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THE PESKIN PROBLEM WITH VISCOSITY CONTRAST

EDUARDO GARCÍA-JUÁREZ, YOICHIRO MORI AND ROBERT M. STRAIN

The Peskin problem models the dynamics of a closed elastic filament immersed in an incompressible fluid.
We consider the case when the inner and outer viscosities are possibly different. This viscosity contrast adds
further nonlocal effects to the system through the implicit nonlocal relation between the net force and the free
interface. We prove the first global well-posedness result for the Peskin problem in this setting. The result ap-
plies for medium-size initial interfaces in critical spaces and shows instant analytic smoothing. We carefully
calculate the medium-size constraint on the initial data. These results are new even without viscosity contrast.
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1. Introduction

Fluid structure interaction (FSI) problems in which an elastic structure interacts with a surrounding fluid
are found in many areas of science and engineering. Many numerical algorithms have been developed
for such problems, and the scientific computing of FSI problems continues to be a very active area of
research [Li and Ito 2006; Peskin 2002; Tryggvason et al. 2001; Richter 2017]. The Peskin problem,
considered in this paper, is arguably one of the simplest FSI problems and has been used extensively in
physical modeling as well as in the development of numerical algorithms as a prototypical test problem.

1A. Formulation. Consider the following fluid problem in R
2. A closed elastic string 0 encloses a

simply connected bounded domain �1 ⊂ R
2 filled with a Stokes fluid with viscosity µ1. The outside

region �2 = R
2\(�1 ∪0) is filled with a Stokes fluid of viscosity µ2. The equations satisfied are

µ11u−∇ p = 0 in �1, (1-1)

µ21u−∇ p = 0 in �2, (1-2)

∇ · u = 0 in R
2\0. (1-3)

Here u is the velocity field and p is the pressure.
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We must specify the interface conditions at 0. Parametrize 0 by the material or Lagrangian coordinate
θ ∈ S= R/(2πZ), and let X (θ, t) denote the coordinate position of 0 at time t . The parametrization is
in the counterclockwise direction, so that the interior region �1 is on the left-hand side of the tangent
vector ∂X/∂θ . For any quantity w defined on �1 and �2, we set

[w] = w|01 −w|02,

where w|01 and w|02 are the trace values of w at 0 evaluated from �1 (interior) and �2 (exterior) sides
of 0. Let n be the outward-pointing unit normal vector on 0:

n=−∂θX
⊥

|∂θX |
, ∂θX =

∂X

∂θ
, ∂θX

⊥ =R∂θX , R=
[

0 −1
1 0

]
,

where R is the π
2 -rotation matrix. The interface conditions are

∂X

∂t
= u(X , t), (1-4)

[u] = 0, (1-5)

[6n] = Fel|∂θX |−1, 6 =
{
µ1(∇u+ (∇u)T)− pI in �1,

µ2(∇u+ (∇u)T)− pI in �2,
(1-6)

where I is the 2×2 identity matrix. The first condition is the no-slip boundary condition and the second is
the stress balance condition, where 6 is the fluid stress and Fel is the elastic force exerted by the string 0.
We let

Fel = k0∂
2
θX , k0 > 0, (1-7)

where k0 is the elasticity constant of the string 0.
In the far field, x→∞, we impose the condition that u→0 and p→0. This completes the specification

of the Peskin problem.
Let us rewrite the above problem using boundary integral equations. Given some function F defined

on 0, we express the solution to our problem as the following single-layer potential on S= [−π, π]:

u(x, t)=
∫

S

G(x−X (η))F(η) dη, (1-8)

G(x)= 1
4π

(
− log|x|I + x⊗ x

|x|2
)
, x = (x1, x2)

T ∈ R
2, (1-9)

where G is the stokeslet, the fundamental solution of the two-dimensional Stokes problem. Additionally
for y = (y1, y2)

T ∈ R
2 we use the notation

x⊗ y =
[

x1 y1 x1 y2

x2 y1 x2 y2

]
.

We note that X and F (and other variables) depend on t , but we will often suppress this dependence to
avoid cluttered notation. We note that the single-layer potential does not have a velocity jump across the
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interface, and thus the boundary condition (1-5) is automatically satisfied. We then have

∂X

∂t
(θ)=

∫

S

G(1X )F(η) dη, (1-10)

where we use the notation

1X =X (θ)−X (η).

On the other hand, the stress interface condition (1-6) is not automatically satisfied, and this will lead
to an equation for F. Let us compute the stress associated with the single-layer expression (1-8). The
stress 6 in �2 is given by

6i j (x)= µ2

∫

S

Ti jk(x−X (η))Fk(η) dη,

with

Ti jk =− 1
π

xi x j xk

|x|4 , (1-11)

where the subscripts denote the components of the respective tensors/vectors, such as F = (F1, F2)
T, and

the summation convention is in effect for repeated indices. We refer to Chapter 2 of [Pozrikidis 1992] for
further details on the derivation of the stokeslet and the stresslet tensors. In �1, the stress is given by

6i j (x, t)= µ1

∫

S

Ti jk(x−X (η))Fk(η) dη.

Thus, the trace values of the normal stresses are given by the equations

6i j (X (θ))n j (θ)|02 = µ2

(
−1

2
Fi |∂θX |−1+ pv

∫

S

Ti jk(1X )Fk(η)n j (θ) dη

)
,

6i j (X (θ))n j (θ)|01 = µ1

(
1
2

Fi |∂θX |−1+ pv
∫

S

Ti jk(1X )Fk(η)n j (θ) dη

)
.

The stress jump condition (1-6) thus reduces to (for i = 1, 2)

Fi (θ)+ 2Aµ

∫

S

Ti jk(1X )Fk(η)∂θX
⊥
j (θ) dη = 2

µ1+µ2
Fel,i (θ),

where

Aµ =
µ2−µ1

µ1+µ2
. (1-12)

We define

Si (F,X )(θ)=−∂θX⊥j (θ)
∫

S

Ti jk(1X )Fk(η) dη.

We will frequently write it in vector notation as

F(θ)= 2AµS(F,X )(θ)+ 2Ae F̃el(θ), (1-13)

where

S(F,X )(θ)=−∂θX (θ)⊥ ·
∫

S

T (X (θ)−X (η)) · F(η) dη, (1-14)

with

F̃el =
1

k0
Fel, Ae =

k0

µ2+µ1
. (1-15)
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We point out that the above boundary integral equation has a unique solution F given Fel for sufficiently
smooth X .

The Peskin problem thus reduces to the integral equations (1-10) and (1-13) for X , where G, T , Aµ,
S, Ae, and F̃el are given by (1-9), (1-11), (1-12), (1-14), and (1-15), with Fel given by (1-7). Note also
that, when Aµ = 0, i.e., µ1 = µ2, equation (1-13) reduces to F = 2Ae Fel, and we may just work with the
single equation (1-10).

Assuming that the stationary solutions are sufficiently smooth, it can be shown by an easy calculation
that the only stationary solutions are those in which X is a uniformly parametrized circle and the velocity
field is u = 0; see Section 5.1 of [Mori et al. 2019]. Thus, all of the equilibrium configurations of (1-10)
and (1-13) are spanned by

er (θ)=
[

cos θ
sin θ

]
, et(θ)=

[
− sin θ

cos θ

]
, e1 =

[
1
0

]
, e2 =

[
0
1

]
. (1-16)

1B. Critical regularity and related results. A general guideline for seeking the most natural and largest
class of initial data for a given problem is to identify its scaling and consider a function space that is critical
(invariant) with respect to this scaling. The Peskin problem given above by (1-10) and (1-13) is invariant
under dilation, and thus to make proper sense of scaling one must first fix a reference scale. Consider the
scaling parameter λ>0. The domain scales accordingly from the torus S=[−π, π] to S/λ=[−π/λ, π/λ].
Then, we choose as the reference scale the length of uniformly parametrized circles, which we pick to be 2π .
Given the additional rotation and translation invariance of the problem, let us consider the particular choice

X∗,λ(θ)= λ−1 X∗(λθ),

where X∗(θ) = er (θ). Then, the system (1-10), (1-13) is written in terms of the difference X(θ, t) =
X (θ, t)− X∗(θ). One can check that the following dilation invariance holds: if X(θ, t) is a solution,
then Xλ(θ, t)= λ−1 X(λθ, λt) is also a solution.

More generally, if the elastic force Fel is given by (1-7), then (1-10) has an additional scaling invariance
given by Xλ,τ (θ, t)= τX(λθ, λt) and X∗,λ,τ (θ)= τX∗(λθ) for any λ, τ > 0. The stress jump condition
(1-13) then scales as Fλ,τ (θ, t)= λ2τ F(λθ, λt). This more general scaling leaves the equation invariant
with τ unrelated to λ. We note however that the chord arc condition, defined below in (1-17), is only
invariant under the dilation rescaling where τ = λ−1.

The analytical study of the Peskin problem was initiated in [Lin and Tong 2019; Mori et al. 2019],
in which the case of equal viscosity µ1 = µ2 was studied. In [Lin and Tong 2019], well-posedness was
established in X ∈ C([0, T ]; H 5/2(S)), T > 0, with initial data X 0 in H 5/2(S), whereas in [Mori et al.
2019], the solution resides in X ∈ C([0, T ];C1,α(S)), α > 0, T > 0, with initial data X 0 in h1,α(S),
α > 0 (this space is the completion of smooth functions in the C1,α norm). These spaces are subcritical
with respect to the above scaling. Indeed, in the L2 Sobolev scale, H 3/2(S) (or C([0, T ]; H 3/2(S))) is
the critical space, whereas in the scale of (Hölder) continuous functions, C1(S) (or C([0, T ];C1(S))) is
the critical scale. In this sense, the results in [Mori et al. 2019] are only barely subcritical. The semilinear
parabolic methods [Lunardi 1995] that are used in [Mori et al. 2019] rely crucially on subcriticality,
however, and do not seem to be readily extendible to the critical regularity exponent.
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In this paper, we consider the Peskin problem in which the viscosities µ1 and µ2 are not necessarily
equal. Furthermore, we establish a solution theory with initial data X 0 in the Wiener space F1,1(S), the
space of functions whose derivatives have a Fourier series that is absolutely summable (see Section 1C).
This space is critical with respect to the scaling of the Peskin problem identified above.

In contrast to [Lin and Tong 2019; Mori et al. 2019], our theory is restricted to initial data that is
sufficiently close to the stationary states, i.e., the uniformly parametrized circles. The papers [Lin and
Tong 2019; Mori et al. 2019] establish local-in-time well-posedness in their respective function spaces
subject to the following arc-chord condition on the initial data:

|X 0|∗ ≡ inf
θ,η∈S,θ ̸=η

|X 0(θ)−X 0(η)|
|θ − η| > 0. (1-17)

In this sense, our results might be better compared to the results on asymptotic stability of the uniformly
parametrized circle obtained in [Lin and Tong 2019; Mori et al. 2019]. The uniformly parametrized circle
is proved to be exponentially stable in the above L2 Sobolev and Hölder scales respectively, and in the
latter paper, it is proved that the solution is in C∞(S) for all positive time. In this paper, we improve
upon this result to prove that the solution is analytic for positive time.

Local-in-time well-posedness for initial data in F1,1 merely satisfying condition (1-17) is an open
question that we do not address in this paper. It is notable, however, that the arc-chord condition (1-17) is
invariant under the dilation scaling described above. In [Mori et al. 2019], it is shown that, if the solution
ceases to exist as t approaches t∗ <∞, then following must hold:

lim
t→t∗

ϱα(X )=∞, ϱα(X )=
∥∂θX∥Cα

|X |∗
for any α > 0.

On the other hand, if ϱα(X ) remains bounded for all time for some α > 0, then X must converge to a
uniformly parametrized circle. A similar criterion, in which the numerator of ϱα is replaced with a critical
norm such as the F1,1 norm, would be a major improvement that should lead to a better understanding of
the global-in-time dynamics of the Peskin problem.

Another extension of the Peskin problem is to consider the following elastic force in place of (1-7):

Fel = ∂θ
(
T (|∂θX |)

∂θX

|∂θX |

)
, (1-18)

where T (s) is a tension coefficient that must satisfy the structure condition T > 0 and dT /ds > 0. Note
that the above expression is reduced to (1-7) if we take T (s)= k0s, hence k0 = T (1)= dT /ds. In the
case of equal viscosity µ1 = µ2, a local-in-time well-posedness theory for initial data satisfying (1-17)
under the more general force (1-18) is established in [Rodenberg 2018] in the Hölder scale similarly to
[Mori et al. 2019], using nonlinear parabolic methods [Lunardi 1995]. It is expected that the results and
methods of this paper can be extended to this more general case.

Finally, we mention [Tong 2021] in which the author considers a regularization of the Peskin problem
inspired by the immersed boundary method, extending the techniques in [Lin and Tong 2019]. Such
studies may form the basis for numerical analysis of the Peskin problem.
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The surface tension problem, in which the interface is not elastic but only exerts a surface tension,
may be the most closely related class of problems for which there are extensive analytical studies. We
note that our problem is distinct from the surface tension problem; in contrast to an elastic interface
considered in the Peskin problem, an interface with surface tension only does not resist stretching. This
difference manifests itself in the different energy dissipation laws satisfied by the respective problems;
see Section 1.1 of [Mori et al. 2019]. We refer the reader to [Prüss and Simonett 2009; 2016; Shimizu
2009] for an extensive survey of the analytical study of the surface tension problem.

There is also an increasing number of analytical studies on fluid-structure interaction problems in
which an elastic structure interacts with a fluid, related to the Peskin problem considered here [Ambrose
and Siegel 2017; Cheng et al. 2007; Cheng and Shkoller 2010; Liu and Ambrose 2017; Muha and CaniÂc
2013; Plotnikov and Toland 2011; 2012; Li 2021; Boulakia et al. 2012]. The equations dealt with in these
studies are typically more complicated than those of the Peskin problem; the sharp results obtained for
the simpler Peskin problem should serve as a guide to what is possibly true for the more complicated
model problems.

From an analytical perspective, the Muskat problem is perhaps the closest nonlinear PDE to our
problem for which there is a large body of analytical studies. However, it models a very different physical
setting: two immiscible and incompressible fluids in a porous media governed by Darcy’s law. On the
other hand, for a nearly flat interface in the presence of gravity both problems have the same symbol
at the linear level. The authors of [Constantin et al. 2013] introduced the use of the Wiener algebra
to obtain global well-posedness results for the Muskat problem at critical regularity. Moreover, the
size restriction on the initial data was given by an explicit constant that is independent of any physical
parameter. These techniques were extended in [Constantin et al. 2016; Gancedo et al. 2019a] to deal with
the three-dimensional setting and the case of viscosity jumps, respectively. Other results for the Muskat
problem that only require medium-size initial data in critical spaces (as opposed to the more standard
arbitrarily small data condition) [Cameron 2019; 2020] rely on the maximum principle; these methods
have thus far not been shown to be well-suited to deal with viscosity contrasts.

In this paper, we will use spaces related to the Wiener algebra that allow us to perform careful and
detailed estimates on the nonlinear terms to control explicitly the size constraint on the initial data (see
Figure 1). As opposed to the Muskat problem, here the problem is not only described by the shape of
the interface: the parametrization corresponds to the distribution of material points, and thus it matters.
As a consequence, we have to develop further techniques to deal with a system of equations (for both
components of the curve). Interestingly, a careful understanding of the linear system, together with an
appropriate change of framework, allows us to decouple the frequencies associated to the projection of
the interface onto the space of equilibria from the others. Indeed, we overcome a major difficulty of the
very recent result in [Gancedo et al. 2019b] that deals with the Muskat problem for closed interfaces (i.e.,
bubbles), and obtain the global existence and uniqueness result for the Peskin problem with viscosity
contrast at critical regularity.

1C. Notation and functional spaces. We summarize here the notation and functional spaces that will be
used throughout the paper.
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For a vector x = (x1, x2)
T ∈ C

2 we define

x⊥
def=Rx, R

def=
[

0 −1
1 0

]
, R−1 =

[
0 1
−1 0

]
.

We denote the Euclidean norm as

|x| =
√

xT x̄ =
√
|x1|2+ |x2|2,

and for a matrix A = (ai j )1≤i, j≤2 we use the induced matrix norm

∥A∥ = σmax(A), (1-19)

where σmax(A) is the largest singular value of A. For a vector such as X∗ we will write X∗, j to be the
j-th component of that vector.

We now define the periodic Hilbert transform of a function f with period 2P as

H( f )(θ)
def= 1

2P
pv

∫ P

−P

f (θ − η)
tan

(
η

2P/π

) dη = 1
4P

pv
∫ P

−P

f (θ − η)− f (θ + η)
tan

(
η

2P/π

) dη. (1-20)

Unless stated otherwise, throughout the paper we will use the case P = π . In this case, we also define
the Fourier transform of a periodic function f with domain S= [−π, π] as

F( f )(k)
def= f̂ (k)= 1

2π

∫ π

−π
f (θ)e−ikθ dθ, k ∈ Z.

Further F(H( f ))(k) = −i sgn(k) f̂ (k). Then we define the operator 3 using the Fourier transform as
F(3 f )(k)

def= |k| f̂ (k). And we observe that H(∂θ f )(θ)=3 f .
We denote by f ∗ g the standard convolution of f and g. We use the iterated convolution notation

∗k f = f ∗ · · · ∗ f︸ ︷︷ ︸
k−1 convolutions of k copies of f

(1-21)

Thus for instance ∗2 f = f ∗ f .
We also use the following notation for the discrete delta function, δa(k), which is the function that is

equal to 1 when k = a and equal to 0 elsewhere. Throughout the paper we will further define

δ1,−1(k)= δ1(k)+ δ−1(k). (1-22)

We further define the high-frequency cut-off operator JM for M ≥ 0 by

ĴM X(k)
def= 1|k|≤M X̂(k), (1-23)

where 1A is the standard indicator function of the set A, so that 1A(x)= 1 if x ∈ A and 1A(x)= 0 if x /∈ A.
For two vectors X(θ),Y(θ) ∈ R

2 we define

⟨X,Y ⟩ =
∫

S

X(θ) ·Y(θ) dθ. (1-24)
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Generalizing the Wiener algebra of functions with absolutely convergent Fourier series as in [Gancedo
et al. 2019b], we further define the homogeneous Ḟ s,1

ν and nonhomogeneous F s,1
ν norms as

∥X∥
Ḟ

s,1
ν
=

∑

k∈Z\{0}
eν(t)|k||k|s |X̂(k)|, s ∈ R, (1-25)

∥X∥
F

s,1
ν
= |X̂(0)| +

∑

k∈Z\{0}
eν(t)|k||k|s |X̂(k)|, s ≥ 0, (1-26)

with

ν(t)= ν∞
t

1+ t
≥ 0, (1-27)

and ν∞ > 0 is chosen sufficiently small. Note that ν(0)= 0, ν(t) > 0 for all t > 0. Further ν ′(t)≤ ν∞
and ν(t)≤ ν∞ are bounded for all time. When ν ≡ 0, we write Ḟ

s,1
0 = Ḟ s,1 and F

s,1
0 = F s,1. These are

the main norms that we will use in this paper. Note that when s = 1, the Ḟ s,1 norm is critical for the
Peskin problem.

