods is futher combined with
learning to ensure safety and improve sampling effi-
ciency. However, for legged robots, the problem becomes
very challenging due to the complexity of the system, in-
cluding high degrees of freedom, high dimensional mod-
els due to the switching between different gaits or contact
modes.

To plan for contacts, the work by Bretl points
out two fundamental issues: 1) planning path for the
base of the robot and 2) planning a sequence of con-
figurations along the path. The key issue is to handle
the computational complexity when accounting for pos-
sible contacts and potential paths simultaneously. This
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work introduces an effective algorithm to handle situa-
tions such as climbing. Following this idea, many works
[331[34,135}136,137,138,(39,140}141,42]] decouple these two
problems to reduce the complexity.

In these works, the robot’s base trajectory is gener-
ated independently with its foot trajectories and contact
sequences. Since each task only solves a subset of the
motion planning problem, such approaches typically are
computationally fast. However, such a hierarchical plan-
ning framework could limit the feasible motion of the
robot navigating complex terrains or openings because
the foot locations play a crucial role in specifying the fea-
sible range of the body motion and collision-induced con-
straints.

On the other hand, optimization is also commonly
used for this motion planning problem [43}44,/45,146. 47,
48,146,149.150,(51,152,53]], while they primarily focus on
selecting optimal footholds over rough terrain while ig-
noring collision constraints. On the other hand, trajectory
optimization can also be used to plan for both of body mo-
tion and footholds simultaneously [54,55,(56,57]. How-
ever, these approaches would face local-minima problems
with complex obstacles, in our case, permeable obsta-
cles with irregular-shaped openings. However, most of
these works focus on footstep planning without consid-
ering obstacles in the environment. Some recent devel-
opments also account for obstacles with height and width
constraints as presented in [58] and [59]]. They all employ
a hierarchical motion planning framework that separates
the planning for footholds and body and thus would con-
straint feasible motion due to the nature of this approach.

3 APPROACH
3.1 Overview

This section presents a novel framework that inte-
grates perception, planning, and control for a quadruped
robot to negotiate permeable obstacles, which typically
consist of height limit, width limit, and complex terrain
affecting foot placement. Typical planning approaches
for mobile robots would consider almost any objects as
obstacles and try to find a feasible path to avoid these ob-
stacles. In this scenario, collision-free paths can be found
using path planning approaches [60, 31].

However, when navigating in complex and cluttered
environments, quadruped robots could encounter some
obstacles that are actually feasible for the robot to negoti-
ate and go through the obstacle (e.g., obstacles with cer-
tain heights, a low window, or a sizable hole on a broken
wall) and it only requires a short trajectory to be planned
for the robot to traverse through it. In this scenario, con-
ventional path planning approaches such as A* or RRT

can navigate the robot to approach the obstacle directly
head-on to the permeable obstacle. Then, given enough
knowledge of the obstacle and the terrain around it, we in-
troduce a framework that allows legged robots to leverage
the whole-body motion to navigate through the complex
permeable obstacles if feasible.

Fig.|2|presents the system diagram of our approach.
We first consider the problem of motion planning for the
18 DOF system. Sampling-based planning methods are
generally used for high-degree of freedom systems. Sim-
ilar to RRT, a search tree is created to grow from the
initial node to the goal. However, an approach based
on purely random sampling does not guarantee that so-
lution exists and usually requires a significant computa-
tional time when sampling nodes for the search tree. To
address this issue, the idea behind our approach is to se-
lect a proper subspace inside the configuration space to
facilitate the search to address the body motion planning
and foot motion planning in a coupled manner. To plan
the robot trajectory to navigate through permeable obsta-
cles, we characterize the environment to account for the
obstacle and the terrain. This characterization helps to 1)
reduce the size of the configuration space and 2) plan foot
holds for the robot. In addition, the planner utilizes infor-
mation such as the gait schedule and constraints from the
control framework to 1) reduce the size of sampling space
and 2) impose proper constraints so that the controller is
able to execute the planned motion.

