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ABSTRACT

High fidelity radio interferometric data calibration that minimises spurious spectral structure
in the calibrated data is essential in astrophysical applications, such as 21 cm cosmology,
which rely on knowledge of the relative spectral smoothness of distinct astrophysical emission
components to extract the signal of interest. Existing approaches to radio interferometric
calibration have been shown to impart spurious spectral structure to the calibrated data if the
sky model used to calibrate the data is incomplete. In this paper, we introduce BAYESCAL:
a novel solution to the sky-model incompleteness problem in interferometric calibration,
designed to enable high fidelity data calibration. The BAYEsCaL data model supplements
the a priori known component of the forward model of the sky with a statistical model for
the missing and uncertain flux contribution to the data, constrained by a prior on the power
in the model. We demonstrate how the parameters of this model can be marginalised out
analytically, reducing the dimensionality of the parameter space to be sampled from and
allowing one to sample directly from the posterior probability distribution of the calibration
parameters. Additionally, we show how physically motivated priors derived from theoretical
and measurement-based constraints on the spectral smoothness of the instrumental gains can
be used to constrain the calibration solutions. In a companion paper, we apply this algorithm
to simulated observations with a HERA-like array and demonstrate that it enables up to four
orders of magnitude suppression of power in spurious spectral fluctuations relative to standard
calibration approaches.

Key words: methods: data analysis — methods: statistical — dark ages, reionization, first stars
— cosmology: observations

1 INTRODUCTION the frequency range, angular scale and field observed, is 3—6 orders

f itude brighter.
Observations of the 21 cm hyperfine line radiation emitted by neutral oF magfiitude brightet

hydrogen in the high redshift Universe have the potential to provide
precision constraints on cosmological parameters during the Cos-
mic Dark Ages (e.g. Loeb & Zaldarriaga 2004; Mao et al. 2008), to
probe directly the initial stages of structure formation and character-

Numerous approaches to separating the cosmological signal
from the foregrounds have been discussed in the literature, but
a unifying theme amongst them is the use of knowledge of the
intrinsic spectral structure of the constituent astrophysical signals.

ise the properties of the first stars, proto-galaxies and accreting black
holes during Cosmic Dawn (CD) and the Epoch of Reionization
(EoR) (e.g. Datta et al. 2012; Mesinger, Ferrara & Spiegel 2013;
Mesinger, Ewall-Wice & Hewitt 2014; Greig & Mesinger 2015),
and, at lower redshifts, to constrain the dark energy equation of
state (e.g. Newburgh, et al. 2014; Liu & Shaw 2020). However, to
achieve this, the cosmological signals must be extracted from data
containing astrophysical foreground emission that, depending on
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This knowledge is employed either (i) implicitly, when using general
signal separation techniques that discriminate between the compon-
ents through the assumed spectral smoothness of the foreground
emission relative to the cosmological signal, which is expected
to fluctuate more rapidly due to inhomogeneities in the ioniza-
tion, temperature and density of hydrogen in the IGM along the
line of sight (e.g. Parsons et al. 2012; Chapman et al. 2012, 2013;
Trott et al. 2016; Sims et al. 2016; Mertens, Ghosh & Koopmans
2018; Sims et al. 2019), or (ii) explicitly, when jointly fitting mod-
els for the foregrounds and the cosmological signal to the calibrated
data (e.g. Sims & Pober 2019).

The observable of interest in radio interferometry is the spatial
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autocorrelation function of the electric field due to the sky bright-
ness distribution, evaluated at the baseline separations of the anten-
nas in the array. The physical observables are the cross-correlations
of the voltages at the correlator induced by the electric field at the
antennas. These two quantities would be equal if the voltages at the
correlator were equal to the electric field evaluated at the antenna
locations; however, the antenna signal chain scales the amplitude
and shifts the phase of the voltage relative to the incident electric
field. Thus, before interferometric data can be analysed and separ-
ation of the cosmological signal from the foregrounds attempted,
the effect of the complex instrumental transfer function on the cor-
related antenna voltages must be modelled and removed via data
calibration.

Considering the vector electric field, E, due to the far-field
sky brightness distribution above the instrument and assuming all
transformations along the signal chain between the sources of emis-
sion producing the observed brightness distribution and the antenna,
and between the antenna and the instrument correlator!, are linear,
the frequency-, time- and polarisation-dependent vectors describing
the incident electric field and uncalibrated induced voltage at the
correlator can be related via,

v:/JEdQ. (1)
4

Here J is the Jones matrix of the antenna and its elements are
complex scale factors, known as antenna gains, that describe the
(position-dependent) amplification and phase imparted to the incid-
ent vector electric field by the signal chain, d© is the differential
solid angle, and the integral is over the sky2. During calibration, the
complex gains of per-antenna Jones matrix models, J™, are fit for.
The inverses of the model Jones matrices are then used to calibrate
the data.

The sky brightness distribution determining the incident elec-
tric field at the antenna, E, and correspondingly, the measured in-
terferometric data formed from the cross-correlation of the voltages
of pairs of antennas in the array can be divided into two categories:
(i) an a priori known component comprised of catalogued point
sources and measured diffuse emission (each with associated un-
certainties) and (ii) an a priori unknown component associated with
sources below the completeness level of catalogues in the field of
interest and with the uncertainties associated with measurements of
low frequency diffuse radio emission and, to a lesser extent, with
the locations and flux-densities of catalogued point sources.

Existing approaches to determining the antenna dependent
complex gains during interferometric calibration rely on either
(i) fitting a forward model of the sky to the data, or (ii) the presence
of redundancy in the baseline layout of the array to solve for the
majority of the calibration degrees of freedom, followed by fitting a
forward model of the sky to the data to solve for the remaining calib-
ration terms. However, both approaches produce biased results if the
sky model used to calibrate the data is incomplete (e.g. Barry, et al.
2016 and Ewall-Wice, et al. 2017, and Byrne, et al. 2019, respect-
ively). Ultimately, this occurs because, when fitting the data with
the product of gain parameters and a fixed and incomplete forward

1 For generality, we refer to the signal propagation effects between the an-
tenna and the correlator; however, signal propagation effects can be restricted
to the pre-digitisation subset of the signal chain by digitisation of the voltage
stream prior to transmission to the correlator.

2 Here we treat the integral as the limit of the contributions to the measured
voltage from a large number of individual point sources.

model of the sky defined exclusively by the a priori known compon-
ent of the sky brightness distribution, the gain parameters provide
the only degrees of freedom for absorbing the effect of the sky-
model incompleteness. As a result, the fitted model Jones matrices
do not match the true Jones matrices of the antennas in the array
(™ # J). Furthermore, due to the inherent chromaticity of the
interferometer’s sky response, even if the component of sky emis-
sion in the data that is missing in the incomplete forward model
of the sky is spectrally smooth, that will not be true of the differ-
ence between the true visibilities that would be obtained if J were
the identity matrix and the incomplete calibration model visibilites
(e.g. Ewall-Wice, et al. 2017). The spectral structure in this differ-
ence translates to spectral fluctuations in the gain solutions and
these spectral fluctuations impart spurious spectral structure into
the calibrated data.

For a given level of calibration model incompleteness, ap-
proaches to mitigating spectral fluctuations in the frequency-
dependent biases of the gain solutions discussed in the literature
have focused on (i) downweighting longer baselines, which are more
chromatic, during calibration (e.g. Ewall-Wice, et al. 2017) (ii) pen-
alising deviations of the spectral structure® of the model gains from
alow-order polynomial description (e.g. Yatawatta 2015), (iii) mod-
elling the spectral structure in the gains with low-order polynomials
(e.g. Barry, et al. 2016), or (iv) filtering of spectral structure in the
gain solutions below a threshold spectral scale once they have been
fit (e.g. Kern et al. 2020).

These approaches have been shown to suppress power in cal-
ibration systematics but have some limitations. For example, the
increasing contribution to the visibility data from the more uncer-
tain diffuse sky brightness distribution on shorter baselines, which
makes the calibration sky model on these baselines lengths less
complete. Additionally, in the context of the latter three approaches,
constraining the gain solutions, while valuable when one has a
priori knowledge regarding the level of spectral structure in the in-
strumental gains, will redistribute bias rather than eliminating it if
the underlying cause of sky-model incompleteness bias in the gain
solutions is not addressed in parallel. This is undesirable if one
aims to recover the 21 cm signal on the full range of spectral scales
accessible in the data. More generally, for any choice of spectral
window in which one wishes to estimate the signal, using this form
of gain prior creates an additional avenue for introducing spurious
spectral structure into the gain solutions, and correspondingly into
the calibrated data, if the gains are overly constrained and are unable
to fit real instrumental structure. In this context, if the real instru-
ment deviates from the prior, applying a hard (zero-uncertainty)
prior on the amplitude of spectral fluctuations in the gains on given
spectral scales poses a risk for two reasons. Firstly, in terms of bias
since in this case the prior dominates the likelihood, irregardless of
how much better a fit of the calibration model with deviations from
the prior would fit the data. Secondly, in terms of error propagation
between calibration parameters and calibrated visibilities, since the
prior implies zero uncertainty on the calibration solutions in the
context of covariant propagation of uncertainties on the calibration
parameters through to the calibrated data.

In this paper, we introduce a new Bayesian calibration formal-
ism (BayesCaL), designed to minimise spurious spectral structure
imparted to the calibrated data via these two avenues, while making

3 In the context of direction-dependent calibration, penalising deviations of
the spatial structure of the model gains from spherical harmonics has also
recently been explored (Yatawatta 2022).
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optimal use of our a priori knowledge of the expected level of spec-
tral structure in the gain amplitude solutions. BAYEsCAL addresses
the sky-model incompleteness problem directly by supplementing
the a priori known component of the calibration forward model of
the sky with a statistical model for the a priori unknown component
of the sky brightness distribution. In principle, when calibrating the
data with this model, one could jointly fit for the calibration solu-
tions and the most probable sky-based parameters of this statistical
model. However, in general, this means a significant increase in
the dimensonality of the parameter space to be sampled from. We
demonstrate how this limitation can be overcome by analytically
marginalising over the fitted sky-model parameters of our statistical
model, allowing us to sample directly from the posterior probability
distribution of the calibration parameters. Next, we describe how
theoretical and measurement-based constraints (derived from, for
example, electric and electromagnetic co-simulation and reflecto-
metry measurements of the receiver system) can be used to construct
physically motivated priors on the spectral smoothness of the instru-
mental gains and how, by reparametrising the instrumental gains in
terms of Fourier modes, these priors are seamlessly integrated into
the calibration framework.

As our primary case study, we derive the posterior probabil-
ity distribution for the direction independent, absolute calibration
parameters of a redundantly calibrated array in the BAYEsCAL cal-
ibration framework. In a companion paper (hereafter, paper II) we
demonstrate, on simulated observations, that sampling from this
BavesCAL posterior enables recovery of significantly higher fidel-
ity calibration solutions relative to calibration using an incomplete
sky model in the construction of the calibration model, yielding
up to four orders of magnitude additional suppression of power in
spurious spectral fluctuations in the calibration solutions. Depend-
ing on the level of completeness of the a priori known component
of the calibration model in the field considered, we show in paper II,
in the context of 21 cm cosmology, that the overall fidelity of these
calibration solutions is sufficiently high for foreground systematics
imparted by imperfections in the calibration solutions to be at least
a factor of 5 below a fiducial 10 mK RMS EoR signal on large
spectral scales (~ 9 MHz, which corresponds to k| ~ 0.06 hMpc™!
in the 160 < v < 169 MHz spectral band considered there) and
more than an order of magnitude below the fiducial signal on inter-
mediate and small spectral scales (< 4.5 MHz, which corresponds
to k| 2 0.11 hAMpe™).

Recently, calibration approaches have been developed that re-
lax the assumption of explicit redundancy by calculating the ex-
pected covariance of baselines (Sievers 2017; Byrne et al. 2021).
This enables one to jointly constrain the gain solutions using the
partial redundancy in the baseline layout of the array and via fit-
ting a forward model of the sky to the data. Additionally, Sievers
(2017) and Byrne et al. (2021) consider techniques that allow one
to take advantage of partial knowledge of the sky, such as point
sources with known positions but unknown fluxes. In Byrne et al.
(2021) it is shown that these approaches improve calibration in the
presence of random model error, as well as reducing calibration er-
ror from missing faint sources in the sky model. In Sievers (2017),
application of these techniques yields a factor of five reduction in
gain phase errors relative to an equivalent application of partially-
redundant calibration that neglects point source information and
comparable errors in the spectral structure of redundant calibration
gain amplitudes.

Our focus with BAYEsCAL, on developing a new data model to
address the sky-model incompleteness problem and incorporating
physically derived priors on the spectral smoothness of the instru-
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mental gains, is complementary to that of these approaches for mak-
ing optimal use of data constraints deriving from a combination of
partial baseline redundancy and knowledge of the sky. We discuss
in Section 3.11 the generalisation to non-redundant interferometric
arrays of our primary case study, deriving the posterior probability
distribution for the absolute calibration parameters of a redund-
antly calibrated array in the BAYEsCAL calibration framework. This
provides a route to combining the benefits of these approaches, and
a more thorough exploration of this topic is an interesting direction
for future work.

The remainder of the paper is organised as follows. In
Section 2, we give an overview of current approaches to interfer-
ometric calibration. In Section 3, we cast interferometric calibra-
tion as a Bayesian parameter estimation problem and present the
BayesCaL data model and calibration framework. We summarise
in Section 4. For readers’ convenience, Table A1 lists the variables
used in this paper.

2 INTERFEROMETRIC CALIBRATION

In order to introduce the notation used and to provide context
when deriving the BayesCaL calibration model in Section 3, in
this section, we start by outlining the general interferometric cal-
ibration problem (Section 2.1), before discussing its specialisa-
tion to direction-independent sky-based interferometric calibration
(Section 2.2) and describing how this approach can be supplemen-
ted by constraints on the data deriving from array redundancy
(Section 2.3).

2.1 Calibration formalism

For a generic radio interferometer, the Measurement Equa-
tion (Hamaker, Bregman, & Sault 1996; Smirnov 2011; hereafter,
HBS96 and Sm11, respectively), for a pair of antennas p, g ob-
serving a continuous brightness distribution, allows one to construct
a ‘polarised visibility vector’, V4, as,

did o
Vg = pg +/ T’” Jpg(DC(D) . )

Im

Here, the coherency vector, C, and V)4 are 4 X 1 column vectors
encoding the four correlations of the two components of the electric
field incident on the antennas, measured in a given polarisation
basis, and the four correlations of the two voltage signals per antenna
associated with those electric field components, respectively; [, m
and n = V1 — 12 — m? are the direction cosines of the unit vector, I,
pointing from the antenna to the source; np4 is a4 x 1 column vector
describing the noise on the data. Jp4 is a 4 X 4 matrix describing
signal propagation effects on the voltage correlations measured by
the interferometer and can be written as,

Ipg=dp ®J 3)

where J, and Jg are 2 X 2 Jones matrices that describe the cu-
mulative product of all propagation effects along the signal paths
of antennas p and ¢ to the correlator and ® and (.)* denote the
Kronecker product and complex conjugation, respectively. Each of
the terms in Equation 2 is a function of time, frequency and polar-
isation; here, for brevity, we leave these dependencies implicit, but
we return to the explicit polarisation structure of V4 shortly.

