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THE PESKIN PROBLEM WITH VISCOSITY CONTRAST

EDUARDO GARCIA-JUAREZ, YOICHIRO MORI AND ROBERT M. STRAIN

The Peskin problem models the dynamics of a closed elastic filament immersed in an incompressible fluid.
We consider the case when the inner and outer viscosities are possibly different. This viscosity contrast adds
further nonlocal effects to the system through the implicit nonlocal relation between the net force and the free
interface. We prove the first global well-posedness result for the Peskin problem in this setting. The result ap-
plies for medium-size initial interfaces in critical spaces and shows instant analytic smoothing. We carefully
calculate the medium-size constraint on the initial data. These results are new even without viscosity contrast.
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1. Introduction

Fluid structure interaction (FSI) problems in which an elastic structure interacts with a surrounding fluid
are found in many areas of science and engineering. Many numerical algorithms have been developed
for such problems, and the scientific computing of FSI problems continues to be a very active area of
research [Li and Ito 2006; Peskin 2002; Tryggvason et al. 2001; Richter 2017]. The Peskin problem,
considered in this paper, is arguably one of the simplest FSI problems and has been used extensively in
physical modeling as well as in the development of numerical algorithms as a prototypical test problem.

1A. Formulation. Consider the following fluid problem in R?. A closed elastic string I" encloses a
simply connected bounded domain Q; C R? filled with a Stokes fluid with viscosity ;. The outside
region £, = R?\(Q; UT) is filled with a Stokes fluid of viscosity yt>. The equations satisfied are

wiAu—Vp=0 inQ, (1-1)
poAu—Vp=0 inQ, (1-2)
V-u=0 inRA\TI. (1-3)

Here u is the velocity field and p is the pressure.
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We must specify the interface conditions at I". Parametrize I" by the material or Lagrangian coordinate
0€S=R/(2nZ), and let X (6, t) denote the coordinate position of " at time ¢. The parametrization is
in the counterclockwise direction, so that the interior region €2; is on the left-hand side of the tangent
vector 0 X /96. For any quantity w defined on €21 and €2,, we set

[w]l=w|r, —w|r,,

where w|r, and w|r, are the trace values of w at I" evaluated from €2; (interior) and €2, (exterior) sides
of I'. Let n be the outward-pointing unit normal vector on I':

dp X+ X N 0 —1
- _ , g X =—, 00X =RpX, R= ,
x| a0 o [1 o}
where R is the %—rotation matrix. The interface conditions are
X (X, 1) (1-4)
—=u s s -
ot
[u] =0, (1-5)

pi1(Vu+ (Vu)") — pI  in Qy,

2 (Vu+ (Va)™y — pI  in Qa, (1)

[En] = Faldp x|, 2={
where [ is the 2 x 2 identity matrix. The first condition is the no-slip boundary condition and the second is
the stress balance condition, where X is the fluid stress and Fg is the elastic force exerted by the string I
We let

Fo =kod7 X, ko> 0, (1-7)

where kq is the elasticity constant of the string I'.

In the far field, x — oo, we impose the condition that # — 0 and p — 0. This completes the specification
of the Peskin problem.

Let us rewrite the above problem using boundary integral equations. Given some function F defined
on I', we express the solution to our problem as the following single-layer potential on S = [—, 7 ]:

u(x,t) =/§G(x —X(m)F(n)dn, (1-8)
G(x):%(—log|x|l+%), x = (x1, )T € R?, (1-9)

where G is the stokeslet, the fundamental solution of the two-dimensional Stokes problem. Additionally
for y = (y1, y2)T € R? we use the notation

XQy= [X1Y1 X1)’2]
X2¥1 X2)2

We note that X and F (and other variables) depend on ¢, but we will often suppress this dependence to
avoid cluttered notation. We note that the single-layer potential does not have a velocity jump across the
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interface, and thus the boundary condition (1-5) is automatically satisfied. We then have

oX
W(G) =/ G(AX)F(n)dn, (1-10)
s
where we use the notation
AX =X(0)— X ().

On the other hand, the stress interface condition (1-6) is not automatically satisfied, and this will lead
to an equation for F. Let us compute the stress associated with the single-layer expression (1-8). The
stress X in €25 is given by
Xij(x) = Mz/ Tijk(x — X () Fie(n) dn,
S
with

1 XiXjXk
Tijk=———-~

, 1-11
T xf’ (1-11)

where the subscripts denote the components of the respective tensors/vectors, such as F = (F1, F>)T and
the summation convention is in effect for repeated indices. We refer to Chapter 2 of [Pozrikidis 1992] for
further details on the derivation of the stokeslet and the stresslet tensors. In €2y, the stress is given by

Yij(x, 1) = /S’Ejk(x — X () Fi(n) dn.

Thus, the trace values of the normal stresses are given by the equations
1 -
(X @))ni(@)|r, = 12 (_EFI' 18X +pv [ Tij(AX)Fr(n)n;(0) dﬂ),
S

i (X(©0)n;(@)|r, = (%Filae?fll +pv A Tiji (AX) Fi()n j(0) dn)-

The stress jump condition (1-6) thus reduces to (for i =1, 2)

Fi(0)+24, | Tij(AX)Fe(n)dg X:(0)dn = Fer,i (9),
0)+ ML BX)FD X} O)dn = 2 Fa,(0)
where
M2 — U]
A, = . (1-12)
a 1+ 2
We define
Si(F, X)(9)=—39Xf(9)/ Tijx (AX) Fi(n) dn.
S
We will frequently write it in vector notation as
F(0) =2A,8(F, X)(0) +24.Fa(9), (1-13)
where
S(F, X)(9)=—30X(9)L-/T(X(G)—X(n))‘F(n)dn, (1-14)
S
with
~ 1 ko
Fe]=_ el» Ae (1—15)

ko ot
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We point out that the above boundary integral equation has a unique solution F given Fg for sufficiently
smooth X.

The Peskin problem thus reduces to the integral equations (1-10) and (1-13) for X', where G, T, A,
S, A, and ﬁel are given by (1-9), (1-11), (1-12), (1-14), and (1-15), with F¢; given by (1-7). Note also
that, when A, =0, i.e., 1 = u2, equation (1-13) reduces to F = 2A,F|, and we may just work with the
single equation (1-10).

Assuming that the stationary solutions are sufficiently smooth, it can be shown by an easy calculation
that the only stationary solutions are those in which X is a uniformly parametrized circle and the velocity
field is u = 0; see Section 5.1 of [Mori et al. 2019]. Thus, all of the equilibrium configurations of (1-10)
and (1-13) are spanned by

N o T e O ) N

1B. Critical regularity and related results. A general guideline for seeking the most natural and largest
class of initial data for a given problem is to identify its scaling and consider a function space that is critical
(invariant) with respect to this scaling. The Peskin problem given above by (1-10) and (1-13) is invariant
under dilation, and thus to make proper sense of scaling one must first fix a reference scale. Consider the
scaling parameter A > 0. The domain scales accordingly from the torus S=[—n, 7]to S/A=[—7 /A, T /A].
Then, we choose as the reference scale the length of uniformly parametrized circles, which we pick to be 2.
Given the additional rotation and translation invariance of the problem, let us consider the particular choice

X.1(0) =27"'X,0.0),

where X, (0) = e, (0). Then, the system (1-10), (1-13) is written in terms of the difference X (9, t) =
X0, t) — X.(0). One can check that the following dilation invariance holds: if X (6, t) is a solution,
then X, (0, 1) = A~ X (10, A1) is also a solution.

More generally, if the elastic force Fg is given by (1-7), then (1-10) has an additional scaling invariance
given by X (0,¢) =1t X (A0, At) and X, ) (0) = 1 X.(A0) for any A, T > 0. The stress jump condition
(1-13) then scales as F) . (0,¢) = A2t F ()0, At). This more general scaling leaves the equation invariant
with 7 unrelated to A. We note however that the chord arc condition, defined below in (1-17), is only
invariant under the dilation rescaling where 7 = AL,

The analytical study of the Peskin problem was initiated in [Lin and Tong 2019; Mori et al. 2019],
in which the case of equal viscosity p; = wy was studied. In [Lin and Tong 2019], well-posedness was
established in X € C([0, T]; H*(S)), T > 0, with initial data X in H>/%(S), whereas in [Mori et al.
2019], the solution resides in X € C([0, T]; C1*(S)), @ > 0, T > 0, with initial data X in h1%(S),
o > 0 (this space is the completion of smooth functions in the C'*% norm). These spaces are subcritical
with respect to the above scaling. Indeed, in the L? Sobolev scale, H>*(S) (or C([0, T1; H>*(S))) is
the critical space, whereas in the scale of (Holder) continuous functions, C'(S) (or C([0, T1; C1(S))) is
the critical scale. In this sense, the results in [Mori et al. 2019] are only barely subcritical. The semilinear
parabolic methods [Lunardi 1995] that are used in [Mori et al. 2019] rely crucially on subcriticality,
however, and do not seem to be readily extendible to the critical regularity exponent.
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In this paper, we consider the Peskin problem in which the viscosities p| and w, are not necessarily
equal. Furthermore, we establish a solution theory with initial data X in the Wiener space F!1(S), the
space of functions whose derivatives have a Fourier series that is absolutely summable (see Section 1C).
This space is critical with respect to the scaling of the Peskin problem identified above.

In contrast to [Lin and Tong 2019; Mori et al. 2019], our theory is restricted to initial data that is
sufficiently close to the stationary states, i.e., the uniformly parametrized circles. The papers [Lin and
Tong 2019; Mori et al. 2019] establish local-in-time well-posedness in their respective function spaces
subject to the following arc-chord condition on the initial data:

|X0(0) — Xo(n)|

|Xol,= inf > 0. (1-17)
0,n€S,0%n |60 —n|

In this sense, our results might be better compared to the results on asymptotic stability of the uniformly
parametrized circle obtained in [Lin and Tong 2019; Mori et al. 2019]. The uniformly parametrized circle
is proved to be exponentially stable in the above L? Sobolev and Holder scales respectively, and in the
latter paper, it is proved that the solution is in C*°(S) for all positive time. In this paper, we improve
upon this result to prove that the solution is analytic for positive time.

Local-in-time well-posedness for initial data in 7!:! merely satisfying condition (1-17) is an open
question that we do not address in this paper. It is notable, however, that the arc-chord condition (1-17) is
invariant under the dilation scaling described above. In [Mori et al. 2019], it is shown that, if the solution
ceases to exist as ¢ approaches f, < 0o, then following must hold:

5 B 1199 Xl ce
im gy (X) =00, 0u(X)=——— foranya >0.
= ED
On the other hand, if g (X’) remains bounded for all time for some « > 0, then X must converge to a
uniformly parametrized circle. A similar criterion, in which the numerator of g, is replaced with a critical
norm such as the 7!'! norm, would be a major improvement that should lead to a better understanding of
the global-in-time dynamics of the Peskin problem.
Another extension of the Peskin problem is to consider the following elastic force in place of (1-7):

Fa = 00 (T80 (1-18)
el — 0o 0 |89X| s

where 7 (s) is a tension coefficient that must satisfy the structure condition 7 > 0 and d7 /ds > 0. Note
that the above expression is reduced to (1-7) if we take T (s) = kgs, hence ko = 7 (1) =d7T /ds. In the
case of equal viscosity (| = up, a local-in-time well-posedness theory for initial data satisfying (1-17)
under the more general force (1-18) is established in [Rodenberg 2018] in the Holder scale similarly to
[Mori et al. 2019], using nonlinear parabolic methods [Lunardi 1995]. It is expected that the results and
methods of this paper can be extended to this more general case.

Finally, we mention [Tong 2021] in which the author considers a regularization of the Peskin problem
inspired by the immersed boundary method, extending the techniques in [Lin and Tong 2019]. Such
studies may form the basis for numerical analysis of the Peskin problem.
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The surface tension problem, in which the interface is not elastic but only exerts a surface tension,
may be the most closely related class of problems for which there are extensive analytical studies. We
note that our problem is distinct from the surface tension problem; in contrast to an elastic interface
considered in the Peskin problem, an interface with surface tension only does not resist stretching. This
difference manifests itself in the different energy dissipation laws satisfied by the respective problems;
see Section 1.1 of [Mori et al. 2019]. We refer the reader to [Priiss and Simonett 2009; 2016; Shimizu
2009] for an extensive survey of the analytical study of the surface tension problem.

There is also an increasing number of analytical studies on fluid-structure interaction problems in
which an elastic structure interacts with a fluid, related to the Peskin problem considered here [Ambrose
and Siegel 2017; Cheng et al. 2007; Cheng and Shkoller 2010; Liu and Ambrose 2017; Muha and Cani¢
2013; Plotnikov and Toland 2011; 2012; Li 2021; Boulakia et al. 2012]. The equations dealt with in these
studies are typically more complicated than those of the Peskin problem; the sharp results obtained for
the simpler Peskin problem should serve as a guide to what is possibly true for the more complicated
model problems.

From an analytical perspective, the Muskat problem is perhaps the closest nonlinear PDE to our
problem for which there is a large body of analytical studies. However, it models a very different physical
setting: two immiscible and incompressible fluids in a porous media governed by Darcy’s law. On the
other hand, for a nearly flat interface in the presence of gravity both problems have the same symbol
at the linear level. The authors of [Constantin et al. 2013] introduced the use of the Wiener algebra
to obtain global well-posedness results for the Muskat problem at critical regularity. Moreover, the
size restriction on the initial data was given by an explicit constant that is independent of any physical
parameter. These techniques were extended in [Constantin et al. 2016; Gancedo et al. 2019a] to deal with
the three-dimensional setting and the case of viscosity jumps, respectively. Other results for the Muskat
problem that only require medium-size initial data in critical spaces (as opposed to the more standard
arbitrarily small data condition) [Cameron 2019; 2020] rely on the maximum principle; these methods
have thus far not been shown to be well-suited to deal with viscosity contrasts.

In this paper, we will use spaces related to the Wiener algebra that allow us to perform careful and
detailed estimates on the nonlinear terms to control explicitly the size constraint on the initial data (see
Figure 1). As opposed to the Muskat problem, here the problem is not only described by the shape of
the interface: the parametrization corresponds to the distribution of material points, and thus it matters.
As a consequence, we have to develop further techniques to deal with a system of equations (for both
components of the curve). Interestingly, a careful understanding of the linear system, together with an
appropriate change of framework, allows us to decouple the frequencies associated to the projection of
the interface onto the space of equilibria from the others. Indeed, we overcome a major difficulty of the
very recent result in [Gancedo et al. 2019b] that deals with the Muskat problem for closed interfaces (i.e.,
bubbles), and obtain the global existence and uniqueness result for the Peskin problem with viscosity
contrast at critical regularity.