3.2 Perception

An obstacle can be considered permeable if there are
one or more openings on the obstacle, which allows the
robot to move through, for example, the space under a
low desk, an opening on a wall, etc. However, con-
ventional perception/mapping algorithms typically ignore
such confined openings and treat the entire structure as
one impassable obstacle. Therefore, we develop obstacle
parameterization to extract useful information from the
environment point cloud. We also extract a 2.5D height
map [61] of the terrain and a voxel map of the obstacle.

The 2.5D height map outputs the terrain height given
x and y coordinates, which the planner then utilizes to
impose contact constraints when planning for foot place-
ment. To generate the height map, we selected all points
with at most 0.2m height from the ground because the
robot can’t lift its feet higher than this limit. Then the seg-
mented environment pointcloud is discretized into square
cells with a length of 1 cm. The terrain height map is gen-
erated based on the z-height of each corresponding grid
cell. In the presence of a height constraint, as in Fig.
and Fig. the terrain height map can extract the terrain
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Fig. 2. Block diagram of the proposed planning framework.

information beneath the height limit for footholds selec-
tion. The voxel map of the obstacle serves as the collision
model of the obstacle while providing data for a feature
extraction that will be described below. It is extracted
from the pointcloud of the obstacle and used for collision
check.

Since the sampling-based itself cannot guarantee that
solution exists to support the planning algorithm, we de-
velop a feature extraction algorithm to extract parame-
ters of the obstacle for the planner to (1) decide whether
the obstacle is permeable and (2) adopt a proper biasing
scheme to improve the efficiency of the algorithm. We
utilized the voxel map of the obstacle and sliced it into
multiple vertical planes with the body x-axis of the robot’s
initial configuration as plane normal to extract critical fea-
tures of the obstacle opening, such as the width clearance
and height clearance for each plane. These planes are 1
cm apart to discretize the permeable obstacle. After slic-
ing, the opening in the obstacle is projected onto each
sliced plane so that the algorithm uses edge detection to
find the boundary of the opening and extract the height
and width clearance of each slice. From the collection
of slices, the algorithm is able to determine the minimum
height and width clearance h,, 4., Wia. of any arbitrar-
ily shaped opening. Based on the minimum height and
width of the robot Hyqy, Whady, the planner will decide

whether the robot can go through the obstacle. For ex-
ample, suppose the obstacle clearance is smaller than the
minimum dimension of the robot. In that case, the planner
won’t proceed and will instead switch to a conventional
path planning algorithm to find an alternative path for the
robot to travel.

3.3 Planning

This section presents our sampling-based plan-
ning algorithm that exploits all feasible motions of a
quadruped robot by simultaneously planning for the Cen-
ter of mass (COM) position, base orientation, and foot
motion. The planning algorithm also needs to consider
gait constraints, collision-free constraints, and stability
constraints.

For the execution of the planned trajectory, we also
incorporate safety margin in certain constraints to account
for model difference between the real robot and the math-
ematical model used for planning, along with the control
accuracy.

Due to the complexity of the problem, applying a
uniform-sampling based approach will imply a signifi-
cant solving time, limiting the framework from real-time
applications. Therefore, to speed up the search, our ap-
proach also uses a biasing scheme for sampling based
on the parameterization of the obstacle. We also imple-
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Fig. 3. Sampling Space Overview. Sampling space of the
robot. The Voxel grid represents the obstacle along with a 2.5D
ground height map. Rc o represents COM position sampling
space; R, represents swing foot (red color) sampling space;
R0, Rpiten, Ryaw represents the orientation sampling space
of the robot body. The support polygon is defined based on
the stance feet (blue color) and [ represents the safety margin
needed for the support polygon to ensure stability.

mented a shortcut heuristic to smooth the planned COM
and foot trajectories for execution. Details about these
developments in our planning framework are presented
as follows.