For concreteness, writing the vector electric field of the sky
brightness distribution visible to the antennas in an equatorial basis,
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E = [Es(D), Eq(D]7T, and the declination (Dec) and right ascen-
sion (RA) equatorial basis vectors é 5 and é 4, respectively, as 2 X 1
column vectors, the coherency vector can be expressed in terms of
Stokes parameters, I, Q, U, and V, as (e.g. HBS96, Martinot et al.
2018; Kohn et al. 2019),

C=(EsES)es@és5+(EsEy)és®é, (€Y)
+ <Ea,E:;>éa, ®és+ <Ea,E:;>éa, ® €éq

I+0
U+iv
U-iv
-0
Here, we have left the direction and frequency dependence of the
electric field components and Stokes parameters implicit.
Interferometric calibration, in its most general form, is the
process of fitting for the elements of J, and Jg, given a model
for the instrument and the data. Jones matrices can be decomposed
into chains of products of Jones matrices, where each matrix in the
chain encodes particular physical propagation effects. Decomposing
the cumulative product of all propagation effects along the signal
paths of antenna p to the correlator into a chain comprised of

sky-based propagation effects described by Jjgky (1), antenna-based
propagatiAon effects described by J%m(lA) = GpEp (f) (where G,
and E, (I) encode direction-independent and direction-dependent
antenna-based propagation effects, respectively) and a phase term
Kp (1), we can write,

3p () = DI (DK, (D) ®)

= GpE, (DI (e 27T

~

Here, x, and Ep(f) describe the position vector and the voltage
beam pattern of antenna p, respectively, K, () describes the geo-
metrical delay as a function of direction on the sky associated with
antenna p, A is the wavelength of the incoming radiation and G,
describes the direction independent signal propagation effects, such
as amplification and phase variation due to propagation through the

electronics and cables, between the feed and the correlator. Jspky(i )
encodes direction-dependent sky-based signal propagation effects,
such as direction-dependent Faraday rotation of the electric field in
the Earth’s ionosphere.

Full direction-independent gain calibration requires solving for
the complex gains of the four visibility correlations encoded in G,
on a per-antenna basis, as a function of frequency and time. In
arrays with long baselines or a large field-of-view (FoV), JS¥ ()
of antennas p and g, situated under, or observing through, patches
of sky with differing ionospheric conditions, will vary according to
those conditions, necessitating direction-dependent calibration even
if antennas p and ¢ have identical physical construction and envir-
onments. However, in this paper, we will assume that the voltage
beam patterns associated with all antennas in the array are identical
for a given instrumental correlation and we will focus on array
configurations that are sufficiently compact and have a sufficiently
narrow FoV for direction-dependent sky-based signal propagation
effects to be small (i.e. Ji:(y(f ) = |, with | the identity matrix). Ad-
ditionally, we assume E(f) is known a priori. We correspondingly
limit our focus to direction-independent gain calibration. The adap-
tion of the Bayesian calibration framework presented in Section 3
to calibration of arrays when these assumptions are relaxed will be
considered in future work.

In the limit that direction-dependent sky-based signal propaga-

tion effects are small, we can re-write Equation 3 as,

bT i

dldm ~ P P
Vig =g + Gy [[| S PpghCS (e ©)

n

Im

Here, Gpq = Gp®Gy, is a4x4 direction-independent gain matrix. In
general, G4 is a dense matrix in which off-diagonal terms describe
cross-coupling of the induced voltages along the signal path between
the antenna feeds and the correlator. The off-diagonal terms in G are
commonly refered to as D-terms because a dense G matrix can be
split out into a chain comprised of a diagonal G matrix and a feed-
error matrix, D, that encodes cross-coupling effects (e.g. HBS96).
Interferometric arrays aim to minimise cross-coupling and in this
paper we will assume that cross-coupling effects are negligible.
In this case, D is an identity matrix and Gp, is diagonal with
diagonal elements: (g},)(gg)", (gp)(85)", (g5)(gg)", (85)(gg)"
where g';, and g% are time and frequency dependent complex scalars
describing the voltage’s amplification and phase shift between the
feed and the correlator, in the north and east oriented feed of antenna
p, respectively. P, = E quS is the polarised primary beam matrix
encoding the transformation between the Stokes coherency vector,
CS = (I1,0,U, V)T and the true visibilities that would be measured
if Gpg was described by the identity matrix. Epgq = Ep ® Ej is
the polarised primary beam matrix encoding the transformation
between the coherency vector, C, given by the cross-correlation of
the electric field written in an equatorial basis (see Equation 4), and
the true visibilities. TS is the Stokes transformation matrix relating
the two representations of the coherency vector and defined such
that C = TSCS (e.g. HBS96).

In general, one can individually or jointly calibrate the four
visibility correlations of the polarised visibility vector. Here, we
assume that the antennas p and ¢ utilise linearly polarised ortho-
gonal dual-feeds and, without loss of generality, we consider the two
feeds to be orientated in the north-south and east-west directions,
respectively. Writing the electric field incident on antenna p in a
topocentric basis, with north and east 2 X 1 column basis vectors,
én and é., aligned with the antenna feeds, the induced voltage at
the correlator of the interferometer due to the vector electric field
incident on antenna p, is given by the voltage vector,

v,,:/ dl%Jp(lA)E(lA)dQ )
Im
= (5T,

and the polarised visibility vector given by the cross-correlation of
vp and v4 can be written as,

Vpg = <(Vr;7)(vrql)*>én®én+<(vr;7)("2)*>ée®én (3)
(V) (vg)")eén ® éc + (V) (vg)")ée ® ée
Vnn

where, (.) denotes an average over a small interval in time and
frequency.

In this paper, we consider calibration of an individual com-
ponent of V4 which, without loss of generality, we will take to
be V™. The three remaining components of the polarised visibility
vector, corresponding to the east-west feed correlations, V¢, the
east-west with north-south cross-correlations, V™, and the north-
south with east-west cross-correlations, V", are neglected; how-
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ever, in general, the calibration approach we describe can be used
to individually calibrate any of the four components.

In the topocentric basis of Equation 8, we can write the ele-
ments of the polarised primary beam matrix as,

Pnn,I Pnn,Q Pnn,U Pnn,V

P= Pne,l Pne,Q Pne,U Pne,V (9)
Pen,l Pen,Q Pen,U Pen,V ’
Pee,l Pee,Q Pee,U Pee,V

Here, P; j encodes the effective primary beam of the baselines coup-
ling Stokes parameter j € [I,Q,U, V], on the sky, to instrumental
correlation i € [nn, ne, en, ee] and we have left implicit the depend-
ence of the primary beam on the choice of constituent antennas, p
and ¢, for notational simplicity.

Expanding Equation 6, we can write V™ in the frame of the
instrument, in which the brightness distribution on the celestial
sphere is rotating overhead, as,

Vi (upg. v, 1) =n(v, 1) + (gp (v.1)) (g (v, 1)"
x ﬂ # [Pnn,l (i, V)I(i’ Vs t) + Pnn,Q (i’ V)Q(i, v, t)

Im

+Pon (ENVUE, v, 1)+ Pon v (E )V (I, v, 1)]e 275 )
(10)

Here, we have expressed the visibilities in terms of the time-
stationary uvw-coordinates upg = bpg /A = (Upg,Vpg, Wpq) of
the baseline in the frame of the instrument; n(v, r) describes the
noise on V™ (u g, v, 1), which we will assume is Gaussian and
white; Py, j (i, v), with j € [I, Q, U, V] are the elements of the po-
larised primary beam matrix that V™" is dependent on, and we have
included explicit dependencies on observing frequency v and time
t. Going forward, all calculated visibilities refer to correlations of
pairs of north-south oriented feeds, so for brevity we omit the ‘nn’
and ‘n’ superscripts on subsequent visibilities and gains associated
with these visibilities, respectively.

2.2 Sky Based Calibration

In the following sections, it will be helpful to write a discretised
version of Equation 10 for a set of baselines as,

VoS = p 4 GV (11

where we will refer to GV'® and n as the signal and noise compon-
ents of the observed visibilities, respectively, and VOobs p and yirue
are given by the concatenation over baselines of the observed cross-
correlation visibilities, noise on the data and ‘true cross-correlation
visibilities” (corresponding to the integral in Equation 10), respect-
ively, each vectorised over a discrete set of frequencies and times.
G is a diagonal matrix encoding the antenna, frequency and time
dependent instrumental gains, and, for a single frequency and time,
it has diagonal elements G;; = g,,g;“l. Here i is an index over vis-
ibilities which runs over the Nyis = Nt Ny Nant(Nant — 1)/2 cross-
correlations between the signals from the Nap: antennas in the array,
with p and ¢ the antennas associated with the ith visibility, such
that VO has elements,
VS = npy + gpgaViMe . (12)
Simultaneous calibration of multiple frequencies is achieved
by writing VO = ((VoP)T, (Veb)T ... (VoS )T)T | with VpPs
the observed visibilities in frequency channel v;, where v; is
an index over the N, channels in the data set, and writing

MNRAS 000, 000-000 (0000)
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Ve equivalently; then G becomes a block-diagonal matrix com-
prised of N, blocks, where the v;-th block describes the in-
strumental gains in the v;-th channel. Simultaneous calibration
of multiple time integration is similarly achieved by concatenat-
ing the observed and true visibilities over the N; time integra-
tions in the data set. Simultaneous calibration of multiple fre-
quency channels and time integrations is achieved by writing
VoRs = (V)T (Vs )T (Vs )T, with VRS- the
observed visibilities in frequency channel v; and time integration
tj, where t; is an index over the Ny channels in the data set; then G
becomes a block-diagonal matrix comprised of N, block-diagonal
matrices where the v;-th block-diagonal matrix is comprised of N;
block-diagonal matrices and where the #;-th block describes the
instrumental gains in the v;-th channel and ;-th time integration.
Finally, the procedure described above can also be simply general-
ised to calibrate multiple instrumental correlations (e.g. V™, V¢,
VR ve®) simultaneously.

In a non-redundant array, the data calibration problem requires
solving for model gain parameters g? given a model for the signal
component of the observed visibilities,

Vmodel — vasim , (13)

where G™ is a diagonal matrix with diagonal elements, G} =

gp8g", with p and g the antennas associated with the ith visibility.

VI i a vector of simulated visibilities encoding our best estimate
of the true (gain-free) visibilites derived from our a priori knowledge
of the antenna beam, array layout and emission sources in the sky
under observation, V™°4¢l is a vector of model visibilities, and the
elements of Equation 13 are ordered such that,

In practice, V™ will generally be a model for the dominant
astrophysical components contributing to Ve Common approx-
imations for V"™ include:

(1) In the simplest case, when a single point source dominates the

observed field, a forward model for the visibilities that derive from
only that source may be used.

(ii) More usually, in current approaches to calibration in 21 cm cosmo-

logy, this will be improved on by including in the calibration model
many thousands of the brightest sources in a field and, in place
of the point source approximation, using more accurate models for
extended sources.

(iii) The calibration model can be further improved by including a

model for diffuse emission from the Galaxy, the power from which
is inversely proportional to baseline length and dominates the meas-
ured visibilities on short O (10 m) baselines. Incorporating a model
for diffuse emission is particularly important for obtaining robust
calibration solutions that minimise spurious spectral structure in the
data when short baselines are used for the absolute calibration of
the instrument.

Each of the above approximations will inevitably be, at some
level, an incomplete and imperfect description of the foregrounds
due to unmodelled sources below the flux-density limits of current
surveys and uncertainties on the sky brightness distributions associ-
ated with the models. Thus, one can improve upon models based on
these approximations by additionally fitting for a statistical model
for the difference between the true emission on the sky and the
approximations described above. We will describe a physically mo-
tivated approach to achieving this in Section 3.



6 Simsetal.

2.2.1 Constructing a sky-based calibration likelihood

To fit for the gain parameters in a purely sky-based calibration
framework, one must define a model for the noise on the data, which,
in many cases of interest (see Section 3.4.3 for further discussion),
can be approximated as being drawn from a zero-mean, statistically
homogeneous, complex Gaussian random distribution, uncorrelated
between different visibilities, with covariance matrix N given by,
Nij :<n,-n*->:6,-j0'2., (15)
J

where (..) represents the expectation value and 0./2_ is the variance
of the complex noise on visibility j.

We can, therefore, write a Gaussian likelihood for Vvobs and
our model of the data, constructed from the set of gain parameters
g™, encoded in the calibration matrix, G™, as,

1

Pr Vobs my _
V1D = NodaN)

X exp [_ (Vobs _ GmVSim)]L N~! (Vobs _ GmVSim)] .

(16)

Here, our data and model vector, V°PS and GMysim, respectively,
are each of length N;s. The gain parameters can then be estimated
by finding the maximum likelihood solution to Equation 16, which
can be achieved using, for example, gradient descent optimization
(Gilbert & Lemarchal 1989). An efficient linear least squares fitting
algorithm for the more general case of direction-dependent sky-
based calibration is described in Salvini & Wijnholds (2014).
Equation 16 can be re-written as (e.g. Kay 1993),

1
V(27)2Nvis det(NF)

1 obs,r model,r T —1 obs,r model,r
xexp[ 2(V \%4 ) N (V \%4 ) .
a7

Here vectors with r superscripts are defined such that for a complex
column vector x of length Ny, x™ = [Re(x)” ,Im(x)T |7 is a real
vector of length 2N and,

N = cov(Re(x)) 0
B 0 cov(Im(x)) |’

Pr(Vobs | gm) — Pr(Vobs,r | gm,r) —

(18)

and we have assumed that the real and imaginary noise components
are uncorrelated, cov(Re(x)) = cov(Im(x)), and have the same
form as Equation 15 but with o2 now representing the variance of
the real component of the noise on visibility ;.

Converting between Equations 16 and 17 can be computation-
ally convenient when an efficient optimisation algorithm is available
in either the complex or real domain. However, for brevity, we quote
only the complex form going forward.

In the limit of a high fidelity model for the true visibilities,
Equation 16 and Equation 17 provide unbiased estimators of the
gain solutions. Thus, in this limit and subject to the noise on the
data, the maximum likelihood gain parameters will yield a model
calibration matrix equal to the true calibration matrix of the data
set (Le. if VSim = ytue Jim GM = G). However, since the an-

5
tenna gains are the only (ilegrees of freedom in Equation 16 and
Equation 17, their maximum likelihood solutions will deviate from
the true instrumental gains when there are imperfections in V5™,
due either to the sky model from which V™ is derived being in-
complete (Barry, et al. 2016) or because of imperfections in the

instrument model used to propagate the calibration sky model to
the simulated interferometric visibilites.

For 21 cm cosmology applications, even low-level spurious
spectral structure can produce spectrally fluctuating foreground sys-
tematics in excess of the signal of interest, preventing unbiased ex-
traction of the 21 cm cosmological signal from the data. Redundant
calibration can go some way towards mitigating this issue by re-
ducing the number of calibration degrees of freedom that ysim g
used to solve for. Nevertheless, it still requires using V™ to derive
the full set of calibration solutions and, thus, does not eliminate the
problem entirely (e.g. Byrne, et al. 2019). We discuss this approach
to calibration in the next section.

2.3 Redundant Calibration

In the sky-based calibration framework described above, the only
constraint on the gains derives from one’s simulated model for
the sky. When an array has a redundant antenna layout, such that
it measures visibilities derived from the cross-correlation of the
voltage responses from sets of antennas with identical baseline sep-
aration vectors and beam patterns, the fact that V'™ is identical* on
these redundant baselines provides an additional constraint on the
model gain parameters that is independent of the sky (e.g. Wieringa
1992; Liu, et al. 2010).

To make use of this additional constraint, one writes the data
model as a function of redundant antenna gain parameters, A%, and

true visibility parameters, V4 (e.g. Byrne, et al. 2019),
del _ d
viodel = ppgevid. (19)

Here, @ indexes unique baseline types in the array, Vg‘f;.del is our
model for the jth redundant visibility in the set of visibilities with
the ath unique baseline, h? is the redundant gain parameter as-
sociated with antenna p and V{fd is a parameter representing the
true visibility measured by the baselines in the ath unique baseline
group. The change of variable (from g to &) for the antenna gain
parameter in Equation 19, foreshadows the fact that fully calibrat-
ing an array using redundant calibration is a two stage process that
requires:

(1) ’relative’ calibration, in which baseline redundancy is used to

derive redundant gain parameters, h?, that are equal to the
general direction-independent gain parameter, g;‘;, solved for in
Equation 13, to within a frequency, time and polarisation depend-
ent complex degeneracy factor. This complex degeneracy factor is
described by a set of degenerate calibration parameters that cannot

be solved for using baseline redundancy.

(ii) ’absolute’ calibration, in which the degenerate calibration para-

meters associated with relative calibration are solved for with refer-
ence to a sky model.