1C. Notation and functional spaces. We summarize here the notation and functional spaces that will be
used throughout the paper.
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For a vector x = (x1, x2)T € C? we define

L def def [0 —1 1| 01
x— =Rx, R—[l O]’ R —[_10.

We denote the Euclidean norm as

x| = VaTE =Ix1 2+ |xl%,
and for a matrix A = (a;;)1<;, j<2 we use the induced matrix norm
|All = omax(A), (1-19)

where omax(A) is the largest singular value of A. For a vector such as X, we will write X, ; to be the
Jj-th component of that vector.
We now define the periodic Hilbert transform of a function f with period 2P as

def 1 G 77) / fO—=m—f0O+n
3 4P tan ( 2P/rr)

_p tan (W
Unless stated otherwise, throughout the paper we will use the case P = . In this case, we also define
the Fourier transform of a periodic function f with domain S = [—m, 7] as

H()O) = dn. (1-20)

F(HRE Fk) = % /n f@e 4o, kez.

Further F(H(f))(k) = —i sgn(k) f (k). Then we define the operator A using the Fourier transform as
FAL)K) E k| £ (k). And we observe that H(dy £)(0) = Af.
We denote by f * g the standard convolution of f and g. We use the iterated convolution notation

KK f=fo-xf (1-21)
N e’

k—1 convolutions of k copies of f

Thus for instance > f = f * f.
We also use the following notation for the discrete delta function, 8,(k), which is the function that is
equal to 1 when k = a and equal to O elsewhere. Throughout the paper we will further define

81,—1(k) = 81(k) +6-1(k). (1-22)
We further define the high-frequency cut-off operator 73, for M > 0 by
TnX (k) E 1g=u X (), (1-23)

where 14 is the standard indicator function of the set A, sothat I4(x) =1ifx € Aand 14(x) =0if x ¢ A.
For two vectors X (), Y (0) € R? we define

(X,Y) :/ X(©0)-Y(©)deo. (1-24)
S
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Generalizing the Wiener algebra of functions with absolutely convergent Fourier series as in [Gancedo
et al. 2019b], we further define the homogeneous F*! and nonhomogeneous F**! norms as

Xl zea = > "MK |X ), seR, (1-25)
kez\{0}
XN o = 1XO)+ > "Mkl X k)], s >0, (1-26)
kez\{0}
with
t) = >0, 1-27
V(1) = Vso 1+7° ( )

and vy, > 0 is chosen sufficiently small. Note that v(0) =0, v(¢) > O for all 7 > 0. Further v'(¢) < vy
and v(t) < v are bounded for all time. When v = 0, we write .?-'5’1 = 75! and .7-"5’1 = F5! These are
the main norms that we will use in this paper. Note that when s = 1, the F*! norm is critical for the
Peskin problem.

In this paper we write A < B if A < CB for some inessential constant C > 0. We also write A &~ B if
both A < B and B < A hold. Throughout the paper, we will define

Ci=Ci([ Xl g =Ci(IX 115 v00) >0, i=1,2,..., (1-28)

as functions that are increasing in || X || A= 0 and might depend on the analyticity constant v, with
the properties that Ci(||X||J-Tv1,1) ~ 1 for all v, > 0 and limHX”ijl,l—)(ﬁ C,~(||X||J-TV1,1; 0) = 1. We will also
define

D = Di(I X z1.1) = Di (I Xl 115 Ap, voo) >0, i=1,2,...,

as functions that are increasing in || X|| = 0 and might depend on the physical parameter A, and the
analyticity constant v, with the properties that D; (|| X|| ]’_-vl,l) ~1forall A, € (—1,1) and all vy, > 0,
and lim”XH]':Ll_)OJr Di(”X”j:vl’l; 0, 0) =1.

1D. Main results. In this section we will state the main result of this paper: namely, that membranes
whose initial interface has critical regularity (in terms of the scaling of the problem), and that are not too
far from an equilibrium configuration, become instantaneously analytic and converge exponentially fast
to the equilibrium. Without loss of generality, we assume that the initial area enclosed by the membrane
is . We get the result under an explicit medium-size condition for the initial deviation and for general
viscosity contrast A, € (—1, 1).

Definition 1.1 (strong solution). Let

xXecCc(o,T: F*Hnclwo, T1; FOhH

and

X@,1)—X(n,t
Ao o XED-X@0l
0,neS,0#n |6 — T]l

0

for 0 <t <T. Then, X is a strong solution to the viscosity-contrast Peskin problem with initial value
X(0) = X, if it satisfies (1-10), (1-13) for 0 <7 < T and X () = Xoin F'!last — 0.
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Theorem 1.2 (main result). Let A, € (—1,1) and Xy € F L1 Let Xo.. be the projection of X onto the
vector space spanned by (1-16) and Xo = X — Xo ; thus X is mean zero and X 0(0) = X0,.(0). Assume
that initially the deviation X satisfies the medium-size condition

| Xoll 711 < k(A,), (1-29)

where k(A ) > 0 is defined in (4-9) (see also (4-10) and Figure 1), and that the area enclosed by X is 7.
Then, for any T > 0, there exists a constant Voo > 0 such that there exists a unique global strong solution
X (t) to the system (1-10) and (1-13), which lies in the space

Xec(o,T]; FFhnclo, T1; FEYHn Lo, T1; F21),

with v(t) given by (1-27). In particular, it becomes instantaneously analytic. Moreover, the following
energy inequality is satisfied for 0 <t <T:

A t
IIXII;UH(I)JrfC/ 1 X1 z21(v) dT < [ Xoll 1.1, (1-30)
0
with C = C(||Xoll z1.1, Ay, Voo) > O defined in (4-12). In addition,
1X 511 (8) < | Xoll e~ A/ (1-31)

The zero frequency X ¢(0) remains uniformly bounded for all times as

1X:(0)] < 1X0.c(0)] + Cl Xol%.,.
with C = C(| Xol| 1.1, A,) > 0 given in (4-15), while
L= 3IX1500 < 1XeP < 1451 X130 (1-32)

We remark that the decay to zero of the deviation X in (1-31) together with (1-32) shows the exponen-
tially fast convergence to a uniformly parametrized circle with the same area as the initial one.

Remark 1.3. The size of vy > 0 is limited by the size of the initial data. This can be seen in (4-7).
Because we are only interested in having any fixed but arbitrarily small vy, to ensure analyticity, we
stated the size condition as in (1-29).

Remark 1.4. In our results, we assume that both viscosities 141 and 1, are positive and hence —1 <A, < 1.
We remark on the endpoint cases of A, = %1, which formally correspond to the cases when 1 =0
or uy = 0. As can be seen from Figure 1, the allowed size of the deviation from X tends to O as
A, — %1, which may indicate potential difficulties in formulating a well-posed mathematical problem
for the endpoint cases. From a physical standpoint, it does not make sense to set the viscosity to 0 in
either Q; or €2;, and thus a proper treatment of these endpoint cases will require a rethinking of the
physical situation under consideration. The case A, = —1 or p» = 0 may be thought of as corresponding
to the problem in which a droplet of Stokesian fluid is floating in vacuum. One significant difference
between this and the Peskin problem is that in the former problem a droplet in linear translation or rigid
rotation experiences no external forces. The force balance and continuity equations will thus have to be
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supplemented by auxiliary conditions that assure uniqueness, after which this problem is likely to be
well-posed. In the case A, =1 or u; =0, ©; might be considered to be vacuum. It is not clear if this
problem is well-posed. We will not pursue these issues further.

1E. Outline. The rest of the paper is structured as follows. In Section 2, we first decompose in Section 2A
the system (1-10), (1-13) into zero-order, linear, and nonlinear parts around the equilibrium configuration,
and then in Section 2B we perform the linearization of the problem and show its parabolic structure.
Section 2C shows how this structure leads to dissipation and in Section 2D we summarize the system of
equations in its final form. Section 3 contains the crucial nonlinear estimates needed to prove Theorem 1.2.
Finally, Section 4 is dedicated to the proof of Theorem 1.2 via a regularization argument and also shows
the uniqueness of the solutions.

2. Linearization around the steady state

We will linearize the system (1-9)-(1-15), with F given by (1-7), around a time-dependent uniformly
parametrized circle with center (c(¢), d(¢)) and radius R(t):

Xc(0,1) =a(t)e-(0) +b(t)e, (0) +c()er +d(1)er,

2-1
R*(t) =a*(t) +b* (1), &

where a(t), b(t), c(t) and d(t) are arbitrary time-dependent functions and e, (), e;(0), e;(6), e>(0) are
defined in (1-16). For notational convenience, we will suppress the time dependence of the coefficients.

2A. Nonlinear expansion. We will denote by X (6) the deviation from the circle X.(0) as X(0) =
X (@) — X.(0). We define further

def

AX =X()—-X(m)
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and
o X(0)—X
A, X (0) & X O~ X0) 9_5”). (2-2)
2sin ()
In particular, we have
0 0
Aan(9)=a8t< —;n)—b r(%)
since . (M)
A er(9)= Sin 2 =e[(9+77)
' cos (5] T2
0+
Aoy = | (T =—e,<9+”)
O g |7

where we have used the trigonometric identities

sin (0) — sin (n) = 2 sin <9;77> cos (9—;77),

cos (f) —cos (n) = —2sin (0%77) sin (@)

Recalling (2-1) and using the identities

dper () = e, ()" = e (6),

dpe:(0) = e, ()" = —e, (),
one has

09X (0) =ae,(0) — be,(0),

9 X (0)" = —ae,(6) — be(6).

The trigonometric identities cos(a + b) = cos(a) cos(b) — sin(a) sin(b) and sin(a + b) = sin(a) cos(b) —
cos(a) sin(b) further give

o0 e(51) =sn (157, a0 e(5) mes (157).

e (0) -e,(e%) = cos (9577), e;(0) m,(%) = —sin <9%77>

These calculations imply the following computations for a circle that will be used frequently throughout
the paper:

86 Xc(0)" - Ay X (0) = —R?sin (95’7), (2-3)

86 Xc(0) - ApX(8) = R*cos (9;’7), (2-4)
é 1—cos(0+n) —sin(6+n)
2 | —sin(@+n) 1+cos(8+n)

b_2 14cos(0+n) sin(6+n) ab sin(0+n) —cos(60+n)
2 sin(6+n) 1—cos(0+n) —cos(B+n) —sin(6+n)

A X (O)RA, X (0) =

] . (2-5)

The matrices in the last line above have been simplified using the identities sin’ (a) = (1 —cos(2a))/2,
cos?(a) = (1 + cos(2a))/2, and sin(2a) = 2 sin(a) cos(a).
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Next, we perform a Taylor expansion of the nonlinear terms around the a time-dependent uniformly
parametrized circle (2-1) under the assumption that |A, X (0)| < 1. First, we start with the magnitude of

the curve
IAX + AX,|? = 4R? sin (9 - ’7)(1 + 2 AKX (0) - Ay X(O) + = |A,7X(9)|2).
Recalling the expression for G(AX) in (1-9), we expand each term as
6—n

log |AX + AX, |_10g(2R‘sm( )() 11og(1+ 2 A Xo(0) A, X(©O) + 2|A,7X(9)|2)

2

=tog (2R|sin (251)]) + 258, Xe(0) - 4,X0) + R1 (4,X©@)). (2-6)
where
. . n ( l)n 1 n—m 2m
R1(A, X (0)) =Z <m>w(2Aan(9)-AnX(9)) 1A, X O 2-7)

|VO

2
We expand the denominator in the second term of (1-9) as

1 1 5
|AX—|—AXC|2 4R2 sin (Tn) (1_ﬁAan(9)'AnX(9))+

< Ra(A, X (0 2-8
R () X O, )

with the notation

00 n —1)
Ra(a, X ) =3 3 (1) 0 @a, X0 AXOIIAXOP.  @9)
n=1 m=0
n+m=>2

Therefore, we can write

(AX + |AA)§;)+®A(§i2+ AXe) _ Ao+ AL+ Ay, (2-10)
with

Ao = 25 A, X O, X, 0),

AL =—%AUXC(G)-A,,X(G)AWXC(9)®A,7XC(9)+%AUXC(9)®A,7X(9)+%A,,X(Q)@AUXC(G),
and the nonlinear term is given by

Ay = %AUX(Q) ® A,,X(e)(l - %Anxc(e) A X () +R2(A,7X(9)))
+1; AyXo(0)® A X(9)< 2 AyXe(®) - A, X(0) +Ra(A X(G)))
+R1 AX(0)® A X (9)( Z A, X (0) - A, X (6) + Ra(A X(@)))
+ %AnXC(Q) ® Ay X (O)R2 (A, X (6)).

Joining the expansions (2-6) and (2-10), we split G(AX) in (1-9) into zero-order, linear, and nonlinear
parts in terms of X as follows:

G(AX) = Go(A;X(0)) +GL(A X (0), ApX(0)) +Gn (A Xc(6), Ay X(0)), (2-11)



THE PESKIN PROBLEM WITH VISCOSITY CONTRAST 797

where
Go(A,Xe(0) = 7 (—log (2]sin (252 n)DI—#—%AUXC(@)@AWXC(@)), (2-12)
1

GL(AXe(0), Ay X (0) = =3

(—Anxc(e)-AnX(e)l
2 AN Xe(0)-0) X (0) A, X (0)R A, X (0)
+AnXc(e)@)AnX(9)+A,,X(9)®A,7Xc(9)), (2-13)
|
e
+

Gn(ApXc(0), Ay X (0)) =——Ri1(A, X(0))1

1
AT R?

1
+4 R?

2

A X (O)®A X(9)< R2A,]XC(G)-A,7X(9)+R2(A,7X(6?)))

(A X (O)RA, X (0)+A, X(0)RA, X (6))
><<—%A,,XC(O)-A,,X(Q)+R2(A,7X(9)))

1
4T R?

Consider the splitting of the solution F (6) to (1-13) into zero-order, linear, and nonlinear parts as

15 A X (0)®A X (0)R2 (A, X(0)). (2-14)
F(0) = Fo(0) + FL(0) + Fy(9). (2-15)

(We will prove bounds for these terms in Section 3B.) Introducing the splittings (2-11) and (2-15) in
(1-10), we obtain

X (0) =0(X) () + L(X:, X)(0) + N (Xc, X)(0), (2-16)
where we recall that X (0) = X () + X.(0) and we use the notation
O(Xc)(G)=/§G0(Anxc(9))Fo(n)d77,
L(X., X)(0) = fg Go(An X (0)FL(n) dn+ /S GL(A;Xc(0), Ay X(0))Fo(n)dn,

N(Xc, X)(©0) = / (GL(A,X(0), Ay X(0)FL(n) + Gy (A, Xc(0), A, X(0)) Fo(n)
+GN (A Xc(0), Ay X(O)FL(n) + G(X(0) — X () Fyn(n)) d.
We have thus expanded the evolution equation (1-10) distinguishing the zero-order, linear, and nonlinear
in X contributions.