In this paper we write A ≲ B if A ≤ C B for some inessential constant C > 0. We also write A ≈ B if
both A ≲ B and B ≲ A hold. Throughout the paper, we will define

Ci = Ci (∥X∥Ḟ1,1
ν
)= Ci (∥X∥Ḟ1,1

ν
; ν∞) > 0, i = 1, 2, . . . , (1-28)

as functions that are increasing in ∥X∥
Ḟ

1,1
ν
≥ 0 and might depend on the analyticity constant ν∞, with

the properties that Ci (∥X∥Ḟ1,1
ν
)≈ 1 for all ν∞ ≥ 0 and lim∥X∥

Ḟ
1,1
ν
→0+ Ci (∥X∥Ḟ1,1

ν
; 0)= 1. We will also

define

Di = Di (∥X∥Ḟ1,1
ν
)= Di (∥X∥Ḟ1,1

ν
; Aµ, ν∞) > 0, i = 1, 2, . . . ,

as functions that are increasing in ∥X∥
Ḟ

1,1
ν
≥ 0 and might depend on the physical parameter Aµ and the

analyticity constant ν∞, with the properties that Di (∥X∥Ḟ1,1
ν
)≈ 1 for all Aµ ∈ (−1, 1) and all ν∞ ≥ 0,

and lim∥X∥
Ḟ

1,1
ν
→0+ Di (∥X∥Ḟ1,1

ν
; 0, 0)= 1.

1D. Main results. In this section we will state the main result of this paper: namely, that membranes
whose initial interface has critical regularity (in terms of the scaling of the problem), and that are not too
far from an equilibrium configuration, become instantaneously analytic and converge exponentially fast
to the equilibrium. Without loss of generality, we assume that the initial area enclosed by the membrane
is π . We get the result under an explicit medium-size condition for the initial deviation and for general
viscosity contrast Aµ ∈ (−1, 1).

Definition 1.1 (strong solution). Let

X ∈ C([0, T ];F1,1)∩C1((0, T ];F 0,1)

and

|X |∗(t)= inf
θ,η∈S,θ ̸=η

|X (θ, t)−X (η, t)|
|θ − η| > 0

for 0 ≤ t ≤ T. Then, X is a strong solution to the viscosity-contrast Peskin problem with initial value
X (0)=X 0 if it satisfies (1-10), (1-13) for 0< t ≤ T and X (t)→X 0 in F1,1 as t→ 0.
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Theorem 1.2 (main result). Let Aµ ∈ (−1, 1) and X 0 ∈ F1,1. Let X0,c be the projection of X 0 onto the

vector space spanned by (1-16) and X0 =X 0−X0,c; thus X0 is mean zero and X̂ 0(0)= X̂0,c(0). Assume

that initially the deviation X0 satisfies the medium-size condition

∥X0∥Ḟ1,1 < k(Aµ), (1-29)

where k(Aµ) > 0 is defined in (4-9) (see also (4-10) and Figure 1), and that the area enclosed by X 0 is π .

Then, for any T > 0, there exists a constant ν∞ > 0 such that there exists a unique global strong solution

X (t) to the system (1-10) and (1-13), which lies in the space

X ∈ C([0, T ];F1,1
ν )∩C1((0, T ];F 0,1

ν )∩ L1([0, T ]; Ḟ2,1
ν ),

with ν(t) given by (1-27). In particular, it becomes instantaneously analytic. Moreover, the following

energy inequality is satisfied for 0≤ t ≤ T :

∥X∥
Ḟ

1,1
ν
(t)+ Ae

4
C

∫ t

0
∥X∥

Ḟ
2,1
ν
(τ ) dτ ≤ ∥X0∥Ḟ1,1, (1-30)

with C = C(∥X0∥Ḟ1,1, Aµ, ν∞) > 0 defined in (4-12). In addition,

∥X∥
Ḟ

1,1
ν
(t)≤ ∥X0∥Ḟ1,1e−(Ae/4)Ct . (1-31)

The zero frequency X̂c(0) remains uniformly bounded for all times as

|X̂c(0)| ≤ |X̂0,c(0)| + C̃∥X0∥2Ḟ1,1,

with C̃ = C̃(∥X0∥Ḟ1,1, Aµ) > 0 given in (4-15), while

1− 1
2∥X∥

2
Ḟ

1,1
ν
≤ |X̂c(1)|2 ≤ 1+ 1

2∥X∥
2
Ḟ

1,1
ν
. (1-32)

We remark that the decay to zero of the deviation X in (1-31) together with (1-32) shows the exponen-
tially fast convergence to a uniformly parametrized circle with the same area as the initial one.

Remark 1.3. The size of ν∞ > 0 is limited by the size of the initial data. This can be seen in (4-7).
Because we are only interested in having any fixed but arbitrarily small ν∞ to ensure analyticity, we
stated the size condition as in (1-29).

Remark 1.4. In our results, we assume that both viscositiesµ1 andµ2 are positive and hence−1< Aµ<1.
We remark on the endpoint cases of Aµ = ±1, which formally correspond to the cases when µ1 = 0
or µ2 = 0. As can be seen from Figure 1, the allowed size of the deviation from X0 tends to 0 as
Aµ→±1, which may indicate potential difficulties in formulating a well-posed mathematical problem
for the endpoint cases. From a physical standpoint, it does not make sense to set the viscosity to 0 in
either �1 or �2, and thus a proper treatment of these endpoint cases will require a rethinking of the
physical situation under consideration. The case Aµ =−1 or µ2 = 0 may be thought of as corresponding
to the problem in which a droplet of Stokesian fluid is floating in vacuum. One significant difference
between this and the Peskin problem is that in the former problem a droplet in linear translation or rigid
rotation experiences no external forces. The force balance and continuity equations will thus have to be
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supplemented by auxiliary conditions that assure uniqueness, after which this problem is likely to be
well-posed. In the case Aµ = 1 or µ1 = 0, �1 might be considered to be vacuum. It is not clear if this
problem is well-posed. We will not pursue these issues further.

1E. Outline. The rest of the paper is structured as follows. In Section 2, we first decompose in Section 2A
the system (1-10), (1-13) into zero-order, linear, and nonlinear parts around the equilibrium configuration,
and then in Section 2B we perform the linearization of the problem and show its parabolic structure.
Section 2C shows how this structure leads to dissipation and in Section 2D we summarize the system of
equations in its final form. Section 3 contains the crucial nonlinear estimates needed to prove Theorem 1.2.
Finally, Section 4 is dedicated to the proof of Theorem 1.2 via a regularization argument and also shows
the uniqueness of the solutions.

2. Linearization around the steady state

We will linearize the system (1-9)-(1-15), with Fel given by (1-7), around a time-dependent uniformly
parametrized circle with center (c(t), d(t)) and radius R(t):

Xc(θ, t)= a(t)er (θ)+ b(t)et(θ)+ c(t)e1+ d(t)e2,

R2(t)= a2(t)+ b2(t),
(2-1)

where a(t), b(t), c(t) and d(t) are arbitrary time-dependent functions and er (θ), et(θ), e1(θ), e2(θ) are
defined in (1-16). For notational convenience, we will suppress the time dependence of the coefficients.

2A. Nonlinear expansion. We will denote by X(θ) the deviation from the circle Xc(θ) as X(θ) =
X (θ)− Xc(θ). We define further

1X
def= X(θ)− X(η)
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and

1ηX(θ)
def= X(θ)− X(η)

2 sin
(
θ−η

2

) . (2-2)

In particular, we have

1ηXc(θ)= aet

(
θ+η

2

)
− ber

(
θ+η

2

)
,

since

1ηer (θ)=
[
− sin

(
θ+η

2

)

cos
(
θ+η

2

)
]
= et

(
θ+η

2

)
,

1ηet(θ)=
[
− cos

(
θ+η

2

)

− sin
(
θ+η

2

)
]
=−er

(
θ+η

2

)
,

where we have used the trigonometric identities

sin (θ)− sin (η)= 2 sin
(
θ−η

2

)
cos

(
θ+η

2

)
,

cos (θ)− cos (η)=−2 sin
(
θ−η

2

)
sin

(
θ+η

2

)
.

Recalling (2-1) and using the identities

∂θ er (θ)= er (θ)
⊥ = et(θ),

∂θ et(θ)= et(θ)
⊥ =−er (θ),

one has
∂θXc(θ)= aet(θ)− ber (θ),

∂θXc(θ)
⊥ =−aer (θ)− bet(θ).

The trigonometric identities cos(a+ b)= cos(a) cos(b)− sin(a) sin(b) and sin(a+ b)= sin(a) cos(b)−
cos(a) sin(b) further give

er (θ) · et

(
θ+η

2

)
= sin

(
θ−η

2

)
, et(θ) · et

(
θ+η

2

)
= cos

(
θ−η

2

)
,

er (θ) · er

(
θ+η

2

)
= cos

(
θ−η

2

)
, et(θ) · er

(
θ+η

2

)
=− sin

(
θ−η

2

)
.

These calculations imply the following computations for a circle that will be used frequently throughout
the paper:

∂θXc(θ)
⊥ ·1ηXc(θ)=−R2 sin

(
θ−η

2

)
, (2-3)

∂θXc(θ) ·1ηXc(θ)= R2 cos
(
θ−η

2

)
, (2-4)

1ηXc(θ)⊗1ηXc(θ)= a2

2

[
1−cos(θ+η) −sin(θ+η)
−sin(θ+η) 1+cos(θ+η)

]

+b2

2

[
1+cos(θ+η) sin(θ+η)

sin(θ+η) 1−cos(θ+η)

]
+ab

[
sin(θ+η) −cos(θ+η)
−cos(θ+η) −sin(θ+η)

]
. (2-5)

The matrices in the last line above have been simplified using the identities sin2(a)= (1− cos(2a))/2,
cos2(a)= (1+ cos(2a))/2, and sin(2a)= 2 sin(a) cos(a).
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Next, we perform a Taylor expansion of the nonlinear terms around the a time-dependent uniformly
parametrized circle (2-1) under the assumption that |1ηX(θ)|< 1. First, we start with the magnitude of
the curve

|1X +1Xc|2 = 4R2 sin2
(
θ−η

2

)(
1+ 2

R21ηXc(θ) ·1ηX(θ)+ 1
R2 |1ηX(θ)|2

)
.

Recalling the expression for G(1X ) in (1-9), we expand each term as

log |1X +1Xc| = log
(

2R

∣∣∣sin
(
θ−η

2

)∣∣∣
)
+ 1

2
log

(
1+ 2

R21ηXc(θ) ·1ηX(θ)+ 1
R2 |1ηX(θ)|2

)

= log
(

2R

∣∣∣sin
(
θ−η

2

)∣∣∣
)
+ 1

R21ηXc(θ) ·1ηX(θ)+R1(1ηX(θ)), (2-6)

where

R1(1ηX(θ))=
∞∑

n=1

n∑

m=0
n+m≥2

(
n

m

)(−1)n−1

2n R2n
(21ηXc(θ) ·1ηX(θ))n−m |1ηX(θ)|2m . (2-7)

We expand the denominator in the second term of (1-9) as

1

|1X +1Xc|2
= 1

4R2 sin2 (
θ−η

2

)
(
1− 2

R21ηXc(θ) ·1ηX(θ)
)
+ 1

4R2 sin2 (
θ−η

2

)R2(1ηX(θ)), (2-8)

with the notation

R2(1ηX(θ))=
∞∑

n=1

n∑

m=0
n+m≥2

(
n

m

)(−1)n

R2n
(21ηXc(θ) ·1ηX(θ))n−m |1ηX(θ)|2m . (2-9)

Therefore, we can write
(1X +1Xc)⊗ (1X +1Xc)

|1X +1Xc|2
= A0+ AL + AN , (2-10)

with

A0= 1
R21ηXc(θ)⊗1ηXc(θ),

AL =− 2
R41ηXc(θ)·1ηX(θ)1ηXc(θ)⊗1ηXc(θ)+ 1

R21ηXc(θ)⊗1ηX(θ)+ 1
R21ηX(θ)⊗1ηXc(θ),

and the nonlinear term is given by

AN = 1
R21ηX(θ)⊗1ηX(θ)

(
1− 2

R21ηXc(θ) ·1ηX(θ)+R2(1ηX(θ))
)

+ 1
R21ηXc(θ)⊗1ηX(θ)

(
− 2

R21ηXc(θ) ·1ηX(θ)+R2(1ηX(θ))
)

+ 1
R21ηX(θ)⊗1ηXc(θ)

(
− 2

R21ηXc(θ) ·1ηX(θ)+R2(1ηX(θ))
)

+ 1
R21ηXc(θ)⊗1ηXc(θ)R2(1ηX(θ)).

Joining the expansions (2-6) and (2-10), we split G(1X ) in (1-9) into zero-order, linear, and nonlinear
parts in terms of X as follows:

G(1X )= G0(1ηXc(θ))+GL(1ηXc(θ),1ηX(θ))+G N (1ηXc(θ),1ηX(θ)), (2-11)
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where

G0(1ηXc(θ))= 1
4π

(
− log

(
2R

∣∣∣sin
(
θ−η

2

)∣∣∣
)

I+ 1
R21ηXc(θ)⊗1ηXc(θ)

)
, (2-12)

GL(1ηXc(θ),1ηX(θ))= 1
4πR2

(
−1ηXc(θ)·1ηX(θ)I

− 2
R21ηXc(θ)·1ηX(θ)1ηXc(θ)⊗1ηXc(θ)

+1ηXc(θ)⊗1ηX(θ)+1ηX(θ)⊗1ηXc(θ)
)
, (2-13)

G N (1ηXc(θ),1ηX(θ))=− 1
4π

R1(1ηX(θ))I

+ 1
4πR21ηX(θ)⊗1ηX(θ)

(
1− 2

R21ηXc(θ)·1ηX(θ)+R2(1ηX(θ))
)

+ 1
4πR2

(
1ηXc(θ)⊗1ηX(θ)+1ηX(θ)⊗1ηXc(θ)

)

×
(
− 2

R21ηXc(θ)·1ηX(θ)+R2(1ηX(θ))
)

+ 1
4πR21ηXc(θ)⊗1ηXc(θ)R2(1ηX(θ)). (2-14)

Consider the splitting of the solution F(θ) to (1-13) into zero-order, linear, and nonlinear parts as

F(θ)= F0(θ)+ FL(θ)+ FN (θ). (2-15)

(We will prove bounds for these terms in Section 3B.) Introducing the splittings (2-11) and (2-15) in
(1-10), we obtain

X t(θ)=O(Xc)(θ)+L(Xc, X)(θ)+N (Xc, X)(θ), (2-16)

where we recall that X (θ)= X(θ)+ Xc(θ) and we use the notation

O(Xc)(θ)=
∫

S

G0(1ηXc(θ))F0(η) dη,

L(Xc, X)(θ)=
∫

S

G0(1ηXc(θ))FL(η) dη+
∫

S

GL(1ηXc(θ),1ηX(θ))F0(η) dη,

N (Xc, X)(θ)=
∫

S

(
GL(1ηXc(θ),1ηX(θ))FL(η)+G N (1ηXc(θ),1ηX(θ))F0(η)

+G N (1ηXc(θ),1ηX(θ))FL(η)+G(X (θ)−X (η))FN (η)
)

dη.

We have thus expanded the evolution equation (1-10) distinguishing the zero-order, linear, and nonlinear
in X contributions.

2B. Linearized system. We proceed to show that the linearized system gives rise to a diffusion operator
on X . Since the linear structure is the same for any uniformly parametrized circle (see [Mori et al. 2019]),
we will use now (2-1) with a = 1, b = c = d = 0 and R = 1 to simplify the computations, and for clarity
of notation we will denote this circle by X⋆.

We will now linearize (1-10) and (1-13). We first determine F0, the value of F at the steady state:

0=O(X⋆)(θ)=
∫

S

G0(1ηX⋆(θ))F0(η) dη, (2-17)

F0(θ)− 2AµS0(F0, X⋆)(θ)= 2Ae F̃el,0(θ), (2-18)
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where

F̃el,0(θ)= ∂2
θ X⋆(θ)

and

S0(F0, X⋆)(θ)= 1
π

∫

S

∂θX⊥⋆ ·1ηX⋆(θ)1ηX⋆(θ)1ηX⋆(θ) ·
F0(η)

2 sin
(
θ−η

2

) dη.

Rewriting 1ηX⋆(θ)1ηX⋆(θ) · F0(η)=1ηX⋆(θ)⊗1ηX⋆(θ)F0(η), and recalling the computations (2-3)
and (2-5), one finds that

S0(F0, X⋆)(θ)=− 1
2π

∫

S

M(θ, η)F0(η) dη,

where from (2-5) we have

M(θ, η)=1ηX⋆(θ)⊗1ηX⋆(θ)= 1
2

[
1− cos (θ+η) − sin (θ+η)
− sin (θ+η) 1+ cos (θ+η)

]
, (2-19)

and therefore F0 is defined by

F0(θ)+
Aµ

π

∫

S

M(θ, η)F0(η) dη = 2Ae∂
2
θ X⋆(θ).

Since ∂2
θ X⋆ =−X⋆ and noting that

1
π

∫

S

M(θ, η)X⋆(η) dη =−X⋆(θ),

it is easily seen that

F0(θ)=
2Ae

1− Aµ
∂2
θ X⋆(θ). (2-20)

Now, recalling (2-12), it can be checked that (2-20) satisfies in fact (2-17):

4π

(
1− Aµ

2Ae

) ∫

S

G0(1ηX⋆(θ))F0(η) dη

=−
∫

S

log

(
2

∣∣∣∣sin

(
θ − η

2

)∣∣∣∣
)
∂2
ηX⋆(η) dη+

∫

S

M(θ, η)∂2
ηX⋆(η) dη,

so integration by parts in the first term yields (2-17).
We now proceed to compute the linear term L(X⋆, X)(θ) in (2-16). For convenience, we write it as

L(X⋆, X)(θ)=
∫

S

G0(1ηX⋆)FL(η) dη+
∫

S

(∇G(1X⋆)F0(η))1X dη, (2-21)

where G0 and G are defined in (2-12) and (1-9), respectively. To simplify the second integral above, note

∂Gi j

∂x1
(1X⋆)er, j (η)=

∂Gi1

∂x1
(1X⋆)er,1(η)+

∂Gi2

∂x1
(1X⋆)er,2(η)

= ∂Gi1

∂x1
(1X⋆)∂ηX⋆,2−

∂Gi2

∂x1
(1X⋆)∂ηX⋆,1

=−∂Gi2

∂x2
(1X⋆)∂ηX⋆,2−

∂Gi2

∂x1
(1X⋆)∂ηX⋆,1 = ∂ηGi2(1X⋆).
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Here er, j is the j-th component of the vector er etc. Further, in the third equality above, we used the fact
that the stokeslet is divergence-free:

∂Gi1

∂x1
+ ∂Gi2

∂x2
= 0.

Likewise, we have
∂Gi j

∂x2
(1X⋆)er, j (η)=−∂ηGi1(1X⋆).

We thus have
∫

S

(∇G(1X⋆)F0(η))1X dη =− 2Ae

1− Aµ

∫

S

(R−1∂ηG(X⋆(θ)− X⋆(η)))1X dη

=− 2Ae

1− Aµ

∫

S

(R−1G(X⋆(θ)− X⋆(η)))∂ηX(η) dη

= 2Ae

1− Aµ

∫

S

G(X⋆(θ)− X⋆(η))(R
−1∂ηX(η)) dη.

Since G(X⋆(θ)− X⋆(η))
def= G0(1ηX⋆), equation (2-21) simplifies to

L(X⋆, X)(θ)=
∫

S

G0(1ηX⋆)

(
FL(η)+

2Ae

1− Aµ
R−1∂ηX

)
dη. (2-22)

This is our specification of the linearized operator.
We will now determine FL as in (2-15), that is, the linear part of F in (1-13). We find

FL(θ)+
Aµ

π

∫

S

M(θ, η)FL(η) dη = 2Ae∂
2
θ X − 2Aµ(Q+ S), (2-23)

where

Qi =−
∫

S

Ti jk(1X⋆)F0,k(η)R
−1
jl ∂θ Xl(θ) dη,

Si =−
∫

S

∂Ti jk

∂xm

(1X⋆)1Xm F0,k(η)R
−1
jl ∂θ X⋆,l(θ) dη.