We describe approaches for solving for the gain parameters
associated with (i) and (ii) in Sections 2.3.1 and 2.3.2, respectively.

4 However, see e.g. Joseph, Trott & Wayth (2018), Orosz et al. (2019) and
Choudhuri, Bull, & Garsden (2021) for biases introduced in the relative
calibration solutions if there are non-redundancies in an array that is assumed
to be redundant.
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2.3.1 Constructing a relative calibration likelihood

We can write a Gaussian likelihood for V°P and the data model in
Equation 19 as,

1
7Nvis det(N)

X exp [_ (Vobs _ HmVred)T N-! (Vobs _ HmVred)] . (20)

Pr(Vobs | hm, Vred,set) —

Here, we have parametrised the model in terms of a set of redundant
gain parameters, h, encoded in the redundant calibration matrix,
H™ and a set of unique redundant visibility parameters, Ved-set

defined such that Vg d:set §s the estimate of the true visibility value
measured by baselines in the e-th redundant-baseline group. H™ is

a diagonal matrix with elements Hl'."j = 0ijhjy hg™, with p and g the

antennas associated with the ith visibility. V™9 is a vector of length
Nred

Nyis = 2. Na, where Ny is the total number of observed visibility
a=1

data points, as defined below Equation 11. V*4 derives from Vred-set

: d _ d\T d\T d \T\T :
via Ved = ((V{e ) ,(V;e Y, ,(V]’\e/red) )', where N4 is the
number of redundant baseline groups in the array. Here, V(rfd con-
red,set

sists of N, elements, each equal to V, , where N is the number
of baselines in redundant baseline group a.

The parameters in Equation 19 are degenerate (see e.g.
Liu, et al. 2010). If this were not the case, assuming Nyjs >
Nant + Nieq, Where Nape is the number of antennas in the array
and Neq is the number of unique redundant visibilities in the ar-
ray, Equation 19 alone could be used to derive a set of maximum
likelihood estimates for the model parameters. One must place ad-
ditional constrains on either k™ or V™¢%:5¢t {0 break this degeneracy.
The degeneracy between &A™ and V™45¢t has the functional form,
fant(A, @, ¢) = A~12emi (6, @0 g Suis(A, @) = Aeibi @ for
the redundant gains and redundant visibility parameter estimates,
respectively. Here, A is a real amplitude and ¢ is an absolute gain
phase. For a coplanar5 array, X, = (x,y) is the position vector of
antenna p, b; = xp —x is the baseline vector i between antennas p
and g, ® = (¢;, pm) corresponds to the ‘tip-tilt’ phase angles that
shift the apparent phase center of the sky in / and m, respectively.
Each of these degeneracy parameters are themselves functions of
frequency, time and, in the general case, polarisation; however, for
brevity, we omit writing this dependence explicitly.

To illustrate the existence of this parameter degeneracy, one can
define redundant antenna gains and redundant visibility parameters
equal to their counterparts in Equation 19 scaled by fant(A, ®,¢)
and fyis(A, @), respectively,

pm _ 4-1/2,—i(xD ®-y)
Wy = A712e7 % hy 21

Vied = Aeibl Pyred.

5 For a non-coplanar redundant array, x, = (x,y,z) and an additional
degenerate phase, ¢,,, which corresponds to a translation of the phase cen-
ter of the observation in direction cosine n, must be solved for. In this
case, one must fit for redundant gains using constraints deriving from de-
generacy between baselines in 3D. In this paper we focus on calibration
of a coplanar array. However, the calibration formalisms discussed in the
paper generalise in a straightforward manner to the 3D via a redefinition
of ® = (¢, dm, ¢n)- Given this definition, one then fits for the value of
¢n, jointly with the degenerate gain parameters for a coplanar array, as a
function of time, frequency and polarisation; however, the functional form
of the degeneracies and the manner in which they can be fit is otherwise
unchanged.
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Substituting 4} and vred for hy and V'ed when calculating the
model visibilites corresponding to these redundant gain parameters,
we have:

ymodel _ 7m 7z mxy;red

Va.j =hp hg™ Vo 22)

_ A—l/ze—i(x,T, m—w)hglA—l/zen(xgd)w) theblT(DV(rled

= KRV
_ yymodel
_Va,j s

where, in going from the second to third line, we have used the fact
thatb; =xp —x4.

One way to break this degeneracy, for the purposes of relative
calibration, is by fixing, to an arbitrary choice of values, the gain
amplitude of a reference antenna and the gain phases of two ref-
erence antennas® (e.g. Li, et al. 2018; Dillon, et al. 2020). For any
given choice of reference gain amplitude and phases, there exists a
corresponding unique solution to Equation 22 in the form of a re-
dundant gain parameter estimate per antenna, per frequency and per
time and an estimate of V4 for each unique redundant baseline in
the array. Maximum likelihood estimates for these parameters can
be derived using non-linear optimization algorithms such as dual
annealing (Xiang et al. 1997 and Virtanen et al. 2020 for its imple-
mentation’ in scipy). Alternatively, a frequently used approach is to
linearise the equation and split it into its real and imaginary parts. A
set of maximum likelihood parameters can then be derived by iterat-
ively solving the corresponding sets of linearised equations (see e.g.
Liu, et al. 2010; Dillon & Parsons 2016; Ewall-Wice, et al. 2017;
Li, et al. 2018; Dillon, et al. 2018; Joseph, Trott & Wayth 2018).
However, regardless of the approach to solving the equation, the
redundant gain parameters thus derived are only correct to within a
factor fant(A, @,y ) determined by the difference between the true
amplitude and phases of the reference antennas and the arbitrary
choice of values used for these parameters during relative calib-
ration. Therefore, full calibration of the data requires subsequent
fitting for the true values of A, @,y to calibrate out this degeneracy
factor in the relatively calibrated data. This, in turn, must be done
with reference to a calibration model derived from a sky model.

With respect to this fit, we note that in both sky-based and
redundant calibration one is ultimately interested in the cross-
correlations of the antenna voltages, for which the effect of ab-
solute gain phase offsets common between antennas cancels out.
As such, it is not necessary to constrain i to calibrate the visib-
ility data (this is also evident from the fact that the degeneracy in
V(r,ed is independent of ). Thus, while the additional amplitude and
phase constraints on the reference antennas, described above, fix all
four degeneracies of the redundant gain parameters in Equation 22,
relating these solutions to the general direction-independent gain
parameters of interest (equal to those solved for in Section 2.2.1)
simplifies to solving for the appropriate overall amplitude and tip-tilt
phase offset, per frequency and per time, required to fit the max-
imum likelihood redundant visibility model to a simulated model
of the true sky visibilities.

6 Eliminating the absolute amplitude and tip-tilt phase degeneracies can also
be achieved in an equivalent manner by fixing the average gain amplitude,
phase and phase gradient between antennas.

7 https://docs.scipy.org/doc/scipy/reference/optimize.html
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2.3.2  Constructing an absolute calibration likelihood for
redundant calibration

To derive absolute calibration solutions from our relative calibration
solutions calculated in Section 2.2.1, we start by defining fz‘;} as our
maximum likelihood redundant gain parameters derived when pre-
scribing a fixed gain amplitude to a reference antenna and fixed gain
phases to two reference antennas. We can then define an absolutely
calibrated model for the data as,

Here, we have defined the degenerate gain matrix D™, which is a
diagonal matrix that for a single time integration and frequency
channel has elements, D;; = 6;; Aei<biTq’), A™ is the diagonal mat-
rix containing the maximum likelihood redundant gain parameters
solved for in Section 2.2.1 and the elements of our model vector are
given by,

del _ 7m7, i(bT ®)y/si
ymodel - pmjms gei (b7 ®)ysim (24)

a,j

where V(S,im is a simulated model for the true visibility on the ath
unique baseline.

We can thus write a general likelihood for our model of the
data as a function of amplitude and tip-tilt gain phase parameters,
A, @; and @, encoded in the degenerate gain matrix, D™, as,

1
Pr(VOPs A, D, D) = ——
VAP B = RGNy
X exp [_ (Vobs _ I:lmDmVSim)T N-! (Vobs _ I:ImDmVSim)] .

(25)

The amplitude and tip-tilt gain phase parameters (one of each para-
meter per channel) can then be estimated using the same approaches
as for Equation 16.

In principle, one can simply fit for the degenerate amplitude
and tip-tilt gain phase parameters jointly with the redundant gain
parameters by sampling from Pr(VoPs | A, &, ®,,, h, V'edset) =
Pr(VS | A, @, @,,) Pr(Vobs | h, vredsety However, the larger
parameter space associated with Pr(VObs | A, D), Dy, h, Vred’set)
(i.e. the curse of dimensionality), means that, for a fully redundant
array, it is computationally preferable to perform the relative and
absolute calibration stages independently.

In comparison to Equation 16, deriving our calibration solu-
tions by solving Equation 25 has the advantage of greatly reducing
the number of parameters that are solved for with an imperfect for-
ward model of the true visibilities, ysim, Nevertheless, since A,
@D;, &, are all frequency dependent, their maximum likelihood
solutions will still absorb chromatic errors in VSi™ relative to V™
as spurious spectral structure, in an analogous manner to standard
sky based calibration. Indeed, within this framework, Byrne, et al.
(2019) have shown that model incompleteness can still couple a
prohibitive level of spectral structure into the gain solutions for 21
cm cosmology applications. However, in the next section, we will
address this calibration model limitation by extending this approach
to absolute calibration of relatively calibrated visibilities to incor-
porate a fitted statistical model for the emission components that,
due to incomplete knowledge of the brightness distribution of the
sky, are omitted in the calculation of V5™,

3 BAYESCAL: JOINT ESTIMATION OF THE
CALIBRATION SOLUTIONS AND A PARAMETRISED
SKY MODEL

To extend the approach to absolute calibration of redundantly calib-
rated visibilities described in Section 2.3.2 to account for sky-model
incompleteness, we subdivide our calibration model into two com-
ponents, (i) a simulated component, V™, derived using our a priori
knowledge of the brightness distribution of known Galactic emis-
sion and extragalactic sources in the region of sky under observation
and (ii) a fitted component, Vit derived using a parametrised model
for the contribution to V"¢ missing in V5™ and constrained by a
prior on the two-dimensional spatial power spectrum of the emis-
sion.

In Section 3.1, we begin by describing the BAYESCAL visibility
model for the absolute calibration of redundantly calibrated visibilit-
ies. In Section 3.2, we outline the principles of Bayesian inference on
which our BAYESCAL calibration procedure is based. In Section 3.3,
we briefly describe the challenge to recovery of unbiased calibra-
tion solutions posed by instrumental uncertainties and outline an
approach with which this can be addressed within the BAYEsCaL
framework. In Section 3.4, we describe the image domain sky model
from which we derive Vit In Section 3.5, we describe the use of
temporal priors when calibrating multiple time integrations. We dis-
cuss approaches to determining the optimal choice of spectral model
complexity of the fitted sky model in Section 3.6 and describe our
constraint on the brightness distribution of the fitted sky model in
Section 3.7. In Section 3.8, we describe a parametrisation of the
redundant calibration degeneracy function to enable non-sky-based
constraints on the gain solutions, such as electric and electromag-
netic co-simulation and reflectometry measurements of the receiver
system, to be incorporated into the BAYESCAL calibration solutions.
In Section 3.9, we analytically marginalise over the parameters of
our fitted sky model in order to sample directly from the posterior
for the calibration solutions and, in Section 3.10, we describe how
a similar approach can be used to marginalise over uncertainties
in catalogued point sources in VSIm In Section 3.11, we describe
how BayesCAL can be applied to sky-based, as well as, redundant
calibration.

3.1 BavEesCavl visibility model

As described in Section 2.2, in this paper we focus on the calib-
ration of individual components of the polarised visibility vector.
For concreteness, we describe calibration of a given correlation
of the polarised visibility vector and we use V™ for this purpose,
which corresponds to the correlation of signals from the northward
oriented antenna feeds of an orthogonal dual-feed system. How-
ever, in general, the calibration approach we describe can be used
to individually calibrate any of the four components of the polar-
ised visibility vector in Equation 8 (see Dillon, et al. (2018) for the
degenerate gain parameters associated with redundant calibration
of a multiple-correlation visibility data set). We plan to generalise
the approach to joint estimation of the gain parameters associated
with the four correlation states of the visibility matrix, within the
BayesCaL framework, in future work.

In this regime, Equation 11 describes the observed visibilit-
ies, VO It will be convenient to define Vit in terms of a set of
image-space parameters encoding the direction-dependent bright-
ness temperature of the component of the sky-emission missing
from VSi™. Therefore, we start by re-writing Equation 11 in terms
of a set of discretised models for the polarised sky brightness tem-
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perature8 in Stokes I, Q, U and V observed by the interferometer,
vectorised over angle, frequency and time: Ty, T 0> Ty and Ty,
respectively. To do this, we define an interferometric fringe matrix,
with elements Fp, ;i = ye 2mi(ueltv@m+wen)jk which encodes
the transformation from the image domain to the uvw-coordinates
sampled by the interferometric array, and polarised primary beam
matrices, Pyy 7, Pan,@» Pan,ru and Ppy v, which encode the polar-
isation, frequency and direction-dependent primary beam profiles
(see Equation 9).

To convert the contribution to the visibilities from diffuse and
point source emission to a common unit, when Fg operates on a
vector of sky brightness temperatures in K, we perform the visibility
unit conversion between K sr and Jy via the Rayleigh-Jeans law,
which yields: y = 2x1020v2kp AQ/c2, with AQ the image domain
pixel area. When Fy; operates on a vector of source flux densities in
Jy,y =1

By writing V" in terms of these matrices as,

V™ = Fg [Pan, 1 T1 + Pon,0T0 + Pon,uTu +Pon,yv Ty ], (26)
we can rewrite Equation 11,
VO = n+GFy [P 1 71 +Pan, 070 +Pun,u Ty +Pun,v Tv ] . (27)

Equation 27 is a generic discretised form of the expression for the
interferometric visibilities formed by correlating voltages induced
in south-north oriented feeds, within the approximations associated
with Equation 10.

As described in Section 2.3, when an array has redundancy
in its antenna layout, such that one has visibilities derived from
the cross-correlation of the voltage responses from sets of antennas
with identical baseline separations and beam patterns, the antenna
gain parameters encoded in G can be reparametrised in terms of a
set of redundant gain parameters encoded in H and a set of degener-
acy parameters encoded in D. With this reparametrisation, we can
rewrite Equation 27 as,

VObs = n+HDFfr[Pnn,I T +Pnn,QTQ+Pnn,UTU+PHH,V TV] . (28)

When applying redundant and absolute calibration with an in-
complete sky model, Equation 23 is used to model V"¢, However,
the incompleteness of the sky model imparts spurious spectral struc-
ture to the recovered gain solutions that prevents robust separation
of the foregrounds and 21 cm signal in the data via their intrinsically
distinct spectral structures.

To minimise or eliminate this spurious spectral structure impar-
ted to the model gains during calibration, we introduce an additional
model for the contribution to the measured visibilities from emis-
sion not accounted for in V5™, which we denote Vit(©), with © a
set of parameters of the fitted model. In this case, we can write our
model visibilites as the sum of these components,

Vmodel — FlmDm(VSim + Vﬁt(e)) . (29)

Here, for succinctness, we have written V™04l in terms of the visib-
ilites VS™ and V1it(@), rather than using an explicit image domain
representation similar to Equation 26. In principle, ®, could encode
parameters defined in the visibility domain; however, in Section 3.4
we will describe why, rather than taking this approach, it is advant-
ageous to define ® in the image domain and then propagate the

8 The brightness temperature, T, is related to the spectral brightness dis-

tribution via the Rayleigh-Jeans law, T'(v) = , with ¢ and kg the

2v2kg
speed of light and Boltzmann constant, respectively.
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parameters through an instrumental forward model to the visibilit-
ies. In that case, Vfit(®) will take on a form similar to Equation 26
but with the polarised sky brightness distributions replaced with a
fitted image-cube, parameterised by @, which models the compon-
ent of the sky brightness distribution that has been incompletely or
imperfectly modelled in V™,

3.2 Bayesian inference

Bayesian inference provides a consistent approach to estimate a set
of parameters, @, of a model, M, given a set of data, D, and, through
the use of the Bayesian evidence Pr(D|M;) = Z;, to select from a
set of models the ones that best describe the data. Bayes’ theorem
states that,

Pr(D|®, M) Pr(®|M)  L(O)r(0)

Pr(D|M) B Z ’
where Pr(®|D, M) is the posterior probability distribution of the
parameters, Pr(D|@, M) = L(0) is the likelihood and Pr(®|M) =
7(®) is the prior probability distribution of the parameters.