3.3.1 State Representation

A typical representation of the robot’s state consists
of the COM position, base orientation, and all the joint
angles g. We can also represent the robot state with the
base states (position and orientation) and all the foot po-
sitions in the world frame. Although we can map be-
tween them with forward or inverse kinematics, it is hard
to apply certain constraints with the joint angle represen-
tation. For the foot position representation, the range of
foot position and biasing are always constant in the world
frame, so we can easily sample the foot position within
the range. However, due to the body motion, these con-
straints are time-varying if we sample with the joint angle
representation. It’s also hard to apply the contact con-
straints with the joint angle representation. For example,
when the robot’s foot stays on the ground, its position in
the world frame won’t change, but this leg’s joint angles
will vary due to the robot’s base motion. For stance legs,
the foot position representation doesn’t need to change as
the contact foot remains at the same location in the world
frame. In contrast, the joint angle representation needs
to be re-sampled because the base motion would change
the joint configurations, and there is no guarantee that the
foot is still in contact with the ground in the new configu-
ration. On the other hand, when the foot is switching from
swing to stance, with the foot position representation, we

only need to set the z-height of the foot to ground height,
while it’s still hard to apply the contact condition with the
joint angle representation. Therefore, it is more straight-
forward and convenient to sample the foot locations in the
world frame directly, and such representation helps us to
apply biasing schemes, range of motion constraints, and
contact constraints for the sampling.

Therefore, the algorithm defines the robot state as
discrete-time variables including center of mass (COM)
position, base orientation, and foot positions for the four

legs denoted as x; = (Peoonr, Oconr, Py, )T, where
Pooy € B? represents the center of mass (COM) posi-
tion, @coar € R3 is the Euler angle representation of the
base orientation, and Py, € R!? represents the position
of the robot’s four feet, all in the world frame. This state
representation is sufficient to characterize any configura-
tion for the robot in a 3D space. It can also be used to
derive the 12 joint angles ¢, and foot positions w.r.t the
hip frame Pjﬁm, which are used to ensure kinematic con-
straints and generate the collision model.

Legged motion requires a distinction between swing
and stance phases. While legs during stance exert forces
to the environment, legs during swing don’t interact with
the environment. Specifically, there is no need to sam-
ple stance foot positions due to the contact constraints,
and only the swing foot positions are needed to be con-
sidered in the search. Therefore, the benefits of this state
representation are the simplification in enforcing different
contact modes or gaits while at the same time reducing the
dimension of the search space.

The sampled state is derived
robot state, and denoted as

from the
T Sample -
(Peor, ®conts Péiuingroo) > Whete Pl o, €
R*", with n being the number of the swing leg at the
instance of sampling. Therefore, to specify if aleg isin a
swing or stance phase, we also need gait parameterization
in our planning framework.

3.3.2  Informed Sampling-based Search

This framework uses an informed sampling-based
search approach to search for feasible motion towards the
goal state while accounting for contact and stability con-
straints and collision avoidance. In brief, we utilize the
robot’s gait constraint (explained in Sec. to reduce
the dimension of the sampling space. We then employ a
biasing scheme based on obstacle parameters and grow
the search tree from existing nodes in the tree to ensure
the gait constraint.

As mentioned in Section the perception algo-
rithm extracts the obstacle clearance and compares it
with the minimum dimensions of the robot. Therefore,



we assume there are such configurations that the robot
can traverse the obstacle given enough clearance. The
sampling function accounts for the contact constraints
and the biasing scheme to generate possible configura-
tions. A feasibility check (explained in Sec. is
then performed to ensure the sampled configurations sat-
isfy other constraints such as kinematic and collision-free
constraints(explained in Sec. [3.3.4).

A proper biasing scheme can facilitate the sampling-
based search because a smaller search space can avoid
more infeasible configurations to be sampled. The default
biasing scheme presented in Table[I]can still be useful to
deal with simpler obstacles (i.e., a single step or a height
limit).