Let us compute Q. We start with

−Ti jk(1X⋆)F0,k =−
2Ae

1− Aµ

1X⋆,i1X⋆, j1X⋆,ker,k(η)

π |1X⋆|4
= 2Ae

1− Aµ

1X⋆,i1X⋆, j

2π |1X⋆|2
,

where we used
1X⋆ · er(η)

|1X⋆|2
=−1

2
. (2-24)

Therefore, we have

Q = Ae

1− Aµ

1
π

∫

S

1X⋆⊗1X⋆

|1X⋆|2
dηR−1∂θX(θ)

= Ae

1− Aµ

1
π

∫

S

M(θ, η) dηR−1∂θX(θ)= Ae

1− Aµ
R−1∂θX(θ),
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where we used (2-19) in the second equality. We next compute S,

−∂Ti jk

∂xm

(1X⋆)1Xm F0,k(η)R
−1
jl ∂θ X⋆,l(θ)

=− 1
π

2Ae

1− Aµ

(
1X i1X⋆, j1X⋆,ker, j (θ)er,k(η)

|1X⋆|4
)

− 2Ae/π

1− Aµ

(
1X⋆,i1X j1X⋆,ker, j (θ)er,k(η)

|1X⋆|4
+ 1X⋆,i1X⋆, j1Xker, j (θ)er,k(η)

|1X⋆|4
)

+ 8Ae/π

1− Aµ

(
1X⋆,i1X⋆, j1X⋆,ker, j (θ)er,k(η)1X⋆,m1Xm

|1X⋆|6
)

=− 1
π

2Ae

1− Aµ
I − 2Ae/π

1− Aµ
II + 8Ae/π

1− Aµ
III.

We simplify each term as follows:

I =−1
4
1X i ,

II =−1X⋆,i1X j er, j (θ)

2|1X⋆|2
+ 1X⋆,i1Xker,k(η)

2|1X⋆|2
=−1X⋆,i1X⋆, j1X j

2|1X⋆|2
,

III =−1X⋆,i1X⋆, j1X j

4|1X⋆|2
,

where above we made repeated use of (2-24) and

1X⋆ ·R−1∂θX⋆(θ)

|1X⋆|2
= 1X⋆ · er(θ)

|1X⋆|2
= 1

2
.

Thus

−∂Ti jk

∂xm

(1X⋆)1Xm F0,k(η)R
−1
jl ∂θ X⋆,l =

Ae/2π

1− Aµ

(
1X i −

21X⋆,i1X⋆, j1X j

|1X⋆|2
)
.

Substituting this back into the expression for S in (2-23), we have

S= Ae/2π

1− Aµ

∫

S

(I − 2M(θ, η))1X dη

=− Ae/2π

1− Aµ

∫

S

(I − 2M(θ, η))X(η) dη = Ae/2π

1− Aµ
(−⟨er, X⟩er+⟨et, X⟩et),

where we used (2-19) in the first equality and we are using the notation (1-24) for the inner product.
Equation (2-23) thus reduces to

FL(θ)+
Aµ

π

∫

S

M(θ, η)FL(η) dη

= 2Ae∂
2
θ X(θ)− 2Ae Aµ

1− Aµ

(
R−1∂θX(θ)+ 1

2π
(−⟨er, X⟩er(θ)+⟨et, X⟩et(θ))

)
.

We must solve the above equation for FL in terms of X . Suppose ⟨er, X⟩ = ⟨et, X⟩ = 0. Then, it is easily
checked that

FL(θ)= 2Ae∂
2
θ X(θ)− 2Ae Aµ

1− Aµ
R−1∂θX(θ). (2-25)
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We may further compute FL when X is either er or et. Noting that

M(θ, η)er(η)= 1
2(er(η)− er(θ)), M(θ, η)et(η)= 1

2(et(η)+ et(θ)),

we see by an easy calculation that

If X = er,t , then FL =−
2Ae

1− Aµ
er,t .

Note that

2Ae∂
2
θ er,t −

2Ae Aµ

1− Aµ
R−1∂θ er,t =−

2Ae

1− Aµ
er,t .

This shows that the expression for FL in (2-25) is in fact valid without the restriction ⟨er, X⟩ = ⟨et, X⟩ = 0.
Substituting (2-25) into (2-22) yields

L(X⋆, X)(θ)= 2Ae

∫

S

G0(1ηX⋆)(∂
2
ηX(η)+R−1∂ηX(η)) dη. (2-26)

Finally, since

G0(1ηX⋆)=− 1
4π

(
log

∣∣∣2 sin
(
θ−η

2

)∣∣∣
)

I +M(θ, η)

and
∫

S

M(θ, η)

(
∂2
ηX(η)+R−1∂ηX(η)

)
dη =

∫

S

(∂2
ηM(θ, η)− ∂ηM(θ, η)R−1)X(η) dη = 0,

we have

L(X⋆, X)(θ)=− Ae

2π

∫

S

log
∣∣∣2 sin

(
θ−η

2

)∣∣∣(∂2
ηX(η)+R−1∂ηX(η)) dη

=− Ae

2π

∫

S

∂ηX(η)+R−1 X(η)

2 tan
(
θ−η

2

) dη,

which is given by a Hilbert transform

L(X⋆, X)(θ)=− Ae

2
H(∂ηX(η)+R−1 X(η))(θ). (2-27)

Therefore, the system (2-16) can be written as

X t(θ)=− Ae

2
(3X(θ)+HR−1 X(θ))+N (Xc, X)(θ). (2-28)

Notice that Xc is a uniformly parametrized circle with time-dependent radius R(t), as opposed to the X∗
used in this subsection to obtain the linearization. We will use the system (2-28) to study the global-in-time
dynamics of the Peskin problem in the rest of this paper.

2C. Evolution of the Ḟ
1,1
ν norm of X. We first notice that, because X(θ) is real-valued, it must hold

that X̂(−k)= X̂(k). Therefore, the norm (1-25) can be written in terms of positive frequencies alone

∥X∥
Ḟ

1,1
ν
= 2

∑

k≥1

eν(t)kk|X̂(k)| = 2
∑

k≥1

eν(t)kk

√
X̂1 X̂1(k)+ X̂2 X̂2(k). (2-29)
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The system (2-28) in Fourier variables reads for k ≥ 0 as

X̂ t(k)=− Ae

2
L(k)X̂(k)+F(N (Xc, X))(k). (2-30)

Here we recall that X = X + Xc. Further the diffusion matrix is given by

L(k)=
[

k −i sgn(k)
i sgn(k) k

]
, k ≥ 1, L(0)=

[
0 0
0 0

]
.

The diagonalization of this matrix for k ≥ 1 shows that

L(k)= P(k)D(k)P(k)−1,

where for k ≥ 1 we have

P(k)= 1√
2

[
−i sgn(k) 1

1 −i sgn(k)

]
, P(k)−1 = P(k), D(k)=

[
k+1 0

0 k−1

]
.

And when k = 0 we define

P(0)= 1√
2

[
0 1
1 0

]
, P(0)−1 = 2P(0), D(0)=

[
0 0
0 0

]
.

This leads us to define the change of variables

Ŷ(k)
def= P(k)−1 X̂(k), Ŷc(k)

def= P(k)−1 X̂c(k), (2-31)

with Y
def= Y +Yc. The system (2-30) for k ≥ 0 then becomes

Ŷ t(k)=−
Ae

2
D(k)Ŷ(k)+ P(k)−1F(N (Xc, X))(k). (2-32)

The relationship between X and Y in space variables is given by the Hilbert transform (1-20), using also
H2(Y j )=−Y j , as follows:

X(θ)= 1√
2

[
HY1(θ)+Y2(θ)

Y1(θ)+HY2(θ)

]
, Y(θ)= 1√

2

[
−HX1(θ)+X2(θ)

X1(θ)−HX2(θ)

]
. (2-33)

Because, for k ̸= 0, P(k) is a unitary matrix, it holds that ∥P(k)∥ = ∥P(k)−1∥ = 1, and therefore

|Ŷ(k)| = |X̂(k)|, k ̸= 0,

and thus

∥X∥
Ḟ

1,1
ν
= ∥Y∥

Ḟ
1,1
ν
. (2-34)

We will use this norm equivalence several times in the following.
Notice that the first Fourier coefficient of a uniformly parametrized circle (2-1) is given by

X̂c(1)= 1
2

[
a+bi

−ia+b

]
,
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and in the Y -variable

Ŷc(1)= 1√
2

[
0

a+bi

]
. (2-35)

Note that H(cos θ) = sin θ and H(sin θ) = − cos θ . Then from the transformation (2-33) uniformly
parametrized circles (1-16) in the Y variable are spanned by

ẽr (θ)=
√

2

[
0

cos θ

]
, ẽt(θ)=

√
2

[
0

− sin θ

]
, ẽ1 = 1√

2

[
0
1

]
, ẽ2 = 1√

2

[
1
0

]
. (2-36)

Further the second component of Ŷ(1) becomes zero after the operation of D(1) is applied, which
corresponds to the fact that uniformly parametrized circles are steady states. Therefore, we will split the
curve Y(θ)= Yc(θ)+Y(θ), with

Ŷ(0)=
[

0
0

]
, Ŷ2(1)= 0,

since those frequencies are contained in the time-dependent circle (2-1). In other words, Y is the projection
of Y onto the orthogonal complement of the vector space spanned by (2-36). In fact, the system of
equations (2-32) does not provide dissipation for the zero frequency of Y nor for the second component
of its first frequency (i.e., for uniformly parametrized circles). We thus can only expect decay for Y. It is
convenient then to write the equations of those frequencies in (2-32) separately:

Ŷ t(0)= ∂t Ŷc(0)= P(0)−1F(N (Xc, X))(0),

∂t Ŷ1(1)= ∂t Ŷ1(1)=−AeŶ1(1)+
(
P(1)−1F(N (Xc, X))(1)

)
1,

∂t Ŷ2(1)= ∂t Ŷc,2(1)=
(
P(1)−1F(N (Xc, X))(1)

)
2,

Ŷ t(k)= Ŷt(k)=− Ae

2
D(k)Ŷ(k)+ P(k)−1F(N (Xc, X))(k), k ≥ 2.

(2-37)

Therefore, we study the evolution in time of ∥Y∥
Ḟ

1,1
ν

, as in (2-29), which is given by

d

dt
∥Y∥

Ḟ
1,1
ν
= d

dt

(
2

∑

k≥1

eν(t)kk

√
Ŷ1(k)Ŷ 1(k)+ Ŷ2(k)Ŷ 2(k)

)

= 2
∑

k≥1

ν ′(t)k2eν(t)k |Ŷ(k)| + 2
∑

k≥1

eν(t)kk
∂t Ŷ(k)

T Ŷ(k)+ Ŷ(k)T ∂t Ŷ(k)

2|Ŷ(k)|
,

and introducing the time derivative (2-32), with N =N (Xc, X)=N (X ), we have

d

dt
∥Y∥

Ḟ
1,1
ν
= 2

∑

k≥1

ν ′(t)k2eν(t)k |Ŷ(k)| − 2Ae

∑

k≥1

eν(t)kk
(k+ 1)|Ŷ1(k)|2+ (k− 1)|Ŷ2(k)|2

2|Ŷ(k)|

+ 2
∑

k≥1

eν(t)kk
(P(k)−1N̂ (X )(k))T Ŷ(k)+ Ŷ(k)T (P(k)−1N̂ (X )(k))

2|Ŷ(k)|
.

Noticing that for k ≥ 1 we have

−Aek
(
(k+ 1)|Ŷ1(k)|2+ (k− 1)|Ŷ2(k)|2

) 1

|Ŷ(k)|
= −Aek(k− 1)|Ŷ(k)| − 2Aek

|Ŷ1(k)|2

|Ŷ(k)|
,
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we can then see a diffusion term coming from the linear part:

d

dt
∥Y∥

Ḟ
1,1
ν
≤−Ae

∑

k≥1

eν(t)kk(k− 1)|Ŷ(k)| − 2Ae

∑

k≥1

eν(t)kk
|Ŷ1(k)|2

|Ŷ(k)|

+ 2
∑

k≥1

ν ′(t)k2eν(t)k |Ŷ(k)| + 2
∑

k≥1

eν(t)kk|(P(k)−1N̂ (X )(k))|. (2-38)

The balance above does not include the control of Ŷc. We will show in Section 4A that the evolution of
Ŷc(0), that is, of the center, can be controlled by all the other frequencies. Moreover, the incompressibility
condition (1-3) allows us to control Ŷc,2(1) as follows:

V0 = π = 1
2

∫ π

−π
X (θ)∧ ∂θX (θ) dθ = 1

2

∫ π

−π
(X1∂θX2−X2∂θX1) dθ

= 1
4

∫ π

−π

(
(HY1+Y2)(∂θY1+3Y2)− (Y1+HY2)(3Y1+ ∂θY2) dθ

)
. (2-39)

Performing the products and taking into account the equalities
∫ π

−π
HYi3Y j dθ =

∫ π

−π
Yi∂θY j dθ,

∫ π

−π
HY j∂θY j dθ =−

∫ π

−π
Y j3Y j dθ,

we obtain

π = 1
2

∫ π

−π
(Y23Y2−Y13Y1) dθ = π(Ŷ23Y2(0)− Ŷ13Y1(0))

= π
∑

k∈Z

(|k|Ŷ2(k)Ŷ2(−k)− |k|Ŷ1(k)Ŷ1(−k))

= π
∑

k∈Z

|k|
(
|Ŷc,2(k)|2+ Ŷc,2(k)Ŷ2(−k)+ Ŷ2(k)Ŷc,2(−k)+ |Ŷ2(k)|2− |Ŷ1(k)|2

)
,

where we have used that Ŷc,1(k) = 0 for k ̸= 0. We can also eliminate the terms Ŷc,2(k)Ŷ2(−k) and
Ŷ2(k)Ŷc,2(−k), since Ŷ2(1)= 0 and Ŷc,2(k)= 0 for k ̸= 0,±1. Therefore,

1
2
= a2+b2

2
+

∑

k≥1

k(|Ŷ2(k)|2− |Ŷ1(k)|2).

And so the incompressibility condition translates to the constraint

|Ŷc,2(1)|2 = a2+b2

2
= R2

2
= 1

2
−

∑

k≥1

k(|Ŷ2(k)|2− |Ŷ1(k)|2). (2-40)

Then, we can obtain an upper bound

|Ŷc,2(1)|2 ≤ 1
2
+

∑

k≥1

k(|Ŷ2(k)|2+ |Ŷ1(k)|2)= 1
2
+

∑

k≥1

(k1/2|Ŷ(k)|)2

≤ 1
2
+

(∑

k≥1

k1/2|Ŷ(k)|
)2

= 1
2
+ 1

4
∥Y∥2

Ḟ1/2,1 ≤ 1
2
+ 1

4
∥Y∥2

Ḟ1/2,1,

and analogously we find the lower bound

R2

2
= |Ŷc,2(1)|2 ≥ 1

2
− 1

4
∥Y∥2

Ḟ1/2,1 . (2-41)
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Recalling the relationship between X and Y in (2-34), we finally obtain

1
2
− 1

4
∥X∥2

Ḟ
1,1
ν
≤ |Ŷc,2(1)|2 ≤ 1

2
+ 1

4
∥X∥2

Ḟ
1,1
ν
,

and, since |Ŷc(1)|2 = R2/2= |X̂c(1)|2/2,

1− 1
2
∥X∥2

Ḟ
1,1
ν
≤ |X̂c(1)|2 ≤ 1+ 1

2
∥X∥2

Ḟ
1,1
ν
,

so using the notation R2 = a2+ b2, we have

1√
1+ 1

2∥X∥2Ḟ1,1
ν

≤ 1
R
≤ 1√

1− 1
2∥X∥2Ḟ1,1

ν

. (2-42)

The upper bound above motivates us to define

C1
def= C1(∥X∥Ḟ1,1

ν
)= 1√

1− 1
2∥X∥2Ḟ1,1

ν

. (2-43)

We will later use (2-42) to control the size of R when ∥X∥
Ḟ

1,1
ν
(t)→ 0 as t→∞.

2D. Complete system. We finally summarize the final form of the system of equations that describes our
problem. The system given by (1-10) and (1-13) for X was replaced by (2-37) on the Fourier coefficients
of the associated variable Y from (2-31). We recall that we decompose Y into a time-dependent circle Yc

plus the deviation from the circle given by Y. In other words, we decompose Y into its projection onto
the vector space spanned by (2-36) represented by Yc and its orthogonal complement represented by Y.
Therefore, recalling (2-35), we have

Ŷ(0)= 0, Ŷ2(1)= 0, Ŷc(k)= 0, k ̸= 0, 1, Ŷc,1(1)= 0. (2-44)

Now, for k = 1 and k ≥ 2 separately, we have

∂̂t Y1(1)=−AeŶ1(1)+ (P(1)−1
∧

N (Xc, X)(1))1,

∂̂t Y(k)=− Ae

2
D(k)Ŷ(k)+ P(k)−1
∧

N (Xc, X)(k),
(2-45)

where Xc and X are given in terms of Yc and Y in (2-31). In the following paragraphs, we will write one
or the other without distinction for simplicity of notation. The incompressibility condition (2-39) yielded
(2-40). Thus in particular √

1
2 −

1
4∥Y∥

2
Ḟ

1,1
ν
≤ |Ŷc,2(1)| ≤

√
1
2 +

1
4∥Y∥

2
Ḟ

1,1
ν
. (2-46)

To close the system, notice that Ŷc(0)= P(k)−1 X̂c(0) and, from (1-10), we have

∂̂t Xc(0)= 1
2π

∫

S

∫

S

G(1Xc+1X)F(η) dη dθ,

with F defined by (1-13). We can also write the equation for X̂c(0) using (2-16) or (2-30) and recalling
that the zero frequency of the linear part vanishes,

∂̂t Xc(0)=
∧

N (Xc, X)(0). (2-47)
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We notice that the evolution of the zero frequency Ŷc(0), corresponding to the center, is decoupled from
all the other equations (in terms of the Ŷc(0)-variable), because X̂c(0) does not appear on the right-hand
side of (1-10) and (1-13) and therefore also (2-47). This can be seen from the fact that in (1-10) G only
depends on the difference 1X =X (θ)−X (η) and in (1-13) the expression for S only depends on ∂θX
and 1X . In summary, the system to determine Y (equivalently determining X via (2-31)) consists of
(2-44), (2-45), (2-40), and (2-47). That is, all together we have

Ŷ(0)= 0, Ŷ2(1)= 0, Ŷc(k)= 0, k ̸= 0, 1, Ŷc,1(1)= 0,

∂t Ŷc(0)= P(0)−1
∧

N (Xc, X)(0),

∂t Ŷ1(1)=−AeŶ1(1)+ (P(1)−1
∧

N (Xc, X)(1))1,

∂t Ŷ(k)=− Ae

2
D(k)Ŷ(k)+ P(k)−1
∧

N (Xc, X)(k), k ≥ 2,

|Ŷc,2(1)|2 = 1
2
−

∑

k≥1

k(|Ŷ2(k)|2− |Ŷ1(k)|2),

(2-48)

with F given in (1-13), and Y, X related by (2-31).
To prove Theorem 1.2 (see Section 4) we will use system (2-48) to obtain the energy balance (2-38)

to show the decay of Y. We will need to perform a priori estimates on the nonlinear terms, which in
particular requires us to prove bounds for F due to the viscosity contrast. Those estimates are performed
in the next section. The decay for Y will allow us to control the evolution of the zero frequency, that is,
of the center.

3. A priori estimates

In this section we perform the a priori estimates on X and F that will be used in the proof of our main
result, Theorem 1.2. First, in Proposition 3.1, we estimate the nonlinear terms in (2-16) in terms of X

and F. Next, in Section 3B, we obtain the a priori estimates for F in (1-13) in terms of X . In order to get
the result with critical regularity, we have to get uniform bounds for some Fourier multipliers given by
principal values (see Lemma 3.2).