The Bayesian evidence (the factor required to normalise the
posterior over the parameters), is given by,

Pr(®|D, M) = (30)

Z-= / L(O)n(0)d"0, 31

where 7 is the dimensionality of the parameter space. Comparison
of the evidence for different models enables a statistically robust
selection of a preferred model for the data. As the average of the
likelihood over the prior, the evidence is larger for a model if more
of its parameter space is likely and smaller for a model where large
areas of its parameter space have low likelihood values, even if
the likelihood function is very highly peaked. Thus, the evidence
automatically implements Occam’s razor: a simpler theory with a
compact parameter space will have a larger evidence than a more
complicated one, unless the latter is significantly better at explaining
the data.

3.3 Instrumental uncertainties

In the remainder of Section 3, we derive the posterior probabil-
ity distribution for calibration and sky-model parameters assuming
uncertainty-free a priori knowledge of the voltage beam patterns
and positions of the antennas that define the interferometric fringe
and polarised primary beam matrices in Equations 26 —29. In prac-
tice, these quantities are known with finite precision. At the cost
of increased dimensionality, these model uncertainties can also be
accounted for in the BAyEsCaL framework by introducing a set of
model parameters that describe perturbations to the instrument for-
ward model and which can be constrained by priors derived from
the measurement errors corresponding to the precision with which
the instrument has been characterised. These instrumental paramet-
ers can then be jointly sampled from during calibration in order to
address this potential source of bias. We leave further exploration
of this to future work.

3.4 Fitted image domain sky model

Since the incompleteness of our simulated visibilities, V™, derives
from unaccounted-for emission in the image domain, this provides
a natural space in which to define the parameters of our fitted visib-
ility model, Vit Furthermore, defining our model parameters in the
image domain and forward modelling to the visibilities ensures that
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Vit is automatically restricted to a model space in which the model
visibilities are correlated, via the instrumental forward model, in a
manner that best reflects our expectation of the instrumental correl-
ations in the data.

In Section 3.4.1, we begin by describing our model for the
Stokes I brightness temperature contribution to V"¢ that is un-
accounted for in V™, We describe how we adapt this model to
account for incompleteness in the remaining Stokes parameters in
Section 3.4.2, and describe the resulting data likelihood for the
model in Section 3.4.3.

3.4.1 Fitted Stokes I sky model

We parameterise our model for the Stokes I brightness temperature
of the component of emission in V'™® that is unaccounted for in
VSIm ysing a set of amplitude parameters, &, defined on a HEALPIx
grid (Gorski, et al. 2005) at a reference frequency, vg. The Npix
pixels of the HEALP1x grid cover the full sky; however, the number
of pixels relevant to calibration of a single short duration integration
is at most ~ Npix/2 per polarisation, since sky emission below the
horizon will not contribute to the measured visibilities®. Further-
more, if the primary beam of a visibility downweights emission at
large zenith angles, a subset of the pixels within the observer’s ho-
rizon may be sufficient to model the visibilities. To take advantage
of this and reduce the computational cost of the calibration when
applying BavesCaL, we define our set of parameters, &, such that
they represent the amplitudes in the Npix s length subset of pixels
defined by the union of pixels that fall within a fixed zenith angle,
Ocut, such that, within this region, the primary beam lies above a
given threshold weight, at each central local sidereal time (LST)
of the integrations over which the calibration solutions are being
jointly estimated.

To construct a model image cube for the contribution from
sky emission missing in V5™ from our HEALPix grid amplitudes,
one must define a model for the expected spectral structure of the
emission, f,.

The spectral structure of the dominant astrophysical emission
components at radio frequencies is well described by power laws,
thus, making a power law-based model a natural choice in this fre-
quency range. However, the diffuse synchrotron, free-free emission
and point source synchrotron emission components that dominate
the sky brightness distribution at these frequencies are characterised
by distinct mean temperature spectral indices 3, falling in the ap-
proximate range 2 < 8 < 3. In principle, this could motivate one to
jointly estimate multiple spectral components, with each component
tailored to a specific astrophysical foreground. In practice, a more
complex spectral model will lead to increased correlation between
Vit and our gain parameters; thus, a compromise between model
accuracy and recovered gain parameter uncertainties is necessary 0.

9 Tonospheric refraction can extend the radio horizon of the antenna below
the geometric horizon (e.g. Vedantham et al. 2014); however, for antennas
with narrow or moderate fields-of-view, emission at large zenith angles,
including that between the radio and geometric horizon, is greatly down-
weighted by the beam and its contribution to the visibilities is small.

10" n practice, this will be dependent on the relative brightness and com-
plexity of the foregrounds. This, in turn, will be dependent on a range
of variables, including the angular scales probed by the instrument, which
will affect the relative dominance of the different foreground components, as
well as the frequency range of the observations and the choice of calibration-
field, which will both influence the total brightness of the foregrounds and,
correspondingly, the precision with which they must be modelled.

If we restrict our focus to emission on large angular scales
probed by short baselines, Galactic diffuse synchroton emission
(GDSE) accounts for a large fraction of the power in the visibilit-
ies and, owing to the level of uncertainty associated with models
for this emission, it is also the dominant source of model incom-
pleteness in fields covered by high sensitivity point-source surveys
in the frequency range relevant to 21 cosmology during CD and
the EoR (v < 200 MHz), such as GLEAM (Wayth et al. 2015;
Hurley-Walker et al. 2017) and LoI'SS (Shimwell et al. 2019). In
paper II it will be shown that, when calibrating data in this regime,
a single power law with power law index Sm = {(B)GpsE, With
{(B)GDSE the mean spectral index of the a priori known compon-
ent of the GDSE brightness temperature distribution, is sufficient
to suppress spurious spectral fluctuations in the calibration solu-
tions recovered with BAYESCAL in low and moderate incompleteness
calibration model scenarios to a level where power in foreground
systematics is significantly subdominant relative to a fiducial EoR
signal.

To construct our Stokes I vectorised model image cube at
a fixed LST, #;, we define an Npix s 1, Nv X Npixs,r; matrix, Sy,
encoding one’s choice of spectral model'! and apply this matrix to
the subset of pixel amplitude parameters, with (#;) < cut, used to
construct our visibilities,

e (32)

Here, &;; are the length Npjy s 7, subset of image-domain amplitude
parameters, g, that fall within the zenith angle 0y in the ith time in-
tegration. Correspondingly, we derive the contribution from T;?Odel
to our fitted visibility model at time #;, as,

Vi = P Pon. 1. St 61, (33)

i Sl oY 7 i<l

We define our total vectorised visibility model over the n LSTs in
our data set as the concatenation of the visibility vectors defined at
the central LSTs of the integrations comprising the data set: vt =
((thgt)T, (th:t)T, e (th;t)T)T. To construct Vi, we define block
diagonal matrices Fg., Ppy, 7, and S, each comprised of matrix blocks
given by Fg 4, Pnn 11, and Sy, respectively, where 7 runs from 0
to n, and we replace &, with the concatenation of image domain
parameters over the n LSTs the calibration solutions are being jointly
estimated over: &concat = ((S,O)T, (E,I)T, ... (s,n)T)T.

In general, one wishes to calibrate interferometric data com-
prised of a number of narrowly spaced successive time integrations,
in which case, the region of sky contributing to successive integra-
tions is strongly correlated in time. € represents the amplitudes of
fixed LST-independent regions of the sky; thus, to derive &concat, We
need to operate on € with a matrix that selects the relevant parameter
values from & at each LST and concatenates them,

Econcat = C& . 34

Here, C is an le.vz‘l Npix,s,1; X Npix,s block matrix comprised of N

1" In Equation 32, the spectrum along each line of sight is characterised by
a shape specified by Sy, and reference amplitude set by &, . If one wishes to
fit for n > 1 spectral components, each associated with their own character-
istic reference amplitude, S;; will be replaced by a block diagonal matrix in
which each block describes the spectral structure of the jth emission com-
ponent, where j runs from 1 to n and &, is replaced with a concatenation
over reference amplitude vectors, where the jth reference amplitude vector
encodes the reference amplitudes of the jth spectral component.
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blocks,
cO
Cl

c=| . |, (35)
C}V t

where the ith block, C? has shape Npix,s,; X Npix,s and is comprised
of Npix,s,s; TOW vectors, one for each element of & for which 672 <
Ocut, and the jth row vector, corresponding to the nth element of &,
has the form,

cj.k =6k - (36)

Here, ©7 is the zenith angle of the HEALPrx pixel associated with
amplitude parameter &, at LST ;.

With these definitions, we can write the Stokes / contribution
to our fitted visibility model over all LSTs of our calibration data
set as,

Vit = FyPo, /SCe . (37)

3.4.2  Fitted Stokes Q, U,V sky models

In principle, one could individually account for model incomplete-
ness on a per-polarisation basis by jointly fitting for the Stokes Q, U
and V contributions to our fitted visibility model over all LSTs of our
calibration data set in an analogous manner to Equation 37. How-
ever, for a fixed spectral structure model over Stokes parameters,
the contributions of the Stokes sky models to a single instrumental
visibility correlation and time are degenerate.

This degeneracy can be broken if one places additional con-
straints on the model, for example by fitting to the four instrumental
correlations of the polarised visibility vector, rather than a single
instrumental correlation, as considered here, or through the differ-
ing temporal evolution of ij.it, with j € [I,Q,U,V], when one
calibrates a sufficiently long duration data set.

Alternatively, one can make use of the degeneracy between
the polarised sky-model parameters to reduce the number of sky-
model parameters required to accurately model incompleteness in
the intensity distribution used to construct Vfit when calibrating a
short duration data set. This second approach greatly reduces the
computational complexity associated with jointly sampling from in-
strumental gains and the parameters of Vit but has the disadvantage
that Vit will not model the temporal evolution of the contribution
to VI of missing Stokes Q, U and V brightness (if present). How-
ever, at low radio frequencies relevant to 21 cm cosmology, the sky
brightness and fractional contribution to sky-model incompleteness
is dominated by Stokes I (Stokes V is negligible and linearly polar-
ised emission has been found to account for O (1%) of the emission,
e.g. Lenc, et al. 2016) and, thus, the sky-model incompleteness in-
curred by neglecting explicit modelling of Stokes Q, U and V in
Vit is expected to be small relative to the total sky-model incom-
pleteness. As such, here, we consider the case of jointly estimating
the gain solutions and sky-model incompleteness as modelled by
Equation 37. We plan to address full Stokes modelling of sky-model
incompleteness in more detail in future work.
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3.4.3 Data likelihood

Our likelihood at this stage becomes,
Pr(VoP | A, &), D, &) =

e _ Vobs —_A™pm Vsim+Vﬁt T
alNvisdet(N) P [ ( ( ))

N—l (Vobs _ HmDm(VSim+Vﬁt))] . (3%)

In standard sky-based and redundancy-based calibration (sections
2.2 and 2.3), the gain solutions at each frequency can be solved for
independently. In the BAYESCAL framework, the introduction of the
fitted frequency dependent visibility model, Vit means the instru-
mental gains are now correlated in frequency and, correspondingly,
the gain parameters of each channel of our data set are fit for jointly.
Thus, we redefine our model degenerate gain parameter matrix in
the context of BAYEsCaL, such that, for a single time integration,
D™ is a block diagonal matrix where each block, D", is a diagonal
matrix with elements Dy ;; = 0;; AreibiTq)r and the subscript r runs
over the N,, channels of the data set (a generalisation of D™ to sim-
ultaneous calibration of multiple times is described in Section 3.5).
We also redefine H™ in an analogous manner to now encode the
maximum likelihood redundant gain parameters for each channel of
the data set.

For calibrated data, the noise level on a visibility resulting from
a pair of identical antennas individually experiencing equal system
noise is given by (e.g. Taylor, Carilli, & Perley 1999),

1 2kpTsys
| D —
NsNa AN24vt

where kg = 1.3806 x 10723 JK~! is Boltzmann’s constant, Tsys
is the system noise temperature, A is the antenna area, 4v is the
channel width, 7 is the integration time and ns and 7, are the
system and antenna efficiencies, respectively.

To take advantage of Equation 39, we can rewrite the covari-
ance matrix as,

(39)

N = (HD)'N’(HD) . (40)

Here, we have assumed that the noise on the raw visibilities,
in the frequency range of interest, is dominated by components
whose amplitude scales with antenna gain. This includes sky noise,
spillover from ground noise and receiver noise injected prior to or
by the first low noise amplifier (LNA) in the signal chain!2. N’ is the
covariance matrix of the noise on the calibrated data. The diagonal
elements of N’ are given by,

N, = <njnj.> =02, 1)

where (..) represents the expectation value and o; is the rms value of
the noise term for visibility j, as given by Equation 39. In the weak
source limit, when the ground and instrument noise temperature
exceeds the sky noise temperature, N’ is well approximated as being
diagonal. In the strong source limit, self-noise becomes an important

12 In the case that noise introduced into the signal chain after the first low
noise amplifier is significant relative to the amplified noise injected prior
to or by the first LNA, Equation 40 can be generalised to include a second
component to model this additional noise contribution. In this case, the
appropriate covariance matrix is of the form N = (HD)"N’(HD) + Ni.,
where Ni.. describes the noise deriving from electronics on the signal path
between the first LNA and the correlator. This can be either calculated or

estimated jointly with the calibration and sky-model parameters.
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consideration. In this case, the oft-diagonal elements are non-zero,
with the specific form of the expected covariance between two
baselines a function of the source distribution and dependent on
whether or not the baselines share an antenna (e.g. Kulkarni 1989).

3.5 Temporal priors

In addition to redefining the model degenerate gain parameter mat-
rix to account for the spectral correlation between the calibration
parameters in the general case described in Section 3.4, simultan-
eous calibration of multiple time integrations enables one to take
advantage of a priori knowledge constraining the temporal evolution
of the gain solutions. To account for this, a full model degenerate
gain parameter matrix, for all time integrations in the data set being
calibrated, must be defined. In this case, D™ is a block diagonal
matrix where each block, DY, is itself a block diagonal matrix com-
prised of blocks, D}, which are diagonal matrices with elements
Dsrij = 6,-jAs,reibiTq’s’r, where the subscripts r and s run over
the N, channels and N; integrations in the data set, respectively.
A™ will also be redefined analogously to now encode the maximum
likelihood redundant gain parameters for all integrations in the data
set.

When multiple time integrations are calibrated simultaneously,
the total duration over which calibration solutions are simultan-
eously estimated has important implications. Variations in the en-
vironmental conditions of the receiver and signal chain, such as
changing ambient temperature, will impart temporal fluctuations in
the antenna gains on the temporal scales of those variations. On
short time scales relative to the characteristic timescales of those
variations, the calibration solutions are expected to be relatively
stable. However, on longer time scales, this approximation will be
less accurate. To address this, a model can be introduced for the
temporal evolution of the calibration solutions (e.g. Gehlot et al.
2021). The parameters of this model can be constrained by their
own priors. In this case one can write,

As,r = fA(®A,t)s,r (42)
(Ds,r = flb(@d),t)s,r ,

where @4 and Og ¢ are the parameters of our temporal model
for the degenerate amplitudes and tip-tilt phases. Defining @; =
[Oa, G)q,’t]T as the full set of parameters of our temporal model
for the gain solutions, one now samples from the joint probability
density of the image-space model coefficients and @O,

Pr(g,® | V') o« Pr(V°™ | & @) Pr(s) Pr(®,), (43)

where Pr(&) and Pr(@y) are our priors on the sky-model parameters
and the parameters of our temporal model for the gain solutions,
respectively.

