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Legged robots have a unique capability of traversing
rough terrains and negotiating cluttered environments.
Recent control development of legged robots has en-
abled robust locomotion on rough terrains. However,
such approaches mainly focus on maintaining balance
for the robot body. In this work, we are interested in
leveraging the whole body of the robot to pass through
a permeable obstacle (e.g., a small confined opening)
with height, width, and terrain constraints. This paper
presents a planning framework for legged robots manip-
ulating its body and legs to perform collision-free loco-
motion through a permeable obstacle. The planner in-
corporates quadrupedal gait constraint, biasing scheme,
and safety margin for the simultaneous body and foothold
motion planning. We perform informed sampling for the
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body poses and swing foot position based on the gait
constraint while ensuring stability and collision avoid-
ance. The footholds are planned based on the terrain
and the contact constraint. We also integrate the plan-
ner with robot control to execute the planned trajectory
successfully. We validated our approach in high-fidelity
simulation and hardware experiments on the Unitree A1
robot navigating through different representative perme-
able obstacles.

1 INTRODUCTION
Legged robots have been highlighted as promising

machines for locomotion over complex terrains [1, 2, 3,
4, 5, 6, 7, 8, 9]. Quadruped robots, in particular, are
proven to serve as a multipurpose robot platform that can
be easily adapted to suit all challenging environments.
They are superior to wheeled robots in terms of their loco-



Fig. 1. Unitree A1 robot traversing small a confined opening with
our proposed planning framework. Support video: https://
youtu.be/xpARKN_LWwk

motion performance. Moreover, the increase in mobility
of quadruped robots allows them to overcome obstacles,
such as steps and stairs, with statically and dynamically
stable gaits. Most control development for legged robots
[10, 11] focuses on robust locomotion on rough terrains.
However, many situations require machines to go through
a small opening on a damaged surface or collapsed build-
ing due to an earthquake. This challenge requires de-
velopments for locomotion control and motion planning
for the entire robot body to allow the robot to navigate
through confined spaces.

In this paper, we seek to address the problem of
quadruped robots negotiating permeable obstacles (e.g.,
an irregular-shaped opening in the wall). These obstacles
are commonplace in search rescue missions, and rescue
dogs are often trained for such scenarios. However, when
legged robots encounter this kind of obstacle, common
motion planning approaches would ignore such possibil-
ity of the robot going through a confined opening but treat
it as an obstacle to avoid. This would mean that a portion
of a building might become inaccessible to the robot in a
time-critical context. Therefore, We present a sampling-
based motion planning framework for the legged robot
to leverage its entire body to negotiate permeable obsta-
cles, such as an irregular-shaped hole on a wall surface.
We specifically address permeable obstacles with height,
width, and terrain constraints, requiring the robot to plan
a short path to traverse through the opening.

Our approach samples the 6D body pose and foot
placement for every walking step simultaneously, uti-
lizing the full-body motion of the robot to go through
a confined obstacle while obeying kinematic, stability,
collision-free and contact constraints.

The framework also accounts for the model dif-
ference between planning and execution by introducing
safety margin to the planner. This is a general approach
that can adapt to any quadruped robot model, and we val-
idated our framework on the Unitree A1 robot in high-
fidelity simulation and hardware experiments.

The main contributions of the paper are as follows:

1. We proposed a motion planning framework for
legged robots to negotiate permeable obstacles with
width, height, and terrain constraints by planning a
short trajectory to traverse through it. It allows simul-
taneous body and foothold motion planning based
on a preset quadrupedal walking gait while enforc-
ing kinematic and stability constraints and account-
ing for model difference with a safety margin.
2. The proposed framework utilizes the perception
data for the planner to select appropriate sample bi-
asing, which accelerates the search significantly.
3. We validated our approach on the Unitree A1 robot
using multiple scenarios.

The rest of the paper is organized as follows. Sec. 2
discusses related work. Sec. 3 presents our integrated mo-
tion planning and control framework for legged robots
navigating confined openings. Numerical and experimen-
tal validation are presented in Sec. 4.

2 RELATED WORK
There has been extensive research in the field of robot

motion planning. For example, [12, 13] utilize trajectory
optimization to ensure collision avoidance while reaching
the goal state. Sampling-based methods are also widely
used for motion planning.