3A. A priori estimates on X.

Proposition 3.1. Assume F0, FL , FN ∈F 0,1
ν and X ∈ Ḟ2,1

ν . Then, the nonlinear term N =N (Xc, X)(θ)=
N (X ) in (2-16) satisfies the following estimate in Ḟ1,1

ν :

∥N∥
Ḟ

1,1
ν
≤ 11
√

2D1∥X∥Ḟ1,1
ν
∥FL∥F 0,1

ν
+ 147

2 D2∥F0∥F 0,1
ν
∥X∥

Ḟ
1,1
ν
∥X∥

Ḟ
2,1
ν
+ 9

4 D3∥FN∥F 0,1
ν
, (3-1)

where Di = Di (∥X∥Ḟ1,1
ν
,ν∞)≈ 1 are increasing functions of ∥X∥

Ḟ
1,1
ν

and ν∞ such that

lim
∥X∥

Ḟ
1,1
ν
→0+

Di (∥X∥Ḟ1,1
ν
, 0)= 1

and are defined in (3-54).
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In the proof, the following multiplier will come up frequently:

m(k, η)
def=

1− sin (kη/2)
k tan (η/2)

e−ikη/2

2 sin (η/2)
, |k| ≥ 1, (3-2)

and we define m(0, η)= 0.
Now let n ≥ 1, k = k0, k1, . . . , k2n be integers that further satisfy |k j − k j+1| ≥ 1 for all j =

0, 1, . . . , 2n− 1. We define the integral of type In = In(k, k1, . . . , k2n) by

In
def= pv

∫ π

−π
m(k− k1, η)

2n−1∏

j=1

sin ((k j − k j+1)η/2)

(k j − k j+1) sin (η/2)
e−i(k1+k2n)η/2 dη. (3-3)

We further define In = 0 if k j = k j+1 for any j = 0, 1, . . . , 2n− 1. We will also consider the integral,
I ′n = I ′n(k1, . . . , k2n), under the same conditions

I ′n
def= pv

∫ π

−π

sin ((k1+ k2n)η/2)

sin (η/2)

2n−1∏

j=1

sin ((k j − k j+1)η/2)

(k j − k j+1) sin (η/2)
dη. (3-4)

We again define I ′n = 0 if k j = k j+1 for any j = 1, . . . , 2n− 1. In the proofs of the a priori estimates in
this section we will frequently use the following lemma.

Lemma 3.2. We recall (3-2), (3-3) and (3-4). Then, the following uniform bounds hold:

|In(k, k1, . . . , k2n)| ≤ 2π,

|I ′n(k1, . . . , k2n)| ≤ 2π.

This lemma will be proven at the end of this section.

Proof of Proposition 3.1. We first take a derivative of N (Xc, X)(θ) in (2-16) and let

∂θN (Xc, X)(θ)=N1(θ)+N2(θ)+N3(θ)+N4(θ), (3-5)

where

N1(θ)=
∫

S

∂θ
(
GL(1ηXc(θ),1ηX(θ))

)
FL(η) dη,

N2(θ)=
∫

S

∂θ
(
G N (1ηXc(θ),1ηX(θ))

)
F0(η) dη,

N3(θ)=
∫

S

∂θ
(
G N (1ηXc(θ),1ηX(θ))

)
FL(η) dη,

N4(θ)=
∫

S

∂θ
(
G(X (θ)−X (η))

)
FN (η) dη.

We will bound Ni in F 0,1
ν for i = 1, 2, 3, 4.

N1 estimates: Taking a derivative in (2-13), we obtain

N1(θ)=
10∑

i=0

N1,i (θ), (3-6)
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and we proceed to bound each of these terms in F 0,1
ν . We note that each term N1,i corresponds to when

the derivative hits a different term inside (2-13). The terms N1,i are written in (3-8), (3-15), (3-16), (3-19),
and (3-20) in the following.

The first term N1,1(θ) is given by

N1,1(θ)=− 1
4πR2

∫

S

∂θ1ηXc(θ) ·1ηX(θ)FL(η) dη.

We first take the derivative of 1ηXc(θ) in (2-2) to obtain

∂θ1ηXc(θ)=
∂θXc(θ)− (Xc(θ)−Xc(η)

2 tan ((θ−η)/2)
2 sin ((θ − η)/2) .

Further define the operator D2(Xc) (and analogously D2(X)) to be ∂θ1ηXc(θ) as above after taking the
change of variables η← θ − η as follows:

D2(Xc)(θ, η)
def=
∂θXc(θ)− Xc(θ)−Xc(θ−η)

2 tan (η/2)

2 sin (η/2)
. (3-7)

Then we make the change of variables η← θ − η to obtain

N1,1(θ)=−
1

4πR2

∫

S

D2(Xc)(θ, η)
T1θ−ηX(θ)FL(θ − η) dη, (3-8)

where we used transpose notation instead of a dot for future convenience in the notation. We will also
make extensive use of the identities

∧

1θ−ηX(k)= 1− e−ikη

2 sin (η/2)
X̂(k)= sin (kη/2)

k sin (η/2)
e−ikη/2∧∂θX(k),

∧

1θ−ηXc(k)=
1− e−ikη

2 sin (η/2)
X̂c(k)=

sin (kη/2)

k sin (η/2)
e−ikη/2∧∂θXc(k).

(3-9)

We remark that both terms above are equal to 0 when k = 0. We further have
∧

D2(Xc)(k)= m(k, η)
∧

∂θXc(k), (3-10)

where m(k, η) is given by (3-2).
Regarding the Fourier coefficients of the derivative of the circle (2-1) we have

∧

∂θXc(k)=
a+ ib

2
δ1(k)

[
i

1

]
− a− ib

2
δ−1(k)

[
i

−1

]
. (3-11)

Taking Fourier transform in (3-8), we obtain

N̂1,1(k)=− 1
4πR2

∫

S

∧

D2(Xc)(k)
T ∗
∧

1θ−ηX(k) ∗ e−ikη F̂L(k) dη

=− 1
4πR2

∫

S

∑

k1∈Z

∑

k2∈Z

∧

D2(Xc)(k− k1)
T
∧

1θ−ηX(k1− k2)e
−ik2η F̂L(k2) dη,
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and plugging in (3-9) and (3-10) we have

N̂1,1(k)=− 1
4πR2

∑

k1∈Z

∑

k2∈Z

∧

∂θXc(k− k1)
T
∧

∂θX(k1− k2)F̂L(k2)I1(k, k1, k2),

with I1 given by (3-3). By Lemma 3.2 we have |I1(k, k1, k2)| ≤ 2π . Then we get

|N̂1,1(k)| ≤ 1
2R2

∑

k1∈Z

∑

k2∈Z

|
∧

∂θXc(k− k1)
T
∧

∂θX(k1− k2)||F̂L(k2)|. (3-12)

Then, it follows from (3-11) that

|
∧

∂θXc(k− k1)| ≤
R√
2
δ1,−1(k− k1). (3-13)

We will now also use the notation (1-22). In particular we have

|
∧

∂θXc(k− k1)
T
∧

∂θX(k1− k2)| ≤
√

2

2
R(δ1(k− k1)+ δ−1(k− k1))|

∧

∂θX(k1− k2)|.

Therefore, we can write

|N̂1,1(k)| ≤
√

2

4R

∑

k1∈Z

∑

k2∈Z

δ1,−1(k− k1)|
∧

∂θX(k1− k2)||F̂L(k2)|.

We multiply by eν(t)k = eν(t)(k−k1)eν(t)(k1−k2)eν(t)k2 to get

eν(t)k |N̂1,1(k)| ≤
√

2

4R

∑

k1∈Z

∑

k2∈Z

eν(t)(k−k1)δ1,−1(k− k1)e
ν(t)(k1−k2)|
∧

∂θX(k1− k2)|eν(t)k2 |F̂L(k2)|,

so Young’s inequality for convolutions and the estimate (2-42) yield the bound

∥N1,1∥F 0,1
ν
≤

eν∞
√

2∥X∥
Ḟ

1,1
ν

2
√

1− 1
2∥X∥2Ḟ1,1

ν

∥FL∥F 0,1
ν
. (3-14)

This is our desired estimate for N1,1.
We now proceed to estimate N1,2 as

N1,2(θ)=− 1
4πR2

∫

S

1θ−ηXc(θ)
TD2(X)(θ, η)FL(θ − η) dη, (3-15)

with Fourier transform given by

N̂1,2(k)=− 1
4πR2

∫

S

∑

k1∈Z

∑

k2∈Z

∧

1θ−ηXc(k1− k2)
T D̂2(X)(k− k1)e

−ik2η F̂L(k2) dη.

Using again (3-9) and (3-10), we can write it as

N̂1,2(k)=− 1
4πR2

∑

k1∈Z

∑

k2∈Z

∧

∂θXc(k1− k2)
T
∧

∂θX(k− k1)F̂L(k2)I1(k, k1, k2),
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with I1 given by (3-3). Using Lemma 3.2, we find that

|N̂1,2(k)| ≤ 1
2R2

∑

k1∈Z

∑

k2∈Z

|
∧

∂θXc(k− k1)
T
∧

∂θX(k1− k2)||F̂L(k2)|,

so following the steps after (3-12) we conclude that

∥N1,2∥F 0,1
ν
≤

eν∞
√

2∥X∥
Ḟ

1,1
ν

2
√

1− 1
2∥X∥2Ḟ1,1

ν

∥FL∥F 0,1
ν
.

This completes our bound for N1,2.
The term N1,3 is given by

N1,3(θ)=− 1
R4

∫

S

D2(Xc)(θ, η)
T1θ−ηX(θ)1θ−ηXc(θ)⊗1θ−ηXc(θ)FL(θ − η)

dη

2π
, (3-16)

and its Fourier transform by

N̂1,3(k)=−
1

2π
∧

∂θXc(k2− k3)R4

∑

k1∈Z

· · ·
∑

k4∈Z

∧

∂θXc(k− k1)
T
∧

∂θX(k1− k2)

⊗
∧

∂θXc(k3− k4)F̂L(k4)I2(k, k1, . . . , k4),

with I2(k, k1, . . . , k4) given by (3-3). Since |I2(k, . . . , k4)| ≤ 2π from Lemma 3.2, we have

|N̂1,3(k)|

≤ 1
R4

∑

k1∈Z

· · ·
∑

k4∈Z

|
∧

∂θXc(k− k1)
T
∧

∂θX(k1− k2)|∥
∧

∂θXc(k2− k3)⊗
∧

∂θXc(k3− k4)∥|F̂L(k4)|. (3-17)

Expression (3-11) gives
∧

∂θXc(k2−k3)⊗
∧

∂θXc(k3−k4)

= (a+ib)2

4
δ1(k2−k3)δ1(k3−k4)

[
−1 i

i 1

]
+(a−ib)2

4
δ−1(k2−k3)δ−1(k3−k4)

[
−1 −i

−i 1

]

−(a+ib)(a−ib)

4
δ1(k2−k3)δ−1(k3−k4)

[
−1 −i

i −1

]
−(a+ib)(a−ib)

4
δ−1(k2−k3)δ1(k3−k4)

[
−1 i

−i −1

]
.

All the matrices above have norm equal to 2, so that

∥
∧

∂θXc(k2− k3)⊗
∧

∂θXc(k3− k4)∥ ≤
R2

2
δ1,−1(k2− k3)δ1,−1(k3− k4). (3-18)

Introducing this bound, together with (3-13), back to (3-17), we find that

|N̂1,3(k)| ≤
√

2

4R

∑

k1∈Z

· · ·
∑

k4∈Z

δ1,−1(k− k1)|
∧

∂θX(k1− k2)|δ1,−1(k2− k3)δ1,−1(k3− k4)|F̂L(k4)|;

thus multiplication by the exponential eν(t)k , Young’s inequality and (2-42) yield that

∥N1,3∥F 0,1
ν
≤

2
√

2e3ν∞∥X∥
Ḟ

1,1
ν√

1− 1
2∥X∥2Ḟ1,1

ν

∥FL∥F 0,1
ν
.

This completes our bound for N1,3.



THE PESKIN PROBLEM WITH VISCOSITY CONTRAST 811

The term N1,4 is given by

N1,4(θ)=− 1
R4

∫

S

1θ−ηXc(θ)
TD2(X)(θ, η)1θ−ηXc(θ)⊗1θ−ηXc(θ)FL(θ − η)

dη

2π
. (3-19)

We take the Fourier transform and write the result as

N̂1,4(k)=− 1
2πR4

∑

k1∈Z

· · ·
∑

k4∈Z

∧

∂θXc(k1− k2)
T
∧

∂θX(k− k1)
∧

∂θXc(k2− k3)

⊗
∧

∂θXc(k3− k4)F̂L(k4)I2(k, k1, . . . , k4),

with I2(k, k1, . . . , k4) given by (3-3). Since |I2| ≤ 2π by Lemma 3.2, comparing now with (3-17), we
conclude that

∥N1,4∥F 0,1
ν
≤

2
√

2e3ν∞∥X∥
Ḟ

1,1
ν√

1− 1
2∥X∥2Ḟ1,1

ν

∥FL∥F 0,1
ν
.

This completes our estimate for N1,4.
The remaining terms from N1(θ) in (3-6) are

N1,5(θ)=− 1
R4

∫

S

1θ−ηXc(θ)
T1θ−ηX(θ)D2(Xc)(θ, η)⊗1θ−ηXc(θ)FL(θ − η)

dη

2π
,

N1,6(θ)=− 1
R4

∫

S

1θ−ηXc(θ)
T1θ−ηX(θ)1θ−ηXc(θ)⊗D2(Xc)(θ, η)FL(θ − η)

dη

2π
,

N1,7(θ)= 1
4πR2

∫

S

D2(Xc)(θ, η)⊗1θ−ηX(θ)FL(θ − η) dη,

N1,8(θ)= 1
4πR2

∫

S

1θ−ηXc(θ)⊗D2(X)(θ, η)FL(θ − η) dη,

N1,9(θ)= 1
4πR2

∫

S

D2(X)(θ, η)⊗1θ−ηXc(θ)FL(θ − η) dη,

N1,10(θ)= 1
4πR2

∫

S

1θ−ηX(θ)⊗D2(Xc)(θ, η)FL(θ − η) dη.

(3-20)

It is not hard to see that N1,5 and N1,6 are bounded exactly as N1,3 in (3-16), since the bound (3-18) is
also valid for D2(Xc)(θ, η)⊗1θ−ηXc(θ) or 1θ−ηXc(θ)⊗D2(Xc)(θ, η).

We proceed then with N1,7. Comparing with N1,1 in (3-8), (3-12), we obtain

|N̂1,7(k)| ≤ 1
2R2

∑

k1∈Z

∑

k2∈Z

∥
∧

∂θXc(k− k1)⊗
∧

∂θX(k1− k2)∥|F̂L(k2)|.

Using (3-11), we find that

∥
∧

∂θXc(k−k1)⊗
∧

∂θX(k1−k2)∥≤
R

2
δ1(k−k1)

∥∥∥∥
[
−1

i

]
∧

∂θX(k1−k2)

∥∥∥∥+
R

2
δ−1(k−k1)

∥∥∥∥
[
−1
−i

]
∧

∂θX(k1−k2)

∥∥∥∥

≤
√

2

2
Rδ1,−1(k−k1)|
∧

∂θX(k1−k2)|, (3-21)
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where in the last inequality we have used that the matrix norm (1-19) is bounded by the Frobenius norm.
Therefore we conclude that

∥N1,7∥F 0,1
ν
≤
√

2eν∞∥X∥
Ḟ

1,1
ν

2
√

1− 1
2∥X∥2Ḟ1,1

ν

∥FL∥F 0,1
ν
.

The bound for N1,8 follows in the same way as that of N1,7:

∥N1,8∥F 0,1
ν
≤
√

2eν∞∥X∥
Ḟ

1,1
ν

2
√

1− 1
2∥X∥2Ḟ1,1

ν

∥FL∥F 0,1
ν
.

Finally, the bounds for N1,9 and N1,10 are the same as for N1,7 and N1,8 because

∥
∧

∂θX(k− k1)⊗
∧

∂θXc(k1− k2)∥

≤ R

2
δ1(k1− k2)∥
∧

∂θX(k− k1)[−1 i]∥+ R

2
δ−1(k1− k2)∥
∧

∂θX(k− k1)[−1 −i]∥

≤
√

2
2

Rδ1,−1(k1− k2)|
∧

∂θX(k− k1)|. (3-22)

Joining the bounds for N1,1 to N1,10, we obtain the bound for N1 in (3-6) as

∥N1∥F 0,1
ν
≤ 11
√

2e3ν∞C1∥X∥Ḟ1,1
ν
∥FL∥F 0,1

ν
, (3-23)

where C1 is defined in (2-43). This completes our estimates for the N1 term.

N3 estimates: Taking a derivative in (2-14), we split N3 as

N3(θ)=
11∑

i=1

N 3,i , (3-24)

where

N3,1(θ)=− 1
4π

∫

S

∂θR1(1ηX(θ))FL(η) dη,

N3,2(θ)= 1
4πR2

∫

S

∂θ
(
1ηX(θ)⊗1ηX(θ)

)(
1− 2

R21ηXc(θ)
T1ηX(θ)

)
FL(η) dη,

N3,3(θ)=− 1
2πR4

∫

S

1ηX(θ)⊗1ηX(θ)∂θ
(
1ηXc(θ)

T1ηX(θ)
)
FL(η) dη,

N3,4(θ)= 1
4πR2

∫

S

∂θ
(
1ηX(θ)⊗1ηX(θ)

)
R2(1ηX(θ))FL(η) dη,

N3,5(θ)= 1
4πR2

∫

S

1ηX(θ)⊗1ηX(θ)∂θR2(1ηX(θ))FL(η) dη,

N3,6(θ)=− 1
2πR4

∫

S

∂θ
(
1ηXc(θ)⊗1ηX(θ)+1ηX(θ)⊗1ηXc(θ)

)
1ηXc(θ)

T1ηX(θ)FL(η) dη,

N3,7(θ)=− 1
2πR4

∫

S

(
1ηXc(θ)⊗1ηX(θ)+1ηX(θ)⊗1ηXc(θ)

)
∂θ

(
1ηXc(θ)

T1ηX(θ)
)
FL(η) dη,

N3,8(θ)= 1
4πR2

∫

S

∂θ
(
1ηXc(θ)⊗1ηX(θ)+1ηX(θ)⊗1ηXc(θ)

)
R2(1ηX(θ))FL(η) dη,
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N3,9(θ)= 1
4πR2

∫

S

(
1ηXc(θ)⊗1ηX(θ)+1ηX(θ)⊗1ηXc(θ)

)
∂θR2(1ηX(θ))FL(η) dη,

N 3,10(θ)= 1
4πR2

∫

S

∂θ
(
1ηXc(θ)⊗1ηXc(θ)

)
R2(1ηX(θ))FL(η) dη,

N 3,11(θ)= 1
4πR2

∫

S

1ηXc(θ)⊗1ηXc(θ)∂θR2(1ηX(θ))FL(η) dη,

where R1 and R2 were defined in (2-7) and (2-9).
We proceed with N3,1 first. We take the derivative in (2-7) to obtain

N3,1(θ)= O1(θ)+ O2(θ)+ O3(θ), (3-25)

where

O1(θ)=− 1
8π

∫

S

∑

n≥1

n−1∑

m=0
n+m≥2

(
n

m

)(−1)n−1(n−m)

n R2n
(21ηXc(θ)

T1ηX(θ))n−m−1

· 2∂θ1ηXc(θ)
T1ηX(θ)|1ηX(θ)|2m FL(η) dη,

O2(θ)=− 1
8π

∫

S

∑

n≥1

n−1∑

m=0
n+m≥2

(
n

m

)(−1)n−1(n−m)

n R2n
(21ηXc(θ)

T1ηX(θ))n−m−1

· 21ηXc(θ)
T ∂θ1ηX(θ)|1ηX(θ)|2m FL(η) dη,

O3(θ)=− 1
4π

∫

S

∑

n≥1

n∑

m=1

(
n

m

)(−1)n−1m

n R2n
(21ηXc(θ)

T1ηX(θ))n−m

· |1ηX(θ)|2(m−1)1ηX(θ)T ∂θ1ηX(θ)FL(η) dη.