2B. Linearized system. We proceed to show that the linearized system gives rise to a diffusion operator
on X. Since the linear structure is the same for any uniformly parametrized circle (see [Mori et al. 2019]),
we will use now (2-1) witha =1, b =c=d =0 and R =1 to simplify the computations, and for clarity
of notation we will denote this circle by X,.

We will now linearize (1-10) and (1-13). We first determine Fj, the value of F at the steady state:

0=(9(X*)(9)=/§G0(AnX*(9))Fo(77)d77, 2-17)

Fo(0) —24,80(Fo, X,)(8) = 2A, Fa0(), (2-18)
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where
Fe0(0) = 0; X,.(6)

and

1 n Fo(n)

So(Fo, X)) = — | 39X, Ay Xu(0) Ap Xu(0) Ay X (0) - ——5— =

T Js 2 sin (T)
Rewriting A, X, (0) A, X, (0) - Fo(n) = Ay X.(0) @ Ay X, (0) Fy(n), and recalling the computations (2-3)
and (2-5), one finds that

dn.

So(Fo,X*)(Q)Z—%/gM(@,n)Fo(n)dn,

where from (2-5) we have

. 1 |1=cos(0+n) —sin(0+n)
M@, 1) =8, X, (0) ® Ay Xu(0) = 5 [ _sin(@+n) 1+cos @+ |’ (2-19)
and therefore Fj is defined by
A
Fo@)+ 22 [ M@, Fotn) dn =24,53X.(0)
S
Since 97X, = — X, and noting that
1
L[ m@.mx.00dn=-X.0)
T Js
it is easily seen that
24,
Fy(0) = T 9, X.(0). (2-20)

n
Now, recalling (2-12), it can be checked that (2-20) satisfies in fact (2-17):

1- A,
471( ) /5 Go(A,X.(6)) Foln) dn

=—/10g(2
S

so integration by parts in the first term yields (2-17).

sin (u)DaZX*(n)dnJr/ M6, 032X, (1) dn,
2 n IS 7

We now proceed to compute the linear term £(X,, X)(#) in (2-16). For convenience, we write it as

L0 00 = [ God XDFLtydn+ [ (FGAXFa)AX di, @-21)
S S
where G and G are defined in (2-12) and (1-9), respectively. To simplify the second integral above, note
BG,-J- 0 il 0 i2
_(AX*)er,j (n) = (AXer,1(n) + (AXDer2(n)
3X1 8)61 8)61
_ %G (AX,)d,X aGiz(AX ), X
- 8x1 *)On A2 8x1 *)OnAx 1
8G,’2 aGiZ

= AX,)0, X0 —
8)62 ( ) 7 2 8x1

(AX*)anX*,l = anGil(AX*)-
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Here e, ; is the j-th component of the vector e, etc. Further, in the third equality above, we used the fact
that the stokeslet is divergence-free:
G n 0Gi _
8)61 3)62

0.

Likewise, we have
G
8_(AX*)€r,j (n) = _anGil (AX,).
X2

We thus have
2A,
1-A,

2A, _
- / (R™LG(X.(0) — X. (), X (1)
—a ).

/g(VG(AX*)Fo(n))AX dn=— /g(R‘la,,G(X*(@) —X.(m)AX dn

1

2A, _
- 2 / G(X.(0) — X.(n)(R™8,X () dn.
—a ).

def

Since G(X,(0) — X.(n) = Go(A,X,), equation (2-21) simplifies to

L(X,, X)(9)=/ GO(AUX*)(FL(U)+ 12A2 R_lanX> dn. (2-22)
S

— A
This is our specification of the linearized operator.
We will now determine Fy as in (2-15), that is, the linear part of F in (1-13). We find

A
FL(9)+?M/ M, n)FL(n) dn=2A,0;X —2A,(Q+5), (2-23)
s

where
Qi=-— fg Tij(AX) Fox (DR, 9 X1(6) dn,

oTijk _
Si=-— f —L(AX)AX Fo xR 09 X,1(0) dn.
S axm
Let us compute Q. We start with
24, AX,iAX, jAX,keri(n)  2A. AX.iAX,
1-A, T|AX,|* C1—A, 27|AX, 2

~Tijk(AX ) Fo = —

where we used

AX*'er(U) 1
o N 2-24
IAX,|? 2 ( )

Therefore, we have

B A, 1 AX,®AX,

C1-Aum)s 1AXL2
Ae 1

= — | M®,n)dnR'9:X©®) =
1_AMN/S(n)n h X (0)

0 dnR '3, X (0)

e

R 19, X(9),
—a, b X (0)
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where we used (2-19) in the second equality. We next compute S,

7;jk —1
————(AX)AXy Fo (MR, 96 X41(6)

0X;
_ 1 24, AXiAX*,jAX*,ker,j(Q)er,k(n)
_;l—Aﬂ( IAX,[4 )
B 2A,/m <AX*,iAXjAX*,ker,j(e)er,k(n) n AX*,iAX*,jAXker,j(Q)er,k(n)>
1-A4, IAX,|* IAX,|*

8A./7 ([ AX,iAX, jAX, e j(0)er i (NAX, mAXy

1—A ( |AX, 6 )
1 24, 2A./7 8A,. /7

=—= I- 1+ 1.
Tl—A, 1-4, "1-A

We simplify each term as follows:
1

I = —ZAX,-,
I — AX*’,'AXJ'ELJ’(Q) AX*’iAXker’k(T]) . AX,,’,'AX*’J'AX]'
- 2AX, 2 AX 2 200X, 2
AX.iAX, jAX;
1l = — - . ,
4AX, |2

where above we made repeated use of (2-24) and

AX, - R™'9X,(0) _ AX,-e0) _ 1

|AX,|? T OAXLE T2

Thus

T ik _
——L(AX)AXy Fox (MR} 09 X =

Ae/27r ( 2AX*’,'AX*’jAXj>
AX; —
Xm 1—-A

" |AXLI?

Substituting this back into the expression for S in (2-23), we have

S— A 2w

/(I 2M (6, n)AX dn

A /271 Ac/2m

1—A,

where we used (2-19) in the first equality and we are using the notation (1-24) for the inner product.
Equation (2-23) thus reduces to

f(1—2M(9 mX () dn = (—({er, X)er + (e, X)ey),

A
Fu@) + 2 f M@, ) Fy () diy
T Js ) 2A,A,
= 2Ae89 X0)——

-1 1
A (RT0XO)+ 5 ler Xer0) + et X)e®)).

We must solve the above equation for Fy in terms of X. Suppose (e;, X) = (e, X) = 0. Then, it is easily

checked that
2A.A,
F;(0) =2A BQX(Q)— T — R 8 X(9). (2-25)

—Ap
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We may further compute F; when X is either e; or ;. Noting that

M@©, ne(n) = L(e:(n) —ex(0)), M®©, ne(n) = 1(en) +e(6)),

we see by an easy calculation that

2A,
If X =e,,, then F|, = — e
El 1 _ A/IL 9
Note that
2A,A 2A
2A.07e., — . _‘fAZ R 9ge; = — = zu ers.

This shows that the expression for Fy in (2-25) is in fact valid without the restriction (e;, X) = (e, X) =0.
Substituting (2-25) into (2-22) yields
L(X., X)) =24, f Go(A, X)@2X (1) +R ™8, X () d. (2-26)
s
Finally, since

Go(A,X,) =~ (log[25in (52) )1+ M@, )

and
/5 M(G,n)<3§X(n)+R18nX(n)) dn = /5 07 M(6. 1) — 9,M(©6. MR~ X () dn =0,

we have

C(X.. X)(e)=—f—;/glog(zsin(egn)](agxmwnlanX(n))dn

=_i/ X +R™'X(n)
2n Js 2tan(9%'7)

dn,

which is given by a Hilbert transform
Ae
2

Therefore, the system (2-16) can be written as

L(X,, X)(0) = —ZEH0, X () +R™ X () (6). (2-27)

X (0) :—%(AX(Q)#—HR_IX(@))—%N(XC,X)(H). (2-28)

Notice that X is a uniformly parametrized circle with time-dependent radius R(¢), as opposed to the X,
used in this subsection to obtain the linearization. We will use the system (2-28) to study the global-in-time
dynamics of the Peskin problem in the rest of this paper.

2C. Evolution _of the j—',,l’l norm of X. We first notice that, because X (6) is real-valued, it must hold
that X (—k) = X (k). Therefore, the norm (1-25) can be written in terms of positive frequencies alone

X1l g0 =2 e kX (k)| =2 "%k X, X1 (k) + X X (k). (2-29)
k>1 k>1
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The system (2-28) in Fourier variables reads for k > 0 as
Ae
2
Here we recall that X = X 4 X .. Further the diffusion matrix is given by

_ k —i sgn(k) |00
L(k)_[isgn(k) k ] k=1, L(O)_[O o]‘

X, (k) = = 2L X (k) + FN (Xe, X)) (k). (2-30)

The diagonalization of this matrix for k > 1 shows that

L(k) = P(k)D(k)P(k)~",

where for k > 1 we have

_ 1 [—isgn(k) 1 1 5 _|k+1 0
Pl = [ o Sgn(k)} . PRTI=P®. Do=|" |
And when k = 0 we define
1101 1 _ A Dm {00
PO)= 5 [1 0} PO =2P©), DO)= [0 0} |
This leads us to define the change of variables
Y= Pk 'X(k), Yek) = P Xe(k), (2-31)
with Ly + Y.. The system (2-30) for kK > O then becomes
<) Ae v —
Yi(k) = —TD(k)Y(k) + Pk FW (Xe, X)) (k). (2-32)

The relationship between X and Y in space variables is given by the Hilbert transform (1-20), using also
H2(Y;) = —Y;, as follows:

1 |:7'[Y1 0)+Y2(0) (2-33)

1 [—HX1(9)+X2(9)]

XO=7 Y1(9)+7-[Yz(0)] YO=7 1 xio-mx

Because, for k # 0, P (k) is a unitary matrix, it holds that || P (k)| = || P(k)~!|| = 1, and therefore
Y| =X k)|, k#0,

and thus
I XNz = 1Y [l £ (2-34)

We will use this norm equivalence several times in the following.
Notice that the first Fourier coefficient of a uniformly parametrized circle (2-1) is given by
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and in the Y-variable

& 1 0
Y.(1)= E [a-l—bi] . (2-35)
Note that H(cosf) = sinf and H(sinf) = —cos6f. Then from the transformation (2-33) uniformly

parametrized circles (1-16) in the Y variable are spanned by

8 0 3 0 1 Jo] . 11
e,(e):ﬁ[cosg], e,(e):ﬁ[_sine}, el:ﬁ[l]’ ezzﬁ[o]. (2-36)

Further the second component of ?(1) becomes zero after the operation of D(1) is applied, which
corresponds to the fact that uniformly parametrized circles are steady states. Therefore, we will split the
curve Y(0) = Y.(0) + Y (0), with

0

Y0) = [0

], Ya(1) =0,

since those frequencies are contained in the time-dependent circle (2-1). In other words, Y is the projection
of Y onto the orthogonal complement of the vector space spanned by (2-36). In fact, the system of
equations (2-32) does not provide dissipation for the zero frequency of Y nor for the second component
of its first frequency (i.e., for uniformly parametrized circles). We thus can only expect decay for Y. It is
convenient then to write the equations of those frequencies in (2-32) separately:

Y (0) = 8,Y.(0) = P(0) "' FINW (X, X))(0),
V1D =8, Y1(1) = —A 1 (1) + (P() ' FW (Xe, X)(D),,
- - B (2-37)
3 V2(1) = 8, Yeo(D) = (P()'FW (X, X))(D),,

Vi (k) =Y, (k) = —%D(kﬁ(k) + P(k) ' FIW (X, X)) (k), k>2.

Therefore, we study the evolution in time of ||Y || Fl1,as in (2-29), which is given by

LYl 00 = 1(2 3 OV TI 0T 1 () + ?z(m?z(k))

dt
k>1
=2 VO ONY ()|+2) ek
k>1 k>1
and introducing the time derivative (2-32), with N = N (X, X) = N (X), we have
d 2Ok T vk, k+DIYIE 2+ (k= DIV (k)2
LY e =2 VO ON Y (k)| — 24, Y e Okk _
Y5 kZ] ) Y (k)| kZI TE
PN k)Y (k) + T (k)T (P (k)N () (k
+2Zev(t)kk( ()~ N () (k)) (2|)i;;k)|() (P (k)TN (X)( ))‘

aY(K)TY (k) + ¥ (k)T 3, ¥ (k)
21Y (k)|

k>1

Noticing that for kK > 1 we have

> s 1 - AGE
—Ak((k+ DY)+ (k — DV (k)[2) —— = —Ak(k — DY (k)| — 2A k——"—
( |Y1 (k)| |Y> |)|Y(k)| | | T



804 EDUARDO GARCIA-JUAREZ, YOICHIRO MORI AND ROBERT M. STRAIN

we can then see a diffusion term coming from the linear part:

IIYII;H <—A, Ze”(’)"k(k DY (k)| =24, Z v(t)kk|Y1(k)|
k=1 k=1 1Y (k)]

+ 2 Z U/(t)kzev(l)k|/Y\(k)| + 2 Z eV(I)kk|(P(k)—lN/'(?)(k))l (2—38)
k>1 k>1

The balance above does not include the control of ?L We will show in Section 4A that the evolution of
Y, (0), that is, of the center, can be controlled by all the other frequencies. Moreover, the incompressibility
condition (1-3) allows us to control ?6,2(1) as follows:

Vo=m = % X(O)A0gX()dO = % (X109 Xy — Xp09 X)) dO
= 411 / ((HY1 4 I2) (31 + AV2) — V1 +HI2) (AV1 + 09 )0) d6). (2-39)
Performing the products and taking into account the equalities
HYiAY; dO = Yi0p); do, HY;09);dO = — YiAY;do,
we obtain -
T = % N2 AYy = V1AV dO = (V2 AY2(0) — Vi AY1(0))
=7 Y _(kIV2(0)V2(—k) — [kIV1 (k) V1 (—k))
kezZ
=1 Y k|(IYe2 () + Ye 2 () Ya (k) + Vo (k) Yo 2 (—K) + [ V2(K)[* — [V1 (K) %),
keZ

where we have used that 2,1(k) = 0 for k # 0. We can also eliminate the terms f’\c,z(k)?z(—k) and
Y>(k)Y, 2(—k), since Y>(1) = 0 and Y, (k) = O for k # 0, &1. Therefore,

1 a+b

2

+ Y k(200 = V().

k=1
And so the incompressibility condition translates to the constraint

2 2 2 ~ ~
e (AT AT (2-40)

~ 2
Yer(DPP =55 =
k>1

Then, we can obtain an upper bound

TerWP = 3+ D k(B0 + 71 (0P = %+Z<k”2|?<k>|>2

k>1 ) k>1

1 ~

5+(Zk”|¥(k)|) S (T ) (S
k>1

and analogously we find the lower bound

R _ &
5 =YD =

1 1
LT (2-41)
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Recalling the relationship between X and Y in (2-34), we finally obtain

11 % 11
5~ 71X = Yo = 5+ 71X,

and, since |Y.(1)[? = R?/2 = [X.(D)|?/2,
1 > 1
L= ZIX 15 < 1Xe(P < 1+ 51X

so using the notation R? = a” + b?, we have

1 1
e SRS (2-42)
T3 1 X050 I=3 X105
The upper bound above motivates us to define
def 1
Ci=CilX N z0) = (2-43)

1 2
VI=31X15,,

We will later use (2-42) to control the size of R when || X || z1.1(z) — 0 as 1 — o0.