If one wished to jointly estimate the parameters of H™ and D™,
or if applying the BayeEsCaL framework to sky-based calibration
(see Section 3.11), temporal priors would be applied to H™ or G™,
respectively, in an analogous manner.

3.6 Spectral model complexity

In the general case, when the optimal spectral model for the in-
complete component of the calibration model is not known a priori,
rather than using, for example, a single power law with a fixed power
law index, as proposed for use on short baselines in Section 3.4.1,
the power law index of the model can be fit for as a free parameter
in the analysis.

Additionally, as alluded to in Section 3.4, an arbitrarily more
complex foreground model, defined by a set of foreground paramet-
ers Oy, could be substituted for this spectral model. In this case, the
fitted visibility model can be written as,

Vit = F..PS(0y)Cs . (44)

The joint probability density of the image-space amplitude coeffi-
cients, spectral model parameters and calibration parameters is then
sampled from, and the posterior probability is given by,

Pr(A, @), By, 8,01 | V)

Pr(VY | A, &), ®,,, €, Of) Pr(A) Pr(®;) Pr(®,,) Pr(e) Pr(Oy),

(45)

where Pr(®x) is a prior on the foreground parameters13 and we have
not assumed any a priori correlation between A, @;, @, £ and Oy.

In this case, the Bayesian evidence can be used to determine
whether such a model is preferred and to select an optimal model,
from a set of models for the data (see Sims & Pober (2020) for an
example of this approach applied to foreground modelling in global
21 cm experiments).

3.7 Fitted calibration model power priors

When fitting Equation 38, we aim to recover solutions of the form
A™DM(VSIM 1 Viit(g)) = HDV'UE, with Vit 4 ysim = yirue gpg
A™D™ = HD. However, without additional constraints, correlation
between the calibration parameters and VA limits the confidence
with which the calibration parameters can be recovered.

The impact of correlation between calibration parameters and
Vit can be seen most si mply when the fixed simulated component of
the calibration model is excluded (setting V™ = 0 in Equation 29).
In this case, the desired solution to Equation 38 is of the form
A"DMVA = HDVe, with Vit = VU and A™'D™ = HD; how-
ever, this is just one of a degenerate set of solutions with the form
A"D™ VAV = HDV'¢ with A"D™ # HD, where D™ = D™D’
and ViV = vfit(g7)) = (D’)~1Vfit(g)). Here, D’ is a diagonal de-
generacy matrix which for a single frequency channel and time
integration has elements,

T &
Dj; = 5;jAe™ L (46)

Unlike the degeneracy matrices associated with relative calibra-
tion for which the degenerate gain amplitude and phase can, in
principle, have arbitrarily complex spectral structure, the degener-
acy described by D’ is present only for values of A” and ®’ with
spectral structure that is modellable with it (which, in turn, is
a function of the chromatic structure associated with the fringe,
primary beam and intrinsic spectral structure matrices from which
Vit is constructed).

If one includes a non-zero simulated component of the calib-
ration model, in the limit that the spectral structure of V5™ and Vit

13 For a power law spectral model, such as that used in this paper, a Gaussian
prior on the spectral index, informed by GDSE measurements in the FoV
being calibrated, could be used. To calibrate visibilities with a significant
spread in baseline lengths, such that GDSE and point source components of
the emission are each dominant in subsets of the data, it may be preferable
to use a more complex spectral model (a double power law, for example)
constrained by priors derived from measurements of the respective emission
distributions.
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is identical and one limits V5™ to modelling diffuse emission that
is exactly describable using Vi, one can rewrite Vit as,

Vﬁt — _Vsim + Vﬁt/ , (47)

where VY = FpPS(@)Ce’. Substituting Equation 47 into
Equation 29, one recovers a data model, ymodel — gMpmyfiv (i
the same form as in the degenerate case with VSim = ( described
above, and a degeneracy of the same form is present.

In the absence of noise, this degeneracy is broken in the more
realistic scenario that the spectral structures of Vsim and VAt are
similar but not identical, in which case Equation 47 no longer holds
exactly. However, it persists when the spectral structure of Vim
and VAt are sufficiently similar to construct Vit models that can
destructively interfere with V™ to a residual level comparable or
smaller than the noise level.

Solutions to Equation 38 with fitted visibilities either approx-
imately or exactly described by Equation 47 require that the power
in Vi exceeds that in V™ and greatly exceeds the expected power
in Vit which for a reasonably complete and accurate simulated
calibration model will be a sub-dominant component of the total
power in ymodel Thys models of Vit of this form, and the corres-
ponding degeneracy in solutions to Equation 38 that they introduce,
are possible only if a priori knowledge of the expected power in the
calibration model components is neglected!?, and they can be ruled
out by incorporating in the calibration framework one’s a priori
knowledge of the expected level of power in € or v,

While the specific brightness distribution of the sky emission
modelled by & in the region of sky contributing to the visibilities to
be calibrated is unknown (otherwise we would simply incorporate
itinto V™), the less stringent requirement that we have an estimate
of the power in this emission is more easily met. Such an estim-
ate can be made in the uv- or image-domain. In the former case,
a prior on the expected power in the fitted calibration model can
be formulated in terms of the two-dimensional spatial power spec-
trum of VAt In the later, a prior can be formulated in terms of the
per-element squared amplitude of & at a particular angular scale, or
as the variance of g, in the limit that the temperature distribution
in the incomplete component of the sky model is reasonably ap-
proximated as zero-mean and homoscedastic. The former approach
has the benefit of encoding the expected spatial dependence of
the power in &; however, if one wishes to calibrate a dataset with
sparse uv-coverage, it places no constraint on fitted sky models in
the null-space of the fitted visibility model. In contrast, constrain-
ing the per-element squared amplitude of & at a particular angular
scale constrains all choices of fitted sky-model brightness distri-
bution; additionally, it provides a simple means to encode in the
prior heteroscedastic uncertainty estimates, which are likely to be
appropriate for diffuse emission models. In paper II, compared to
placing a prior on the two-dimensional spatial power spectrum of
Vit we find that a prior on the per-element squared amplitude of
€ yields improved stability of the matrix inversion associated with
marginalising out & to sample directly from the posterior for the
calibration parameters. However, for generality, here we consider
both approaches.

14 In practice, we expect V5™ to be a sufficiently good model of the true
visibilites to account for the majority of the power in the calibration visibility
model. However, if this were not the case, this degeneracy can further be
suppressed by placing priors on the gain parameters (see Section 3.8). In
BavesCaL, we combine both priors, thereby strengthening the preference
for high fidelity calibration solutions of the form Vit 4 ysim = ytue a4
A"D™ = HD.
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3.7.1 Power spectral priors

The expected power in emission missing from V5™, and that we
seek to model with &, can be divided into two components:

(1) power in uncatalogued point sources below the completeness limit

of the available source catalogues used in the construction of VSi™,

(i) power in unmodelled or mismodelled diffuse emission, which de-

rives from the discrepancy between our model for the full-Stokes
diffuse emission and the true full-Stokes brightness distribution.

Assuming a uniform uncertainty of the diffuse emission model
in the field being calibrated, the two-dimensional spatial power
spectrum of this emission can be reasonably approximated as pro-
portional to the two-dimensional spatial power spectrum of the a
priori known component of the diffuse emission,

Puv.s = f*PuvT (48)

with f the fractional uncertainty on our diffuse emission model.
Here, P, T can be estimated as the variance of the diffuse com-
ponent of VS binned over the baseline lengths in the array.

While the second component incorporates the faint unresolved
sea of point sources included in the first, when calibrating using
intermediate and long baseline lengths, which resolve out large
spatial scale diffuse emission, it is useful to be able to separately
account for the power in point sources with flux densities S < Syin,
described in the first category, which are the dominant source of
model incompleteness on these baseline lengths. Here, Sy, is the
minimum flux density of sources that we include in V™. In the
limit of Poisson distributed point sources, this is given by (e.g.
Di Matteo, et al. 2002),

Smin dN
2
Puv,ps,Poisson = /0 S Eds > (49)
with dN /dS the differential source count distribution. For clustered
sources, assuming a power-law angular correlation function, w(6) =
(6/6¢)~B, with Legendre transform i, the power spectrum has an
additional contribution of the form (e.g., Scott & White 1999),

S 2
min N
S—dS| . 50
[ s (50)

p —~

uv,ps,clustered = W

To construct a prior on the two-dimensional spatial power spec-
trum of Vit assuming the ith visibility is an element of redundant
baseline group @, we define a covariance matrix X s7 of Vit with
elements,

Zuv,sT,ij = f* <(nyim)(V,§im)*> = Pyuv,6T,j0ij - (51)

In addition to constraining the expected variance of Vit as a function
of spatial scale, & can additionally be constrained by encoding in
X, v,sT the expected covariance structure of the visibilites, when
known. However, constraining the variance alone is sufficient to
break the degeneracy described at the start of this section.

Using Equation 37, we can thus write our power spectral prior
as,

1
det(zuv,éT)

xexp |- &' C'STPT(Fp) T2, | s FrPSCe| . (52)

PI‘(S | Puv,&T) &

Incorporating this power spectral prior on the parameters of our
fitted visibility model, we can write the joint probability density of
our calibration parameters and our image-space model coefficients
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conditioned on their two-dimensional spatial power spectrum and
the raw data as,

Pr(A, D, P & | VOS5, Py s7) o Pr(VOP | A, &), Dy, )
x Pr(e | Pyyv,s1) Pr(A) Pr(®)) Pr(®y,) . (53)

Here, we have assumed P, st is known a priori. However, in
a scenario where the uncertainty on f was assumed to be signi-
ficant, rather than using a fixed estimate of the two-dimensional
spatial power spectrum, one could instead jointly sample from a
parametrised model for the power in Vfit, our image-space model
coeflicients and the calibration parameters as,

Pr(A, B, Dy, &, Py 57 | VO) o« Pr(VO | A, @), By, 6)
x Pr(e | Pyy,s17) Pr(Pyy, s1) Pr(A) Pr(®P)) Pr(Dy) ,  (54)

where Pr(Py, s7) is our prior on Py, s7 (see Sims et al. (2016)
for an application of this approach in the context of estimating the
three dimensional power spectrum of redshifted 21 cm emission
from interferometric observations).

3.7.2  Image-domain power priors

An image-domain prior on the expected power in the fitted calibra-
tion model can be formulated in a similar manner to that described
in the previous section but now, rather than constraining the cov-
ariance structure of the visibilities that derive from &, one instead
constrains the covariance structure of € directly. In this case, one
can define a Gaussian prior on & of the from,

I -1
Pr(e | Xy, 67) exp —58 EZm,gTs

1
Vdet(zlm,éT)

(55)

Here, X},,, 5T is the expected covariance matrix of &. Incorporating
this prior, we can write the joint probability density of our calibration
parameters and our image-space model coefficients conditioned on
our estimate of the covariance matrix of & and the raw data as,

Pr(A, ), By 8 | VO, Ly s57) o Pr(VO | A, &), By 6)
x Pr(& | Xy, 1) Pr(A) Pr(@;) Pr(Pp,) . (56)

Equation 56 assumes X;,, s7 is known a priori. In principle,
Xim,sT can be estimated when producing radio sky-maps and
would enable a highly informative prior on &. In practice, more ap-
proximate uncertainty estimates, such as the fractional uncertainty
or estimated RMS error in a map, are more typical. The commonly
used Global Sky Model (GSM; e.g. de Oliveira-Costa et al. 2008;
Zheng, et al. 2017) derived from publicly available, total power,
large-area radio surveys does not currently provide error estimates
but an updated version of the model including per-pixel error es-
timates is in preparation (A. Liu, private communication).

In the absence of a full covariance matrix of the diffuse emis-
sion model, one can use a diagonal approximation to X, s7 with
diagonal elements,

Xim, 6T i = O'éi . (57)

Here, o ; is the estimated uncertainty in pixel i of the sky model
used to construct VS™, If only the average error is available, this can
be further simplifed to X, s7,ii = o%, where o ¢ is the expected
RMS error on the sky model used to construct VSim While these
approximations are less informative, in paper II we will show that,
in the cases considered, constraining the average power in the in-
complete or uncertain component of the calibration sky model alone

is sufficient to enable recovery of high fidelity calibration solutions
with the BAYESCAL calibration framework. In this case, we can write
the joint probability density of our calibration parameters and our
image-space model coefficients conditioned on the average power
in the incomplete or uncertain component of the calibration sky
model and the raw data as,

Pr(A, @, D, & | VO, 02) o« Pr(Vo | A, &, By, 6)
X Pr(s | 02) Pr(A) Pr(@)) Pr(d,,) . (58)

In the context of calibration exclusively on long baselines for
which the contribution from diffuse emission is small, o-% can be
replaced with the estimated power in faint point sources missing
from V5™ given in Section 3.7.1.

In a similar manner to that described in Section 3.7.1, in a
scenario where there is significant uncertainty on the level of power
in the incomplete or uncertain component of the calibration sky
model, rather than using a fixed estimate, one could instead jointly
sample from a parametrised model for the power in the incomplete
or uncertain component of the calibration sky model, our image-
space model coefficients and the calibration parameters. In the limit
that we place our prior on the average power in the incomplete or un-
certain component of the calibration sky model, the corresponding
posterior is given by,

Pr(A, @, By, 8,07 | Vo) o Pr(VO | A, &), Dy, )
X Pr(s | 02) Pr(0-2) Pr(A) Pr(®;) Pr(®y,) . (59)
2

Here Pr(o-g,) is our prior on 0.

3.8 Degenerate gain model parametrisation and spectral
smoothness priors

In addition to sky-based and redundant calibration, which use an
astrophysical sky model to constrain the antenna gain solutions
exclusively or in part, respectively, the antenna gains can also be
constrained using alternate techniques that are independent of an
astrophysical sky model. Techniques in this category include:

(i) calibration with an artificial sky signal generated by a satellite (e.g.

Neben, et al. 2016) or drone (e.g. Jacobs, et al. 2017),

(i1) electric and electromagnetic co-simulations of the receiver system

(e.g. Fagnoni et al. 2021),

(iii) reflectometry measurements of the feed-dish system (e.g.

Patra, et al. 2018).

(iv) three-position-switch calibration of individual antennas (e.g.

Monsalve et al. 2017; Roque, Handley, & Razavi-Ghods 2020;
Murray et al. in prep.).

While current applications of the first three of these techniques
may not have sufficient accuracy to calibrate interferometric arrays
for precision 21 cm cosmology applications, they can, nevertheless,
provide valuable constraints on the expected level of fluctuations
associated with the antenna gain amplitudes (see e.g. Patra, et al.
2018; Fagnoni et al. 2021). We are not aware of published applic-
ations of the fourth technique to interferometric calibrations, but
future constraints on the calibration parameters derived from three-
position-switch calibration can be incorporated in BAYESCAL, in a
similar manner to the first three, as described below.

In general, to leverage this a priori knowledge, one can incor-
porate these constraints as spectral priors on the gain solutions. For
absolute calibration of a redundantly calibrated data set, this corres-
ponds to placing priors on the spectral dependence of the redundant
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gain degeneracy function fy;s(A, @y, @yy). In this work, we focus on
placing priors on the power in amplitude fluctuations of the redund-
ant gain degeneracy function; however, one could also place priors
on the tip and tilt phases of the redundant gain degeneracy function
in an analogous manner, given an equivalent set of constraints on
these parameters.

The power spectrum of amplitude fluctuations of the redundant
gain degeneracy function P4(n) (with n the Fourier conjugate to
frequency v) is given by the Fourier transform of the redundant gain
two-point correlation function,

(A& () (av)? = sp(n =1 Pa() (60)

with A(z) the Fourier transform of A(v) and 6p the Dirac delta
function. This follows from the Einstein—Wiener—Khinchin the-
orem, which states that the autocorrelation function of a wide-sense-
stationary random process has a spectral decomposition given by
the power spectrum of that process (e.g. Chatfield 1989). Strictly
speaking, the angular brackets denote an ensemble average; how-
ever, since we are estimating the power in amplitude fluctuations of
the redundant gain degeneracy function specific to a given observing
setup, we expect the power to be reasonably approximated as con-
stant on short timescales (see Section 3.5). Thus, we approximate
the ensemble distribution as a delta function.