After performing the change of variables η← θ − η, we take Fourier transform of O1(θ) to obtain

Ô1(k)=− 1
8π

∫

S

∑

n≥1

n−1∑

m=0
n+m≥2

(
n

m

)(−1)n−1(n−m)

n R2n
∗n−m−1
∧

21θ−ηXc(θ)
T1θ−ηX(θ)

∗ 2
∧

D2(Xc)(θ)
T1θ−ηX(k) ∗m
∧

1θ−ηX(θ)T1θ−ηX(θ) ∗ F̂L(k) dη.

Using (3-9) and (3-10), we rewrite it as

Ô1(k)=− 1
8π

∑

n≥1

n−1∑

m=0
n+m≥2

(
n

m

)(−1)n−1(n−m)

n R2n

∑

k1

. . .
∑

kk2n

n−m−2∏

j=0

2
∧

∂θXc(k2 j+1−k2 j+2)
T
∧

∂θX(k2 j+2−k2 j+3)

·2
∧

∂θXc(k−k1)
T
∧

∂θX(k2n−2m−1−k2n−2m)
n−1∏

j=n−m

∧

∂θX(k2 j−k2 j+1)
T
∧

∂θX(k2 j+1−k2 j+2)F̂L(k2n)In(k,k1, . . . ,k2n), (3-26)

with |In(k, k1, . . . , k2n)| ≤ 2π given by (3-3) and using Lemma 3.2. Above we are using the convention
that

∏ j2
j= j1

f ( j)≡ 1 if j2 < j1. Recalling estimate (3-13), distributing the exponential factor eν(t)k, and
applying Young’s inequality, we have

∥O1∥F 0,1
ν
≤ 1

4

(∑

n≥1

n−1∑

m=0
n+m≥2

(
n

m

)(n−m)

n R2n
(2
√

2)n−me(n−m)ν(t)Rn−m∥X∥n−m

Ḟ
1,1
ν

∥X∥2m

Ḟ
1,1
ν

)
∥FL∥F 0,1

ν
,
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which can be summed first in m to get

∥O1∥F 0,1
ν
≤ 1

4

∑

n≥2

(2
√

2)nenν(t)
∥X∥n

Ḟ
1,1
ν

Rn

(
1+

∥X∥
Ḟ

1,1
ν

2
√

2eν(t)R

)n−1

∥FL∥F 0,1
ν
, (3-27)

and then summed in n,

∥O1∥F 0,1
ν
≤

2e2ν∞

(
1+
∥X∥

Ḟ
1,1
ν

2
√

2eν∞R

)

1− 2
√

2eν∞
∥X∥

Ḟ
1,1
ν

R

(
1+
∥X∥

Ḟ
1,1
ν

2
√

2eν∞R

)
∥X∥2

Ḟ
1,1
ν

R2
∥FL∥F 0,1

ν
.

Using estimate (2-42) and the notation (2-43), we conclude that

∥O1∥F 0,1
ν
≤ 2e2ν∞C2C2

1∥X∥2Ḟ1,1
ν
∥FL∥F 0,1

ν
, (3-28)

with

C2 =
1+ 1

2
√

2
e−ν∞C1∥X∥Ḟ1,1

ν

1− 2
√

2eν∞C1∥X∥Ḟ1,1
ν

(
1+ 1

2
√

2
e−ν∞C1∥X∥Ḟ1,1

ν

) , (3-29)

where C1 was defined in (2-43).
We proceed with O2 in (3-25). We take Fourier transform and, recalling (3-9), we obtain

Ô2(k)=− 1
8π

∑

n≥1

n−1∑

m=0
n+m≥2

(
n

m

)(−1)n−1(n−m)

n R2n

∑

k1

· · ·
∑

kk2n

n−m−2∏

j=0

2
∧

∂θXc(k2 j+1− k2 j+2)
T
∧

∂θX(k2 j+2− k2 j+3)

· 2
∧

∂θXc(k2n−2m−1− k2n−2m)
T
∧

∂θX(k− k1)
n−1∏

j=n−m

∧

∂θX(k2 j − k2 j+1)
T
∧

∂θX(k2 j+1− k2 j+2)F̂L(k2n)In(k, k1, . . . , k2n), (3-30)

again with |In(k, k1, . . . , k2n)| ≤ 2π from (3-3) and Lemma 3.2. Thus, comparing (3-30) with (3-26), we
find the estimate for O2,

∥O2∥F 0,1
ν
≤ 2e2ν∞C2C2

1∥X∥2Ḟ1,1
ν
∥FL∥F 0,1

ν
, (3-31)

with C2 defined in (3-29) and C1 in (2-43).
Repeating these steps for O3, we obtain

∥O3∥F 0,1
ν
≤ 1

2

∑

n≥1

n∑

m=1

(
n

m

)m(2
√

2)n−m

n R2n
eν(t)(n−m)Rn−m∥X∥n−m

Ḟ
1,1
ν

∥X∥2(m−1)

Ḟ
1,1
ν

∥X∥2
Ḟ

1,1
ν
∥FL∥F 0,1

ν
,

which after summation in m the right side above becomes

∥O3∥F 0,1
ν
≤ 1

2

∑

n≥1

1

n R2n
n(2
√

2eν(t)R∥X∥
Ḟ

1,1
ν
+∥X∥2

Ḟ
1,1
ν
)n−1∥X∥2

Ḟ
1,1
ν
∥FL∥F 0,1

ν

= 1

2

∑

n≥1

∥X∥n−1
Ḟ

1,1
ν

Rn−1

(
2
√

2eν(t)+
∥X∥

Ḟ
1,1
ν

R

)n−1 ∥X∥2
Ḟ

1,1
ν

R2
∥FL∥F 0,1

ν
, (3-32)
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and after summation in n we have

∥O3∥F 0,1
ν
≤ 1

2
1

1− 2
√

2eν∞(∥X∥
Ḟ

1,1
ν
/R)(1+ e−ν∞(∥X∥

Ḟ
1,1
ν
/2
√

2R))

∥X∥2
Ḟ

1,1
ν

R2
∥FL∥F 0,1

ν
.

Introducing the bound for R in (2-42), we obtain

∥O3∥F 0,1
ν
≤ 1

2C3C2
1∥X∥2Ḟ1,1

ν
∥FL∥F 0,1

ν
, (3-33)

and using C2 in (3-29) and C1 in (2-43) we have

C3 =
C2

1+ 1
2
√

2
e−ν∞C1∥X∥Ḟ1,1

ν

. (3-34)

Joining the bounds (3-28), (3-31), and (3-33), we find the estimate for N3,1 from (3-25) as

∥N3,1∥F 0,1
ν
≤ 9

2C4C2
1∥X∥2Ḟ1,1

ν
∥FL∥F 0,1

ν
, (3-35)

with

C4 = 2
9

(
4e2ν∞C2+ 1

2C3
)
. (3-36)

This completes our desired estimate for N3,1.
We continue with the next term N3,2 from (3-24), which we split in two:

N3,2(θ)= O4(θ)+ O5(θ),

where

O4(θ)= 1
4πR2

∫

S

∂θ
(
1ηX(θ)⊗1ηX(θ)

)
FL(η) dη,

O5(θ)=− 1
2πR4

∫

S

∂θ
(
1ηX(θ)⊗1ηX(θ)

)
1ηXc(θ)

T1ηX(θ)FL(η) dη.

The bounds for these terms follow in a similar way to that of N1,2 from (3-15) and N1,4 from (3-19),
respectively. Taking into account that

∥
∧

∂θX(k− k1)⊗
∧

∂θX(k1− k2)∥ ≤ |
∧

∂θX(k− k1)||
∧

∂θX(k1− k2)|, (3-37)

and Lemma 3.2, it is not hard to find that

|Ô4(k)| ≤ 1
R2

∑

k1∈Z

∑

k2∈Z

|
∧

∂θX(k− k1)||
∧

∂θX(k1− k2)||F̂L(k2)|,

and recalling (3-13), we have

|Ô5(k)| ≤
√

2

R3

∑

k1∈Z

· · ·
∑

k4∈Z

|
∧

∂θX(k− k1)||
∧

∂θX(k1− k2)|δ1,−1(k2− k3)|
∧

∂θX(k3− k4)||F̂L(k4)|.

Therefore,

∥O4∥F 0,1
ν
≤
∥X∥2

Ḟ
1,1
ν

R2
∥FL∥F 0,1

ν
, ∥O5∥Ḟ1,1

ν
≤ 2
√

2eν∞
∥X∥3

Ḟ
1,1
ν

R3
∥FL∥F 0,1

ν
;
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thus

∥N3,2∥F 0,1
ν
≤

(
1+ 2
√

2eν∞
∥X∥

Ḟ
1,1
ν

R

)∥X∥2
Ḟ

1,1
ν

R2
∥FL∥F 0,1

ν
,

so plugging in the estimate (2-42) yields that

∥N3,2∥F 0,1
ν
≤ C5C2

1∥X∥2Ḟ1,1
ν
∥FL∥F 0,1

ν
, (3-38)

with

C5 = 1+ 2
√

2eν∞C1∥X∥Ḟ1,1
ν
. (3-39)

This completes our estimate for N3,2.
The Fourier transform of N3,3 in (3-24) can be bounded as

|N̂ 3,3(k)| ≤
√

2

2R3

∑

k1∈Z

· · ·
∑

k4∈Z

|
∧

∂θX(k− k1)||
∧

∂θX(k1− k2)|δ1,−1(k2− k3)|
∧

∂θX(k3− k4)||F̂L(k4)|,

and thus

∥N3,3∥F 0,1
ν
≤
√

2eν∞
∥X∥3

Ḟ
1,1
ν

R3
∥FL∥F 0,1

ν
,

which becomes

∥N3,3∥F 0,1
ν
≤
√

2eν∞C3
1∥X∥3Ḟ1,1

ν
∥FL∥F 0,1

ν
. (3-40)

Similarly, recalling (2-9), the estimate for N3,4 in (3-24) is

∥N3,4∥F 0,1
ν
≤
∥X∥2

Ḟ
1,1
ν

R2

∑

n≥1

n∑

m=0
n+m≥2

(
n

m

)(2
√

2)n−me(n−m)ν(t)Rn−m

R2n
∥X∥n−m

Ḟ
1,1
ν

∥X∥2m

Ḟ
1,1
ν
∥FL∥F 0,1

ν
,

which can be rewritten as

∥N3,4∥F 0,1
ν

≤
∥X∥2

Ḟ
1,1
ν

R2

(∑

n≥1

(2
√

2eν(t)R∥X∥
Ḟ

1,1
ν
)n

R2n

(
1+

∥X∥
Ḟ

1,1
ν

2
√

2eν(t)R

)n

−
2
√

2eν(t)∥X∥
Ḟ

1,1
ν

R

)
∥FL∥F 0,1

ν

=
2
√

2eν(t)∥X∥3
Ḟ

1,1
ν

R3

(∑

n≥1

(2
√

2eν(t)∥X∥
Ḟ

1,1
ν

R

)n−1(
1+

∥X∥
Ḟ

1,1
ν

2
√

2eν(t)R

)n

− 1

)
∥FL∥F 0,1

ν

=
2
√

2eν(t)∥X∥3
Ḟ

1,1
ν

R3

( ∥X∥
Ḟ

1,1
ν

2
√

2eν(t)R

+
(

1+
∥X∥

Ḟ
1,1
ν

2
√

2eν(t)R

) ∑

n≥2

(2
√

2eν(t)∥X∥
Ḟ

1,1
ν

R

(
1+

∥X∥
Ḟ

1,1
ν

2
√

2eν(t)R

))n−1)
∥FL∥F 0,1

ν
.

Performing the sum in n and using estimate (2-42), we conclude that

∥N3,4∥F 0,1
ν
≤ 9C6C4

1∥X∥4Ḟ1,1
ν
∥FL∥F 0,1

ν
, (3-41)
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with

C6 =
1

9

(
1+ 8e2ν∞

(
1+ 1

2
√

2
e−ν∞C1∥X∥Ḟ1,1

ν

)
C2

)
, (3-42)

where C1, C2 were defined in (2-43), (3-29). This completes our estimate for N3,4.
To deal with the term N3,5 in (3-24), we have to take a derivative in R2 from (2-9). This gives the

splitting

N3,5(θ)= O6(θ)+ O7(θ)+ O8(θ), (3-43)

where

O6(θ)= 1
4πR2

∫

S

∑

n≥1

n−1∑

m=0
n+m≥2

(
n

m

)(−1)n(n−m)

R2n
(1ηX(θ)⊗1ηX(θ))

· (21ηXc(θ)
T1ηX(θ))n−m−12∂θ1ηXc(θ)

T1ηX(θ)|1ηX(θ)|2m FL(η) dη,

O7(θ)= 1
4πR2

∫

S

∑

n≥1

n−1∑

m=0
n+m≥2

(
n

m

)(−1)n(n−m)

R2n
(1ηX(θ)⊗1ηX(θ))

· (21ηXc(θ)
T1ηX(θ))n−m−121ηXc(θ)

T ∂θ1ηX(θ)|1ηX(θ)|2m FL(η) dη,

O8(θ)= 1
2πR2

∫

S

∑

n≥1

n∑

m=1

(
n

m

)(−1)nm

R2n
(1ηX(θ)⊗1ηX(θ))

· (21ηXc(θ)
T1ηX(θ))n−m |1ηX(θ)|2(m−1)1ηX(θ)T ∂θ1ηX(θ)FL(η) dη.

Comparing O6 and O8 to O1 and O3, respectively, in (3-25), and recalling the bounds (3-27), (3-32),
together with (3-37), we find that

∥O6∥F 0,1
ν
≤
∥X∥2

Ḟ
1,1
ν

2R2

∑

n≥2

(2
√

2)nenν(t)n

Rn
∥X∥n

Ḟ
1,1
ν

(
1+

∥X∥
Ḟ

1,1
ν

2
√

2eν(t)R

)n−1

∥FL∥F 0,1
ν
,

∥O8∥F 0,1
ν
≤
∥X∥2

Ḟ
1,1
ν

R2

∑

n≥1

n∥X∥n−1
Ḟ

1,1
ν

Rn−1

(
2
√

2eν(t)+
∥X∥

Ḟ
1,1
ν

R

)n−1 ∥X∥2
Ḟ

1,1
ν

R2
∥FL∥F 0,1

ν
,

which after summation in n the right side above becomes

∥O6∥F 0,1
ν
≤ 4e2ν∞

(
1+
∥X∥

Ḟ
1,1
ν

2
√

2eν∞R

)(
2−

2
√

2eν∞∥X∥
Ḟ

1,1
ν

R

(
1+
∥X∥

Ḟ
1,1
ν

2
√

2eν∞R

))

×
(

1− 2
√

2eν∞
∥X∥

Ḟ
1,1
ν

R

(
1+
∥X∥

Ḟ
1,1
ν

2
√

2eν∞R

))−2 ∥X∥4
Ḟ

1,1
ν

R4
∥FL∥F 0,1

ν
,

∥O8∥F 0,1
ν
≤

(
1− 2
√

2eν∞
∥X∥

Ḟ
1,1
ν

R

(
1+
∥X∥

Ḟ
1,1
ν

2
√

2eν∞R

))−2 ∥X∥4
Ḟ

1,1
ν

R4
∥FL∥F 0,1

ν
.

It is now clear that, for the same reason that the bound for O2 (3-30) was the same as that for O1 (3-26),
the estimate for O7 is the same as the one for O6. Therefore, with (2-42), we conclude that

∥N3,5∥F 0,1
ν
≤ 17C7C4

1∥X∥4Ḟ1,1
ν
∥FL∥F 0,1

ν
, (3-44)
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with

C7 = 16
17

e2ν∞C2C3

(
1−C−1

8

√
2eν∞∥X∥

Ḟ
1,1
ν

(
1+ 1

2
√

2
C−1

8 e−ν∞∥X∥
Ḟ

1,1
ν

))
+ C2

3

17
, (3-45)

where we note that C7 is indeed increasing in ∥X∥
Ḟ

1,1
ν

as can be seen because the infinite sums in the
upper bounds of ∥O6∥F 0,1

ν
and ∥O8∥F 0,1

ν
above are indeed increasing. Further above we are also using

C8
def=

√
1+ 1

2∥X∥
2
Ḟ

1,1
ν
, (3-46)

and we are further using C2 and C3 from (3-29) and (3-34).
Recalling the bounds (3-21) and (3-22), the remaining terms N3,6±N 3,11 can be estimated similarly,

using also C1, C6 and C7 from (2-43), (3-42) and (3-45), to obtain

∥N3,6∥Ḟ1,1
ν
≤ 8e2ν∞C2

1∥X∥2Ḟ1,1
ν
∥FL∥F 0,1

ν
,

∥N3,7∥Ḟ1,1
ν
≤ 8e2ν∞C2

1∥X∥2Ḟ1,1
ν
∥FL∥F 0,1

ν
,

∥N3,8∥Ḟ1,1
ν
≤ 18
√

2eν∞C6C3
1∥X∥3Ḟ1,1

ν
∥FL∥F 0,1

ν
,

∥N3,9∥Ḟ1,1
ν
≤ 34
√

2eν∞C7C3
1∥X∥3Ḟ1,1

ν
∥FL∥F 0,1

ν
,

∥N 3,10∥Ḟ1,1
ν
≤ 18e2ν∞C6C2

1∥X∥2Ḟ1,1
ν
∥FL∥F 0,1

ν
,

∥N 3,11∥F 0,1
ν
≤ 34e2ν∞C7C2

1∥X∥2Ḟ1,1
ν
∥FL∥F 0,1

ν
.

(3-47)

Therefore, from the splitting (3-24) and adding all the bounds (3-35), (3-38), (3-40), (3-41), (3-44), and
(3-47), we conclude that

∥N 3∥F 0,1
ν
≤ 147

2 C9C2
1∥X∥2Ḟ1,1

ν
∥FL∥F 0,1

ν
, (3-48)

where

C9 = 2
147

( 9
2C4+C5+ 16e2ν∞ + 18e2ν∞C6+ 34e2ν∞C7

+ (
√

2+ 18
√

2C6+ 34
√

2C7)e
ν∞C1∥X∥Ḟ1,1

ν
+ (9C6+ 17C7)C

2
1∥X∥2Ḟ1,1

ν

)
, (3-49)

with C1, C4, C5, C6, and C7 defined in (2-43), (3-36), (3-39), (3-42), and (3-45).

N2 estimates: It is clear from (3-5) that the previous estimate for N3 in (3-48) is also valid for N2, with
∥FL∥F 0,1

ν
replaced by ∥F0∥F 0,1

ν
. Therefore we have

∥N 2∥F 0,1
ν
≤ 147

2 C9C2
1∥X∥2Ḟ1,1

ν
∥F0∥F 0,1

ν
, (3-50)

with C9 defined above in (3-49).

N4 estimates: We split the term N 4 in (3-5) following the splitting (2-11):

N4(θ)=N4,1(θ)+N4,2(θ)+N4,3(θ),
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where

N4,1(θ)=
∫

S

∂θ (G0(1ηXc(θ)))FN (η) dη,

N4,2(θ)=
∫

S

∂θ
(
GL(1ηXc(θ),1ηX(θ))

)
FN (η) dη,

N4,3(θ)=
∫

S

∂θ
(
G N (1ηXc(θ),1ηX(θ))

)
FN (η) dη.