Incorporating the biasing scheme improves the solv-
ing time of the planning algorithm significantly for com-
plex obstacles. Details about this improvement will be
discussed in Section[4]

Based on the minimum clearance of the obstacle
himazs Wmae and the dimension of the robot Lyody, Whody

our adaptive basing scheme extracts the sampling
space for the roll, pitch, y, and z as follows:

(n
Otimit = sin~ " (hmax/ Lvody)
Gimir = S0~ (Winaz /Wody )
Yiimit = Wimaz — WhodySin()]

Zlimit = hmam

These limits represent the sampling space for the
robot and the algorithm employs this informed-sampling
scheme instead of the default biasing scheme in Table
to facilitate the search algorithm.Therefore, we have
pitch sampling space 8 € [—0jmit, Oimit], pitch sam-
pling space ¢ € [~uimit drimir]s y sampling space
Pcomy € [~Yiimit, Yimit) and z sampling space
Pcon,: € (0.1, Z4mie). Based on these schemes and
constraints, the algorithm creates a search tree that grows
from the initial node to the goal state as presented in Al-
gorithm |1} Unlike typical sampling-based searches, our
algorithm enforces the gait constraint so that the sampling
can only be done in the vicinity of the robot’s current po-
sition and grow gradually toward the goal state. Thanks
to this nature, the algorithm doesn’t have to grow from
every node greedily but from nodes with zero degrees in
the tree (i.e., nodes closer to the goal but have no child
node) to search for the next feasible configuration of the
robot.

Algorithm 1 Search Algorithm

T < tree(Ninit)
Set Biasing Scheme
while ! Path Found do
for i = 1 to size(T) do
if Depth(T'[4]) > criteria then
Npew = Sample(T[i])
end if
if check_feasibility(/N n e, ) then
T.addNode(N N ew)
Update criteria /* if degree of the tree increments*/
end if
if || Noew — Ngoatl| < pmaz then
PathFound = true
break
end if
end for
end while
PATH = T.Traceback()
return SmoothPath(PATH)

Algorithm |2| explains the sampling function based
on the sampling space presented in Fig. The algo-
rithm samples the quadruped robot configuration in its
workspace, where it can reach with one footstep while
obeying constraints of gait, contact, and stability. Given
the gait parameterization, the algorithm doesn’t have to
plan for contact sequence but plan the entire motion step
by step based on the gait parameterization, which incre-
ments every node.

When the swing foot switches from swing to stance,
the sampling function enforces contact constraints based
on the terrain information to ensure that the swing foot
will land on the ground.

Algorithm 2 Sample(N;y, )

Input: Parent Node Ny put
PSon = PEom,input + Prana *in world frame*/

new = Orand
Increment gait parameter and find swing leg ID
fori: 1 —4do
if Swing Leg then
w _ puw
Swingfoot — L Swingfoot,input
if Enforce Contact then

+ R(Onew)P]

rand
w = .
I‘DSwingfoot,z = Zterrain
end if
else if Stance leg then

_ pinput
Pstancefoot = P,

Stancefoot
end if
end for
Nuew < P80 ©, PSuwingfoots PStance foot
Update g
Update P}foot

UpdateCollisionModel
return N, eqp

3.3.3  Gait Parameterization for Contact Sequence
Gait schedule is commonly used for quadruped robot
locomotion control [11], which can effectively achieve



Table 1. Default Biasing Scheme

Parameter Value Parameter Value Parameter Value

Peoriz | [-0.05,0.2)m roll(¢) +0.5rad | Pswingfoot.x [0,0.2]m

Peowry +0.1m pitch(6) | £0.5rad | Pswingfoot.y +0.1m

Poonr.» [0.1,0.3]m yaw(p) | £0.5rad | Psyingfoor,. | [—0.3,—0.1]m
a wide range of dynamic motion. A predefined gait se- t=t, £ = toyere
quence also helps to reduce the complexity of the plan- ’ t
ning framework significantly. Therefore, our work lever- PR [ s | Stance ]
ages the methodology of using a fixed gait schedule in FL | [ | J
legged robot control. RR | | | |

Instead of planning for a gait sequence, we leverage RL | I |

the periodic gait schedule commonly used for quadruped Gaip ——L—1L L1 11111
robot control. Our planner can adapt to any kind of gaits St;les 0 n

such as trotting, bounding, and galloping. When plan-
ning the robot to go through a permeable obstacle, a static
walking gait is selected so that the robot can slowly lever-
age its whole-body motion to pass through confined open-
ings.