Given this, a Fourier parametrisation of the degenerate amp-
litudes provides a natural space to encode priors on the power in
these gain fluctuations as a function of frequency. Although, here,
we do not impose an informative prior on the distribution of the
tip-tilt phases, for mathematical convenience we nevertheless ap-
ply the same reparametrisation to them. We, therefore, rewrite our
degeneracy function parameters A (v), @;(v) and @,,(v) using a
new set of parameters that describe the amplitudes of their Fourier
decompositions, Ar(77), @; (1) and @, r(17), with,

A=F A 61)
& =Flo
&, =F '@, .

Here, F~! is a one dimensional inverse Fourier transform matrix
mapping from the "halfcomplex’ representation!’ of the 7-domain
of the gain parameters to their frequency-domain representations,
and Af, ®; r and @,  are N,, X 1 real column vectors encoding
the “halfcomplex’ representation of Fourier degenerate gain amp-
litude, tip- and tilt-phase parameters, respectively. This formulation
enables one to sample from a 3 X N,, dimensional space of real num-
bers when calibrating the degenerate gain parameters and enforces
that A, @; and @, are real for arbitrary, real A, @; g and @, .
When converting between the degenerate gain parameters and their
Fourier transforms, we assume the NumpY (e.g. Harris et al. 2020)
‘backwards’ discrete Fourier transform normalisation convention,
such that the inverse transform differs from the forward transform by
the sign of the exponential argument and by a 1/n; normalisation
prefactor, and F~'F = I with I the identity matrix.

We assume a uniform prior on the parameters defining the
Fourier decomposition of the tip-tilt phases such that Pr(®; f ;) =
(P F,jmax — PrF,jmin) Pr(Pmp,j) = 1/(PmF,jmax —
D, F,j,min), Where j indexes over the N, tip-tilt phases and

15 Here, we adopt the terminology used by rrrw3 (Frigo & Johnson 2005),
with "halfcomplex’ referring to the non-redundant half of the complex output
for the one-dimensional discrete Fourier transform of the real frequency-
domain gain parameters.

MNRAS 000, 000-000 (0000)

High fidelity Bayesian calibration 15

Dy F,j.min> PmF,j,min a0d Dy F jmax: Pm,F,jmax are the min-
imum and maximum values of the jth Fourier tip phase and tilt
phases, respectively, and we impose a Gaussian prior encoding the
power in amplitude fluctuations of the redundant gain degeneracy
function as,

Pr(Afg | (riF) oc

1
\/det(zAF)

1 _ _ _
xexp |~ (Ap = Ap) T3 (Ap - Ap)| . (62)

Here, Af is a vector of amplitudes defining the expectation value
of the Fourier decomposition of A, a'iF is the vector of expec-
ted variances of Ag and X 4. is a diagonal matrix with elements
ZAF,ij = 6IJO'§F

Designing antennas with minimal spectral structure in their
gains is one way in which existing 21 cm cosmology experiments
aim to mitigate spurious spectral structure in calibration solutions
derived from sky-based or redundant calibration with an incomplete
sky model. This approach leverages the fact that, if the true level
of the fluctuating spectral structure in the antenna gains is known
a priori to be much smaller than the ratio of the power between
the foregrounds and 21 cm signal, fitting a simple flat bandpass
will be sufficient to obtain calibration solutions that do not impart
statistically significant foreground systematics.

However, in practice, a range of effects, including dish-feed re-
flections, micro-reflections along the cable connecting the antenna
to the correlator, and reflections at the ends of those cables due
to imperfect impedance matching, make meeting this exacting spe-
cification challenging (e.g. Patra, et al. 2018; Fagnoni et al. 2021).
If this specification is not met, fitting a smooth bandpass solution
that is unable to model the true gain fluctuations in the bandpass
will introduce similar systematic effects, in analyses trying to isol-
ate the 21 cm signal from the foregrounds with approaches relying
on the spectral smoothness of the foregrounds in the data, to those
introduced when fitting the data with the product of a general gain
model and an incomplete sky model.

At this stage, the joint probability density of our image-space
model coefficients and our Fourier space calibration parameters,
conditioned on the raw data, the expected power in the fitted calib-
ration model and the power in fluctuations in the degenerate gain
amplitude, is given by,

bs 2 2
Pr(Ap, @1 F, P .6 | VO, 05,07 ) o«

Pr(Vo™ | A, @y, By 5, &) Pr(e | 07)
X Pr(Af | 073 ) Pr(®yp) Pr(®pp),  (63)

where Pr(Vobs | A, D) g, Py, £, €) is given by Equation 38 repara-
metrised in terms of the Fourier gain parameters of Equation 61.
Here, we have assumed U'E‘F is known a priori. If the uncertainties

associated with estimates of (riF are significant, one can, instead,
jointly sample from o4, with Ag, @; g, @, r and &, in an analog-
ous manner to that outlined for the high power spectral uncertainty
regime at the end of Section 3.7. In that case, the joint probability
density of our image-space model coefficients, Fourier space calib-
ration parameters and power in fluctuations in the degenerate gain
amplitude, conditioned on the raw data and the expected power in
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the fitted calibration model, is given by,

Pr(Afp, @1, B . 8,05 | VO, 07) o
PI‘(VObS | A]::, ¢1,Fv ¢m,p,8) PI‘(S | 0'35)
X Pr(Ap | o3 ) Pr(o} ) Pr(®p) Pr(Ppp) . (64)

2y : 2
where PI‘(O’AF) is our prior on o7y .

3.9 Analytic marginalisation over the sky-model parameters

In principle, one could sample from
Pr(Ap, @, P, & | VO, 02, o-iF) in Equation 63 in the
case of redundant calibration, or an equivalent set of parameters
for sky-based calibration (see Section 2.2), using a sampling
algorithm that is efficient in a high dimensional space, such as
Hamiltonian Monte Carlo (e.g. Taylor, Ashdown, & Hobson 2008).
Then, the marginal distribution for the calibration parameters
can be derived by numerical marginalisation over the sky-model
parameters. However, by analytically marginalising over the
sky-model parameters and directly sampling from the posterior
probability distribution for the calibration parameters, one can
greatly reduce the dimensionality of the sampling problem.

When calibrating a redundant interferometric array, in partic-
ular, where the majority of the calibration parameters can be de-
rived using the constraints imposed by the requirement of internal
consistency within redundant baseline groups, the total number of
parameters to be sampled from can be dominated by the sky-model
amplitude parameters.

In general, the number of sky-model parameters is propor-
tional to the square of the longest baseline length of the visibilites
being calibrated (which determines the image-domain angular scale
resolved by the measurements), and the number of calibration para-
meters is proportional to the number of frequency channels to be
jointly calibrated. In paper II, 10 channels are jointly calibrated, with
each channel having three redundant calibration parameters. In con-
trast, the resolution of the baselines and the FoV of the sky model
we use for calibration yield O (10%) sky-model amplitude paramet-
ers. In this case, analytic marginalisation results in a greater than
90% reduction in parameters. If longer baselines were calibrated,
this fraction would be larger still.

Analytically marginalising over these parameters significantly
decreases the number of samples that must be drawn from the pos-
terior for reliable inference. Depending on the specific choice of
sampling algorithm, this can translate to a multiple order of mag-
nitude reduction in the number of samples required to explore the
joint posterior of the paramters (e.g. Handley, Hobson & Lasenby
2015a). Additionally, it facilitates exploration of the parameter space
with nested sampling techniques which yield the Bayesian model
evidence as a primary output, thus providing a statistically robust
means to optimize the calibration model for the data set and instru-
ment under consideration.

In order to perform the marginalisation over the sky-model
amplitude parameters, we first simplify our notation by defin-
ing the residual visibility vector §V°Ps = yobs — gMpmysim i
weighted gridded projection on the parameter space of the fitted
visibility model, v = ATN~15VPS | the system matrix map-
ping from our image domain parameters to the fitted model vis-
ibilities, A = I:ImDmerPSC, and the covariance matrix of WObS,
which, assuming one defines their prior on the expected power
in the fitted calibration model in the image domain, is given by

T = ATNTA + %El_n]’l ST and, if instead it is defined in the uv-

domain, is given by ' = ATN"IA + CTSTPT(F,) -] - FrPSC.
In the remainder of this section we assume the prior on the expected
power in the fitted calibration model is defined in the image domain;
however, the derivation proceeds similarly if the prior on the expec-
ted power in the fitted calibration model is defined in the uv-domain.
In that case, one simply substitutes: (i) the appropriate definition of
W, (i) Xy, 67 for Xy 67, and (iii) the conditional parameters
for expected power in the fitted calibration model defined in the
image-domain for those defined in the uv-domain.

Using the above definitions, we can write the log of the joint
posterior in Equation 63 as,

log(Pr(Ag, @) p, @y 7, € | VObS,O'i,,o'f‘F)) =
_ (6VobS)TN—1 (6VobS)
—obs 1
— 6T Ye + 26T 5V ~ log(det(N)) — 5 log(det(Zy, 7))
1 I o B}
- 5 log(det(E4,) = 5 (AF — Ap)' B3 (Ap — Ap) +k . (65)

Here, k is a normalisation factor. The posterior probability distribu-
tion of the parameters is independent of k and, for brevity, we omit
it going forward.

Taking the derivative with respect to & of
log(Pr(AF, @1 5, P F, € | VObS,o%,O'iF)) gives us,

010g(Pr(Af, 1, @y . & | VO™, 02,073 )
oe

= 22Ye+ 25V,
(66)

which can be solved to give the maximum likelihood vector of
coeflicients &,

&=r"15v"" . (67)
Re-expressing Equation 65 in terms of & yields,
log(Pr(Ap, @ f, Py p, & | VO™, 02,07 ) =
— (VP INTI 5V + &7 ve — (s — )T Y (s - &)
1 1

— log(det(N)) — 7 log(det(Zy, 57)) — 5 log(det(Eay))

- l(A AR T2 (AR - AR) . (68)

S VAR = AF)" 2y (AF — AF) -

The 3rd term in this expression can then be integrated with respect

to the Npix s elements of & to give,

~
1]

[+m de exp [—(8 -7 Y(e-8)

= (2n) Nins/2 der(1) 2. (69)

Our marginalised probability distribution for the calibration para-
meters is thus given by,

PT(AF, d)l’F, ¢m,F | VObS’ O-«%;’ O-.i]:) &«
det(N)™!
Vdet(Y) det(Zy, 67) det(Ea;)

x exp|—(5VP)'N~1 (VD) + (5V

——obs

ObS)TT_](6V )

1 - _
- 5(Ar - Ap) 23 (AF - Ap)|.  (70)
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3.10 Marginalising over uncertainties in point source flux
densities

Up to this point, we have assumed that the uncertainties on the
catalogued point sources contributing to V™ are small, such that
the contribution of residual source emission to the measured visib-
ilities, relative to the contribution from unmodelled sources, is also
small. In this case, the residuals can be simply subsumed into our
fitted visibility model V1,

However, if the uncertainties on the flux densities of the sources
contributing to V™ are significant, one can make better use of one’s
a priori knowledge of the positions of the residual source emission
by extending the image domain model to include an additional set
of parameters, defined at the coordinates of the catalogued sources,
which model the misestimated contribution to the visibilities asso-
ciated with their uncertainties.

In this case, assuming there are N 55 catalogued point sources
with uncertain flux-densities contributing to V™, the existing dif-
fuse sky-model parameters, &, can be augmented with an additional
set of model parameters, &g, of length N sg, which describe the
difference between the true and catalogued flux densities of the
sources included in Vi, We construct our prior on the expected
power in the fitted calibration model in the uv-domain by writ-
ing as P, ss the two-dimensional spatial power associated with
catalogued source uncertainties, as €7, 55 our augmented image-
space parameter vector and as Py, s7.55 = Puv, 67 + Pyv,s5
the total two-dimensional spatial power due to incompleteness and
uncertainties associated with emission contributing to Vsim: thys,
we can define an updated power spectral prior incorporating this
contribution as,

1

Pr(gstr, 55 | Puv,or,65) « qos——3
, uv,6T, det(X,, 57.55)

T T -1
Xexp |~ &sy ssTsr ssEuv,6T,05L6T.658sT, 85| - (71)

Here, X,y 67,55,if = %ijPuv,sT,85,j- TsT,65 = [T, Tss] is a
block matrix with T = F;PSC, and Ts5 = F;r,laspéssés. Ff—rfés
and P 55 describe interferometric fringe and primary beam matrices,
respectively, evaluated at the /mn coordinates of the source resid-
uals. Ssg is a matrix encoding the expected spectral structure of
the source residuals with elements S5 ;7 = (v;/ vo)B5S.i, where
i runs over the set of source residuals being fit for, v is a reference
frequency and Bsg, j is a model for the jth source spectral index.

Assuming the errors on the point source flux densities are
Gaussian distributed'®, with standard deviation T§s,j On source
J» a prior on P, s5 can be constructed computationally from
samples of T 5565, where the jth element of 6§ is drawn from the
Gaussian distribution N (0, 0—(235 j) describing the amplitude of the
flux-density residual on the jth c’ataloged point source. For a narrow
prior on Py, ss, such that the spread in power is small relative to
the expected power, one can reasonably approximate it as fixed at its
expectation value, in a similar manner to X;,,, s7. More generally,
one can instead jointly sample from the posterior for the calibration
and sky-model parameters and the power spectrum, in an analogous
manner to that described at the conclusion of Section 3.7.

In order to sample directly from the posterior probability

16 While it is reasonable to assume that the errors on the point source
flux densities follow a Gaussian distribution, the approach described for
deriving a prior for the point source contribution to the residuals is also
applicable for sampling from an arbitrary set of point source flux-densities
error distributions and, thus, it is not a requirement.
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distributions of the calibration parameters, one can analytically
marginalise over these additional model parameters in a similar
manner to that described in Section 3.9. To achieve this, we up-
date the vector and matrix definitions in Section 3.9 to account
for our additional set of sky-model parameters: Y, 57,55 =

i -1 i -1 o0
Asr ssN Aot.s5+Tsr 56X, o1 5516765 and 6V s7 55 =

A;T’(SSN_I(SVOI’S, where Ast 55 = I:ImDmT(;T,(;S. We then pro-
ceed in an identical manner to derive the marginalised probability
distribution for the calibration parameters given the observed visib-
ilities, the two-dimensional spatial power spectrum of the emission
missing from VS™ and the flux density uncertainties on the cata-
logued point sources included in V™, and the power spectrum of

fluctuations in the degenerate gain amplitude as,

Pr(Ap, @) 5, B p | VO, Py 57,65, 04 )
det(N)™! det(Zy,y o7, 55) 7"
Vdet(Cyy, 7, 65) det(Tap)

Xexp —(6vobS)TN—l (6V0bS)+(W%b7§’6S)TT—‘1)’6T ss (W%b;’és)

u
1 i Tyl i
~ 5 (AF —Ap) By (AF - Ap) (. (72)

Alternatively, a similar marginalisation can also be performed
if we define both our priors on the power in both our fitted diffuse
and point source uncertainty models in the image-domain. In this
case, we can write our prior on the expected power in the fitted
calibration model as,

1
Pr(esT,58 | Oim,67,55) & ————oo—
Vdet(Zg, 67, 55)
I 7 -1
X eXp _EsaT,észlm,aT,éssﬁTﬁS - (73)

Here, X, s7,55 is a diagonal matrix with elements given by
Zlm,éT,(iS,ij = 6ij0-lm,5T,($S,j’ where Oim, 8T, 58S, j is the uncer-
tainty on the j-th sky-model parameter and j runs from 1 to Npix s+

ths. Deﬁning Ylm,éT,zSS = A;T,éSN_] A6T,6S + %El_nlq,éT,zSS’
the marginalised probability distribution for the calibration paramet-
ers given the observed visibilities, the amplitude of uncertainties in
our fitted diffuse and point source uncertainty models, and the power
spectrum of fluctuations in the degenerate gain amplitude is given

by,

Pr(AF’ djl,Fy ¢m,F | VObsy Ulzm’(;T’ésy 0-3\]:) &«
det(N)~!