We notice that the term N4,2 can be bounded exactly as N1 in (3-5), with ∥FL∥F 0,1
ν

replaced by ∥FN∥F 0,1
ν

,
that is, from (3-23) we have

∥N4,2∥F 0,1
ν
≤ 11
√

2e3ν∞C1∥X∥Ḟ1,1
ν
∥FN∥F 0,1

ν
,

with C1 from (2-43). Analogously using the similarity between N4,3 and N 3 in (3-48), we have

∥N4,3∥F 0,1
ν
≤ 147

2 C9C2
1∥X∥2Ḟ1,1

ν
∥FN∥F 0,1

ν
,

where we recall C9 from (3-49).
Now taking a derivative in (2-12), the term N4,1 can be written as

N4,1(θ)=− 1
4π

∫

S

FN (η)

2 tan ((θ − η)/2) +
1

4πR2

∫

S

∂θ1ηXc(θ)⊗1ηXc(θ)FN (η) dη

+ 1
4πR2

∫

S

1ηXc(θ)⊗ ∂θ1ηXc(θ)FN (η) dη,

and therefore, recalling (3-18), we have

∥N4,1∥F 0,1
ν
≤

(1
4 + 2e2ν∞

)
∥FN∥F 0,1

ν
.

We add the previous bounds to obtain

∥N4∥F 0,1
ν
≤ 9

4C10∥FN∥F 0,1
ν
, (3-51)

with

C10 = 4
9

(1
4 + 2e2ν∞ + 11

√
2e3ν∞C1∥X∥Ḟ1,1

ν
+ 147

2 C9C2
1∥X∥2Ḟ1,1

ν

)
, (3-52)

with C1, C9 defined in (2-43) and (3-49). Combining the estimates (3-23), (3-50), (3-48), and (3-51), we
conclude from (3-5) that

∥N∥
Ḟ

1,1
ν
≤ 147

2 C9C2
1∥X∥Ḟ1,1

ν
∥F0∥F 0,1

ν
∥X∥

Ḟ
2,1
ν
+ 11
√

2C11C1∥X∥Ḟ1,1
ν
∥FL∥F 0,1

ν
+ 9

4C10∥FN∥F 0,1
ν
,

where

C11 = 1
11
√

2

(
11
√

2e3ν∞ + 147
2 C9C1∥X∥Ḟ1,1

ν

)
, (3-53)

and C1, C9 are defined in (2-43) and (3-49). Rename the constants

D1 = C11C1, D2 = C9C2
1 , D3 = C10, (3-54)

to get the result (3-1), where C1, C9, C10, and C11 are given in (2-43), (3-49), (3-52), and (3-53). □
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3B. A priori estimates on F. In this section we will obtain bounds for F0, FL , and FN in F 0,1
ν .

Proposition 3.3. Assume that X ∈ Ḟ2,1
ν and that F solves (1-13). Then, the functions F0 in (3-58), FL in

(2-25) and FN = F− F0− FL , satisfy the estimate

∥F0∥F 0,1
ν
≤
√

2eν∞C8
2Ae

1− Aµ
, (3-55)

where C8 is defined in (3-46). Further

∥FL∥F 0,1
ν
≤ 2Ae

(
1+ |Aµ|

1− Aµ

)
∥X∥

Ḟ
2,1
ν
, (3-56)

∥FN∥F 0,1
ν
≤ 1000

√
2Ae

|Aµ|(1+ |Aµ|)
(1− Aµ)2(1+ Aµ)

D4∥X∥Ḟ1,1
ν
∥X∥

Ḟ
2,1
ν
, (3-57)

where D4 = D4(∥X∥Ḟ1,1
ν
; Aµ, ν∞) is an increasing function of ∥X∥

Ḟ
1,1
ν

as in (1-28) such that

lim
∥X∥

Ḟ
1,1
ν
→0+

D4(∥X∥Ḟ1,1
ν
; 0, 0)= 1

and is defined in (3-78).

Proof. First, for a general circle the expression for F0 in (2-20) becomes

F0(θ)=
2Ae

1− Aµ
∂2
θ Xc. (3-58)

Similar to (3-13) using (3-11) we have for (3-55) that

∥F0∥F 0,1
ν
≤
√

2eν∞R
2Ae

1− Aµ
≤
√

2eν∞C8
2Ae

1− Aµ
,

where C8 is given by (3-46) and we used (2-42).
Further FL is given by (2-25) and so we have

∥FL∥F 0,1
ν
≤ 2Ae∥X∥Ḟ2,1

ν
+ 2|Aµ|Ae

1− Aµ
∥X∥

Ḟ
1,1
ν
,

which gives (3-56).
We proceed with the expansion of the nonlinear terms in (1-13). First, using (2-8), we write

1

|1X +1Xc|4
= 1

16R4 sin4 ((θ − η)/2)

(
1− 4

R21ηXc(θ)
T1ηX(θ)+R3(1ηX(θ))

)
,

where

R3(1ηX(θ))=− 4
R21ηXc(θ)

T1ηX(θ)R2(1ηX(θ))+ 2R2(1ηX(θ))

+ 4
R4 (1ηXc(θ)

T1ηX(θ))2+ (R2(1ηX(θ)))2, (3-59)

and R2(1ηX(θ)) is given in (2-9). Then, we use the above expansion to rewrite S(F,X )(θ) from
(1-14) as

S(F,X )(θ)=
∫

S

K (Xc, X)(θ, η)
F(θ − η)

2 sin (η/2)
dη, (3-60)
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where

K (Xc, X)(θ, η)= 1
πR4 (∂θX (θ)

⊥)T1θ−ηX (θ)1θ−ηX (θ)⊗1θ−ηX (θ)
×

(
1− 4

R21ηXc(θ)
T1ηX(θ)+R3(1ηX(θ))

)
,

and we recall the notation X (θ)= Xc(θ)+ X(θ) and (2-2).
We will plug in the splitting for F in (2-15) into (1-13). We first introduce an analogous splitting for

K as

K (Xc, X)(θ, η)= K0(Xc)(θ, η)+ KL(Xc, X)(θ, η)+ KN (Xc, X)(θ, η). (3-61)

After we remove the zero-order (2-18), and linear-order terms (2-23), then (1-13) for the nonlinear-order
terms becomes the following equation for FN :

FN (θ)− 2Aµ

∫

S

K0(Xc)(θ, η)
FN (θ − η)
2 sin (η/2)

dη = J(X, FN )(θ), (3-62)

with

J(X, FN )(θ)= 2Aµ

∫

S

(
KL(Xc, X)(θ, η)+ KN (Xc, X)(θ, η)

) FN (θ − η)
2 sin (η/2)

dη

+ 2Aµ

∫

S

(
KL(Xc, X)(θ, η)+ KN (Xc, X)(θ, η)

) FL(θ − η)
2 sin (η/2)

dη

+ 2Aµ

∫

S

KN (Xc, X)(θ, η)F0(θ − η)
dη

2 sin (η/2)
,

(3-63)

where the first term in J will be treated as a perturbation with F0 and FL given in (3-58) and (2-25)
respectively. Notice that K0 is given by

K0(Xc)(θ, η)= 1
πR4 (∂θXc(θ)

⊥)T1θ−ηXc(θ)1θ−ηXc(θ)⊗1θ−ηXc(θ),

where by (2-3) and (2-5) we have

(∂θXc(θ)
⊥)T1θ−ηXc(θ)=−R2 sin

(
η

2

)
,

1θ−ηXc(θ)⊗1θ−ηXc(θ)= a2

2

[
1−cos(2θ−η) −sin(2θ−η)
−sin(2θ−η) 1+cos(2θ−η)

]

+b2

2

[
1+cos(2θ−η) sin(2θ−η)

sin(2θ−η) 1−cos(2θ−η)

]
+ab

[
sin(2θ−η) −cos(2θ−η)
−cos(2θ−η) −sin(2θ−η)

]
.

Therefore,
∫

S

K0(Xc)(θ, η)
FN (θ − η)
2 sin (η/2)

dη =− 1
4π

∫

S

FN (θ − η) dη

− a2− b2

4πR2

∫

S

[
− cos (2θ−η) − sin (2θ−η)
− sin (2θ−η) cos (2θ−η)

]
FN (θ − η) dη

− ab

2πR2

∫

S

[
sin (2θ−η) − cos (2θ−η)
− cos (2θ−η) − sin (2θ−η)

]
FN (θ − η) dη.
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Then taking the Fourier transform we find that

F

(∫

S

K0(Xc)(θ, η)
FN (θ − η)
2 sin (η/2)

dη

)
(k)

=−1
2

F̂N (0)δ0(k)+
(a+ ib)2

4R2

[
1 −i

−i −1

]
F̂N (−1)δ1(k)+

(a− ib)2

4R2

[
1 i

i −1

]
F̂N (1)δ−1(k).

Equation (3-62) is then given on the Fourier side by the expressions

F̂N (0)=
1

1+ Aµ

∧

J(X, FN )(0),

F̂N (k)=
∧

J(X, FN )(k), k ≥ 2,

(3-64)

while for k = 1 one has that

F̂N (1)− Aµ
(a+ ib)2

2R2

[
1 −i

−i −1

]
F̂N (−1)=
∧

J(X, FN )(1),

F̂N (−1)− Aµ
(a− ib)2

2R2

[
1 i

i −1

]
F̂N (1)=
∧

J(X, FN )(−1),

which gives that
[

1−A2
µ/2 −i A2

µ/2
i A2

µ/2 1−A2
µ/2

]
F̂N (1)= Aµ

(a+ ib)2

2R2

[
1 −i

−i −1

]
∧

J(X, FN )(−1)+
∧

J(X, FN )(1),

and thus

F̂N (1)=
Aµ

1− A2
µ

(a+ ib)2

2R2

[
1 −i

−i −1

]
∧

J(X, FN )(−1)+ 1

1− A2
µ

[
1−A2

µ/2 i A2
µ/2

−i A2
µ/2 1−A2

µ/2

]
∧

J(X, FN )(1).

Since we have ∥∥∥∥
[

1 −i

−i −1

]∥∥∥∥= 2,

∥∥∥∥
[

1−A2
µ/2 i A2

µ/2
−i A2

µ/2 1−A2
µ/2

]∥∥∥∥= 1,

we obtain

|F̂N (1)| ≤
|Aµ|

1− A2
µ

|
∧

J(X, FN )(−1)| + 1

1− A2
µ

|
∧

J(X, FN )(1)|

= 1+ |Aµ|
(1− Aµ)(1+ Aµ)

|
∧

J(X, FN )(1)|,

which together with (3-64) implies that

∥FN∥F 0,1
ν
≤ 1+ |Aµ|
(1− Aµ)(1+ Aµ)

∥J(X, FN )∥F 0,1
ν
. (3-65)

This is our estimate for FN .

J(X, FN ) estimate: Notice that J(X, FN ) corresponds to the nonlinear terms in S(F,X ) except the
one in the left-hand side of (3-62). For simplicity in notation, we are going to estimate S(F,X ), and
later extract from there the corresponding bounds for J(X, FN ).
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Consider the following splitting for S(F,X ) from (1-14):

S(F,X )(θ)= S1(F,X )(θ)+S2(F,X )(θ)+S3(F,X )(θ), (3-66)

with

S1(F,X )(θ)= 1
πR4

∫

S

(∂θX (θ)
⊥)T1θ−ηX (θ)1θ−ηX (θ)⊗1θ−ηX (θ)

F(θ−η)
2sin(η/2)

dη,

S2(F,X )(θ)=− 4
πR6

∫

S

(∂θX (θ)
⊥)T1θ−ηX (θ)1θ−ηX (θ)

⊗1θ−ηX (θ)1ηXc(θ)
T1ηX(θ)

F(θ−η)
2sin(η/2)

dη,

S3(F,X )(θ)= 1
πR4

∫

S

(∂θX (θ)
⊥)T1θ−ηX (θ)1θ−ηX (θ)⊗1θ−ηX (θ)R3(1ηX(θ))

F(θ−η)
2sin(η/2)

dη.

We take Fourier transform of S1(F,X ) to obtain

∧

S1(F,X )(k)= 1
πR4

∑

k1∈Z

· · ·
∑

k4∈Z

(
∧

∂θX (k− k1)
⊥)T
∧

∂θX (k1− k2)
∧

∂θX (k2− k3)

⊗
∧

∂θX (k3− k4)F̂(k4)I
′
2(k1, . . . , k4),

where

|I ′2(k1, . . . , k4)| =
∣∣∣∣
∫

S

3∏

j=1

sin ((k j − k j+1)η/2)

(k j − k j+1) sin (η/2)

e−i(k1+k4)η/2

2 sin (η/2)
dη

∣∣∣∣

=
∣∣∣∣
∫

S

sin ((k1+ k4)η/2)

sin (η/2)

3∏

j=1

sin ((k j − k j+1)η/2)

(k j − k j+1) sin (η/2)
dη

∣∣∣∣.

The integral I ′2 turns out to be the previously defined integral in (3-4). In Lemma 3.2 we show that
|I ′2| ≤ 2π . Using (3-11) and (3-13), we have

|(
∧

∂θX (k− k1)
⊥)T
∧

∂θX (k1− k2)|

≤ R2

2

(
δ1(k− k1)δ−1(k1− k2)+ δ−1(k− k1)δ1(k1− k2)

)

+ R√
2
δ1,−1(k− k1)|
∧

∂θX(k1− k2)| + R√
2
δ1,−1(k1− k2)|
∧

∂θX(k− k1)| + |
∧

∂θX(k− k1)||
∧

∂θX(k1− k2)|,

while recalling (3-18), (3-21) and (3-22), we obtain

∥
∧

∂θX (k2− k3)⊗
∧

∂θX (k3− k4)∥

≤ R2

2
δ1,−1(k2− k3)δ1,−1(k3− k4)+

√
2

2
Rδ1,−1(k2− k3)|

∧

∂θX(k3− k4)|

+
√

2
2

R|
∧

∂θX(k2− k3)|δ1,−1(k3− k4)+ |
∧

∂θX(k2− k3)||
∧

∂θX(k3− k4)|.

Therefore, Young’s inequality for convolutions yields that

∥S1(F,X )∥F 0,1
ν
≤2

(
e2ν∞+2

√
2eν∞
∥X∥

Ḟ
1,1
ν

R
+
∥X∥2

Ḟ
1,1
ν

R2

)(
2e2ν∞+2

√
2eν∞
∥X∥

Ḟ
1,1
ν

R
+
∥X∥2

Ḟ
1,1
ν

R2

)
∥F∥

F
0,1
ν
,
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which by (2-42) and notation (2-43) can be rewritten as

∥S1(F,X )∥F 0,1
ν
≤ 2(2e4ν∞ + 6

√
2e3ν∞C1∥X∥Ḟ1,1

ν
+ 11C12C2

1∥X∥2Ḟ1,1
ν
)∥F∥

F
0,1
ν
, (3-67)

with

C12 = 1
11(11e2ν∞ + 4

√
2eν∞C1∥X∥Ḟ1,1

ν
+C2

1∥X∥2Ḟ1,1
ν
), (3-68)

and C1 is defined in (2-43).
Following the same steps, for
∧

S2(F,X ), one finds that

∥S2(F,X )∥F 0,1
ν
≤ 8
√

2eν∞(2e4ν∞ + 6
√

2e3ν∞C1∥X∥Ḟ1,1
ν
+ 11C12C2

1∥X∥2Ḟ1,1
ν
)C1∥X∥Ḟ1,1

ν
∥F∥

F
0,1
ν
.

We define

C13 = 1
2(2e4ν∞ + 6

√
2e3ν∞C1∥X∥Ḟ1,1

ν
+ 11C12C2

1∥X∥2Ḟ1,1
ν
), (3-69)

so that

∥S2(F,X )∥F 0,1
ν
≤ 16
√

2eν∞C13C1∥X∥Ḟ1,1
ν
∥F∥

F
0,1
ν
. (3-70)

This completes our
∧

S2(F,X ) estimate.
Next, we proceed with
∧

S3(F,X ) in (3-66). We split it accordingly to (3-59) as
∧

S3(F,X )=
∧

S3,1(F,X )+
∧

S3,2(F,X )+
∧

S3,3(F,X )+
∧

S3,4(F,X ),

with

S3,1(F,X )=−
4

πR6

∫

S

(∂θX (θ)
⊥)T1θ−ηX (θ)1θ−ηX (θ)⊗1θ−ηX (θ)

·1θ−ηXc(θ)
T1θ−ηX(θ)R2(1ηX(θ))

F(θ − η)
2 sin (η/2)

dη,

S3,2(F,X )=
2

πR4

∫

S

(∂θX (θ)
⊥)T1θ−ηX (θ)1θ−ηX (θ)⊗1θ−ηX (θ)R2(1ηX(θ))

F(θ − η)
2 sin (η/2)

dη,

S3,3(F,X )=
4

πR8

∫

S

(∂θX (θ)
⊥)T1θ−ηX (θ)1θ−ηX (θ)⊗1θ−ηX (θ)

· (1θ−ηXc(θ)
T1θ−ηX(θ))2

F(θ − η)
2 sin (η/2)

dη,

S3,4(F,X )= 1
πR4

∫

S

(∂θX (θ)
⊥)T1θ−ηX (θ)1θ−ηX (θ)⊗1θ−ηX (θ)(R2(1ηX(θ)))2

F(θ − η)
2 sin (η/2)

dη.

The procedure follows the steps used to bound N3,4(θ) in (3-24) and (3-41), where the term R2 from
(2-9) was also involved. After taking Fourier transform and using Lemma 3.2, Young’s inequality for
convolutions and summation in m and n gives

∥S3,1(F,X )∥F 0,1
ν
≤ 144

√
2eν∞C6C13C3

1∥X∥3Ḟ1,1
ν
∥F∥

F
0,1
ν
,

∥S3,2(F,X )∥F 0,1
ν
≤ 72C6C13C2

1∥X∥2Ḟ1,1
ν
∥F∥

F
0,1
ν
,

∥S3,3(F,X )∥F 0,1
ν
≤ 32e2ν∞C13C2

1∥X∥2Ḟ1,1
ν
∥F∥

F
0,1
ν
,

∥S3,4(F,X )∥F 0,1
ν
≤ 324C13C2

6C4
1∥X∥4Ḟ1,1

ν
∥F∥

F
0,1
ν
.
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Joining the above bounds, we obtain

∥S3(F,X )∥F 0,1
ν
≤ 104C13C14C2

1∥X∥2Ḟ1,1
ν
∥F∥

F
0,1
ν
, (3-71)

with
C14 = 1

104(72C6+ 32e2ν∞ + 144
√

2eν∞C6C1∥X∥Ḟ1,1
ν
+ 324C2

6C2
1∥X∥2Ḟ1,1

ν
), (3-72)

where C1 and C6 previously defined in (2-43) and (3-42), respectively. We combine the bounds (3-67),
(3-70), and (3-71), and order them as

∥S(F,X )∥
F

0,1
ν
≤ 4e4ν∞∥F∥

F
0,1
ν
+ 28
√

2e5ν∞C1∥X∥Ḟ1,1
ν
∥F∥

F
0,1
ν
+ 222C15C2

1∥X∥2Ḟ1,1
ν
∥F∥

F
0,1
ν
,

with
C15 = 1

222(104C13C14+ 8
√

2eν∞(6
√

2e3ν∞ + 11C12C1∥X∥Ḟ1,1
ν
)+ 22C12), (3-73)

and C1 in (2-43), C12 in (3-68), C13 in (3-69) and C14 in (3-72).
We remark that instead of (3-66), analogously to the splitting for K in (3-61) we can split S(F,X )(θ) as

S(F,X )(θ)= S0(F,X )(θ)+SL(F,X )(θ)+SN (F,X )(θ), (3-74)

where from (3-60) and (3-61) we have

S0(F,X )(θ)=
∫

S

K0(Xc, X)(θ, η)
F(θ − η)

2 sin (η/2)
dη.