2D. Complete system. We finally summarize the final form of the system of equations that describes our
problem. The system given by (1-10) and (1-13) for X was replaced by (2-37) on the Fourier coefficients
of the associated variable Y from (2-31). We recall that we decompose Y into a time-dependent circle Y,
plus the deviation from the circle given by Y. In other words, we decompose Y into its projection onto
the vector space spanned by (2-36) represented by Y. and its orthogonal complement represented by Y.
Therefore, recalling (2-35), we have

Y(0) =0, Y>(1) =0, Y.(k)=0, k#0,1, Ye1(1) =0. (2-44)
Now, for k =1 and k > 2 separately, we have
3Y1(1) = —A Y1 (1)+ (P() "W (X, X)(1))1,
_ A . (2-45)
;Y (k) = —TED(k)Y(k) + P(k)" N (X, X)(k),

where X, and X are given in terms of Y, and Y in (2-31). In the following paragraphs, we will write one
or the other without distinction for simplicity of notation. The incompressibility condition (2-39) yielded

(2-40). Thus in particular
V3= glIY 50 < YoM =V 3+ 1Y 500 (2-46)
To close the system, notice that ?C(O) = P(k)*I:Y\C (0) and, from (1-10), we have
AX0) = 5= / f G(AX. + AX)F(n)dndo,
sJs

with F defined by (1-13). We can also write the equation for X ¢(0) using (2-16) or (2-30) and recalling
that the zero frequency of the linear part vanishes,

3,X.(0) = N(X., X)(0). (2-47)
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We notice that the evolution of the zero frequency i’\C(O), corresponding to the center, is decoupled from
all the other equations (in terms of the ?C(O)-Variable), because X <(0) does not appear on the right-hand
side of (1-10) and (1-13) and therefore also (2-47). This can be seen from the fact that in (1-10) G only
depends on the difference AX = X' (6) — X' (1) and in (1-13) the expression for S only depends on dy X
and AX. In summary, the system to determine Y (equivalently determining X via (2-31)) consists of
(2-44), (2-45), (2-40), and (2-47). That is, all together we have

Y(0)=0, Y,(1)=0, Y.(k)=0, k#0,1,  Y.;(1)=0,
3,Y.(0) = P(0)"' N'(X., X)(0),

Yi(1) = —A T (1 DTN X, X (D)1,

3,Y (k) = —%mk)m) + PR N (X, X)), k=2,

Ter(DP = 2= Y k(B0 - Ti0P),
k>1
with F given in (1-13), and ¥, X related by (2-31).

To prove Theorem 1.2 (see Section 4) we will use system (2-48) to obtain the energy balance (2-38)
to show the decay of Y. We will need to perform a priori estimates on the nonlinear terms, which in
particular requires us to prove bounds for F' due to the viscosity contrast. Those estimates are performed
in the next section. The decay for ¥ will allow us to control the evolution of the zero frequency, that is,
of the center.

3. A priori estimates

In this section we perform the a priori estimates on X and F that will be used in the proof of our main
result, Theorem 1.2. First, in Proposition 3.1, we estimate the nonlinear terms in (2-16) in terms of X
and F. Next, in Section 3B, we obtain the a priori estimates for F in (1-13) in terms of X. In order to get
the result with critical regularity, we have to get uniform bounds for some Fourier multipliers given by
principal values (see Lemma 3.2).

3A. A priori estimates on X.

Proposition 3.1. Assume Fy, Fy, Fy € ]-",?’1 and X € .7-"51 Then, the nonlinear term N' =N (X, X)(0) =
N (X) in (2-16) satisfies the following estimate in .7.-"1}’1:

1NNl < TV2D [ X 50 | FLll o0 + 232 Dl Foll o | X |5 [1X || 720 + § D3l Pyl or, (31
where D; = Di(||X||fV1,1 ,Voo) & 1 are increasing functions of ”X”]'_-Ul,l and v such that
lim  Di(||X|[511,0) =1
1Xla—0t

and are defined in (3-54).
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In the proof, the following multiplier will come up frequently:

_ sin(kn/2) ,—ikn/2
ktan (n/2)

def
)

okl =1, (3-2)

and we define m (0, n) = 0.
Now let n > 1, k = ko, ki, ..., ky, be integers that further satisfy |k; — k;j41| > 1 for all j =

0,1,...,2n — 1. We define the integral of type I, = I,,(k, ki, ..., k2,,) by
2n—1

e T in((k; —k; 2) _.
L[ mte—kn [T 2 () = RisD12) itz gy (3-3)
—w jo1 ki —kjr)sin(n/2)
We further define I, =0if k; =k forany j =0,1,...,2n — 1. We will also consider the integral,
I' =1 (ki, ..., ky,), under the same conditions
. / sin (ki +ka,)n/2) 77 sin (k; — kj41)n/2) )
" - sin (n/2) ik (kj —kji1)sin(n/2)
We again define I, =0 if k; = k; forany j =1,...,2n — 1. In the proofs of the a priori estimates in
this section we will frequently use the following lemma.
Lemma 3.2. We recall (3-2), (3-3) and (3-4). Then, the following uniform bounds hold:
|Il’l(k’ klv sy kZVl)| S 2”5
[y ki, k)| <27,
This lemma will be proven at the end of this section.
Proof of Proposition 3.1. We first take a derivative of M (X, X)(0) in (2-16) and let
BN (X, X)(0) = N1(0) + N2(0) + N3(0) + N4(6), (3-5)
where
N1(9) =/ 9 (GL(A,Xc(6), AyX(0)))FL(n) dn,
S
N2(6) =/ 9 (Gn (A, Xc(0), Ay X(0))) Fo(n) dn,
S
N3(6) 2/ 9 (Gn (A, Xc(0), A, X(6)))FL(n)dn,
S
N4(©0) = / 3 (G (X (0) — X)) Fx () dn.
S
We will bound A; in F*! fori =1,2,3, 4.
N estimates: Taking a derivative in (2-13), we obtain
10
Ni©) =) NLi©), (3-6)

i=0
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and we proceed to bound each of these terms in F!. We note that each term /7 ; corresponds to when
the derivative hits a different term inside (2-13). The terms A/ ; are written in (3-8), (3-15), (3-16), (3-19),
and (3-20) in the following.

The first term N/ 1 (9) is given by

1
47 R?

We first take the derivative of A, X.(0) in (2-2) to obtain

(X.(0)—X.(n)
0p X (0) — —~—~———<
P2 = S an (@=n)/2)
2sin((6 —1)/2) '
Further define the operator D*(X,) (and analogously D2(X)) to be 9y A, X (0) as above after taking the
change of variables n <— 8 —n as follows:

N11(0) = — /§89Aan(9)‘AnX(9)FL(77) dn.

A, X (6) =

X (0)—Xc(0—n)

9 X (0) — T >
DX, ) __2tan/2) (3-7)
2sin(n/2)
Then we make the change of variables n <— 6 — n to obtain
N1 = — R2 / DX (X0, )7 Dg—yX(O)FL (6 — ) dn, (3-8)

where we used transpose notation instead of a dot for future convenience in the notation. We will also
make extensive use of the identities

— 1—e 1 o kn/2
Aoy X (k) = .; — M *lkn/Za X (k),
2sin (n/2) k sin (n/2) (3-9)
— 1—emikn o kn/2
Ag_yX (k) = .; (k) = M —ikn/25" % 30 X . (k).
2sin (n/2) k sin (17/2)
We remark that both terms above are equal to O when k = 0. We further have
DX (X (k) = m(k, )3 X (k), (3-10)
where m(k, n) is given by (3-2).
Regarding the Fourier coefficients of the derivative of the circle (2-1) we have
o a+ib i ib i
g Xo(k) = ——01(k) | | | = IONEE (3-11)

Taking Fourier transform in (3-8), we obtain

/\71,1(/6)

— Rz/’DZ(X YT % Ag_y X (k) % e ™ Fy (k) dy

= / S Y DXk — k) By K ks — ke Fy (ko) d,

4JTR2
kIEZ kzéz
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and plugging in (3-9) and (3-10) we have

1

N1 (k) = IR

Z Z I Xo(k — k)T 0 X (k1 — ko) Fp (ko) 11 (K, Ky, k),
k]EZszZ

with I; given by (3-3). By Lemma 3.2 we have |I (k, k1, k2)| <2m. Then we get
~ 1 _— TS ~
NL1h)] < mkgkg 190 Xe(k — k)" 8o X (k1 — ko) || FL(k2)). (3-12)
1€ 2€E

Then, it follows from (3-11) that

—_— R
|0g X o (k — k1) 5351,—1(/€—k1)- (3-13)
We will now also use the notation (1-22). In particular we have
V2

—— —— 2 —
186 X (k — k1) T 36 X (k1 — ka)| < TR(al(k_kl) +6_1(k — k1)) |3 X (k1 — k2)|.

Therefore, we can write

A /\/E — —~~
Nl = 22 D0 > 811k =kl Xtk — k) [ FL (ko).
ki€Z kreZ

We multiply by eV VK = O k=k) v (Dki—k2) oKz 1 get

A V2 _ .
v(t)k v(t)(k—ky) _ v(t) (k1 —kp) _ v(t)k;
"IN ()] < 1R E E e Y811k —k1)e” T 0g X (ki — ko) e | Fr (ko)

kleZ szZ

so Young’s inequality for convolutions and the estimate (2-42) yield the bound

€' /2|| X || 311
N0 < || FL | 7o (3-14)
2V 1= LIXI,,
This is our desired estimate for N 1.1-
We now proceed to estimate N7 ; as
1
Nio®) = - = f oy Xe(®) D> (X)(E. MFLE —n)di, (3-15)
s

with Fourier transform given by

7 _ 1 v T2y —ikan T
Niak) == 1— /g kZGZkZEZAMXAkl—kz) DX(X)(k — ke " Fy (k) d.
1 2

Using again (3-9) and (3-10), we can write it as

1

Nialk) = =

Y 0 Xet — k)T 9 X (k — k) FL(ko) Iy (k. k1, ko),
k]EZ szZ
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with I given by (3-3). Using Lemma 3.2, we find that
~ 1 —— —— -~
N2 < 55 D D 106Xtk — k)85 X (ki — ko)l [ FL (ko).
kIEZ szZ

so following the steps after (3-12) we conclude that

" V/2| X 1.

v

IV 2l o < A
2V 1= LIXI1%,,
v

This completes our bound for N/ 5.
The term N/ 3 is given by

Nia®) = =5 [ DXEOG T 80, X080, Xe0) 80, XOFLO -5, (-16)

and its Fourier transform by

1 T v —
2709 X, (ko — k3) R* Z"'ZaGXc(k—kl)TagX(kl—kz)
g X (ky — 3) kiez kscZ ®8/9\ch(k3—k4)ﬁL(k4)Iz(k,k1, ...,k4),

Nisk) = —

with Ir(k, ky, ..., ks) given by (3-3). Since |l>(k, ..., k4)| <27 from Lemma 3.2, we have
N1 3(k)]

1 —_— — —_— —_— —~
= Z e Z |09 X (k — k1) 86X (k1 — ko)1 106 X o (ko — k3) ® p X (k3 — ka) ||| FL (ks)].  (3-17)
kieZz kaeZ

Expression (3-11) gives
30 X o (ko —k3) @9 X - (k3—ks)
_ (a+ib)?

-1 i —ib 2
51(k2—k3)81(k3—k4)[ ; ;]+%
_@tib)a=ib)

4

All the matrices above have norm equal to 2, so that

-1 —i
3—1(k2—k3)3—1(k3—k4)[_l. ﬂ

Sita—k)d ko) |~} )|

_1 /
8_1(k2—k3>51(k3—k4>[ : l].
i —1 4 —i

-1

_ . R?
100 X (ko — k3) ® dp X (k3 — ka)|| < 731,—1(/@ —k3)31,—1(k3 — kg). (3-18)
Introducing this bound, together with (3-13), back to (3-17), we find that
A~ ﬁ — ~
N3 < ==Y > 811k —kn)8p X (ki — ko) |81, (ko — k3)S1,—1 (k3 — ka)| FL(ka) |
4R kieZ kqeZ
1 4

thus multiplication by the exponential ¥

, Young’s inequality and (2-42) yield that
272637 || X || 51

| FLll zo.1.
i 2 Fo
\/1—§||X||E1_1

M3l zor <

This completes our bound for A/ 3.
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The term A/ 4 is given by

1

Ni40) = ~ i

dn
/ B0y Xe©) DX O, ) Ag - Xe(0) @ Mgy X O FLO =m)5—. (3-19)
S
We take the Fourier transform and write the result as

o~ 1 — o~ _——
Nia®)==5—73 >+ ) G Xelhk —ka) 0 X (k — kn)y X (ko — k3)

kel kel ®% Xo(ks — k) Fr (k) (k. ki, . .., ks),
with Ir(k, ki, ..., ks) given by (3-3). Since |I,| <27 by Lemma 3.2, comparing now with (3-17), we
conclude that
23263 | X || 111
IV 4l o < i

IFL]l 701
1 2 ]:)
VI=31 X050, '

This completes our estimate for N7 4.
The remaining terms from A7 (0) in (3-6) are

d
N1,5<9>=—% fg B0 Xe(0) By XOD (X0, 1) ® Mgy X O)FLO =)

d
N1,6<9>=—% /S 8- Xe®) By XO) Mg, Xe(0) ® D*(X) O, )FLO — ).
Ni7(60) = 4ﬂlR2 /g D(X) (O, 1) ® Ag—y XO)FL(6 —n)dn,

(3-20)

M,g<9>=ﬁ /g No—yXo(0) @ D*(X) (O, m) FL(0 — ) dn,
Nio(6) = 4ﬂlR2 /g DX(X) (0, 1) ® Ag—y X(O)F1 (6 — ) dn,
Ni1o®) = 3 fg Ao—yX(0) @ DX(X) (O, ) FL(0 — ) dn.