Based on the gait schedule, the planning framework
will perform sampling for swing legs only and keep
stance legs at the same position during the stance phase.
To extract both the contact switching and the swing trajec-
tory of each foot, our approach discretizes the gait sched-
ule as presented in Fig. The algorithm specifies one
time/phase-based gait cycle into n + 1 time-independent
state variables, which represent contact states for the
robot legs at those instances. As the gait schedule iterates
over time, the gait variable increments with the growth
of the search tree (mentioned in Section|3.3.2), and sim-
ilar to the gait cycle, it repeats itself when one gait cycle
finishes.

The gait parameterization is embedded with the state
representation so that the planner can switch each leg be-
tween stance and swing with the growth of the search tree.
We can formulate the primary node for the search tree for
our sampling-based approach based on the state and gait
parameterization.

3.3.4 Collision Model

The collision model is critical to ensure safety. Go-
ing through a confined space requires an accurate col-
lision model that doesn’t enforce conservative assump-
tions. However, the complexity of the collision model
also affects the computational time of the planning frame-
work. In addition, the obstacle is represented by a voxel
map which consists of hundreds or thousands of small
collision spheres. Therefore, the robot’s collision model

Fig. 4. Gait Parameterization. Parametrize a static walk-
ing gait into . + 1 time-independent state variables, which cor-
responds to a specific contact state defined by the gait schedule.
must account for all its links while minimizing the num-
ber of collision boxes to facilitate the collision check.
From the state representation, the planner generates the
corresponding collision model for the robot as presented
in Fig. For fast computing, we utilize a spherical rep-
resentation of every link of the robot based on the di-
mension of each link. This collision model accurately
represents the robot’s state without making any conserva-
tive assumption that may restrict feasible motions. Mean-
while, the collision model should have the flexibility to
account for foot placement onto the obstacle. There-
fore, our collision model removes the collision sphere for
the stance feet while including a collision sphere for the
swing feet to ensure collision avoidance. The collision
model has to account for foot contacts to allow the robot
to step on the obstacle.

3.3.5 Foothold Selection & Obstacle negotiation

The foothold selection has to account for two aspects
of the problem: 1) Obstacle negotiation and 2) stability
constraint. While some motion planning frameworks de-
terministically select foothold selection, our planner sam-
ples the swing foot position and the base position and
orientation with the biasing scheme that drives the robot
to move forward. As long as the sampled configuration
is feasible in terms of kinematic, stability, and collision
constraints, the footholds are determined for the sampled
configuration without using any heuristic or other opti-
mization techniques. Each swing foot will be sampled



for 2 configurations before it switches to stance. When
the foot is in air, it doesn’t affect the robot’s motion be-
cause it has no contact force, while our algorithm makes
sure it is collision-free. The foothold selection happens
when the swing foot switches from swing to stance. The
planner still samples the swing foot position while en-
forcing the contact constraint by forcing the z-position
of the foot as the ground height. This allows the foot
to swing forward or backward and land on the ground.
Thanks to the 2.5D height map the framework obtained
from the environment, the planner already accounts for
any complex terrain, so it only needs to force the swing
foot onto the ground and then check the feasibility of that
specific configuration. Intuitively, the robot should be
able to either step on or step over some obstacles. As pre-
sented in Fig.|2| the height map is used only during sam-
pling for foot placement while the voxel grid is only used
for feasibility check. In other words, the footholds are
selected when sampling each node without considering
the collision-free constraints. Since our planner utilizes
the terrain height map, the footholds are sampled along
with the base configuration according to the contact con-
straints. So, there can be configurations that satisfy the
contact constraints but violating other constraints such as
kinematic constraints or collision-free constraints. There-
fore, we can set the unreachable region in the heightmap
to null, so that the sampled configuration won’t be feasi-
ble for kinematics constraints if the foothold is sampled in
this region. On the other hand, when contact is enforced
at a feasible location and satisfy kinematic constraints, the
configuration is feasible as long as it can pass the collision
check.