VAt 57,55 det(Epm, o7, 65) det(Tay)

b . ——obs _ bs
xexp |~ (V) INT! (VP )+ (5V'5r 55) X 5755 OV or 65)

1 - _
- 5(Ap - ApT X3 (AF - Ap)|. (74)

3.11 BavEesCaL for sky-based calibration

In the preceding subsections, we derived the data likelihood and
the posterior probability distributions when incorporating a range
of priors in the BAYEsCaL data model, in the context of redundant
calibration, because this minimises the number of calibration para-
meters one must jointly estimate with the sky-model parameters.
This, correspondingly, improves the computational efficiency of the
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analysis. In paper II, we show that BAYESCAL enables recovery of
calibration solutions that are sufficiently high fidelity to remove
calibration-based systematics as a limiting factor in 21 cm signal
estimation. However, these results assume that the array is redund-
ant and, correspondingly, that the relative gain solutions derived
using constraints based on the redundancy of the array are robust.
If the array is assumed to be redundant when in reality it not, this
has been shown to introduce errors into the relative gain solutions
(e.g. Orosz et al. 2019; Choudhuri, Bull, & Garsden 2021) which
will not be corrected by BaAYEsCaL if calibration parameter estim-
ation is limited to the degenerate gain parameters of a redundant
array.

However, there is nothing that fundamentally restricts the
BayesCaL approach of jointly estimating calibration parameters
and the parameters of a statistical model for the flux missing from
ysim o calibrating redundant arrays. Instead, for a non-redundant
array, BAYESCAL can be used to jointly estimate the antenna based
gains of purely sky-based calibration (see Section 2.2) with the
parameters of the statistical model for the flux missing from VSim,

Derivation of a data likelihood for sky-based calibration using
the BaAyEsCaL framework proceeds in an identical manner to that of
Section 3.4, up to Equation 38, at which point, we instead calculate
the likelihood with respect to the full set of antenna gains,

Pr(vaS | gm’s) —
1

. ¥
_ Vobs —gM(ysim 4 Vﬁt
aNvisdet(N) exp[ ( ( ))

Nl (Vobs _Gm(Vsim +Vﬁt))] . (T5)

Equation 75 can be used, in combination with the priors dis-
cussed in Sections 3.5, 3.7, and 3.8, by both redundant and non-
redundant arrays to recover high fidelity calibration solutions; how-
ever, the larger number of gain parameters that must be jointly
estimated makes it more computationally expensive than absolute
calibration of redundantly calibrated visibilities. Thus, if one is cal-
ibrating data from a truly redundant array, it is preferable to perform
relative and absolute calibration independently.

Additionally, if one is calibrating a partially redundant array,
the likelihood can be supplemented with a prior on the parameters
derived from the partial redundancy of the visibilities (see Sievers
2017 and Byrne et al. 2021 for a discussion of this approach). Since
Equation 75 is designed to address the sky-model incompleteness
problem, for a sufficiently accurate V1it, one expects to recover high
fidelity gain solutions without requiring the additional constraints
derived from the partial redundancy of the array. However, for a
sufficiently redundant array, supplementing sky-based BayesCaL
calibration with additional constraints derived from the array re-
dundancy should further reduce the uncertainties on the recovered
parameters. We leave further investigation of this to future work.

4 SUMMARY & CONCLUSIONS

Existing approaches to radio interferometric calibration have been
shown to produce biased calibration solutions containing spurious
spectral structure if the sky model is incomplete (e.g. Barry, et al.
2016; Byrne, et al. 2019). In 21 cm cosmology, a unifying theme
amongst approaches to separating the cosmological signal from the
foregrounds is the use of a priori knowledge of the spectral smooth-
ness of the foreground emission relative to the cosmological signal,

which is expected to fluctuate more rapidly due to inhomogeneit-
ies in the ionization, temperature and density of hydrogen in the
IGM along the line of sight. However, this foundational assumption
is violated when spurious spectral structure in the calibration solu-
tions imparts spectral fluctuations to the bright foreground emission
in the calibrated data. When this occurs, the spectrally fluctuating
component of the data will contain calibration-derived foreground
systematics on the spectral scales of the spurious fluctuations in the
calibration solutions that will prevent unbiased estimation of the 21
cm signal on these scales by spectral means.

In this work, we have introduced a Bayesian framework for in-
terferometric calibration, BAYEsCaL, which is designed to address
this problem by mitigating sky-model incompleteness in the calib-
ration model, enabling recovery of higher fidelity gain solutions.
To achieve this, the BAYEsCAL calibration model is comprised of
(i) a simulated visibility model, V™, which describes the expec-
ted contribution to the observed visibilities associated with a priori
known sky emission (this model component is standard in sky-refer-
enced calibration) and (ii) a fitted visibility model, Vit that models
the contribution to the observed visibilities associated with emis-
sion missing from V™ due to the incompleteness and uncertainties
associated with our limited a priori knowledge of the brightness
distribution of the sky.

We have addressed calibration of visibilities corresponding to
a single instrumental correlation. When deriving Vi, we focus on
modelling the contribution to the observed visibilities associated
with Stokes / emission missing from VM due to the incomplete-
ness and uncertainties associated with our a priori knowledge of the
brightness distribution of the sky. When calibrating short duration
data sets, the flexibility of the intrinsic sky model enables Vit o
approximately account for sky-model incompleteness in polarised
Stokes emission. We describe how Vit can be extended to model
incompleteness in full-Stokes emission. However, this corresponds
to an increased dimensionality of the sky-model parameter space
and, for a fixed spectral structure model over Stokes parameters,
the contributions of the Stokes sky models to a single instrumental
visibility correlation and time are degenerate. In principle, both of
these obstacles can be tackled by placing additional constraints on
the sky-model parameters of Vit for example, by simultaneously fit-
ting visibilities corresponding to the four instrumental correlations
and by jointly fitting for calibration parameters over an extended
time interval. We intend to explore this approach in more detail in
future work.

From the starting point of defining a calibration model in which
the parameters of a fitted visibility model and instrumental calib-
ration parameters are jointly estimated, we have incorporated a
number of novel features that enhance the fidelity of the recovered
calibration solutions and improve the computational efficiency of
the algorithm:

o We have demonstrated how Vit can be constrained using a Gaus-
sian prior encoding either: (i) its expected two-dimensional spatial
power spectrum or (ii) the expected power in the image-domain para-
meters of the fitted calibration model. This eliminates degeneracy
between the jointly estimated calibration and sky-model parameters
and enables more stringent constraints on each.

o In general, sampling jointly from the parameters of Vi and the in-
strumental calibration parameters significantly increases the dimen-
sionality of the optimization problem that must be solved to calibrate
the instrument. However, we have shown how this limitation can be
overcome by analytically marginalising over the sky-model para-
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meters of V1it, allowing one to sample directly from the marginal
posterior probability distribution of the calibration parameters.

e We have demonstrated how the above approach can also be ex-
tended to marginalise over flux-density uncertainties in catalogued
point sources included in V™.

e We have described how priors on the spectral smoothness of the
instrumental gains can be incorporated in the BAYESCAL frame-
work, informed by theoretical and measurement-based constraints,
such as electric and electromagnetic co-simulation and reflecto-
metry measurements of the receiver system. We have also shown
how such priors can be parametrised such that calibration solutions
requiring spurious levels of spectral structure are disfavoured in
a statistically principled manner, without preventing any true low-
level structure in the instrumental gains on small spectral scales
from being calibrated.

e When defining Vit one must specify a model for its spectral
structure. We have described how Bayesian model selection can
be used to determine whether a simple physically motivated model
parametrisation, such as a power law, is sufficient for modelling a
given data set to be calibrated (and, if so, to determine the optimal
power law index) or whether an alternate or more complex spectral
model is preferred.

e If one wishes to simultaneously calibrate multiple time integra-
tions of a data set, we have shown how a temporal model and priors
are simply incorporated in the BAYESCAL framework, enabling one
to take advantage of a priori knowledge constraining the temporal
evolution of the gain solutions. In general, one expects the tem-
poral stability of signal propagation effects and the total duration
over which calibration solutions are simultaneously estimated to
determine the necessary complexity of the temporal model for the
evolution of the gain solutions. Bayesian model selection can again
be used to select between such models in a rigorous manner.

We have derived the posterior probability distribution for the
absolute calibration parameters of a redundantly calibrated array in
the BaYEsCaL calibration framework as our primary case study. In
addition to enabling construction of a theoretically complete sky
model and thus mitigating or removing (for a sufficiently accurate
model for Vfit) spurious spectral structure in the calibration solu-
tions due to sky-model incompleteness, the framework naturally
accounts for and covariantly propagates through to the calibration
parameter estimates the non-uniform uncertainty on the raw visib-
ilities, both due to the varying redundancy of the baseline groups
and to the effect of the antenna gains on the noise in the data. This
enables correct propagation of these uncertainties through to the
calibrated data, which, in turn, is necessary for accurately account-
ing for the uncertainties on astrophysical parameters derived from
the calibrated data.

In this paper, when deriving the posterior probability distribu-
tion for the absolute calibration parameters of a redundantly calib-
rated array, we assume that nominally redundant baselines have per-
fect redundancy (i.e. that the visibility data measured by baselines
in a redundant group is identical barring the noise). In practice, de-
viations from this assumption will occur because of small errors in
antenna positions and differences in antenna voltage patterns across
the array due to perturbations in feed positions and orientations
between antennas and varying levels of mutual coupling between
neighbouring antennas in different parts of the array. Here, we have
additionally described the generalisation of the BAYESCAL calibra-
tion framework to fully sky based calibration, which circumvents
this problem if the parameters of the array are perfectly known;
however, the increased dimensionality of the calibration parameter
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space in this regime will mean a corresponding increase in compu-
tational complexity.

Even if array redundancy is neglected and sky based calibra-
tion is used to solve for all of the calibration degrees of freedom,
one still requires precise a priori knowledge of the voltage beam
patterns and positions of the antennas to avoid introducing spurious
spectral structure into the gain solutions. In practice, these quantities
are known with finite precision. However, at the cost of increased
dimensionality, these model uncertainties can also be accounted for
in the BAYESCAL framework by jointly sampling from the calib-
ration parameters, sky-model parameters and an additional set of
model parameters that describe perturbations to the instrument for-
ward model and which can be constrained by priors derived from
the measurement errors corresponding to the precision with which
the instrument has been characterised. Exploring this approach is
an interesting direction for future analysis.

In addition to redundant plus absolute calibration of perfectly
redundant arrays and purely sky-based calibration of non-redundant
arrays, frameworks for calibrating partially redundant arrays have
been explored in detail in Sievers (2017) and Byrne et al. (2021).
This approach to bridging sky-based and redundant calibration is
complementary to the BAYEsCAL framework developed in this pa-
per, which focuses on explicitly addressing the sky-model incom-
pleteness problem. Combining these two developments provides
another exciting direction for future work.

In paper II, we demonstrate the application of BAYESCAL to
simulated observations in the context of absolute calibration of
data from redundant interferometric arrays. In that paper we show
that this enables recovery of significantly higher fidelity calibration
solutions relative to standard calibration approaches (up to four
orders of magnitude suppression in spurious spectral fluctuations in
the calibration solutions), which is sufficient to reduce calibration-
based foreground systematics to a sub-EoR level on all Nyquist
sampled spectral scales in the data when sky-model incompleteness
is moderate or low.
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Quantity Description Size First Appearance
v . . ) 2x1 Equation 1
Vector of voltages induced in the antenna feeds by the vector electric field due to the source
brightness distribution, evaluated at the antenna
J . o . o ) 2x2 Equation 1
Jones matrix describing the antenna- and, in general, direction-dependent cumulative
product of all propagation effects along the signal path between the emission sources,
antenna and the correlator
) . o 2x1 Equation 1
Vector electric field due to the source brightness distribution
Vpg Polarised visibility vector, for a pair of dual-polarised antennas p and ¢, encoding the four 4x1 Equation 2
correlations of the two voltage signals per antenna induced by the incident electric field at
the antennas
npg Polarised noise vector 4x1 Equation 2
I,mand n Direction cosines Equation 2
q
I Unit vector of direction cosines 3x1 Equation 2
C Coherency vector encoding the four correlations of the two components of the vector 4x1 Equation 2
electric field incident on the antennas, assuming a direction-dependent orthogonal 2D
basis with basis vectors perpendicular to I.
Ipg Matrix describing signal propagation effects on the voltage correlations measured by the 4x4 Equation 2
interferometric baseline between antennas p and g
Jp Jones matrix describing the cumulative product of all propagation effects along the signal 2x2 Equation 3
paths of antennas p to the correlator
Es and E, Component of vector electric field in the directions of é5(I) and é, (1), respectively Equation 4
ésand é, Direction dependent Dec and RA equatorial basis vectors 2x1 Equation 4
I,Q,UandV Stokes parameters Equation 4
J;‘,“‘ Jones matrix describing the cumulative product of antenna-based signal propagation effects 2x2 Equation 5
between the feeds of antenna p and the correlator
Jify Jones matrix describing the cumulative product of sky-based signal propagation effects 2x2 Equation 5
between the source and antenna p
> eometrical phase delay associated with antenna p, relative to a reference position, as a uation
K, G trical phase delay ted with ant p, relative t fi posit Equation 5
function of direction on the sky
olarised gain matrix associated with antenna p and encoding direction-independen X uation
G, Pol d g t ted with ant p and ding direct: dependent 2x2 Equation 5
antenna-based signal propagation effects
E, Polarised voltage beam pattern of antenna p 2x2 Equation 5
Xp Position vector of antenna p 3x1 Equation 5
a Wavelength Equation 5
Gpqg Diagonal (assuming no polarisation leakage between feeds) polarised gain matrix describ- 4x4 Equation 6
ing direction independent signal propagation effects on the voltage correlations measured
by the interferometric baseline between antennas p and g
Ppg Polarised primary beam matrix encoding the direction dependent primary beam response 4x4 Equation 6
of the interferometric baseline between antennas p and g to the sky brightness distribution
expressed in terms of Stokes parameters
cS Stokes coherency vector 4x1 Equation 6
bpg Baseline vector between antennas p and g 3x1 Equation 6
D D-term / feed-error matrix encoding cross-coupling effects 2x2 Below Equation 6
Epg Polarised primary beam matrix associated with the interferometric baseline between an- 4x4 Below Equation 6
tennas p and g
okes transformation matrix X elow Equation
TS Stokes transformat t 4x4  Below Equation 6
é, and é. Time dependent north and east basis vectors 2x1 Equation 7
vl and v§ Component of the voltage vector induced in the feeds aligned with &, and é. by the Equation 7
P P p g gl y q
respective component of the vector electric field, due to the source brightness distribution,
evaluated at the antenna
ynnyne yen Visibilities resulting from north-south feed correlations, east-west with north-south cross- Equation 8
and V¢ correlations, north-south with east-west cross-correlations, and east-west correlations,
respectively
P See Py 4x4 Equation 9
P;j Polarised primary beam matrix element which, for the bases used in this work, encodes Equation 9
the effective primary beam of the baselines coupling Stokes parameter j € [I,Q,U, V],
on the sky, to visibility correlation i € [nn, ne, en, ee]
g;‘, Complex gain associated with north-south feed of antenna p Equation 10
Upg Vector of time-stationary uvw-coordinates #pg = bpg/d = (Upg, Vpg, Wpq) of the 3x1 Equation 10
baseline between antennas p and q.
Vobs Vector of observed visibility data Nyjs X 1 Equation 11
n Noise vector Nyis X 1 Equation 11
y true Vector of ‘true’ visibilities: those that would be observed in the zero-noise limit if instru- Ny X 1 Equation 11