Then SL(F,X )(θ) analogously contains KL(Xc, X)(θ, η) from (3-61) and SL is linear in X . Then
SN (F,X )(θ) similarly contains KN (Xc, X)(θ, η) from (3-61) and SN is nonlinear in X . Then it is clear
from the above that we have the estimates

∥S0(F,X )∥F 0,1
ν
≤ 4e4ν∞∥F∥

F
0,1
ν
,

∥SL(F,X )∥F 0,1
ν
≤ 28
√

2e5ν∞C1∥X∥Ḟ1,1
ν
∥F∥

F
0,1
ν
,

∥SN (F,X )∥F 0,1
ν
≤ 222C15C2

1∥X∥2Ḟ1,1
ν
∥F∥

F
0,1
ν
.

This splits the estimates into zero-order, linear-order, and nonlinear-order which is useful because of (3-63).
Next, recalling the definition of J(X, FN ) from (3-63) and its relation with S(F,X ) in (3-60) and

(3-74), it follows that

∥J(X, FN )∥F 0,1
ν
≤ 56
√

2|Aµ|C16C1∥X∥Ḟ1,1
ν
∥FN∥F 0,1

ν

+ 56
√

2|Aµ|C16C1∥X∥Ḟ1,1
ν
∥FL∥F 0,1

ν
+ 444|Aµ|C15C2

1∥X∥2Ḟ1,1
ν
∥F0∥F 0,1

ν
, (3-75)

with
C16 = 1

28
√

2
(28
√

2e5ν∞ + 222C15C1∥X∥Ḟ1,1
ν
). (3-76)

Finally, bound (3-75) allows us to estimate FN from (3-65),

∥FN∥F 0,1
ν

≤ 56
√

2|Aµ|(1+ |Aµ|)
(1− Aµ)(1+ Aµ)

C17C16C1∥X∥Ḟ1,1
ν
∥FL∥F 0,1

ν
+ 444|Aµ|(1+ |Aµ|)
(1− Aµ)(1+ Aµ)

C17C15C2
1∥X∥2Ḟ1,1

ν
∥F0∥F 0,1

ν
,
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where

C17 =
(

1− 56
√

2|Aµ|(1+ |Aµ|)
(1− Aµ)(1+ Aµ)

C16C1∥X∥Ḟ1,1
ν

)−1

, (3-77)

and the bounds for F0, FL are given in (3-55) and (3-56). Substituting these bounds we find

∥FN∥F 0,1
ν
≤ 112

√
2Ae

|Aµ|(1+ |Aµ|)(1− Aµ+ |Aµ|)
(1− Aµ)2(1+ Aµ)

C17C16C1∥X∥Ḟ1,1
ν
∥X∥

Ḟ
2,1
ν

+ 888
√

2Ae

|Aµ|(1+ |Aµ|)
(1− Aµ)2(1+ Aµ)

eν∞C8C17C15C2
1∥X∥Ḟ1,1

ν
∥X∥

Ḟ
2,1
ν
.

Defining

D4 = 1
1000C1C17(112(1− Aµ+ |Aµ|)C16+ 888eν∞C8C1C15), (3-78)

where C1, C8, C15, C16, and C17 are defined in (2-43), (3-46), (3-73), (3-76), and (3-77), we can write
the estimate for FN as (3-57). □

Proof of Lemma 3.2. Recalling (3-3) and (3-2) and using the odd part of the integral we can rewrite I = In as

I =−i pv
∫ π

−π

sin ((k1+ k2n)η/2)− sin ((k−k1)η/2)
(k−k1) tan (η/2)

sin ((k+ k2n)η/2)

2 sin (η/2)

2n−1∏

j=1

sin ((k j − k j+1)η/2)

(k j − k j+1) sin (η/2)
dη

=− i

2
(I ′− I ′′),

where

I ′
def= pv

∫ π

−π

sin ((k1+ k2n)η/2)

sin (η/2)

2n−1∏

j=1

sin ((k j − k j+1)η/2)

(k j − k j+1) sin (η/2)
dη, (3-79)

I ′′
def= pv

∫ π

−π
cos (η/2)

sin ((k+ k2n)η/2)

sin (η/2)

2n−1∏

j=0

sin ((k j − k j+1)η/2)

(k j − k j+1) sin (η/2)
dη. (3-80)

Note that if k1+k2n= 0 then I ′= 0 and if k+k2n= 0 then I ′′= 0. We henceforth assume that |k1+k2n|≥ 1
and |k+ k2n| ≥ 1. We will calculate (3-79) and then (3-80).

Notice that sin ((k j − k j+1)η/2)= sgn(k j − k j+1) sin (|k j − k j+1|η/2) and, since |k j − k j+1| ≥ 1, we
rewrite the quotient in the product form as

sin (|k j − k j+1|η/2)
sin (η/2)

= ei |k j−k j+1|η/2− e−i |k j−k j+1|η/2

eiη/2− e−iη/2
= ei |k j−k j+1|η/2(1− e−i |k j−k j+1|η)

eiη/2(1− e−iη)

= ei(|k j−k j+1|−1)η/2
|k j−k j+1|−1∑

m=0

e−iηm =
|k j−k j+1|−1∑

m=0

ei(−2m+|k j−k j+1|−1)η/2.
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We conclude that
2n−1∏

j=1

sin (|k j − k j+1|η/2)
sin (η/2)

=
2n−1∏

j=1

|k j−k j+1|−1∑

m j=0

ei(−2m j+|k j−k j+1|−1)η/2

=
|k1−k2|−1∑

m1=0

· · ·
|k2n−1−k2n |−1∑

m2n−1=0

ei(|k1−k2|+···+|k2n−1−k2n |−2(m1+···+m2n−1)−2n)η/2.

In particular following those calculations we can express the integrand of I ′ in (3-79) as

sin ((k1+ k2n)η/2)

sin (η/2)

2n−1∏

j=1

sin ((k j − k j+1)η/2)

(k j − k j+1) sin (η/2)

=
(

sgn(k1+ k2n)

2n−1∏

j=1

1

|k j − k j+1|

) |k j−k j+1|−1∑

m j=0
1≤ j≤2n−1

|k1+k2n |−1∑

m2n=0

ei B1η/2,

where to be clear in the sum the m j indicates a further summation over all j ∈ {1, . . . , 2n− 1}. Also we
define B1 above as

B1 =
2n−1∑

j=1

|k j − k j+1| + |k1+ k2n| − 2
2n∑

j=1

m j − 2n.

Notice that no matter what the sign of any of the terms inside the absolute values above is we always
have

∑2n−1
j=1 |k j − k j+1| + |k1 + k2N | = 2l for some integer l so that B1 is an even integer. This holds

because the sum contains two copies of every k1, . . . , k2n .
We further integrate as

∫ π
−π ei B1η/2 dη = (4/B1) sin(B1π/2), and we notice that since B1 is an even

integer, either (4/B1) sin(B1π/2)= 0 if B1 ̸= 0 or (4/B1) sin(B1π/2)= 2π when B1 = 0. We can then
find the following expression for I ′:

I ′ = 2π

(
sgn(k1+ k2n)

2n−1∏

j=1

1

|k j − k j+1|

) |k j−k j+1|−1∑

m j=0
1≤ j≤2n−1

|k1+k2n |−1∑

m2n=0

1B1=0. (3-81)

This is our calculation of the integral (3-79). We note, as a function of the single variable m2n , that B1

is decreasing and takes the value zero at most one time. Thus
∑|k1+k2n |−1

m2n=0 1B1=0 ≤ 1. We conclude that
|I ′| ≤ 2π . Note that (3-4) is exactly (3-79). So this proves the second estimate for (3-4) in Lemma 3.2.

We now calculate the integral (3-80), which is rather similar. We obtain
2n−1∏

j=0

sin (|k j − k j+1|η/2)
sin (η/2)

=
|k j−k j+1|−1∑

m j=0
0≤ j≤2n−1

ei(|k0−k1|+···+|k2n−1−k2n |−2(m0+···+m2n−1)−2n)η/2.

Then we can express the integrand of I ′′ as

cos (η/2)
sin ((k+ k2n)η/2)

sin (η/2)

2n−1∏

j=0

sin ((k j − k j+1)η/2)

(k j − k j+1) sin (η/2)

= 1
2

(
sgn(k+ k2n)

2n−1∏

j=0

1

|k j − k j+1|

) |k j−k j+1|−1∑

m j=0
0≤ j≤2n−1

|k+k2n |−1∑

m2n=0

(ei B2η/2+ ei B3η/2).
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We define

B2 =
2n−1∑

j=0

|k j − k j+1| + |k+ k2n| − 2
2n∑

j=0

m j − 2n,

B3 =
2n−1∑

j=0

|k j − k j+1| + |k+ k2n| − 2
2n∑

j=0

m j − 2n− 2.

Similarly since
∑2n

j=0 |k j −k j+1|+ |k+k2n| contains two copies of every k0, k1, . . . , k2n then it is always
an even integer. Therefore we conclude that B2 and B3 both are even integers.

We can then similarly find the following expression for I ′′:

I ′′ = π
(

sgn(k+ k2n)

2n−1∏

j=0

1

|k j − k j+1|

) |k j−k j+1|−1∑

m j=0
0≤ j≤2n−1

|k+k2n |−1∑

m2n=0

(1B2=0+ 1B3=0).

Then using the same argument as our upper bound estimate for I ′ we obtain that |I ′′| ≤ 2π . □

Remark 3.4. One can generally calculate the sum in (3-81) exactly. In particular the value of the sums in
(3-81) can be seen as the number of nonnegative integer solutions to the equation

m1+ · · ·+m2n = 1
2

2n−1∑

j=1

|k j − k j+1| + |k1+ k2n| − n,

with the restrictions that 0 ≤ m j ≤ |k j − k j+1| − 1 for j = 1, . . . , 2n− 1 and 0 ≤ m2n ≤ |k1+ k2n| − 1.
This value can be calculated exactly using the inclusion-exclusion formula.

Alternatively, if n = 1 in (3-4) then one can calculate, on the region where I ′1 ̸= 0, that we have exactly

I ′1 = 2π
min{|k1− k2|, |k1+ k2|} sgn(k1+ k2)

|k1− k2|
.

And this formula is consistent with our estimate in Lemma 3.2.

4. Proof of main theorem

This section is devoted to the proof of Theorem 1.2. In Section 4A we show the scheme of the proof
for existence of solutions via a regularization argument. The main part consists in obtaining the a priori
estimates, in particular the energy inequality from (1-30). Uniqueness is later proved in Section 4B.

4A. Existence. The proof follows a standard regularization argument. We will use a regularization of
(1-10) and (1-13), written in the form of (2-48), and the a priori estimates of the previous section to find a
weak solution in the sense of Definition 4.2 below. The regularity obtained for the solution will imply
that the solution found is indeed a strong solution, which we prove later is unique.

Definition 4.1. For fixed t ∈ [0, T ] and φ(t)∈W 2,∞(S), we say that ψ(t)∈ L∞(S) is a weak solution of

ψ(θ, t)+ 2Aµ∂θφ(θ, t)⊥ ·
∫

S

T (φ(θ, t)−φ(η, t)) ·ψ(η, t) dη = 2Ae∂
2
θφ(θ, t),
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with T given by (1-11), if for any ϕ ∈ D(S) it holds that
∫

S

ψ(θ, t) ·ϕ(θ) dθ + 2Aµ

∫

S

ϕi (θ)

∫

S

∂θφ j (θ, t)⊥Ti jk(φ(θ, t)−φ(η, t))ψk(η, t) dη dθ

= 2Ae

∫

S

∂2
θφ(θ, t) ·ϕ(θ).

Definition 4.2. We say that X ∈ L∞([0, T ];W 1,∞(S))∩L1([0, T ];W 2,∞(S)) is a weak solution of (1-10)
if for almost every t ∈ [0, T ] the arc-chord condition (1-17) is satisfied, and if for any ϕ ∈ D(S×[0, T ])
it holds that
∫

S

X (θ, t) ·ϕ(θ, t) dθ −
∫

S

X 0(θ) ·ϕ(θ, 0) dθ −
∫ t

0

∫

S

X (θ, τ ) · ∂tϕ(θ, τ ) dθdτ

=
∫ t

0

∫

S

ϕ(θ, τ ) ·
∫

S

G(X (θ, τ )−X (η, τ ))F(η, τ ) dη dθ dτ,

where G is defined in (1-9) and F ∈ L1([0, T ]; L∞(S)) is the solution in the sense of Definition 4.1
of (1-13).

We will write fM = JM f for general f such as f = X , f = Xc, f = Y or f = F, with JM the
high-frequency cut-off defined in (1-23). We start by considering a regularized version of system (1-10),
(1-13) (where (1-10) is written in (2-28) with the linear and nonlinear terms apart). For each positive
integer M, consider the regularized initial data X 0,M and the corresponding solution X = XM + XM,c to
the regularized system

∂tX M =− Ae

2
(3XM +HR−1 XM)+JMN (XM,c, XM),

FM = 2AµJMS(FM ,X M)+ 2Ae∂
2
θX M .

(4-1)

We define correspondingly Y0,M and YM = YM + YM,c. We recall that (2-28) could be written in
Y-variables as (2-48). The corresponding regularized system in these variables reads as follows:

ŶM(0)= 0, ŶM,2(1)= 0, ŶM,c(k)= 0, k ̸= 0, 1, ŶM,c,1(1)= 0,

∂t ŶM,c(0)= P(0)−1
∧

N (XM,c, XM)(0),

∂t ŶM,1(1)=−AeŶM,1(1)+ (P(1)−1
∧

N (XM,c, XM)(1))1,

∂t ŶM(k)=− Ae

2
D(k)ŶM(k)+ P(k)−1
∧

N (XM,c, XM)(k), 2≤ k ≤ M,

|ŶM,c,2(1)|2 = 1
2
−

∑

1≤k≤M

k(|ŶM,2(k)|2− |ŶM,1(k)|2),

(4-2)

with FM given by (4-1). Since XM,c is a circle with radius satisfying (2-42), the chord arc condition
(1-17) is clearly satisfied for ∥XM∥Ḟ1,1

ν
sufficiently small; we shall soon see that this in fact holds so long

as ∥XM∥Ḟ1,1
ν
< k(Aµ), which is defined in (4-9). Then, with the same size condition, FM is estimated in

terms of XM as in Section 3B. Thus, with FM solved in terms of YM using the transformation (2-31), we
obtain an ODE of the form

ẎM = JMG(YM), YM(0)= YM,0,
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for a certain nonlinear function G. Notice that the ODE for ŶM,c(0) is decoupled from the rest because there
are no zero modes in
∧

N (XM,c, XM)(0). Therefore, Picard’s theorem on Banach spaces yields the local ex-
istence of regularized solutions YM ∈C1([0, TM); H m

M), where H m
M ={ f ∈ H m(S) : supp( f̂ )⊂[−M,M]}.

Since the a priori energy estimate (4-11) holds for the regularized system, we have uniform bounds for
YM in the space L∞(R+; Ḟ1,1

ν )∩ L1(R+; Ḟ2,1
ν ). It is not hard to prove that YM forms a Cauchy sequence

in L∞([0, T ];F 0,1
ν ), so that we have a candidate for solution. One can then apply a version of the

Aubin±Lions lemma (see Corollary 6 of [Simon 1987]) to get the strong convergence, up to a subsequence,
of the approximate problems in L2([0, T ]; Ḟ1,1

ν ). Next, since ŶM(m, t)→ Ŷ(m, t) as M→∞, for all
m ∈ Z and almost every t , Fatou’s lemma allows us to conclude that

M(t)= ∥Y∥
Ḟ

1,1
ν
(t)+ Ae

4
C

∫ t

0
∥Y∥

Ḟ
2,1
ν
(τ ) dτ

≤ lim inf
M→+∞

(
∥YM∥Ḟ1,1

ν
(t)+ Ae

4
C

∫ t

0
∥YM∥Ḟ2,1

ν
(τ ) dτ

)
≤ ∥Y0∥Ḟ1,1,

so we obtain that the limit function Y belongs to L∞([0, T ]; Ḟ1,1
ν )∩ L1([0, T ]; Ḟ2,1

ν ). Now, we claim
that the strong convergence, up to a subsequence, of XM → X in L∞([0, T ]; Ḟ1,1

ν )∩ L1([0, T ]; Ḟ2,1
ν )

holds. The proof of this claim follows in fact along the lines of the proof of uniqueness (see Section 4B).
This strong convergence immediately implies from (4-1), under the size constraint (1-29), the strong
convergence FM → F in L1([0, T ];F 0,1

ν ). In fact, it suffices to consider FM1 and FM2 , write their
difference as

FM1 − FM2 = 2Aµ(JM1S(FM1,X M1)−JM2S(FM1,X M1))

+ 2Aµ(JM2S(FM1,X M1)−JM2S(FM2,X M1))

+ 2Aµ(JM2S(FM2,X M1)−JM2S(FM2,X M2))

+ 2Ae(∂
2
θX M1 − ∂2

θX M2),

and perform estimates similar to the ones in Section 3B to find that FM forms a Cauchy sequence in
L1([0, T ];F 0,1

ν ). Since XM,c is given in terms of XM , the above convergence holds for X M . The strong
convergence X M → X in L∞([0, T ]; Ḟ1,1

ν ) together with FM → F in L1([0, T ];F 0,1
ν ) yields X as

a solution to (1-10) in the sense of Definition 4.2. (Moreover, it is easy to check in (4-1) the strong
convergence of the right-side terms in L1([0, T ]; Ḟ1,1

ν ).)
We refer to Section 5 of [Gancedo et al. 2020] for a similar approximation argument, including the

instant generation of analyticity and the continuity in time. We include it here for completeness. From the
strong convergence in L1([0, T ]; Ḟ1,1

ν ) of the right-hand side of (1-10), we must have that ∂tX M → ∂tX

in L1([0, T ]; Ḟ1,1
ν ). Consider 0< t ≤ t1 < t2. Then,

∥X (t2)−X (t1)∥Ḟ1,1
ν(t)
=

∥∥∥∥
∫ t2

t1

∂tX (τ ) dτ

∥∥∥∥
Ḟ

1,1
ν(t)

≤
∫ t2

t1

∥∂tX (τ )∥Ḟ1,1
ν(τ)

dτ,

which from the fact that ∂tX ∈ L1([0, T ]; Ḟ1,1
ν ) yields that the solution is analytic for all positive times,

and X ∈ C([ε, T ]; Ḟ1,1
ν ) for any ε > 0. Moreover, fix ν̃m ∈ (0, ν∞) and define ν̃(t) according to (1-27);
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now given any t2 > 0 choose 0< t1 < t2 close enough to t2 that ν̃(t2) < ν(t1). Thus, it holds that

∥X (t2)−X (t1)∥Ḟ1,1
ν̃(t2)
→ 0 as t1→ t2,

and therefore we have X ∈C([0, T ]; Ḟ1,1
ν̃
). Since ν̃m ∈ (0, ν∞) is an arbitrary number in an open interval,

we conclude that X ∈ C([0, T ]; Ḟ1,1
ν ). Finally, the analyticity in space for all positive times implies that

X ∈ C([ε, T ]; Ḟ s,1
ν̃
) for any s ≥ 0, ε > 0, and 0 < ν̃ < ν. This regularity translates to F as well for

t ≥ ε. Therefore, one can consider ∂tX (t2)− ∂tX (t1) for arbitrary t2, t1 ≥ ε to find in particular that
∂tX ∈ C((0, T ];F 0,1

ν ).
We have proven that X is a strong solution in the sense of Definition 1.1 as claimed in Theorem 1.2.

In Section 4B we prove that this solution is unique.
We now prove the global-in-time energy inequality in (1-30).