It is not hard to see that N/} 5 and N ¢ are bounded exactly as A/j 3 in (3-16), since the bound (3-18) is
also valid for D*(X.)(0, ) ® Ag_,Xc(0) or Ag_, X(0) @ DXH(X.) (6, ).
We proceed then with A7 7. Comparing with A} ; in (3-8), (3-12), we obtain

~ 1 —— — ~
N7 (01 < 505 D D 130 Xelk — ki) @ 3 X (ki — ko) [ FL (ko).
k]EZszZ

Using (3-11), we find that

—_— — R
1106 X c (k—k1)®039 X (k1—k2) || = 551(k—k1)

J2

< 7R81,71<k—k1)|a?)«k1 —k)l, (3-21)

R
—5_1(k—k
+ 5 1(k—ky)

[_1} 35X (k1 —k)

i

[ 1] 30X (k1 k)

—i
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where in the last inequality we have used that the matrix norm (1-19) is bounded by the Frobenius norm.

Therefore we conclude that
V26X 1

| FLl 2o
0 2 Fo
2V1- 31X,

The bound for A/ g follows in the same way as that of N7 7:
V2e" || X | 1

IFL] o1
21— 31 X13.,

Finally, the bounds for Aj g and N/ 19 are the same as for N/} 7 and N g because

I 700 <

IV sl o1 <

136 X (k — k) ® g Xo (ki — k)|

R v . R v .
= 581tk — k)9 X (k —kp[—1 i]ll + 61tk — k)19 X (k —kD)[=1 —i]l|

2 —
< %RSI,—I(kl —k2)|0g X (k — k1) (3-22)
Joining the bounds for N} | to N7, 10, we obtain the bound for Aj in (3-6) as
NV ||Eo,1 < 11v/2e3>C, ||X||]-__v1,1 | Fr ||]__U0,1 , (3-23)

where C is defined in (2-43). This completes our estimates for the N/ term.

N estimates: Taking a derivative in (2-14), we split N3 as

11
N3®)=> N, (3-24)
i=1
where

N3 (0) = - /g 39R1 (A, X (0)) FL(n) dn,

N220) = 1 [ 08, X0 9 8,X©) (1 = 728, Xe0)7 8,XO) Fun) .
Naa®) = =5z [ 2,X0)© 2, XO)0(8,X:0)" 8, X©) Fu(o) d,
N2a®) = s [ 30(8,X(©0) © 2, XO)Ra(a, XO) F )
TR S
Nas®) = e [ 20X O)® 8, XORa(A, X O) Fr ) di
T R S
Nao®) =5 [ (8, Xc0) 8,X0)+ ,X0)@ A, Xc0) 4, Xc0)] A, X Fi (1) d,
N0 = =5 [[(8,Xc6)0 8,X0)+8,X6) 0 8, X0)3(8,X:0)" 8,XO) Fun) d,

N35(0) = 471%/Sae(Aan(e)®AnX(9)+AnX(9)®Aan(Q))Rz(AnX(Q))FL(n)dn,
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N39(0) = = R2 / (A, X (0) @ A X (0) + Ay X () @ Ay Xc(0))dRa(A, X (0)) FL () d,

N3100) = ﬁfg39(Anxc(9)®Aan(G))Rz(AnX(G))FL(TI)dn,

1

N311(60) = TR

/SAan(G)®Aan(G)aeRz(AnX(G))FL(n)dn,

where R and R, were defined in (2-7) and (2-9).
We proceed with A3 ; first. We take the derivative in (2-7) to obtain

N31(0) = 01(0) + 02(0) + 03(0), (3-25)
where
1)* 1
016) =~ [ Z R RO O
n>1ngfm22 1205 A Xc(0)" A X (0)| A, X (0) " FL(n) dn,
1)* 1
026) =~ [ Z R N RO
n>1n1m22 20, X(0) 05 A, X ()| Ay X (0))*" FL(n) d,
"= 1
03<9>———/ ZZ ( ) AKX O) A X ()"
=1 m= 1 A XO) VA X(6) 9 A, X (O)FrL(n)dn.

After performing the change of variables 1 <— 6 — n, we take Fourier transform of O;(6) to obtain

~ Dl —
0:1(k) = — / 3 Z )= R(z’,f ") DAy X (O) Doy X O)
n>1 m=0 B -~
ntm=2 £ 2D*(X)(0) Mgy X (k) +™ Ag_y X (0) Ag—, X (0) % Fp (k) dn.

Using (3-9) and (3-10), we rewrite it as

n—1
~ 1 (—1)" ! (n—m)
00==g: 3 3 ()

n>1 m=0

n+m=>2
n—m-—2

Z Z l_[ 200X (kajr1—k2j+2)" 9 X (kajro—kaj43)

o fa 0= 20 X (k—k1)" 8 X (kan—2m—1~Kan-2m)
[T %X aj—kajs)" 8 X (kajir—kajy2) Frlkan) Lok, e, .. ean),  (3-26)

j=n—m
with |1, (k, ki, ..., kop)| < 2m given by (3-3) and using Lemma 3.2. Above we are using the convention

v(tk

that ]_[f: i f()=1if jo < ji. Recalling estimate (3-13), distributing the exponential factor ¢"”*, and

applying Young’s inequality, we have

101501 < g (Z > () g vy e mo gy, ||X||;’j,1>||FL||ﬁo,l,

n>1 m=0
n+m=>2
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which can be summed first in m to get

1 3y X% X[ 0\
1011l pou < 12;(2 e —2 (1 5 feva> IFL] pou, (3-27)
n=
and then summed in n,
[ X 5.
262”°°(1 + —> 2
10110 < 22~ R e Bl
P =23 X 1.0 (1 1 X 1. ) R? F
_ evoo v + v
R 242V~ R
Using estimate (2-42) and the notation (2-43), we conclude that
1011 701 < 26> CoCRIX (51| FLll o (3-28)
with
1+ == ">C|| X|| 11
Cy= 25 il (3-29)

1= 2v2eCilIX | g (14 55" CullX | )

where C; was defined in (2-43).
We proceed with O3 in (3-25). We take Fourier transform and, recalling (3-9), we obtain

n—1
~ 1 (="t n—m)
OZ(k):_QZ > (::) nRZZ :

n>1 m=0
n+m>2
n—m—2

ZZ 1—[ 209 X (kajr1 —kaj12) 9 X (knjra —kaji3)

b by, =0 200 X (kan—am—1 — kan—om)" 3 X (k — k1)
n—1
l_[ I X (kaj —kajy1)" 99 X (kajy1 — kajy2) FLlkon) Ln(k, ki . k), (3-30)
j=n—m

again with |I,(k, k1, ..., kop)| <27 from (3-3) and Lemma 3.2. Thus, comparing (3-30) with (3-26), we
find the estimate for O»,
102101 = 26~ CoCHIX 1 I P o (3-31)

with C, defined in (3-29) and C| in (2-43).
Repeating these steps for O3, we obtain

n
1 n\m@2v2)" " ) e
1031100 = 5 22 3 (30 ) = ogmr—e" R I XIS X W 1L o

n>1 m=1

which after summation in m the right side above becomes

1 _
105l 01 = 5 > V2" ORIX g+ 1X W )" X IS0 I FL L 5o

n>1

X% 11 IX N\ IX N2
=—Z o (2vaew 4+ ) S R, (332
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and after summation in n we have

| X115
10500 < 2 2Pl o
= 3 L L.
T 21— 2V2e (X [ 511 /R (L + e (| X [ 211 /2V2R)) - R? 7
Introducing the bound for R in (2-42), we obtain
1051 z01 < 3C3CTIX 0 I Pl 5o, (3-33)

and using C; in (3-29) and C; in (2-43) we have
G

C3 = PR . (3-34)
+37¢ 2 CillX | £
Joining the bounds (3-28), (3-31), and (3-33), we find the estimate for N3 from (3-25) as
V3.1l 501 < 3CaCIX IS0l FL 2o, (3-35)
with
Cy = 2(4e®=Cr + 1C3). (3-36)

This completes our desired estimate for N3 ;.
We continue with the next term A3 > from (3-24), which we split in two:

N32(0) = 04(0) + O05(9),
where

04(9)=ﬁfgaa(AnX(G)ébAnX(@))FL(n) dn,

1

OO =57k

Lag(AnX(e)®AnX(e))A,,XC(e)TA,,X(e)FL(n)dn.

The bounds for these terms follow in a similar way to that of A ; from (3-15) and N 4 from (3-19),
respectively. Taking into account that

106 X (k — k1) ® 99 X (k1 — ko) || < 186 X (k — k)| |36 X (ky — k2), (3-37)
and Lemma 3.2, it is not hard to find that

104(k)| < % D 18 X (k— k)100 X (ki — k)| | FL (k).

k1€Zk2€Z

and recalling (3-13), we have

o~ \/5 —— — — -~

|05 (k)| < g Z o Z |09 X (k — k1) [109 X (k1 — k2)[81,—1 (ko — k3) |09 X (k3 — ka) | | FL (ka)|.

kieZ kae?
Therefore,
X113, ; IIXIIj-Tl‘l
103501 < —3 = IFLl o1, 105510 < 23/2e" —EC [y o
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thus )
X113,

R2

IFL] 5o,

1 XMl 10
Niallgor < (142¢2e">—2
[N32ll zor < {1 42v2e R

so plugging in the estimate (2-42) yields that
V3.2l o1 < CSCHIX 3l FLl g1,
with
Cs =1+2v2e"Cy[|X|| z1.1.

This completes our estimate for A3 5.
The Fourier transform of A3 3 in (3-24) can be bounded as

(3-38)

(3-39)

N 2 o _ . ~
330 < 2—JR_3 33 136X ke k)36 X (ki — k)81, -1 (ka — k3) |85 X (ks — ka) || Fr (k).

kleZ k4EZ
and thus 5
X
v
I3 3l 0 = V/2e" — = 1Pl o,

3
which becomes
N300 < V2= CHIX IS0 I FL oo
Similarly, recalling (2-9), the estimate for N3 4 in (3-24) is

X151

m

n
F n (zﬁ)n—me(n—m)v(t)Rn—m 3
I3l zo1 < > > () XI5 X0

R2 R2n

which can be rewritten as

I3 4]l zo.1

- R? R R

IIXllﬁfl,l (Z (Zﬁe”(’)Rllelfl,l)"(l X 1| 21 ) 2ﬁeV<f>||X||fl,1)”F
< v v v _ v

24/2e"® R

n>1

2IPOIXIE,, <Z<2«/§e”<”||X||ﬁ.l)”‘l(l X 1 ) 1>||F [
_ — L ]_-VO,]

+ - vy
24/2e"OR

R3 R
n>1
- 2V2e"DNX 00 1K
B R3 23/2e" R

RYFE 2¢/2¢" V|| X | 31 YOS
RO G e U
2v2e"OR ) 5 R 23/2e"®OR

Performing the sum in n and using estimate (2-42), we conclude that

4 4
IN3,4ll go1 < 9C6CY IIXIIJ-TJJIIFLIIEQI,

(3-40)

LIFLI oo,

L”]:vov1

))"_1>||FL||RO.1.

(3-41)
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with

| , -
Co = 5(1 + 8¢ (1 T35 VOOC1||X||_7':I}-1)C2), (3-42)

where Cy, C, were defined in (2-43), (3-29). This completes our estimate for A3 4.
To deal with the term N3 5 in (3-24), we have to take a derivative in R, from (2-9). This gives the
splitting
N35(0) = 06(0) 4+ 07(0) + 03(0), (3-43)
where

06(0) =

ln
o szz Z M(A X(©)® A,X(0))

n>1 m=0
n+m=>2

Ay X O A, X 0))" 12050, X (0)" Ay X (0)1A, X (O)" Fr () dn,

1 I’l
01(0) = ;- szz Z M(A X(6)® A, X (6))

n>1 m=0
n+m>2

A, X(0) A, X ©0))" " I20, X (0) 09 A, X (0)| A, X (6)P" FiL(n) d,

" 1
0s(0) = 5 fg YY) R x @ @ a,x0)
n>1m=1
- C2AX (O AX O AXO) VA X6) 9 A, X (0)FL(n) dn.

Comparing Og and Og to O and O3, respectively, in (3-25), and recalling the bounds (3-27), (3-32),
together with (3-37), we find that

X120 — (2v/2)"em O X500\
1 O6ll 0.1 = > - IXN (1 + —=—— | FLl zou1,
2R p R zfe OR
X112, n| X" IX N\ L IX N2
Fy Fy’ v(t) Fy Fy
1081l 7o < —25 ; T (zﬁe +— ) =5 IFLl 2o,
n=

which after summation in # the right side above becomes

X1 1. 2V2e" | X|| 1. 1X 1| 1.1
||06||fvo,154e2”°°<1+—fv)<2_ A <1+ 7 ))

2+/2¢"< R R 22V R
4
X0 1 X0 N2 X
x<1—2«/_e”°° RV <1+2\/§e”:oR)) R4v I FLIl o1,

4
X £ X0 N2 X
||08||E0,1§(1—2\/_e“w . (1+2ﬁev;R)) I FLl o,

It is now clear that, for the same reason that the bound for O, (3-30) was the same as that for O; (3-26),
the estimate for 07 is the same as the one for Og. Therefore, with (2-42), we conclude that

V350501 < 17CCHIX NS0 | Pl oo, (3-44)
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with

16 2, ~1 - | P C3
Cr = 220G (1 - 67 V2! ||X||fv1,.(1+mc8 e ||X||fu.,1>)+ﬁ, (3-45)

where we note that C7 is indeed increasing in || X|| 5.1 as can be seen because the infinite sums in the
v
upper bounds of || Og|| 0.1 and || Os|| zo.1 above are indeed increasing. Further above we are also using
v v

Cs S VI 31X, (3-46)

and we are further using C, and C3 from (3-29) and (3-34).
Recalling the bounds (3-21) and (3-22), the remaining terms N3 ¢—A/3 11 can be estimated similarly,
using also Cy, Cg and C7 from (2-43), (3-42) and (3-45), to obtain

2 2 2
V3.6l 50 < 82 CHIX 311l FLll ou
2 2 2
I3 71510 < 8> CIX s | Frl oo,
v
3 3
I3 8]l 10 < 18v2e" CoCTIX L0 I1FL | 7o,
3 3” (3-47)
VY
N300l a1 < 348/2e"CrCT I X 1 | Pl o
v
2 2 2
[N 310 0 < 186> CoCTI X 130 I FL Il o,
2 2 2
I3, 11ll o1 < 34> C7CII X 10 I Fel| o

Therefore, from the splitting (3-24) and adding all the bounds (3-35), (3-38), (3-40), (3-41), (3-44), and
(3-47), we conclude that

I3l o1 < 5 CoCTIX 0 I Ll g1, (3-48)
where

Co = 12 (3Cs + Cs + 167" + 18¢2< Cg + 34e*'= C;
+ (V24 18v2C + 34V2C7)e"™ C1 || X | 511 + (9Cs + 17C)CTIX510),  (3-49)

with Cy, C4, Cs, Cg, and C7 defined in (2-43), (3-36), (3-39), (3-42), and (3-45).