mental gains were unity

Table Al. Lists of variables and their descriptions.
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Quantity Description Size First Appearance
gp Complex gain of antenna p Equation 12
Ny Number of time integrations in the data set Below Equation 12
N, Number of channels in the data set Below Equation 12
Nant Number of antennas in the array Below Equation 12
Ny Number of unique redundant baselines per channel in the array
Nyis Number of visibilities in the data set: Nyis = N¢ Ny Nant(Nant — 1)/2 and Nyjs = Below Equation 12
N N,, Ny, before and after redundant baseline averaging, respectively
> Model complex gain of antenna p Above Equation 13
y model Model for the signal component of the observed visibilities Nyjs X 1 Equation 13
g™ Diagonal matrix of model gain parameters Nyis X Nyis Equation 13
ysim Vector of simulated visibilities encoding one’s best estimate of the true (gain-free) visib- Ny X 1 Equation 13
ilites derived from one’s a priori knowledge of the antenna beam, array layout and emission
sources in the sky under observation
N Covariance matrix of noise on V b Nyis X Nyis Above Equation 15
o Expected noise on the jth visibility Equation 15
m Vector of model gain parameters17 Nant Ny, X 1 Equation 16
Pr(Vobs | g™ Data likelihood for sky calibration Equation 16
hy Model for the redundant gain parameter of antenna p Equation 19
V(‘z“f]’.del Model for the jth redundant visibility in the set of visibilities with the ath unique baseline Equation 19
h™ Vector of model redundant gain parameters'7 Nant Ny X 1 Equation 20
yred Vector of redundant visibilities Nyis X 1 Equation 20
y redsset Vector of unique redundant visibility parameters N¢ Ny Nypx1 Equation 20
Pr(Vobs | pm, yredsety  Data likelihood for redundant calibration Equation 20
H™ Diagonal matrix of redundant calibration parameters Nyis X Nyis Equation 20
A Degenerate gain amplitude for a given time, frequency and polarisation Above Equation 21
¢ and ¢y, Degenerate tip and tilt phase, respectively, for a given time, frequency and polarisation Above Equation 21
v Degenerate absolute phase for a given time, frequency and polarisation Above Equation 21
(U] Vector of degenerate tip-tilt gain phases for a given time, frequency and polarisation 2x1 Above Equation 21
Jant (A, @, ) Antenna degeneracy function Above Equation 21
Juis (A, @) Visibility degeneracy function Above Equation 21
p™ Model degenerate gain matrix Nyis X Nyis Equation 23
A Vector of degenerate gain amplitude parameters'” N, x1 Equation 25
@; and D, Vectors of degenerate gain tip phase and tilt phase parameters!”, respectively N, x 1 Equation 25
u,v and w Vectors of uvw-space coordinates Nyjs X 1 Equation 26
N; Number of image-space coordinates (N, ZZ‘I Npix,s,r; for diffuse emission or -
N, ZL.IZ‘I Nsource,r;» With Nyource,r; the number of sources within the FoV at LST #;,
for point sources)
I,mandn Vectors of direction cosine coordinates 1 X Nim Equation 26
Fg Interferometric fringe matrix Nyis X Nim Equation 26
T;,To, Ty and Ty Vectors of polarised sky brightness temperatures in Stokes 7, Q, U and V, respectively Nim x 1 Equation 26
Pun,7. Pnn,o, Pmu  Polarised primary beam matrices encoding the effective primary beam coupling polarised Ny X Nim Equation 26
and Py, v sky brightness temperatures in Stokes I, Q, U and V/, respectively, to north-south voltage
correlations
G Diagonal matrix encoding direction-independent instrumental gains Nyis X Nyis Equation 27
Hand D Diagonal matrices encoding redundant instrumental gains relative to reference antennas  Nyis X Nyig Equation 28
and degenerate instrumental gains, respectively
A" Diagonal matrix of maximum likelihood redundant calibration parameters Nyis X Nyis Equation 29
0 Set of visibility model parameters Equation 29
vit(@) Fitted visibility model. Nyjs X 1 Equation 29
Pr(®|D, M) Posterior probability distribution of the parameters, ®, given data, D, and a model, M Equation 30
Pr(D|®,M) = L(O) Likelihood of data D, given M and @ Equation 30
Pr(@|M) = n(0) Prior probability distribution of the parameters @ Equation 30
Pr(®@IM)=2Z Bayesian evidence of the model for the data Equation 30
Npix Number of pixels on the HEALPix grid Section 3.4.1
Ocut Zenith angle cut-off defining the field-of-view of the model (8 < 6.), at a given LST Section 3.4.1

Table A1 - continued

17 Here, we list the sizes of the per-instrumental-correlation gain parameter vectors and related matrices for the case that the gain parameters are modelled as
constant over the duration of the data set to be calibrated. If the gain parameters at each integration are modelled as being independent, these dimensionalities
would increase by a factor N;. With a temporal model appropriate for gain parameters with partial temporal correlation (i.e. the absolute value of the correlation
coeflicient of the gain parameters lies between 0 and 1) the dimensionality will lie between these two extremes.
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Quantity Description Size First Appearance
Npix,s.1; Subset of HEALPix pixels within field-of-view at LST, #; Section 3.4.1
pix,s HEALP1x pixels included in the model — defined as the union of pixels Section 3.4.1
that fall within the snapshot field-of-view at each central LST of the
integrations over which the calibration solutions are being jointly estim-
ated
Sy, Spectral model matrix for LST ¢; Npix,s,1; NvX Equation 32
N, Pix,s,t;
Tt?mdel Fitted residual'® brightness temperature image cube model at LST ¢; Npix,s,2; NvX Equation 32
1
& Fitted residual'® sky brightness temperature map model at reference Npix,s,6; X 1 Equation 32
frequency vy and LST ¢;
Econcat Concatenation of fitted residual'® sky brightness temperature models as ZL.IZ‘I Npix,s,1; X Equation 34
a function of LST 1
Cc Concatenation matrix over LST 2,2 Npixs.; ¥ Equation 34
N, Ppix,s
£ Vector of fitted residual'® sky-model parameters Npix,s X 1 Equation 34
o= Zenith angle matrix used in the construction of C NiNpix,s X Equation 35
N, Ppix,s
S Spectral model matrix for all LST of the data set to be calibrated Nim X Equation 37
Zi[\ill Npix,s,ti
oy Expected noise level on a calibrated visibility resulting from a pair of Equation 39
identical antennas individually experiencing equal system noise
N’ Covariance matrix of the noise on the calibrated data Nyis X Nyis Equation 40
O and Og Parameters of degenerate gain amplitude and tip-tilt phase temporal Equation 42
models, respectively
fa(©@a,) and fop (Op ) Degenerate gain amplitude and tip-tilt phase temporal models, respect- Equation 42
ively
Pr(g, O | V°s) Posterior probability distributions for & and @, given the raw data Equation 43
Pr(VO | g, @) Likelihood of the raw data given € and @ Equation 43
Pr(g) and Pr(0,) Prior probability distributions on sky- and temporal-model parameters, Equation 43
respectively
Of Foreground spectral model parameters Equation 44
Pr(A, &, D,,, €, 05 | V"bs) Posterior probability distributions for A, @;, @,,, € and O given the Equation 45
raw data
Pr(VObs | A, &, @, &, Of) Likelihood of the raw data given A, @;, @,,,, € and O¢ Equation 45
Pr(A), Pr(®;), Pr(®,,) and Pr(@y) Prior probability distributions on degenerate gain amplitude, tip-tilt Equation 45
phase and foregrounds spectral model parameters, respectively
P, sT Two dimensional spatial power spectrum of residual'® diffuse emission Ny X 1 Equation 48
Py, T Two dimensional spatial power spectrum of the a priori known compon-  Nyjs X Equation 48
ent of diffuse emission
Py ps,Poisson Two dimensional spatial power spectrum of residual'® Poisson distrib- ~ Nyjs X 1 Equation 49
uted point sources
S Point source flux-density Equation 49
c;_l;/ Differential source count Equation 49
Py ps.clustered Two dimensional spatial power spectrum of residual'® clustered point  Nyjs X 1 Equation 50
sources
w Legendre transform of the point source angular correlation function Equation 50
Zuv, 6T Covariance matrix encoding the Py, s7 estimate of the power spectrum  Nyjg X Nyis Equation 52

Pr(g | Puv,éT)

of Vit
Prior on the image domain calibration model parameters given their
expected two dimensional spatial power spectrum

Equation 52

Table A1 - continued

18 Residual, here, refers to the contribution omitted or mis-modelled in the fixed simulated calibration model and that is fitted with the additional fitted visibility
model component of the calibration model introduced in BAyEsCaL.
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Quantity Description Size First Appearance

Pr(A, @, Dy, € | yobs, P,y sT) Posterior probability distributions for A, @;, @, and & given the raw Equation 53
data and the two-dimensional spatial power spectrum of the residual'®
emission

Pr(Pyy,sT) Prior on the two-dimensional spatial power spectrum of the residual'® Equation 54
emission

Pr(e | Zpm,sT) Prior on the image domain calibration model parameters given their Equation 55
expected covariance matrix

Xim,sT Expected covariance matrix of & Equation 55

Pr(A, @), D, 8 | VO, Zim,sT) Posterior probability distributions for A, @;, @,,, and & given the raw Equation 56
data and the expected covariance matrix of &

O'i,i Variance corresponding to our uncertainty on the ith pixel of the a priori Equation 57
known component of our image domain calibration model

o-i Variance corresponding to the expected RMS uncertainty on the a priori Above Equation 58
known component of our image domain calibration model

Pr(A, @, Dy, € | yobs, o—%) Posterior probability distributions for A, @;, @,,, and & given the raw Equation 58
data and the expected RMS uncertainty on the a priori known component
of our image domain calibration model

Pr(e | 0'(20‘) Prior on the image domain calibration model parameters given the ex- Equation 58
pected RMS uncertainty on the a priori known component of our image
domain calibration model

Pr(A, @, D), €, o-(zq | V"bs) Posterior probability distributions for A, @;, ®@,,,, & and o-(zq given the Equation 59
raw data

Pr(o2) Prior on o2 Equation 59

n Fourier conjugate to frequency, v Equation 60

Pa(n) One-dimensional power spectrum of amplitude fluctuations of the re- Equation 60
dundant gain degeneracy function

F One-dimensional Fourier decomposition matrix !’ N, X N,, Equation 61

Ap, @y and @, p Vectors of Fourier degenerate gain amplitude, tip- and tilt-phase N, X1 Equation 61
parameters!”, respectively

0'12412 Vector encoding the power spectrum of the degenerate gain amplitudes'” N, x 1 Equation 62

ZaAgp Covariance matrix of the degenerate gain amplitudes'’ N, X N, Equation 62

Pr(Ap |0'124F) Gaussian prior encoding the power in amplitude fluctuations of the Equation 62
redundant gain degeneracy function

Pr(Af, @1 F, Py F. € | yobs, 0'(29, 0'1241:) Posterior probability distributions for A, @; g, @, f and & given the raw Equation 63
data, expected uncertainty on the a priori known component of our image
domain calibration model and the one-dimensional power spectrum of
the degenerate gain amplitudes

Pr(®; r) and Pr(®,, F) Prior probability distributions of the Fourier degenerate tip and tilt phase Equation 63
parameters, respectively

Pr(o-f‘F) Prior probability distribution of the power in amplitude fluctuations of Equation 64
the redundant gain degeneracy function

SV s Residual'® visibility vector Nyjs X 1 Equation 65

6_V0bS Weighted gridded projection of the residual'® visibility vector onto the Npix,s X 1 Equation 65
parameter space of the fitted visibility model

A System matrix mapping from the image domain diffuse emission para- ~ Nyjs X Npix s Equation 65
meters to the fitted model visibilities

Y Covariance matrix of W(’bs regularised by Pr(e | Xy, 57) Npix,s X Npix,s Equation 65

& Maximum likelihood vector of image-space coefficients Npix,s X 1 Equation 67

Pr(Ag, @1 F, Py F | yobs, o2, 0'1241:) Marginal posterior probability distribution for the Fourier degenerate Equation 70

gain amplitude and tip-tilt phase parameters given the raw data, expec-
ted uncertainty on the a priori known component of our image domain
calibration model and the one-dimensional power spectrum of the de-
generate gain amplitudes

Table A1 - continued
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Quantity Description Size First Appearance
Nss Number of catalogued point sources with uncertain flux-densities con- Section 3.10
tributing to V' 5im
EsS Vector of sky-model parameters associated with catalogued point Ngg X 1 Section 3.10
sources contributing to V™ with uncertain flux-densities
E5T .58 Vector of sky-model parameters used to model total residual'® emission (Npix,s + Section 3.10
from sky-model incompleteness and uncertainties associated with both  Ngg) X 1
diffuse emission and with catalogued flux-densities of point sources
included in V/Sim
P, ss Vector encoding the two dimensional spatial power spectrum of — Nyj X 1 Above Equation 71
residual'® emission associated with uncertainties in the catalogued flux-
densities of point sources included in V5™
Py 51,58 Vector encoding the two dimensional spatial power spectrum associated ~— Nyjs X 1 Above Equation 71
with the total residual'® emission from sky-model incompleteness and
uncertainties associated with both diffuse emission and with catalogued
flux-densities of point sources included in V$im
Pr(est.55 | Puv,sT,55) Prior on the image domain and point source uncertainty parameters Equation 71
given their expected two dimensional spatial power spectrum
Xuv,5T,58 Covariance matrix encoding the P,,,, 57,55 estimate of the power spec-  Nyis X Nyjis Equation 71
trum of V fit
T Transformation matrix mapping from the image space coefficients of  Nyjs X Npix,s Equation 71
our fitted diffuse calibration model to the model true visibilities
Tss Transformation matrix mapping from the coefficients associated with ~ Nyjs X Nss Equation 71
the catalogued point sources with uncertain flux-densities to the model
true visibilities
Ts1,58 Transformation matrix mapping from the image domain diffuse + un-  Nyjs X Nss Equation 71
certain catalogued point source parameters to the model true visibilities
Ff’rl 59 Interferometric fringe matrix for (_:atalogued point sources with uncertain ~ Nyjs X Nim Below Equation 71
flux-densities contributing to V5™
Pss Primary beam matrix encoding the effective primary beam coupling  Njy X Njy, Below Equation 71
point source flux densities to north-south voltage correlations
Sss Point source spectral model matrix Nim X Nss Below Equation 71
W%b;, 58 Weighted gridded projection of the residual'® visibility vector onto the (Npix,s +  Above Equation 72
diffuse + uncertain catalogued point source parameters space of the Ngg) X1
augmented fitted visibility model
Yuv,56T.68 Covariance matrix of W%b;, sS regularised by  (Npixs +  Above Equation 72
Pr(est,65 | Puv,sT,55) Nss) X
(N Ppix,s +
Nss)
AsT .55 System matrix mapping from the image domain diffuse + uncertain = Nyjg X Above Equation 72
catalogued point source parameters to the fitted model visibilities (Npix,s +
Nss)
Pr(Ag, @1, P F | yobs, P, sT,5 S,O’ﬁF) Marginal posterior probability distribution for the Fourier degenerate Equation 72
gain amplitude and tip-tilt phase parameters given the raw data, two
dimensional spatial power spectrum associated with the expected total
residual'® emission from sky-model incompleteness and uncertainties
associated with both diffuse emission and with catalogued flux-densities
of point sources included in V5™ and the one-dimensional power spec-
trum of the degenerate gain amplitudes
Pr(esT.s5 | Otm.sT.55) Prior on the image domain diffuse and point source uncertainty para- Equation 73
meters given their expected uncertainties
Xim,sT.5S Covariance matrix encoding the estimated uncertainties on the a priori  (Npix s + Equation 73
known component of the diffuse and point source emission Nss) X
(N Ppix,s +
Nss)
Yim,sT.65 Covariance matrix of ng;, sS regularised by  (Npixs +  Below Equation 73
Pr(esT.55 | Otm,6T.55) Nss) X
(N Ppix,s +
Nss)

Pr(Ap, @1, Py | VS

2 2
i, 7,55 T ap)

Marginal posterior probability distribution for the Fourier degenerate
gain amplitude and tip-tilt phase parameters given the raw data, expected
uncertainty on the a priori known component of our image domain cal-
ibration model including catalogued point sources with uncertain flux-
densities contributing to V™, and the one-dimensional power spectrum
of the degenerate gain amplitudes

Equation 74

Table A1 - continued
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