Proof of (1-30). Equations (2-45) show decay of the higher frequencies (2-38) if we are able to control
the nonlinear terms, for which we will need the constraint (2-40). Indeed, using (2-38) and the inequality
k(k− 1)≥ k2/2 for k ≥ 2 implies

d

dt
∥Y∥

Ḟ
1,1
ν
≤−

(
Ae

4
− ν ′(t)

)
∥Y∥

Ḟ
2,1
ν
+∥N (Xc, X)∥

Ḟ
1,1
ν
, (4-3)

where we have used that ∥P(k)−1∥ = 1, and we can choose ν ′(t) as small as we need. The goal is thus to
obtain a bound like

∥N (Xc, X)∥
Ḟ

1,1
ν
≤ C(∥X∥

Ḟ
1,1
ν
)∥Y∥

Ḟ
2,1
ν
, (4-4)

with C(∥X∥
Ḟ

1,1
ν
)≈ ∥X∥

Ḟ
1,1
ν

.
We proceed to complete the nonlinear estimate (4-4) to obtain the adequate sign in the balance (4-3).

We insert the a priori bounds on F given by (3-55), (3-56), and (3-57), into the estimate (3-1) to obtain

∥N∥
Ḟ

1,1
ν
≤ 22
√

2Ae

1− Aµ+ |Aµ|
1− Aµ

D1∥X∥Ḟ1,1
ν
∥X∥

Ḟ
2,1
ν
+ 147

√
2

Ae

1− Aµ
eν∞D2C8∥X∥Ḟ1,1

ν
∥X∥

Ḟ
2,1
ν

+ 2250
√

2Ae

|Aµ|(1+ |Aµ|)
(1− Aµ)2(1+ Aµ)

D3 D4∥X∥Ḟ1,1
ν
∥X∥

Ḟ
2,1
ν
,

which finally gives the desired estimate

∥N∥
Ḟ

1,1
ν
≤ 169

√
2

Ae

1− Aµ
D5∥X∥Ḟ1,1

ν
∥X∥

Ḟ
2,1
ν
, (4-5)

where

D5 = 1
169

(
22(1− Aµ+ |Aµ|)D1+ 147eν∞D2C8+ 2250

|Aµ|(1+ |Aµ|)
(1− Aµ)(1+ Aµ)

D3 D4

)
, (4-6)

and C8, D1, D2, D3, D4, are given by (3-46), (3-54), and (3-78). Recalling the equivalence (2-34) and
inserting the above bound into (4-3), we obtain

d

dt
∥Y∥

Ḟ
1,1
ν
≤−Ae

(
1
4
− ν
′(t)

Ae

− 169
√

2
D5

1− Aµ
∥X∥

Ḟ
1,1
ν

)
∥Y∥

Ḟ
2,1
ν
. (4-7)



832 EDUARDO GARCÍA-JUÁREZ, YOICHIRO MORI AND ROBERT M. STRAIN

Since ν ′(t)= ν∞/(1+ t)2 and ν∞ > 0 in (1-27) can be chosen arbitrarily small, if the condition

1− 676
√

2
D5(∥X∥Ḟ1,1

ν
)

1− Aµ
∥X∥

Ḟ
1,1
ν
> 0 (4-8)

holds initially, where D5 is defined in (4-6), then the fact that D5 decreases as ∥X∥
Ḟ

1,1
ν

decreases guarantees
that this condition is propagated in time. For the same reasons, this condition can be stated as a smallness
condition for ∥X0∥Ḟ1,1 as

∥X0∥Ḟ1,1 < k(Aµ), (4-9)

with k a function defined implicitly via (4-8) (see also Figure 1). Because D5 is increasing on ∥X∥
Ḟ

1,1
ν

,
we have the explicit upper bound

k(Aµ) <
1− Aµ

676
√

2D5(0)
, (4-10)

where
1− Aµ

676
√

2D5(0)

=
(

588
√

2

1− Aµ
+ 88
√

2

(
1+ |Aµ|

1− Aµ

)
+ 9
√

2|Aµ|(1+ |Aµ|)
(1− Aµ)(1+ Aµ)

(
112

(
1+ |Aµ|

1− Aµ

)
+ 888

1− Aµ

))−1

.

Then, for small enough ∥X∥
Ḟ

1,1
ν

, the upper bound in (4-10) approximates the actual value of k(Aµ).
Therefore,

∥Y∥
Ḟ

1,1
ν
(t)+ Ae

4
C

∫ t

0
∥Y∥

Ḟ
2,1
ν
(τ ) dτ ≤ ∥Y0∥Ḟ1,1, (4-11)

with

C = C(∥X0∥Ḟ1,1
ν
, Aµ, ν∞)= 1− 4

ν ′(t)

Ae

− 676
√

2
D5(∥X0∥Ḟ1,1

ν
)

1− Aµ
∥X0∥Ḟ1,1

ν
. (4-12)

Moreover, since ∥Y∥
Ḟ

1,1
ν
≤ ∥Y∥

Ḟ
2,1
ν

, the inequality (4-7) gives

d

dt
∥Y∥

Ḟ
1,1
ν
≤− Ae

4
C∥Y∥

Ḟ
1,1
ν
,

and thus

∥Y∥
Ḟ

1,1
ν
≤ ∥Y0∥Ḟ1,1

ν
e−(Ae/4)Ct . (4-13)

This completes the decay estimate.
The control of the zero frequency follows from (2-47) with

|X̂c(0)| ≤ |X̂0,c(0)| +
∫ t

0
|
∧

N (Xc, X)(0)| dτ. (4-14)

Notice that the estimates of the nonlinear terms in F 0,1 can be done as in Section 3A and yield the bound

|
∧

N (Xc, X)(0)| ≤ ∥N (Xc, X)∥F 0,1 ≤ Ae

D̃5

1− Aµ
∥X∥

Ḟ
1,1
ν
∥X∥

Ḟ
2,1
ν
,

where D̃5 is a constant that plays the role of D5. Recalling (2-34) and the energy balance (4-11), we
introduce this bound back to (4-14) to conclude

|X̂c(0)| ≤ |X̂0,c(0)| + C̃∥X0∥2Ḟ1,1,
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with

C̃ = D̃5

(1− Aµ)C
, (4-15)

and D5, C given in (4-6) and (4-12) respectively.
Finally, the decay (4-13) applied to (2-46) yields

1
2 R(t)2 = |Ŷc,2(1)|2→ 1

2 as t→+∞,

showing the exponentially fast convergence to a uniformly parametrized circle of area π . □

4B. Uniqueness. Consider two solutions X = Xc+ X and X̃ = X̃c+ X̃ with initial data X 0 and X̃ 0

in F1,1. Recalling the system in the Y-variables (2-32), we have

d

dt
∥Y − Ỹ∥

Ḟ
1,1
ν
≤−

(
Ae

4
− ν ′(t)

)
∥Y − Ỹ∥

Ḟ
2,1
ν
+
√

2∥N (Xc, X)−N (X̃c, X̃)∥
Ḟ

1,1
ν
, (4-16)

and

|Ŷc(0)− ̂̃Y c(0)| ≤ |Ŷ0,c(0)− ̂̃Y 0,c(0)| +
∫ t

0

∣∣P(0)−1
∧

N (Xc, X)(0)− P(0)−1
∧

N (X̃c, X̃)(0)
∣∣ dτ. (4-17)

Notice that, in comparison with (4-3), we are including in the left-hand side of (4-16) the terms corre-
sponding to (the first frequency of) the circle part,

2|Ŷc,2(1)− ̂̃
Y c,2(1)|.

Although these terms are neutral with respect to the dissipative linear operator, whenever they appear on
the right-hand side, we will be able to absorb them by using Grönwall’s lemma and (4-11) (which both Y

and Ỹ satisfy). Notice further that since the nonlinear terms do not contain the zero frequency of Y , i.e.,
Ŷc(0), equation (4-17) implies

|Ŷc(0)− ̂̃Y c(0)| = 0, (4-18)

once we show from (4-16) that ∥Y − Ỹ∥
Ḟ

1,1
ν
= 0. Thus we proceed to deal with (4-16).

The difference between the nonlinear terms in (4-16) is split in four, according to (3-5), so that we have

∥N (Xc,X)−N (X̃c, X̃)∥
Ḟ

1,1
ν
≤∥N1(Xc,X)−N1(X̃c, X̃)∥

F
0,1
ν
+∥N2(Xc,X)−N2(X̃c, X̃)∥

F
0,1
ν

+∥N3(Xc,X)−N3(X̃c, X̃)∥
F

0,1
ν
+∥N4(Xc,X)−N4(X̃c, X̃)∥

F
0,1
ν
. (4-19)

We start by explaining the estimate corresponding to the first subterm N1,1 in detail (see (3-6)), and later
we will explain the general procedure. We have

N1,1(Xc, X)(θ)−N1,1(X̃c, X̃)(θ)= Q1+ Q2+ Q3+ Q4, (4-20)

where

Q1 =
(
− 1

4πR2
+ 1

4π R̃2

) ∫

S

∂θ1ηXc(θ)
T1ηX(θ)FL(η) dη,

Q2 =
1

4π R̃2

∫

S

(
∂θ1η X̃c(θ)− ∂θ1ηXc(θ)

)T
1η X̃(θ)F̃L(η) dη,
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Q3 =
1

4π R̃2

∫

S

∂θ1ηXc(θ)
T
(
1η X̃(θ)−1ηX(θ)

)
F̃L(η) dη,

Q4 =
1

4π R̃2

∫

S

∂θ1ηXc(θ)
T1ηX(θ)

(
F̃L(η)− FL(η)

)
dη.

For the first term, we need to estimate the difference between R and R̃. Recalling (2-40), where
|Ŷc,2(1)|2 = R2/2 with R2 = a2+ b2, we have

|R2− R̃2| =
∣∣∣∣−2

∑

k≥1

k(|Ŷ2(k)|2− |Ŷ1(k)|2)+ 2
∑

k≥1

k(|̂̃Y 2(k)|2− |̂̃Y 1(k)|2)
∣∣∣∣

≤ 2
∑

k≥1

k
(∣∣|Ŷ2(k)| − |̂̃Y 2(k)|

∣∣(|Ŷ2(k)| + |̂̃Y 2(k)|)+
∣∣|Ŷ1(k)| − |̂̃Y 1(k)|

∣∣(|Ŷ1(k)| + |̂̃Y 1(k)|)
)
.

Further note for j = 1, 2 that ∣∣|Ŷ j (k)| − |̂̃Y j (k)|
∣∣≤ |Ŷ j (k)− ̂̃

Y j (k)|,

and on the S domain we have |Ŷ j (k)| ≤ ∥Y j∥L∞(S) ≤ ∥Y j∥Ḟ 0,1 . We conclude

|R2− R̃2| ≤ (∥Y∥
Ḟ 0,1 +∥Ỹ∥Ḟ 0,1)∥Y − Ỹ∥

Ḟ1,1 .

Therefore, using also (2-41), we obtain
∣∣∣∣

1

R2
− 1

R̃2

∣∣∣∣=
∣∣∣∣

R̃2− R2

R2 R̃2

∣∣∣∣≤
∥Y∥

Ḟ 0,1 +∥Ỹ∥Ḟ 0,1√
1− 1

2∥Y∥Ḟ 1
2 ,1

√
1− 1

2∥Ỹ∥Ḟ 1
2 ,1

∥Y − Ỹ∥
Ḟ1,1 .

In particular, for a constant c(∥Y∥
Ḟ1,1, ∥Ỹ∥Ḟ1,1) > 0, we can write

∣∣∣∣
1

R2
− 1

R̃2

∣∣∣∣≤ c(∥Y∥
Ḟ1,1, ∥Ỹ∥Ḟ1,1)∥Y − Ỹ∥

Ḟ1,1 .

Then, the bound for Q1 follows as in the estimate for the term (3-8), we obtain

∥Q1∥F 0,1
ν
≤ c(∥Y∥

Ḟ
1,1
ν
, ∥Ỹ∥

Ḟ
1,1
ν
)∥FL∥F 0,1

ν
∥Y − Ỹ∥

Ḟ1,1,

and introducing the estimate for FL from (3-56) we have

∥Q1∥F 0,1
ν
≤ Aec(∥Y∥

Ḟ
1,1
ν
, ∥Ỹ∥

Ḟ
1,1
ν
, Aµ, ν∞)∥Y∥Ḟ2,1

ν
∥Y − Ỹ∥

Ḟ1,1,

which is trivially bounded by

∥Q1∥F 0,1
ν
≤ Aec(∥Y∥

Ḟ
1,1
ν
, ∥Ỹ∥

Ḟ
1,1
ν
, Aµ, ν∞)∥Y∥Ḟ2,1

ν
∥Y − Ỹ∥

Ḟ1,1 .

It is now clear that (4-11) allows us to control this term by Grönwall’s lemma in (4-16).
We proceed to estimate Q2 in (4-20). Following the steps in (3-8), but maintaining the difference

between X̃c and Xc together, we find that

∥Q2∥F 0,1
ν
≤ c(∥Y∥

Ḟ
1,1
ν
, ∥Ỹ∥

Ḟ
1,1
ν
, Aµ, ν∞)∥Ỹ∥Ḟ2,1

ν
|Ŷc,2(1)− ̂̃

Y c,2(1)|
≤ Aec(∥Y∥

Ḟ
1,1
ν
, ∥Ỹ∥

Ḟ
1,1
ν
, Aµ, ν∞)∥Ỹ∥Ḟ2,1

ν
∥Y − Ỹ∥

Ḟ1,1,
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and it is thus controlled in the same way. The bound for Q3 follows exactly as in (3-8) and has the same
structure as the bound for Q2.

Finally, we are left with Q4, for which we have

Q4 ≤ c(∥Y∥
Ḟ

1,1
ν
, ∥Ỹ∥

Ḟ
1,1
ν
)∥F̃L − FL∥F 0,1

ν
.

We emphasize that the constant above is given exactly by the one for N1,1 in (3-14). The estimate for
F̃L − FL follows from (2-25) (compare to (3-56)); we have

∥F̃L − FL∥F 0,1
ν
≤ 2Ae∥X̃ − X∥

Ḟ
2,1
ν
+ 2Ae

|Aµ|
1− Aµ

∥X̃ − X∥
Ḟ

1,1
ν
, (4-21)

so, moving to the Y -variable, we obtain

Q4 ≤ Aec(∥Y∥
Ḟ

1,1
ν
, ∥Ỹ∥

Ḟ
1,1
ν
)∥Ỹ −Y∥

Ḟ
2,1
ν
+ Aec(∥Y∥

Ḟ
1,1
ν
, ∥Ỹ∥

Ḟ
1,1
ν
, Aµ, ν∞)∥Ỹ −Y∥

Ḟ
1,1
ν
,

and therefore trivially we have

Q4 ≤ Aec(∥Y∥
Ḟ

1,1
ν
, ∥Ỹ∥

Ḟ
1,1
ν
)∥Ỹ −Y∥

Ḟ
2,1
ν
+ Aec(∥Y∥

Ḟ
1,1
ν
, ∥Ỹ∥

Ḟ
1,1
ν
, Aµ, ν∞)∥ Ỹ −Y∥

Ḟ
1,1
ν
.

Although in this section we are denoting by c all constants (possibly depending on ∥Y∥
Ḟ

1,1
ν

, ∥Ỹ∥
Ḟ

1,1
ν

,
Aµ, ν∞), it is important to notice that the constant in front of the high-order term ∥Ỹ −Y∥

Ḟ
2,1
ν

is less than
or equal to the one appearing in the nonlinear estimates from Section 3A. This will allow us to absorb
these terms using the negative sign coming from the dissipative linear term without additional conditions
on the initial data other than the one needed for the earlier existence proof.

In summary, so far we have obtained

∥N1,1(Xc, X)−N1,1(X̃c, X̃)∥
F

0,1
ν
≤ Aec(∥Y∥

Ḟ
1,1
ν
, ∥Ỹ∥

Ḟ
1,1
ν
)∥Ỹ −Y∥

Ḟ
2,1
ν

+ Aeg(∥Y∥
Ḟ

1,1
ν
, ∥Ỹ∥

Ḟ
1,1
ν
, ∥Y∥

Ḟ
2,1
ν
, ∥Ỹ∥

Ḟ
2,1
ν
, Aµ, ν∞)∥ Ỹ −Y∥

Ḟ
1,1
ν
,

where g is a function whose L1-in-time norm is bounded independently of time in terms of the initial data
∥Y0∥F 0,1 , ∥Ỹ0∥F 0,1 . Therefore the second term above can be controlled in (4-16) after using the Grönwall
inequality.

Following the same steps for all the terms corresponding to N1 from (3-6), it is clear that one obtains

∥N1(Xc, X)−N1(X̃c, X̃)∥
F

0,1
ν
≤ c(∥Y∥

Ḟ
1,1
ν
, ∥Ỹ∥

Ḟ
1,1
ν
)∥F̃L − FL∥F 0,1

ν

+ Aeg(∥Y∥
Ḟ

1,1
ν
, ∥Ỹ∥

Ḟ
1,1
ν
, ∥Y∥

Ḟ
2,1
ν
, ∥Ỹ∥

Ḟ
2,1
ν
, Aµ, ν∞)∥ Ỹ −Y∥

Ḟ
1,1
ν
,

where we use the same letter g to denote another L1-in-time function as explained above and the constant
in front of ∥F̃L − FL∥F 0,1

ν
is exactly given by the one in (3-23). Since the coefficient of the higher-order

term in the bound (4-21) is smaller than the one in (3-56), we guarantee that

∥N1(Xc,X)−N1(X̃c, X̃)∥
F

0,1
ν
≤ Aec(∥Y∥

Ḟ
1,1
ν
,∥Ỹ∥

Ḟ
1,1
ν
)∥Ỹ−Y∥

Ḟ
2,1
ν

+Aeg(∥Y∥
Ḟ

1,1
ν
,∥Ỹ∥

Ḟ
1,1
ν
,∥Y∥

Ḟ
2,1
ν
,∥Ỹ∥

Ḟ
2,1
ν
, Aµ,ν∞)∥ Ỹ−Y∥Ḟ1,1

ν
. (4-22)
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Now, we realize that the same idea applies to the other nonlinear terms in (4-19). In N2 there are not
high-order terms to absorb, since the expression of F0 (3-58) only depends on the circle part, which has
to be controlled via Grönwall. The term N3 will provide an estimate like the one above for N1, where
the constant in front of ∥Ỹ −Y∥

Ḟ
2,1
ν

is smaller than (3-48) for the same reasons given before. Finally, the
same can be said for N4, but with an analogous estimate to (4-21) for the difference FN − F̃N . It follows
in the same way as the estimate (3-57), so we omit details to avoid repetition.

The final estimate for the difference of the nonlinear terms in (4-19) has then the form (4-22), with
a coefficient of the highest-order norm smaller than the coefficient of the norm with the highest-order
derivative in (4-5). Therefore, under condition (1-29), the highest-regularity terms in the nonlinear upper
bound can be absorbed by the dissipation in (4-16) and thus

d

dt
∥Y − Ỹ∥

Ḟ
1,1
ν
≤ Aeg(∥Y∥

Ḟ
1,1
ν
, ∥Ỹ∥

Ḟ
1,1
ν
, ∥Y∥

Ḟ
2,1
ν
, ∥Ỹ∥

Ḟ
2,1
ν
, Aµ, ν∞)∥ Ỹ −Y∥

Ḟ
1,1
ν
,

which provides for all time via Grönwall that

∥Y − Ỹ∥
Ḟ

1,1
ν
≤ c(∥Y0∥Ḟ1,1

ν
, ∥Ỹ0∥Ḟ1,1

ν
, Ae, Aµ, ν∞)∥Y0− Ỹ0∥Ḟ1,1

ν
.

We conclude that ∥Y − Ỹ∥
Ḟ

1,1
ν
= 0. Together with (4-18), this completes the proof. □
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