Many variants of Probabilistic Roadmaps (PRMs)
[14], and Rapidly-exploring Random Trees (RRTs) have
been developed such as [15, 16, 17, 18, 19, 20, 21, 22, 23,
24, 25, 26, 27, 28, 28, 29, 30] and have sub-optimality
bounds.Sampling based methods is futher combined with
learning [31] to ensure safety and improve sampling effi-
ciency. However, for legged robots, the problem becomes
very challenging due to the complexity of the system, in-
cluding high degrees of freedom, high dimensional mod-
els due to the switching between different gaits or contact
modes.

To plan for contacts, the work by Bretl [32] points
out two fundamental issues: 1) planning path for the
base of the robot and 2) planning a sequence of con-
figurations along the path. The key issue is to handle
the computational complexity when accounting for pos-
sible contacts and potential paths simultaneously. This



work introduces an effective algorithm to handle situa-
tions such as climbing. Following this idea, many works
[33, 34, 35, 36, 37, 38, 39, 40, 41, 42] decouple these two
problems to reduce the complexity.

In these works, the robot’s base trajectory is gener-
ated independently with its foot trajectories and contact
sequences. Since each task only solves a subset of the
motion planning problem, such approaches typically are
computationally fast. However, such a hierarchical plan-
ning framework could limit the feasible motion of the
robot navigating complex terrains or openings because
the foot locations play a crucial role in specifying the fea-
sible range of the body motion and collision-induced con-
straints.

On the other hand, optimization is also commonly
used for this motion planning problem [43, 44, 45, 46, 47,
48, 46, 49, 50, 51, 52, 53], while they primarily focus on
selecting optimal footholds over rough terrain while ig-
noring collision constraints. On the other hand, trajectory
optimization can also be used to plan for both of body mo-
tion and footholds simultaneously [54, 55, 56, 57]. How-
ever, these approaches would face local-minima problems
with complex obstacles, in our case, permeable obsta-
cles with irregular-shaped openings. However, most of
these works focus on footstep planning without consid-
ering obstacles in the environment. Some recent devel-
opments also account for obstacles with height and width
constraints as presented in [58] and [59]. They all employ
a hierarchical motion planning framework that separates
the planning for footholds and body and thus would con-
straint feasible motion due to the nature of this approach.

3 APPROACH
3.1 Overview

This section presents a novel framework that inte-
grates perception, planning, and control for a quadruped
robot to negotiate permeable obstacles, which typically
consist of height limit, width limit, and complex terrain
affecting foot placement. Typical planning approaches
for mobile robots would consider almost any objects as
obstacles and try to find a feasible path to avoid these ob-
stacles. In this scenario, collision-free paths can be found
using path planning approaches [60, 31].

However, when navigating in complex and cluttered
environments, quadruped robots could encounter some
obstacles that are actually feasible for the robot to negoti-
ate and go through the obstacle (e.g., obstacles with cer-
tain heights, a low window, or a sizable hole on a broken
wall) and it only requires a short trajectory to be planned
for the robot to traverse through it. In this scenario, con-
ventional path planning approaches such as A* or RRT

can navigate the robot to approach the obstacle directly
head-on to the permeable obstacle. Then, given enough
knowledge of the obstacle and the terrain around it, we in-
troduce a framework that allows legged robots to leverage
the whole-body motion to navigate through the complex
permeable obstacles if feasible.

Fig. 2 presents the system diagram of our approach.
We first consider the problem of motion planning for the
18 DOF system. Sampling-based planning methods are
generally used for high-degree of freedom systems. Sim-
ilar to RRT, a search tree is created to grow from the
initial node to the goal. However, an approach based
on purely random sampling does not guarantee that so-
lution exists and usually requires a significant computa-
tional time when sampling nodes for the search tree. To
address this issue, the idea behind our approach is to se-
lect a proper subspace inside the configuration space to
facilitate the search to address the body motion planning
and foot motion planning in a coupled manner. To plan
the robot trajectory to navigate through permeable obsta-
cles, we characterize the environment to account for the
obstacle and the terrain. This characterization helps to 1)
reduce the size of the configuration space and 2) plan foot
holds for the robot. In addition, the planner utilizes infor-
mation such as the gait schedule and constraints from the
control framework to 1) reduce the size of sampling space
and 2) impose proper constraints so that the controller is
able to execute the planned motion.