N estimates: It is clear from (3-5) that the previous estimate for A3 in (3-48) is also valid for N3, with
| Fyl Fo1 replaced by || Fo|| FO.1. Therefore we have

Il o1 < 2 CoCHIX I, 1 Foll o, (3-50)

with Cy defined above in (3-49).

N4 estimates: We split the term N4 in (3-5) following the splitting (2-11):

N3 (0) = N4 1(0) + Nup(0) +Najs(9),
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where
N4,1(9)=/ 99 (Go(Ay X (0))Fn(n)dn,
S

Nap(0) = /g 39 (GL(A,X(0), A, X(6)))Fn(n)dn,

Naj3(0) =/§89(GN(AWXC(9), Ay X (6)))Fn () dn.

We notice that the term N4 5 can be bounded exactly as N in (3-5), with || Fy || Fou replaced by || Fy || FOLs
that is, from (3-23) we have

INa 2l o1 < 11823 Cy || X | 511 | Fy | oo,
with Cy from (2-43). Analogously using the similarity between Ny 3 and A3 in (3-48), we have
IN4,3]l g0 < %Cngllel%,l [ Fnll o,

where we recall Cg from (3-49).
Now taking a derivative in (2-12), the term N4 | can be written as

1 Fn(m) 1 /
f)=—— WA, X OO RQAN,X.(OF d
Nur®) = =g [ sy s [ ana e )® 8, X0 E ) dr
+4”RzfgAan(Q)®30Aan(9)FN(n)dn,
and therefore, recalling (3-18), we have

ING 1l 01 < (5 +2€™) [ Fy |l oo
We add the previous bounds to obtain
INGl 01 < C10ll Fy |l o1, (3-51)

with
Cio=5(5+26"> + 112> Cll|X || 1 + 5L CoCTI X [511), (3-52)

with Cy, Cg defined in (2-43) and (3-49). Combining the estimates (3-23), (3-50), (3-48), and (3-51), we
conclude from (3-5) that
[Nl 10 < W CoC X 5011 Foll ot [ X | 320 + 1IN2C 1 CLIX | 5 [ FL L g0 + SCroll iyl o1
where
Cii = 5775 (11V26 + 10 CHIX [ 1), (3-53)
and Cq, Cy are defined in (2-43) and (3-49). Rename the constants
D;=CyC), Dy=CyC}, D3=Ci, (3-54)

to get the result (3-1), where Cy, Co, C19, and C; are given in (2-43), (3-49), (3-52), and (3-53). Il
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3B. A priori estimates on F. In this section we will obtain bounds for Fy, F;, and Fy in ]-"Uo’l.

Proposition 3.3. Assume that X € j-'vz’l and that F solves (1-13). Then, the functions Fy in (3-58), F in
(2-25) and Fy = F — Fy — F|, satisfy the estimate

24,
| Foll s < /2" Cy—— ” (3-55)
where Cyg is defined in (3-46). Further
|A |
[ FLll zor <24, (1 t1o 1 X1l £2.1, (3-56)
IAMI(I + 1ALl
IFyl1 = 1000V24, =y e DAl Xl X . (3-57)
where Dy = D4(I|X”]'_-Ul,1; AL, Vo) is an increasing function of ||X||E1,1 as in (1-28) such that
li Dy(| X 311;0,0) =1
nxufjﬁlam (1 X1 5115 0, 0)
and is defined in (3-78).
Proof. First, for a general circle the expression for Fj in (2-20) becomes
24, .,
Fy(0) = 9 Xe. (3-58)
1-A,

Similar to (3-13) using (3-11) we have for (3—55) that

F, <\/_“°°R <2e"C
| Foll o1 = 2e l—AM 26 Cy- AM

where Cg is given by (3-46) and we used (2-42).
Further F} is given by (2-25) and so we have
2|A, IA

I FLI zor < 241 X | z20 + = 1 X £1.05
/L
which gives (3-56).

We proceed with the expansion of the nonlinear terms in (1-13). First, using (2-8), we write

1 1 4 ,
= 1= 258,X:00)" Ay X AyX(©6))),
|AX + AXc[*  16R*sin® ((e—n)/z)( g2 O X O 8y X (O) +R5(Ay (9))>

where

R3(Ap X (0) = == A, X (O) Ay X O)R2(A, X (6)) +2Ro(A, X(0))

(8 X O A X0 + (Ro(A, X (0)°, (3-59)

and R2(A,X(0)) is given in (2-9). Then, we use the above expansion to rewrite S(F, X')(6) from
(1-14) as

S(F, X)(0) = / KXo X0, 2= g (3-60)
’ s @ " 2sin(n/2) "
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where

K (Xe, )0, 1) = —2 (0 X O 8y XO) Mg, X (0) & Mg, X ()
x <1 — %Anxc(e)TA,,X(G) +R3(A17X(9)))’

and we recall the notation X' (0) = X.(0) + X (0) and (2-2).
We will plug in the splitting for F in (2-15) into (1-13). We first introduce an analogous splitting for
K as

K(Xc, X)(0,1m) = Ko(X)(0,m) + KL (X, X)(0, 1) + Ky (Xe, X)(0, n). (3-61)

After we remove the zero-order (2-18), and linear-order terms (2-23), then (1-13) for the nonlinear-order
terms becomes the following equation for Fy:
F FyO—n)
N(0) — 2AM/ Ko(Xc)(0, 77)2.— dn=J(X, Fy)(©). (3-62)
S sin (n/2)
with
T F)©) =24, [ (Kue 00,0 + Ky (X 000, 1) 550
s 2sin (1/2)
+24, / (KL(Xe, X)(0, 1)+ Kn(Xe, X) (6, n))m dn (3-63)
S 2sin (n/2)
dn
2sin(n/2)’
where the first term in J will be treated as a perturbation with Fy and Fy given in (3-58) and (2-25)
respectively. Notice that Ky is given by

+24, fg) Ky(Xc, X)(0,n)Fo(6 —n)

1
Ko(Xc)(0,n) = m(89Xc(9)l)TAe—an(G)Ae—an(Q) ® Ag—nXc(0),
where by (2-3) and (2-5) we have

ANT _ 2un (N
@ X)) Aoy Xo(0) =—R*sin (1),

a?[1—cos(20—n) —sin(20—n)
Bo—n X O)®Lo—Xc(0) =7 —sin(20—7) 1+4cos(20—1n)

b_2 14cos(20—n) sin(20—n) tab sin(20—n) —cos(20—n)
2 sin(20—n) 1—cos(260—n) —cos(20—n) —sin(20—n) |
Therefore,

Fy@—m) 1 B
ZSin—(n/Z)dn_ 4n/§FN(9 ndn

a?® — b? —cos (20—n) —sin(20—n)
47 R? /S[—sin(ZG—n) cos (26 —1n) }FN(Q_”)‘Z”

_ab sin(20—n) —cos (20—n)
2w R? Jg | —cos (260—n) —sin (20—n)

/ Ko(Xc)(0,n)
s

] Fy(© —n)dn.
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Then taking the Fourier transform we find that

Fyn(0 —n)
f(/g Ko(X) (0, Tl)m dﬂ) (k)

= 3 Py 80(0) +

4R? i —1

(@+ib)?*[ 1 —i
4R2 | —i —1

_ib)? :
}Ev(—l)al(kw—(“ b) [ b

} Fy(1)s_ (k).

Equation (3-62) is then given on the Fourier side by the expressions

J(X, Fy)(0),
" (3-64)

Fy(k)=J(X, Fy)(k), k>2,

N 1
Fv® =177

while for k = 1 one has that

S (a+ib)*[ 1 =i« -
Fy() = Ap—pr— |:—i _1] Fy(=1) = J(X, Fy)(1),
~ (@a—ib)*’[ 1 il=- _
FN(_I)_A/LT[ ; _J Fy(1)=J (X, Fy)(—1),

which gives that

A2y A2 0T 132 S N
[1 AZ)2 zAM/Z] FN(D:AMM[_; _;] T, Fa)(—1) + J(X, Fn) (),

iA%/2 1-AZ)2 2R?
and thus
= Ay (@Fib) [ 1 =i e 1 [1-AL/2 iA2)2 ]
Fy(1) = A2 2R | i ] J(X»FN)(_l)'i‘q Ak 1-A2) J(X, Fy)(1).

Since we have

. 2 * A2
2= 150 ] -
—i —1 —iA2/2 1-A2)2

we obtain
~ VP — S
|Fyn (D] < ——L2 | TX, Fa) (=D + — | T (X, Fy)(D)]
l—Au l—Au
1+]Ayl

= J(X, Fy)(1)],
(l—A,L)(1+A,L)|J( (D]

which together with (3-64) implies that

L+]A,l
1-A)0+AL

I Fy o0 < 1J (X, Fy)ll o (3-65)

This is our estimate for Fy.

J (X, Fy) estimate: Notice that J (X, Fy) corresponds to the nonlinear terms in S(F, X) except the
one in the left-hand side of (3-62). For simplicity in notation, we are going to estimate S(F, X'), and

later extract from there the corresponding bounds for J (X, Fy).
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Consider the following splitting for S(F, X)) from (1-14):

S(F,X)(0)=S8(F, X))+ S2F, X)(0) + S3(F, X)(9), (3-66)
with
F(©—n)

_ Ly T
SIF. X)0) =~z fg B X O 29y X O) 20y X O)B L9 X ()52 d,

Sz(F,X)(G):—%fg(ﬁeé\f(G)l)TAe—nX(G)Ae—nX(G)

F(o—
DAy X (O)A, X (0) A, X (6) )

2sin(n/2) "
Ss(F,X)(9)=L/(aex(@l)TAe X(O0)Ag—nX(O)®Ag—y X (0)R3(A X(Q))M n

TR [ 7 7 7 7 2sin(1/2)
We take Fourier transform of S{(F, X) to obtain

SIF D)) = =z 3+ Y @R — k)T 8y 2y — k) By X ko — k)

ek ket ® Jp X (ks — k) Fka) 15 k1, . .. ko),
where

/ 2 sin ((kj —kjy1)n/2) e~ititkon/2
s

Lyky, ... ky)| = : ;
|1 (ki 4)] o (kj —kji1)sin(n/2) 2sin(n/2)

dn‘

_ /sin((k1+k4)n/2) 7 sin (G —kje0n/2) ‘
s sin(m/2) o1 (kj—kj41)sin(n/2)

The integral I} turns out to be the previously defined integral in (3-4). In Lemma 3.2 we show that
|| <2m. Using (3-11) and (3-13), we have

B X (k — k1)H)T 8 X (k1 — ko)
2
< B (51t~ k)5 1kt — k) + 610k — k)3 (s — ko)

R > R
Eal,—l(k —k1)|0g X (k1 — k2)| + NG

while recalling (3-18), (3-21) and (3-22), we obtain

4 81, 1(ki —k2) |06 X (k — k1)| + 106 X (k — k1) |39 X (ky — ka),

199X (k — k3) ® Bp X (k3 — ka) |
R? 2 —
< 731,—1(1(2 —k3)81,—1(k3 —k4) + %R&,—l(kz — k3)|09 X (k3 — k4)|
2 — — —
+ \/T_R|39X(k2 —k3)|81,—1(k3 —ka) + 109 X (ko — k3)| |09 X (k3 — k4)|.

Therefore, Young’s inequality for convolutions yields that

2 2
X1z X IX N e X
||81<F,X)Hﬁo,lsz(e%uzf Tl )(2e2“°°+2f T )IIFIIf,P~1’
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which by (2-42) and notation (2-43) can be rewritten as
IS1(F, )] o1 < 22" +6v2™>C1 | X | 1 + 1ICCTIX I 0 F I 701, (3-67)
with
Ciz = 1 (11> + 42" Cy || X | 111 + Cfllelf-Tvl.l), (3-68)
and C| is defined in (2-43).
Following the same steps, for S, (F, X'), one finds that
I82(F, )] o1 < 8v/2e"™ (2" +63/2e*C1 | X 511 + 1LCCT I X 151 )CHIX [ 1 [ Fl po.

We define
Ci3 = 32" +6v2™>C1|| X 11 + 11C1CTIX[310), (3-69)
so that
IS2(F, )] zo1 < 1652 C13C1 11X || 51 [ Fl o1 (3-70)

This completes our m ) estimate.
Next, we proceed with S3(F, X) in (3-66). We split it accordingly to (3-59) as

S3(F, X)=83,(F, X)+83,(F, X)+833(F, X) + 83.4(F, X),
with

4
S31(F. %)=~ /S B0 X (O))T Mgy X(O)Ag_r X(0) @ gy X (0)

Ay Xo(®)T Mgy X(O)YR (A, X (0)) 20 =1
Pt e 2 sin 2y O
S32(F, X) = — / B X O Dy X (O)Ag X (0) ® Ay X(O)Ro(A, X (0)) —r— 1
o TR Js K ! - 1 sinm/)
4
S33(F, X) = m/g(an(O)l)TAe_nX(G)Ag_,,X(e)®Ag_n;v(e)
T 2 F(O—1n)
'(AG—an(Q) AH—UX(Q)) m n,
S3a(F X)ZL/@ RO Mg, X(0) Dy, X0) ® Mgy X(O)(Ro(A X ()P o1
T TR Js o o - 2 2sin (n/2)

The procedure follows the steps used to bound N3 4() in (3-24) and (3-41), where the term R, from
(2-9) was also involved. After taking Fourier transform and using Lemma 3.2, Young’s inequality for
convolutions and summation in m and n gives

1851 (F, X)| o < 1443/2" CoCri3 CIIX 31 | F | pon.
1832(F, 2)ll 01 < T2C6CiaCTIX 51 1 F 1l 51,
1835(F, ) o1 < 326 Ci3CT| X |21 Fll pou.
183.4(F., 2)| 0.1 < 324C13CECHIX IS0 1 F I 2o
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Joining the above bounds, we obtain

I83(F. X) 0.1 < 104C13C1aCTI X101 [ Fl g1, (3-71)
with
Cia = 733 (72C6 + 32¢™" + 144726~ C6C1 | X | 511 + 324CECT [ X 1540, (3-72)

where C| and Cg previously defined in (2-43) and (3-42), respectively. We combine the bounds (3-67),
(3-70), and (3-71), and order them as

IS(F, X))l o1 < 4e™™ || F| 0.1 +28v/2¢™ C1l|X | 511 | F || g0 +222C15CHIX 510 [ Fll 5o,
with
Ci5 = 535 (104C13C14 + 82" (6v/2¢7" + 11C12C1[| X || £11) +22C12), (3-73)

and C; in (2-43), Ci, in (3-68), Cy3 in (3-69) and C14 in (3-72).
We remark that instead of (3-66), analogously to the splitting for K in (3-61) we can split S(F, X)(0) as

S(F.X)(6) =8(F., X)) +S8.(F, X)(0)+Sy(F, X)(0), (3-74)
where from (3-60) and (3-61) we have
So(F, X)(0) = f Ko(Xe, X)(0, 20—
’ s “ " 25sin (n/2)

Then S (F, X)(0) analogously contains Ky (X., X)(8, n) from (3-61) and S is linear in X. Then
Sy (F, X)(0) similarly contains Ky (X., X)(0, n) from (3-61) and Sy is nonlinear in X. Then it is clear
from the above that we have the estimates

ISo(F, 2) | 01 < 4€™< | F|| o1,
ISL(F, X)|| o1 <2827 Cy[| X || .1 | F |l 0.1,
1SN (F., )| zor < 222C1sCRI X 50 | F | o1
This splits the estimates into zero-order, linear-order, and nonlinear-order which is useful because of (3-63).