3.3.6  Feasibility Check

The algorithm performs a linear interpolation first for
the input node and its parent to ensure feasible motion and
safety. It makes sure the sampled node is feasible, and the
path from its parent to the node is feasible. The function
checks the robot’s kinematic constraints for every inter-
polated node, such as joint limits and foot motion limits.
It also guarantees that the COM position always lies in
the support polygon to maintain balance for the robot. In
addition, this function performs collision checks for the
robot and obstacles to ensure safety.

3.3.7 Path Smoothing & Safety Margin

To execute the planned path with our controller, di-
rectly applying the resulting path from the sampling-
based search algorithm is not adequate. Therefore, a basic
shortcut heuristic [62] is implemented to remove unnec-
essary motions in the trajectory. In addition, the shortcut

algorithm accounts for the contacts while removing un-
necessary motion for both the body and the foot. Due
to the difference in the robot model between the plan-
ning framework and simulation/experiment, we also im-
plemented safety margins by enforcing slightly more con-
servative stability constraints and collision models. For
the support polygon, we added an offset [ as presented in
Fig.[3]so that the COM always lies in the shrunken support
polygon. We’ve also added small offsets of the obstacle
and robot collision model to ensure the safety of the entire
motion.

3.4 Control

In this Section, we present our proposed control
framework used to execute the trajectory generated by
the planner. The goal of the controller is to guarantee
tracking performance for the robot’s body and foot trajec-
tories while keeping the robot balanced. Therefore, we
utilize the combination between force-based control and
Cartesian PD control to enforce these objectives in our
approach. Our control architecture consists of modules as
shown in Fig. 2| including high-level controller, low-level
controller, state estimation, and gait scheduler. The gait
scheduler sets up gait timing to switch each leg between
swing and stance along with the reference trajectory. The
high-level controller switch between different control al-
gorithms for swing and stance legs based on the planned
trajectory and gait timing. The low-level leg control con-
verts command generated by high-level control into joint
torques and sends them to the robot.

While a leg is in swing, Cartesian PD control is
used to track the desired swing foot trajectory. Stance
control leverages the combination between the QP force
control [2] and Cartesian PD control. The force-based
balancing controller is formulated as a quadratic pro-
gram (QP) based on a simplified centroidal dynamics of
the robot [6} |63]. This model implies a linear relation-
ship between the linear acceleration p., angular accel-
eration wy of the robot body, and the foot forces F' =
(FT, Ff FT FI)T acting on each of the robot foot.
The linear model is derived as:

[p1—pc]><--.[p4—pc]><}F_[ Icw, | @
A b

where m and I 4 are the robot’s total mass and rotational
inertia, g is the gravity vector and p;,i € {1,2,3,4} are
the positions of the feet. The term [p, — p,] % is the skew-
symmetric matrix representing the cross product (p; —
p.) x Fi.



Then, the controller is able to drive the approximate
dynamics to the corresponding desired dynamics. The
QP-based controller can also enforce essential physical
constraints such as input saturation, contact constraints
and the friction constraints. Since the model is linear,
the controller can be solved by quadratic program (QP)
[64] in real-time of 1 kH z.

On the other hand, the framework also requires track-
ing for foot position. Therefore, a Cartesian PD controller
for foot position is used to compute joint torques to track
the desired position for each foot:

T = JT[Kp,p(pd - P) + Kd,p(vd - U)L (3)

where J is the leg Jacobian, p; and v, are desired foot
position and velocity in hip frame, p and v are actual foot
position and velocity in hip frame, K, ,, and K , are the
diagonal matrices of the proportional and derivative gains
for foot position in Cartesian coordinate.