3.2 Perception
An obstacle can be considered permeable if there are

one or more openings on the obstacle, which allows the
robot to move through, for example, the space under a
low desk, an opening on a wall, etc. However, con-
ventional perception/mapping algorithms typically ignore
such confined openings and treat the entire structure as
one impassable obstacle. Therefore, we develop obstacle
parameterization to extract useful information from the
environment point cloud. We also extract a 2.5D height
map [61] of the terrain and a voxel map of the obstacle.

The 2.5D height map outputs the terrain height given
x and y coordinates, which the planner then utilizes to
impose contact constraints when planning for foot place-
ment. To generate the height map, we selected all points
with at most 0.2m height from the ground because the
robot can’t lift its feet higher than this limit. Then the seg-
mented environment pointcloud is discretized into square
cells with a length of 1 cm. The terrain height map is gen-
erated based on the z-height of each corresponding grid
cell. In the presence of a height constraint, as in Fig. 7(b)
and Fig. 7(c), the terrain height map can extract the terrain







we assume there are such configurations that the robot
can traverse the obstacle given enough clearance. The
sampling function accounts for the contact constraints
and the biasing scheme to generate possible configura-
tions. A feasibility check (explained in Sec. 3.3.6) is
then performed to ensure the sampled configurations sat-
isfy other constraints such as kinematic and collision-free
constraints(explained in Sec. 3.3.4).

A proper biasing scheme can facilitate the sampling-
based search because a smaller search space can avoid
more infeasible configurations to be sampled. The default
biasing scheme presented in Table 1 can still be useful to
deal with simpler obstacles (i.e., a single step or a height
limit).

Incorporating the biasing scheme improves the solv-
ing time of the planning algorithm significantly for com-
plex obstacles. Details about this improvement will be
discussed in Section 4.

Based on the minimum clearance of the obstacle
hmax, wmax and the dimension of the robot Lbody,Wbody

our adaptive basing scheme extracts the sampling
space for the roll, pitch, y, and z as follows:

(1)

θlimit = sin−1(hmax/Lbody)

ϕlimit = sin−1(wmax/wbody)

ylimit = wmax − wbodysin(ϕ)]

zlimit = hmax

These limits represent the sampling space for the
robot and the algorithm employs this informed-sampling
scheme instead of the default biasing scheme in Table
1 to facilitate the search algorithm.Therefore, we have
pitch sampling space θ ∈ [−θlimit, θlimit], pitch sam-
pling space ϕ ∈ [−ϕlimit, ϕlimit], y sampling space
PCOM,y ∈ [−ylimit, ylimit] and z sampling space
PCOM,z ∈ [0.1, zlimit]. Based on these schemes and
constraints, the algorithm creates a search tree that grows
from the initial node to the goal state as presented in Al-
gorithm 1. Unlike typical sampling-based searches, our
algorithm enforces the gait constraint so that the sampling
can only be done in the vicinity of the robot’s current po-
sition and grow gradually toward the goal state. Thanks
to this nature, the algorithm doesn’t have to grow from
every node greedily but from nodes with zero degrees in
the tree (i.e., nodes closer to the goal but have no child
node) to search for the next feasible configuration of the
robot.

Algorithm 1 Search Algorithm
T ← tree(Ninit)
Set Biasing Scheme
while !PathFound do

for i = 1 to size(T) do
if Depth(T [i]) > criteria then

Nnew = Sample(T [i])
end if
if check_feasibility(NNew) then

T .addNode(NNew)
Update criteria /* if degree of the tree increments*/

end if
if ||Nnew −Ngoal|| < ρmax then

PathFound = true
break

end if
end for

end while
PATH = T.Traceback()
return SmoothPath(PATH)

Algorithm 2 explains the sampling function based
on the sampling space presented in Fig. 3. The algo-
rithm samples the quadruped robot configuration in its
workspace, where it can reach with one footstep while
obeying constraints of gait, contact, and stability. Given
the gait parameterization, the algorithm doesn’t have to
plan for contact sequence but plan the entire motion step
by step based on the gait parameterization, which incre-
ments every node.

When the swing foot switches from swing to stance,
the sampling function enforces contact constraints based
on the terrain information to ensure that the swing foot
will land on the ground.