Next, recalling the definition of J (X, Fy) from (3-63) and its relation with S(F, X’) in (3-60) and
(3-74), it follows that

1 (X, Fy)ll o1 < 56721 A C16C1 1 X || 11 | Fy | 5o

+ 5621 AulCieC1IX | 21| FLl o1 +444] A CrsCHIX I I Foll o, (3-75)
with

1 Sveo
Cis = m(zsﬁe " +222C15C [ X || 1) (3-76)

Finally, bound (3-75) allows us to estimate Fy from (3-65),

I Fwll 5o
_ 56v21 4,101+ A
T =AY +AY

4441A, 1 (L+1ALD
I-A00+A

Cr7Ci6Cill X | i I Fr o1 + Cr7CisCRIX [ 511 Foll zo.1.
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where

56+/2|A,1(1+ ALl
Cir=|(1-

-1
Ci6C1lI X || 21 , 3-77
A=A+, dl ||fvll> (3-77)

and the bounds for Fy, Fy are given in (3-55) and (3-56). Substituting these bounds we find

A (L +[A D —AL+TALD
(1—A,)2(1+A,)
+ 888424,

[ Fnll zor < 11224, CrrCieCill X g1 1 X 2.
[Aul(1+[ALD

(1 - Au)z(l + A/L)

2
e CsCr7CrsCTI X | X .

Defining
Dy = 1555C1C17(112(1 — A, + 1A, Ci6 + 888¢"*C5C Ci5), (3-78)

where Cq, Cg, Cy5, Ci6, and C;7 are defined in (2-43), (3-46), (3-73), (3-76), and (3-77), we can write
the estimate for Fy as (3-57). O

Proof of Lemma 3.2. Recalling (3-3) and (3-2) and using the odd part of the integral we can rewrite I = I, as

- _ sin(k—kn/2) n?
I ipV/n sin ((kl +k2n)77/2) (k—k;) tan (77/2) S ((k +k2n)n/2) 2n—1 sin ((k] _ kj+l)n/2)

I 25sin (n/2) i1 (ki —kjs1) sin(n/2)
=—%(1/—I”),

where

dn, (3-79)

. / sin (k1 +ka)n/2) 77 sin (k) — kj41)1/2)
. sin (1/2) e (kj —kj+1)sin(n/2)

(3-80)

1" défpvfn cos (n/2) sin ((k + Kan)n/2) int sin () - kj-.H)n/Z)
- sn/2) GGk sin0/2)

Note that if k1 +k5, =0 then I’ =0 and if k +k»,, =0 then I” =0. We henceforth assume that |k +ko,| > 1
and |k + k»,| = 1. We will calculate (3-79) and then (3-80).

Notice that sin ((k; —k;11)n/2) =sgn(k; —kjy1)sin(|k; —kjy11n/2) and, since |k; — k11| > 1, we
rewrite the quotient in the product form as

sin (|k; —kj111n/2) eitki=kiniln/2 _ o=ilkj=kjwiln/2  gilkj=kjw1ln/2(1 — g=ilkj=kjs1lm)

sin (n/2) B ein/2 _ g=in/2 - e2(1 — e—iny
lkj—kj+1l=1 lkj—kjr1l—1
— ol Ukj=kjt1l=Dn/2 Z e inm — Z o (Z2mtlkj—kjiil=Dn/2
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We conclude that

2n—1 . 2n—1 lkj—kjt11—1

l—[ sin (|kj —kj11n/2) _ 1—[ ol (=2m i+l —kj1 1= Dn/2
sin (n/2
j=1 (7]/ ) j=1 m ;=0
[k1—k2|—1 |kon—1—kon|—1
— Z ... Z ei(lkl_k2‘+"'+‘k2n—l_k2n|_2(m1+“'+m2nfl)_2n)77/2.
m1=0 map—1=0

In particular following those calculations we can express the integrand of I’ in (3-79) as

sin (k1 +kan)n/2) 3= sin (k; —k;j11)n/2)
sin (1/2) jo1 ki —kjs1) sin(n/2)

2n—1 1 lkj—kjs1l=1 |ky+koy|—1
_ (sgnaq o [] —) Sy e
k= kgl — ~
j= m ;= mop=
1<j<2n—1
where to be clear in the sum the m ; indicates a further summation over all j € {1, ...,2n — 1}. Also we
define B; above as
2n—1 2n
Bi=)  kj—kjuil + ki + kol =2 mj—2n.
j=1 j=1

Notice that no matter what the sign of any of the terms inside the absolute values above is we always
have Z?’;l |kj —kji1] 4 |ki + kon| = 21 for some integer [ so that By is an even integer. This holds
because the sum contains two copies of every ki, ..., ka,.

We further integrate as ffﬂ e!B11/2 gy = (4/By) sin(B;7r/2), and we notice that since B; is an even
integer, either (4/B;) sin(B1w/2) =0if By # 0 or (4/B1) sin(By7/2) = 2w when B; = (0. We can then
find the following expression for I':

2n—1 1 lkj—kjt1l=1 Jky+koy|—1
If:2n(sgn(k1 +han) ] m) > > g (3-81)
j=1 J J+ m ;=0 mo, =0
1<j<2n-—1

This is our calculation of the integral (3-79). We note, as a function of the single variable m,,, that B,

is decreasing and takes the value zero at most one time. Thus Zlﬁ;jﬁ”l_l 1p,=0 < 1. We conclude that

|I'] < 2m. Note that (3-4) is exactly (3-79). So this proves the second estimate for (3-4) in Lemma 3.2.
We now calculate the integral (3-80), which is rather similar. We obtain

2n—1 . |kj—kji1l—1

I sin (kj —kjn1ln/2) _ S ikl hal=2m ) -20/2
P sin (n/2) mr=0
0<j<2n—1

Then we can express the integrand of I” as

sin ((k + k)0 /2) 7' sin ((k; —k;j31)n/2)
2
cos (1/2) sin (17/2) ]l:!) (k; — k;41) sin (17/2)

‘k.f_kj‘*'] |_1 |k+k2n|_l

2n—1
1 . .
= l(sgn(k%—kzn) l_[ —) Z Z (e!B2/2 4 oiB3n/2)
2 j=0 |k’ _kj+1| m ;=0

_ ma,=0
0<j<2n—1
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We define
2n—1 2n
By=) " lkj—kj1|+1k+kal =2 mj—2n,
j=0 j=0
2n—1 2n
By= Y lkj —kjsil+ |k +koul =2 mj—2n—2.
j=0 Jj=0
Similarly since Z?Z:o |kj —kjy1]+ |k +ko,| contains two copies of every ko, k1, ..., ko, then it is always

an even integer. Therefore we conclude that B, and B3 both are even integers.
We can then similarly find the following expression for I”:
|kj—kjr1l=1 |k+ko,|—1

2n—1
1
I”zzr(sgn(k-l—kzn) l_[ m) Z Z (IB,=0 + 1B5=0)-
]=0 m/-=0

m2n:0
0<j<2n—1

Then using the same argument as our upper bound estimate for I’ we obtain that [1”| < 27. O

Remark 3.4. One can generally calculate the sum in (3-81) exactly. In particular the value of the sums in
(3-81) can be seen as the number of nonnegative integer solutions to the equation

2n—1

mip+---+moy, = % Z lkj —kji1l+ ki +kou| —n,

j=1
with the restrictions that 0 <m; < |k; —k;jy|—1for j=1,...,2n—1and 0 <my, < |k; +kp,| — 1.
This value can be calculated exactly using the inclusion-exclusion formula.

Alternatively, if n = 1 in (3-4) then one can calculate, on the region where /| 7 0, that we have exactly

min{|ky — ka|, |k1 + ka|} sgn(k1 + k2)
lk1 — k| .

And this formula is consistent with our estimate in Lemma 3.2.

I{=2n

4. Proof of main theorem

This section is devoted to the proof of Theorem 1.2. In Section 4A we show the scheme of the proof
for existence of solutions via a regularization argument. The main part consists in obtaining the a priori
estimates, in particular the energy inequality from (1-30). Uniqueness is later proved in Section 4B.

4A. Existence. The proof follows a standard regularization argument. We will use a regularization of
(1-10) and (1-13), written in the form of (2-48), and the a priori estimates of the previous section to find a
weak solution in the sense of Definition 4.2 below. The regularity obtained for the solution will imply
that the solution found is indeed a strong solution, which we prove later is unique.

Definition 4.1. For fixed r € [0, T] and ¢ () € W>>°(S), we say that ¥ () € L>(S) is a weak solution of

(O, 1)+ 24,0000, 1) fg T@O. 1) — (1. 1)) - ¥ (1, 1) dn = 24,26, 1),
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with 7 given by (1-11), if for any ¢ € D(S) it holds that

/§ ¥(6.1)-90)do+24, /§ @i () /5 o (0, 1) Tije (960, 1) — (n, )Y (n, 1) dn d
=2A, f Gp(©,1)-9(6).
S

Definition 4.2. We say that X € L°([0, T']; W1°(S)NL([0, T1; W>°°(S)) is a weak solution of (1-10)
if for almost every ¢ € [0, T'] the arc-chord condition (1-17) is satisfied, and if for any ¢ € D(S x [0, T'])
it holds that

/X(Q,t)-(p(@,t)d@—/XO(O)-(p(G,O)dG—//X(G,I)-at(p(e,r)dédr
S S 0JS

://¢(9,t)-/ GX@O,1)—X(n,t)F(n,t)dndbdr,
0Js S

where G is defined in (1-9) and F € L'([0, T]; L>(S)) is the solution in the sense of Definition 4.1
of (1-13).

We will write fiy = Jy f for general f suchas f =X, f =X., f =Y or f = F, with Jj the
high-frequency cut-off defined in (1-23). We start by considering a regularized version of system (1-10),
(1-13) (where (1-10) is written in (2-28) with the linear and nonlinear terms apart). For each positive
integer M, consider the regularized initial data X s and the corresponding solution X = X + X . to
the regularized system

2w = (A X 4 HR Xag) + TuN K. Xon), )

Fuy =2A,TuS(Fy, Xu) +2A.0; X .

We define correspondingly Yo » and Yy = Yy + Y. We recall that (2-28) could be written in
Y-variables as (2-48). The corresponding regularized system in these variables reads as follows:

Yy (©0) =0, Yyo(1)=0, Yyk)=0, k#0,1,  Yy.1(1)=0,
8, Y11,0(0) = P(0) "N Xz . X1)(0),
8 Vu.1(1) = =AYy, (1) + (P() ™' W (Xg.e. Xa) (D)1, “2)
0T () = = 2EDW T () + PO N Xy, X)), 2=k < M,

V2P =5—= > k(Y 200P = Va1 (),

1<k<M

NSTR

with F); given by (4-1). Since X . is a circle with radius satisfying (2-42), the chord arc condition
(1-17) is clearly satisfied for || X /|| Fl sufficiently small; we shall soon see that this in fact holds so long
as || X umll i1 < k(A,), which is defined in (4-9). Then, with the same size condition, Fj, is estimated in
terms of Xy as in Section 3B. Thus, with Fj; solved in terms of Y, using the transformation (2-31), we
obtain an ODE of the form

Yy =InGXu),  Ya(0) = Yo,
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for a certain nonlinear function G. Notice that the ODE for ?M,C(O) is decoupled from the rest because there
are no zero modes in m) (0). Therefore, Picard’s theorem on Banach spaces yields the local ex-
istence of regularized solutions Yy, € C1([0, Tu); Hy;), where Hy; ={f € H"(S): Supp(f) Ccl—-M, M1}.
Since the a priori energy estimate (4-11) holds for the regularized system, we have uniform bounds for
Yy in the space L*°(Ry; j—"l}*l) NLY(Ry; ff’l). It is not hard to prove that Y, forms a Cauchy sequence
in L*([0, TY; ]-'19*1), so that we have a candidate for solution. One can then apply a version of the
Aubin-Lions lemma (see Corollary 6 of [Simon 1987]) to get the strong convergence, up to a subsequence,
of the approximate problems in L?([0, T1; ]'-']}’]). Next, since ?M (m,t) —> i/\(m, t) as M — oo, for all
m € Z and almost every ¢, Fatou’s lemma allows us to conclude that

A t
M@ = 1Y |0 (0 +55C f 1Y ]| 21 (v) d
0 4 ;
< }ggg(umn (0 +55C fo 1Yyl fvz,l(r)dr) < 1%l ..

so we obtain that the limit function Y belongs to L*°([0, T']; ]'-',}’1) NLY[0,T]; ]'-'5’1). Now, we claim
that the strong convergence, up to a subsequence, of Xy — X in L*([0, T]; j’,}’l) NLY [0, T]; ].-"3’1)
holds. The proof of this claim follows in fact along the lines of the proof of uniqueness (see Section 4B).
This strong convergence immediately implies from (4-1), under the size constraint (1-29), the strong
convergence Fy; — F in LY([0, T71; ]—'VO’]). In fact, it suffices to consider Fy;, and Fj,, write their
difference as
Fy, — Fy, =2A, (I, S(Fuy, Xmy) — I, S (Fuy, X))
+2A,(Im,S(Fppys Xmy) — I, S(Fury, X))
+2A,(Im,S(Fuy, Xp1y) — I, S(Futy, X))
+24,(2X 4, — 02X 11,).

and perform estimates similar to the ones in Section 3B to find that Fj; forms a Cauchy sequence in
L'([0, T, ]-"Uo’l). Since X . 18 given in terms of X, the above convergence holds for X'j;. The strong
convergence Xy — X in L*°([0, T']; ]'-'J’l) together with Fp; — F in L'([0, TT; ]-"vo’l) yields X as
a solution to (1-10) in the sense of Definition 4.2. (Moreover, it is easy to check in (4-1) the strong
convergence of the right-side terms in L' ([0, T]; j-']}’l).)