4 RESULTS AND DISCUSSION

In this work, we used the Unitree Al robot to val-
idate our approach. To validate our approach, we for-
mulated several test cases of permeable obstacles with
width/height constraints and complex terrains at the ob-
stacle. First, we use three simple cases to compare dif-
ferent control approaches, safety margin, and obstacle
negotiation: 1) flat ground, 2) 5-cm step, and 3) 10-cm
step. Then, we validate our approach on three more com-
plex cases. We formulated a 30-cm width limitation, the
robot’s nominal stance width, for case 1. Then we com-
bined width and height constraints along with discrete ter-
rain for case 2, a narrow window with 20-cm minimum
clearance in height and 36-cm clearance in width, along
with discrete 10-cm step. Finally, we formulated an arbi-
trarily shaped opening with more complex terrain for case
3, a small opening with an arbitrary shape combined with
discrete sloped terrain.

4.1 Simulation

In simulation, we successfully validated our planning
and control approaches and implemented our approach
for our test cases as presented in Fig.[6] and our support
video and our test video. To emphasize the contribution
of our approach, we present the following comparisons.

4.1.1 Control Scheme
To illustrate the effectiveness of the proposed control
approach as described in Section we compare here

Fig. 5. Robot Model. The Unitree A1 robot and its corre-
sponding collision Model. The red frame indicates the body frame
of the robot while the blue frame represents the hip frame of the
front left leg of the robot

different control schemes in executing the planned trajec-
tory: (1) joint PD control, (2) foot Cartesian PD control,
and (3) QP controller combined with Cartesian PD con-
trol. In simulation, control schemes (1) and (2) fail to bal-
ance the robot on flat ground after a few steps, while our
proposed control scheme (3) works to track both the COM
and foot motion. Since the joint PD control and Cartesian
PD control do not consider the COM position and body
orientation, they fail to balance the robot. Our proposed
controller uses force-based balancing control, which con-
siders feedback control in the body position and orienta-
tion. Therefore, the controller can ensure the execution of
the planned trajectory.

4.1.2 Safety Margin

As discussed above, due to model difference and un-
deractuation, it is challenging for the controller to achieve
high accuracy in realizing the planned trajectory on the
robot. Therefore, to guarantee the satisfaction of stabil-
ity and collision-free constraints, we consider the control
accuracy by adding safety margins within the planning
framework. Here, we compare the performance with and
without using the safety margin presented in Table[2] We
planned 10 trajectories for each case and executed them
in the simulation to compare the success rate. We use
the same controller setup to compare the performance of
applying safety margins for support polygon and colli-
sion check. For flat ground, the controller fails to balance
the robot 5 out of 10 trajectories without the margin for
support polygon, while it can achieve 100% success rate
with safety margins in the planning. The safety margin
becomes very important when the robot is planned to step
on or step over the obstacle. For the 5-cm and 10-cm step
cases, the front or rear legs collide with the obstacle or
fail to step onto the obstacle without safety margins. Such
issues in the execution are resolved with a proper safety



(a) Case 1

(b) Case 2

(c) Case 3

Fig. 6. Simulation Result Highlight. The planning framework deals with: Case 1) 30 — cm width limit; Case 2) Combined
height & width limit along with discrete terrain; Case 3) Irregularly shaped opening with discrete sloped terrain.

(c) Case 3

Fig. 7. Experiment Result Highlight. The planning framework deals with: Case 1) 30 — ¢m width limit; Case 2) Combined
height & width limit along with discrete terrain; Case 3) Irregularly shaped opening with discrete sloped terrain.

margin, and we can achieve a 100% success rate for these 4.1.3 Obstacle Negotiation
simulation cases.

Since the planner has the flexibility of deciding
whether to step on the obstacle, We also validated our
approach with different obstacle sizes as presented in Ta-
ble|3| For a small obstacle, the planner can either force



Table 2. Success rate of applying safety margin in Simulation

w/o Safety Margin | w/ Safety Margin
Flat Ground 5/10 10/10
Scm Step 4/10 10/10
10cm Step 0/10 10/10

the robot to step over the obstacle or allow it to step on
the obstacle. With larger and higher obstacles that do not
allow the robot to step over, the planning approach auto-
matically enforces a solution that asks the robot to step
onto the obstacle.