Algorithm 2 Sample(Ninput)
Input: Parent Node Ninput

Pw
COM = Pw

COM,input + Pw
rand /*in world frame*/

Θnew = Θrand

Increment gait parameter and find swing leg ID
for i : 1− 4 do

if Swing Leg then
Pw

Swingfoot = Pw
Swingfoot,input + R(Θnew)Ph

rand
if Enforce Contact then

Pw
Swingfoot,z = zterrain

end if
else if Stance leg then

PStancefoot = P input
Stancefoot

end if
end for
Nnew ← Pw

COM ,Θ, Pw
Swingfoot, P

w
Stancefoot

Update q

Update Ph
foot

UpdateCollisionModel
return Nnew

3.3.3 Gait Parameterization for Contact Sequence
Gait schedule is commonly used for quadruped robot

locomotion control [11], which can effectively achieve





for 2 configurations before it switches to stance. When
the foot is in air, it doesn’t affect the robot’s motion be-
cause it has no contact force, while our algorithm makes
sure it is collision-free. The foothold selection happens
when the swing foot switches from swing to stance. The
planner still samples the swing foot position while en-
forcing the contact constraint by forcing the z-position
of the foot as the ground height. This allows the foot
to swing forward or backward and land on the ground.
Thanks to the 2.5D height map the framework obtained
from the environment, the planner already accounts for
any complex terrain, so it only needs to force the swing
foot onto the ground and then check the feasibility of that
specific configuration. Intuitively, the robot should be
able to either step on or step over some obstacles. As pre-
sented in Fig. 2, the height map is used only during sam-
pling for foot placement while the voxel grid is only used
for feasibility check. In other words, the footholds are
selected when sampling each node without considering
the collision-free constraints. Since our planner utilizes
the terrain height map, the footholds are sampled along
with the base configuration according to the contact con-
straints. So, there can be configurations that satisfy the
contact constraints but violating other constraints such as
kinematic constraints or collision-free constraints. There-
fore, we can set the unreachable region in the heightmap
to null, so that the sampled configuration won’t be feasi-
ble for kinematics constraints if the foothold is sampled in
this region. On the other hand, when contact is enforced
at a feasible location and satisfy kinematic constraints, the
configuration is feasible as long as it can pass the collision
check.

3.3.6 Feasibility Check
The algorithm performs a linear interpolation first for

the input node and its parent to ensure feasible motion and
safety. It makes sure the sampled node is feasible, and the
path from its parent to the node is feasible. The function
checks the robot’s kinematic constraints for every inter-
polated node, such as joint limits and foot motion limits.
It also guarantees that the COM position always lies in
the support polygon to maintain balance for the robot. In
addition, this function performs collision checks for the
robot and obstacles to ensure safety.

3.3.7 Path Smoothing & Safety Margin
To execute the planned path with our controller, di-

rectly applying the resulting path from the sampling-
based search algorithm is not adequate. Therefore, a basic
shortcut heuristic [62] is implemented to remove unnec-
essary motions in the trajectory. In addition, the shortcut

algorithm accounts for the contacts while removing un-
necessary motion for both the body and the foot. Due
to the difference in the robot model between the plan-
ning framework and simulation/experiment, we also im-
plemented safety margins by enforcing slightly more con-
servative stability constraints and collision models. For
the support polygon, we added an offset l as presented in
Fig. 3 so that the COM always lies in the shrunken support
polygon. We’ve also added small offsets of the obstacle
and robot collision model to ensure the safety of the entire
motion.

3.4 Control
In this Section, we present our proposed control

framework used to execute the trajectory generated by
the planner. The goal of the controller is to guarantee
tracking performance for the robot’s body and foot trajec-
tories while keeping the robot balanced. Therefore, we
utilize the combination between force-based control and
Cartesian PD control to enforce these objectives in our
approach. Our control architecture consists of modules as
shown in Fig. 2, including high-level controller, low-level
controller, state estimation, and gait scheduler. The gait
scheduler sets up gait timing to switch each leg between
swing and stance along with the reference trajectory. The
high-level controller switch between different control al-
gorithms for swing and stance legs based on the planned
trajectory and gait timing. The low-level leg control con-
verts command generated by high-level control into joint
torques and sends them to the robot.

While a leg is in swing, Cartesian PD control is
used to track the desired swing foot trajectory. Stance
control leverages the combination between the QP force
control [2] and Cartesian PD control. The force-based
balancing controller is formulated as a quadratic pro-
gram (QP) based on a simplified centroidal dynamics of
the robot [6, 63]. This model implies a linear relation-
ship between the linear acceleration p̈c, angular accel-
eration ω̇b of the robot body, and the foot forces F =
(F T

1 ,F
T
2 ,F

T
3 ,F

T
4 )T acting on each of the robot foot.