We refer to Section 5 of [Gancedo et al. 2020] for a similar approximation argument, including the
instant generation of analyticity and the continuity in time. We include it here for completeness. From the
strong convergence in L' ([0, T']; ') of the right-hand side of (1-10), we must have that 8, X 3y — 9, X
in L'([0, T]; .7-'V1*1). Consider 0 <t <t; < t,. Then,

/ ’ 0, X(1)dt

1

5]
< / 13X (D) 11 d.
]_-Ul v(t)

1) g

1 @) — XA 10 = ‘

which from the fact that 8, X € L' ([0, T]; ]'-'U]’]) yields that the solution is analytic for all positive times,
and X € C([e, T; ]'_-1)1,1) for any & > (. Moreover, fix v, € (0, V) and define ¥(z) according to (1-27);
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now given any #; > 0 choose 0 < #; < 1, close enough to #; that v(f;) < v(¢1). Thus, it holds that

| X () — X(t])”]‘_-l,l —0 ast; — b,
V(tp)

and therefore we have X € C ([0, T']; j—'il’l). Since ¥y, € (0, vyo) is an arbitrary number in an open interval,
we conclude that X € C ([0, T]; F'). Finally, the analyticity in space for all positive times implies that
X eC(e Tl fg’l) for any s > 0, ¢ > 0, and 0 < v < v. This regularity translates to F as well for
t > ¢. Therefore, one can consider 0, X (¢;) — 9, X (¢1) for arbitrary #,, t; > ¢ to find in particular that
X e C((0, T]; FON).

We have proven that X is a strong solution in the sense of Definition 1.1 as claimed in Theorem 1.2.
In Section 4B we prove that this solution is unique.

We now prove the global-in-time energy inequality in (1-30).

Proof of (1-30). Equations (2-45) show decay of the higher frequencies (2-38) if we are able to control
the nonlinear terms, for which we will need the constraint (2-40). Indeed, using (2-38) and the inequality
k(k—1)>k?/2 fork > 2 implies

d A
TNl = (55 =VO)IY 21+ IN Ko, Ol 1, (4-3)
where we have used that || P(k)~'|| = 1, and we can choose v'(¢) as small as we need. The goal is thus to
obtain a bound like
IV (Xe, Xl 510 < CUX DI [ 721, (4-4)

with C([[ X[ z1.1) = [ X[ £11.
We proceed to complete the nonlinear estimate (4-4) to obtain the adequate sign in the balance (4-3).
We insert the a priori bounds on F given by (3-55), (3-56), and (3-57), into the estimate (3-1) to obtain
—Au+1ALl A

1
IV 0 < 22424, " Dy Cs[| X || 3.1 | X || 2.1
v 1 - AH 1 —_ AM v v

Dy X || g1 |1 X || 21 + 14732

|Apl(1+1ALD
(1—AD* 1+ A

+ 2250724, D3 Dy| X | 11111 X || 321,

which finally gives the desired estimate

A
M 10 < 169\/51 _ZM Ds|| X1l zri 1 X z20, 4-5)
where
1 |A, (14 ALl
Ds=—(22(1—-A A, DD 147¢"> D,C 2250 D3Dy ), 4-6
5 169( ( w+ 1A Dy + 147" Dy Cg + A= Ap(+4, 3Dy (4-6)

and Cs, D1, D;, D3, Dq, are given by (3-46), (3-54), and (3-78). Recalling the equivalence (2-34) and
inserting the above bound into (4-3), we obtain

d 1 V@ Ds
EIIYIIﬁ.lf—Ae(Z— A —169\/51_AM||X||fJ,I>IIY||J-T3,1. 4-7)
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Since V/'(f) = voo /(1 + 1)? and vs > 0 in (1-27) can be chosen arbitrarily small, if the condition

Ds(1 X1l z1.1)
1—676«/§W||X||R1,| >0 (4-8)
holds initially, where Ds is defined in (4-6), then the fact that Ds decreases as || X || Fl decreases guarantees
that this condition is propagated in time. For the same reasons, this condition can be stated as a smallness

condition for || Xgl| 711 as
1 Xoll g1 < k(AL), (4-9)

with k a function defined implicitly via (4-8) (see also Figure 1). Because Ds is increasing on || X|| s

we have the explicit upper bound

—A,

e 4-10
676+/2D5(0) (4-10)

k(A,) <
where
1-A,
676+/2D5(0)
588+/2 A IV2|A,|(1+ A A 888 \\ '
_ (3882 | ggya(1 g el ) OVHANAHIAD () () Al :
1-A, 1-A, (1-A)0+A, 1-A, 1-A,
Then, for small enough [ X|| z1.1, the upper bound in (4-10) approximates the actual value of k(A,).

Therefore,
A, !
1Y g0 (1) + 7€ ; 1Yl z21(T) dT < [[Yoll 1.1, (4-11)
with
V/(2) Ds([[ Xoll z1.1)
C=CIXoll z1.1, Aps voo) =1 —4 A _676\/§W”X0”]‘;}1’1- (4-12)
Moreover, since [[Y || z1.1 < Y| 521, the inequality (4-7) gives
d A
TV 50 = =ZECY D,
and thus
1Y [ 0 < (Yol ae™ e/, (4-13)
This completes the decay estimate.
The control of the zero frequency follows from (2-47) with
t
1 Xc(O)] < [X0,c(0)] +/ IV (X, X)(0)| dx. (4-14)
0

Notice that the estimates of the nonlinear terms in F*! can be done as in Section 3A and yield the bound

~

VX, X)(0)] < IN(Xe, X))l por < AeﬁHX”]’:UU X1 £2.15
—Ap

where 55 is a constant that plays the role of Ds. Recalling (2-34) and the energy balance (4-11), we
introduce this bound back to (4-14) to conclude

1X:(0)] < 1X0.c(0)] +Cl X031,
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with ~
Ds

C= m, (4-15)

and Ds, C given in (4-6) and (4-12) respectively.
Finally, the decay (4-13) applied to (2-46) yields
IR = Y2 (D> > L ast — +oo,
showing the exponentially fast convergence to a uniformly parametrized circle of area . U

4B. Uniqueness. Consider two solutions X = X, + X and X=X c+ X with initial data X o and X 0
in F:1. Recalling the system in the Y-variables (2-32), we have

d ~ A = s 3

1Y = Pl = —=(5 =V O)Y =Tl + VAN K ) =N Ee Dl @-16)

and
17.(0) — Yo (0)] < |Fo.c(0) — Yo, (0)] + fo |P0)'N(X,. X)(0) — P(0)"' N (X... D)(0)] dr. (4-17)

Notice that, in comparison with (4-3), we are including in the left-hand side of (4-16) the terms corre-
sponding to (the first frequency of) the circle part,

2|Yea(1) = Yen(1)].

Although these terms are neutral with respect to the dissipative linear operator, whenever they appear on
the right-hand side, we will be able to absorb them by using Gronwall’s lemma and (4-11) (which both ¥
and Y satisfy). Notice further that since the nonlinear terms do not contain the zero frequency of Y, i.e.,
Y. (0), equation (4-17) implies R
1Y.(0) =Y (0)] =0, (4-18)
once we show from (4-16) that ||y — 57|| Fli = 0. Thus we proceed to deal with (4-16).
The difference between the nonlinear terms in (4-16) is split in four, according to (3-5), so that we have

IV (X, X)=N (X, X) | 51 <IN (X e, X)=N1(Xe, Xl o1 +HIN2 (X e, X)=Na(Xe, X) | 01

HIN3 (X, X)=N3(Xe, Xl o1 +HINa(X e, X)=Na(Xe, X) | o1 (4-19)

We start by explaining the estimate corresponding to the first subterm A/ ; in detail (see (3-6)), and later
we will explain the general procedure. We have

Nii(Xe, X)(0) =N (X, X)©O) = Q1 + Q2+ Q3+ Qu, (4-20)

where

1 1
=(- _— A, X.OTA,XO)F,(n)dn,
2 (47TR2+471R2>_/56 JX(0)" A, X©O)F,(n) dn

| N N
=% /g(aeAanw) — 900, Xe(0))" A, X (O)FL () dn.
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1 ~ ~
0= — / 99 Ay X ()T (A, X (0) — A, X () FL(p) di,
47 R* Js
1 ~
Q4= ~2/agA,,Xc(@)TAnX(Q)(FL(n)_FL(’I))dn-
47 R* Js

For the first term, we need to estimate the difference between R and R. Recalling (2-40), where
Ye2(1)]? = R%/2 with R? = a® 4 b2, we have

R — R = ‘—2Zk<|?z(k>|2 —IB0P +2 3 k(TR =171 0P

k>1 k>1
<23 k(1T = 2001 [ (T + 172000 + 171 ol = 171 011 )1 + 171 (0.
k>1

Further note for j =1, 2 that
1Y) — 1Y j ()| < 1Yj(k) =Y j (k)

and on the S domain we have |?j(k)| < IIYjllLes) < 1Yl 70.. We conclude
|R* = R < (1Y || 7o + 1Y | o) [¥ = ¥ 5.
Therefore, using also (2-41), we obtain
‘L 1
R? R2

R? — R?
R2R?

< 1Y [l o1 + ||Y||]':O.l
SV VISR
In particular, for a constant c([|Y || 1.1, ||Y||f1,1) > 0, we can write

1

R? R2

1Y — Y| 511

<cUY g 1Y [ 00Y =Y 500

Then, the bound for @ follows as in the estimate for the term (3-8), we obtain
1011501 < (Y [ 1T 150D IFL ot 1Y = Tl 71,
and introducing the estimate for F; from (3-56) we have
111701 < AccUIY 511, ¥ 1 5115 Ay v 1Y [ 24 1Y = ¥ l] 21,

which is trivially bounded by

19111501 < AccCU¥ gt (¥ 101, A v 1Y [0 1Y = Dl

It is now clear that (4-11) allows us to control this term by Gronwall’s lemma in (4-16).
We proceed to estimate Q) in (4-20). Following the steps in (3-8), but maintaining the difference
between X . and X, together, we find that
1@all o1 < cUNY g0 ¥ 501, A Vo) I¥ [ 221 ¥ 2 (1) = Y o (D)]
< AccUIY [z ¥ 11 511, Apes v I¥ 120 1Y = Dl
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and it is thus controlled in the same way. The bound for Q3 follows exactly as in (3-8) and has the same
structure as the bound for Q5.
Finally, we are left with @4, for which we have

Qs < c(I¥ 50, ¥l 500 Fr — Frll 2o

We emphasize that the constant above is given exactly by the one for Aj | in (3-14). The estimate for
F, 1 — Fp, follows from (2-25) (compare to (3-56)); we have

~ ~ A~
I FL — Fp|l zo1 < 241X — X 321 +2Ae1_’j4ﬂ X =X 511, (4-21)

so, moving to the Y -variable, we obtain

Q4 < Acc(IY I 210, 1Y )IY = Yl 2+ AecIY 1z, ¥ 1201, Ay vo) 1Y = Y|,
and therefore trivially we have

Q4 < Acc(IY Il 0, 1Y 15N = Y20+ AecUNY s 1 10, Ay vo) | = Pl et

Although in this section we are denoting by ¢ all constants (possibly depending on || Y || Fh ||I7|| Fhis
A, Vo), it is important to notice that the constant in front of the high-order term [|Y —Y || 2 is less than
or equal to the one appearing in the nonlinear estimates from Section 3A. This will allow us to absorb
these terms using the negative sign coming from the dissipative linear term without additional conditions
on the initial data other than the one needed for the earlier existence proof.

In summary, so far we have obtained

IV (X, X) = N1 (X, D) o0 < Aec(IY |, 1 ¥ 1] ) 1Y = Y| 20

+ Ag UYLt 1T g 1Y 2 1T 5200 Apes voo) 1P = Dl
where g is a function whose L !-in-time norm is bounded independently of time in terms of the initial data
| Yol 0.1, [| Yol £o.1. Therefore the second term above can be controlled in (4-16) after using the Gronwall
inequality.

Following the same steps for all the terms corresponding to A/ from (3-6), it is clear that one obtains

INVT(Xe, X) = M (X, D) o0 < (Y [z, ¥ [ 50011 FL — FL| o

+ AU s 1T a0 1Y 20 1T 5200 Ape voo) 19— Pl
where we use the same letter g to denote another L !-in-time function as explained above and the constant

in front of || F T — Fr|| F01 is exactly given by the one in (3-23). Since the coefficient of the higher-order
term in the bound (4-21) is smaller than the one in (3-56), we guarantee that

IV (X e, X) =N (X, X o < A [ 500, 1Y | 510 1Y =Y || 722
+AGUY g 1Y g 1Y 20 I 1 220, A vo) | V=Dl 510 (4-22)
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Now, we realize that the same idea applies to the other nonlinear terms in (4-19). In A/, there are not
high-order terms to absorb, since the expression of Fy (3-58) only depends on the circle part, which has
to be controlled via Gronwall. The term A3 will provide an estimate like the one above for A/, where
the constant in front of || Y - Y| 2 is smaller than (3-48) for the same reasons given before. Finally, the
same can be said for Ay, but with an analogous estimate to (4-21) for the difference Fy — F v. It follows
in the same way as the estimate (3-57), so we omit details to avoid repetition.

The final estimate for the difference of the nonlinear terms in (4-19) has then the form (4-22), with
a coefficient of the highest-order norm smaller than the coefficient of the norm with the highest-order
derivative in (4-5). Therefore, under condition (1-29), the highest-regularity terms in the nonlinear upper
bound can be absorbed by the dissipation in (4-16) and thus

d ~ ~ ~ ~
LNY = Dlgar = AUV s 1T, 1Y g2, 1F g, Ay, vo) 1D =
which provides for all time via Gronwall that
1Y = Pl < cl¥ollzar. [Follzat. Aes Ay vo) 10 — ol .

We conclude that ||y — 57|| A= 0. Together with (4-18), this completes the proof. O
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