4.1.4 Biasing Scheme

First, we validated our biasing scheme by compar-
ing the computation time required for the planning. The
planning algorithm was run with an AMD Ryzen9 5900X
CPU for all cases 30 times with default biasing and
obstacle-based biasing. As presented in Table [4] are the
runtime results, and we compare the performance with
and without using the proposed biasing scheme based on
the obstacle feature. Although the runtime varies for dif-
ferent cases, our proposed biasing scheme significantly
improves the runtime for the planning. Case 1 takes a
longer runtime because finding a stable configuration is
harder than other cases when the robot has a large roll an-
gle. Every planned trajectory includes more than 20 steps
so that the runtime is less than 1 second per step for most
cases.

4.2 Experiments on Physical Platform

As shown in the support video, the robot would fail in
the simulation without proper control scheme and safety
margin. Therefore, we only tried with our proposed con-
trol scheme and safety margin to avoid damage to our
hardware. With our proposed method, we validated our
approach on hardware in terms of obstacle negotiation
and biasing scheme. We replicate the test cases we have in
simulation in real life as presented in Fig.|7| As presented
in Table[5] we planned 10 different trajectories with our
framework and tested them in simulation and robot hard-
ware. The average time it takes for the robot to traverse
the 3 test cases is approximately 20 seconds because the
initial and final positions are set in the same position for
all 3 cases. We keep the same control parameters for our
experiments. We have a smaller success rate in hardware
experiments as the robot’s feet would be stuck at the ob-
stacle with discrete steps. The reason is that we only use
the Kalman filter for robot state estimation based on the

IMU reading and all joint encoders, which inevitably has
some drift as it runs. The inaccurate state estimation re-
sults in errors in 1) the COM trajectory tracking and 2) the
foot position tracking. Since we convert from the world
frame to the hip frame to control the foot position based
on , the foot position estimation is critical for the con-
troller to track the desired trajectory. Therefore, the ex-
periment for case 1 has a higher success rate because the
robot doesn’t need to step on the obstacle. However, when
the robot is planned to step on the obstacle, as in case 2
and case 3,

the drift in the state estimation would result in inac-
curate foot trajectory commands and tracking, which of-
ten leads to failure to step on the obstacle. By integrating
better state estimation, we can minimize this error so that
the controller can track the desired base and foot trajecto-
ries with higher accuracy.

5 CONCLUSIONS

In this paper, we presented a novel context-based in-
formed sampling-based approach for legged robots while
integrating planning and control. We demonstrated its
capability to simultaneously plan for robot COM and
foot motions to traverse a complex permeable obstacle.
We use a context-based biasing scheme to accelerate the
search significantly. Such scheme allows the planner to
explore feasible motion towards the final goal more ef-
ficiently. We successfully execute the planned trajectory
with appropriate safety margins with the proposed con-
trol approach of combining force-based balance control
and Cartesian control. With the proposed framework, the
robot is able to traverse complex permeable obstacles.

Given the promising results of this framework, there
are several directions of investigation to be pursued.
While our method formulates a solution to the motion
planning for legged robots, the framework will need to
be further developed for online planning and execution
by improving the sampling efficiency because the cur-
rent sampling scheme still suffers from low sampling effi-
ciency. Although the framework is able to deal with more
complex environment data from the perception algorithm,
the low sampling efficiency limits its performance to deal
with such kind of scenarios. Also, we will utilize better
localization with lidar or vision to improve the tracking
performance of the controller as the current framework
only uses Kalman filter for state estimation. To handle
errors in the execution, we will incorporate reactive plan-
ning to make the entire motion more robust and then we
can extend the framework for more complex obstacles,
terrains, and more dynamic movements.



Table 3. Comparison of Different Obstacle negotiation strategies in Simulation
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10cm 15¢m Yes 5/5 1.79s
10cm 15em No N/A N/A
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