The linear model is derived as:[
I3 . . . I3

[p1 − pc]× . . . [p4 − pc]×

]
︸ ︷︷ ︸

A

F =

[
m(p̈c + g)

IGω̇b

]
︸ ︷︷ ︸

b

, (2)

where m and IG are the robot’s total mass and rotational
inertia, g is the gravity vector and pi, i ∈ {1, 2, 3, 4} are
the positions of the feet. The term [pi−pc]× is the skew-
symmetric matrix representing the cross product (pi −
pc)× Fi.



Then, the controller is able to drive the approximate
dynamics to the corresponding desired dynamics. The
QP-based controller can also enforce essential physical
constraints such as input saturation, contact constraints
and the friction constraints. Since the model (2) is linear,
the controller can be solved by quadratic program (QP)
[64] in real-time of 1 kHz.

On the other hand, the framework also requires track-
ing for foot position. Therefore, a Cartesian PD controller
for foot position is used to compute joint torques to track
the desired position for each foot:

τ = JT [Kp,p(pd − p) +Kd,p(vd − v)], (3)

where J is the leg Jacobian, pd and vd are desired foot
position and velocity in hip frame, p and v are actual foot
position and velocity in hip frame, Kp,p and Kd,p are the
diagonal matrices of the proportional and derivative gains
for foot position in Cartesian coordinate.

4 RESULTS AND DISCUSSION
In this work, we used the Unitree A1 robot to val-

idate our approach. To validate our approach, we for-
mulated several test cases of permeable obstacles with
width/height constraints and complex terrains at the ob-
stacle. First, we use three simple cases to compare dif-
ferent control approaches, safety margin, and obstacle
negotiation: 1) flat ground, 2) 5-cm step, and 3) 10-cm
step. Then, we validate our approach on three more com-
plex cases. We formulated a 30-cm width limitation, the
robot’s nominal stance width, for case 1. Then we com-
bined width and height constraints along with discrete ter-
rain for case 2, a narrow window with 20-cm minimum
clearance in height and 36-cm clearance in width, along
with discrete 10-cm step. Finally, we formulated an arbi-
trarily shaped opening with more complex terrain for case
3, a small opening with an arbitrary shape combined with
discrete sloped terrain.

4.1 Simulation
In simulation, we successfully validated our planning

and control approaches and implemented our approach
for our test cases as presented in Fig. 6 and our support
video and our test video. To emphasize the contribution
of our approach, we present the following comparisons.

4.1.1 Control Scheme
To illustrate the effectiveness of the proposed control

approach as described in Section 3.4, we compare here

Fig. 5. Robot Model. The Unitree A1 robot and its corre-
sponding collision Model. The red frame indicates the body frame
of the robot while the blue frame represents the hip frame of the
front left leg of the robot

different control schemes in executing the planned trajec-
tory: (1) joint PD control, (2) foot Cartesian PD control,
and (3) QP controller combined with Cartesian PD con-
trol. In simulation, control schemes (1) and (2) fail to bal-
ance the robot on flat ground after a few steps, while our
proposed control scheme (3) works to track both the COM
and foot motion. Since the joint PD control and Cartesian
PD control do not consider the COM position and body
orientation, they fail to balance the robot. Our proposed
controller uses force-based balancing control, which con-
siders feedback control in the body position and orienta-
tion. Therefore, the controller can ensure the execution of
the planned trajectory.

4.1.2 Safety Margin
As discussed above, due to model difference and un-

deractuation, it is challenging for the controller to achieve
high accuracy in realizing the planned trajectory on the
robot. Therefore, to guarantee the satisfaction of stabil-
ity and collision-free constraints, we consider the control
accuracy by adding safety margins within the planning
framework. Here, we compare the performance with and
without using the safety margin presented in Table 2. We
planned 10 trajectories for each case and executed them
in the simulation to compare the success rate. We use
the same controller setup to compare the performance of
applying safety margins for support polygon and colli-
sion check. For flat ground, the controller fails to balance
the robot 5 out of 10 trajectories without the margin for
support polygon, while it can achieve 100% success rate
with safety margins in the planning. The safety margin
becomes very important when the robot is planned to step
on or step over the obstacle. For the 5-cm and 10-cm step
cases, the front or rear legs collide with the obstacle or
fail to step onto the obstacle without safety margins. Such
issues in the execution are resolved with a proper safety




