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Bayesian Latent Variable Co-kriging Model in
Remote Sensing for Quality Flagged

Observations
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Jonathan Hobbs

Remote sensing data products often include quality flags that inform users whether the1

associated observations are of good, acceptable or unreliable qualities. However, such2

information on data fidelity is not consistently considered in remote sensing data analy-3

ses. Motivated by observations from the atmospheric infrared sounder (AIRS) instrument4

on board NASA’s Aqua satellite, we propose a latent variable co-kriging model with5

separable Gaussian processes to analyze large quality-flagged remote sensing data sets6

together with their associated quality information. We augment the posterior distribution7

by an imputation mechanism to decompose large covariance matrices into separate com-8

putationally efficient components taking advantage of their input structure. Within the9

augmented posterior, we develop a Markov chain Monte Carlo (MCMC) procedure that10

mostly consists of direct simulations from conditional distributions. In addition, we pro-11

pose a computationally efficient recursive prediction procedure. We apply the proposed12

method to air temperature data from the AIRS instrument. We show that incorporating13

quality flag information in our proposed model substantially improves the prediction14

performance compared to models that do not account for quality flags.15

Supplementary materials accompanying this paper appear online.16

Key Words: Co-kriging; Gaussian process; Markov chain Monte Carlo; Remote17

sensing; Separable covariance function.18

1. INTRODUCTION19

Remote sensing technology provides a wealth of information for understanding geo-20

physical processes with unprecedented spatial and temporal coverage. Remote sensing data21

provide indirect information on these geophysical quantities of interest, which are typically22

estimated or inferred from instrument spectra (Susskind et al. 2003). The heterogeneous23
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nature of the Earth’s atmosphere and surface contributes to remote sensing data records24

with variable quality, which is often documented by the product development teams and25

included as quality flags associated with observations in remote sensing data products (e.g.,26

Thrastarson et al. 2021). These quality flags, instead of providing quantitative uncertainty27

measures for the observations, indicate whether data are of good, acceptable or unreliable28

qualities. When the remote sensing data products are used in a wide range of downstream29

analyses, these quality flags are usually treated in a dichotomous way: Data flagged as unre-30

liable are removed, while the remaining data, no matter how they may be flagged differently31

(e.g., good or acceptable), are combined directly (e.g., Zhu et al. 2015; Ma and Kang 2020b;32

Tian et al. 2020; Waliser et al. 2020). This practice ignores the delicate quality difference33

between observations with different quality flags.34

Our work is motivated by data products from the atmospheric infrared sounder (AIRS)35

instrument on board NASA’s Aqua satellite. The AIRS instrument collects radiance spectra,36

termed Level 1 data products, across the globe in the infrared portion of the spectrum. A37

retrieval algorithm is used to infer atmospheric quantities such as temperature and humid-38

ity from the spectra at 45km× 45km spatial resolution, called the Level 2 data products39

(Susskind et al. 2003). Note that the AIRS Level 2 data products include a quality flag40

(QF) variable: QF value of 0 indicates observations of very good quality, QF value of 141

indicates observations of acceptable quality, and QF value of 2 is deemed to be bad or unre-42

liable. AIRS data products have been used by weather prediction centers around the world43

to improve weather forecasts (Lu and Zhang 2019). They are also used to assess the skill of44

climate models and in applications ranging from volcanic plume detection (Prata and Lynch45

2019) to drought forecasting (Behrangi et al. 2016). Although data with QF value 2 are46

removed from such analyses, AIRS data with QF values of 1 and 0 are combined without47

further consideration of their quality difference indicated by their QF values (e.g., Tian et al.48

2020; Waliser et al. 2020). In this work, we focus on AIRS Level 2 air temperature data49

at 100 different vertical pressure levels which we refer to as 3D (longitude, latitude and50

vertical atmospheric pressure level) air temperature observations. Previous work (Cohen51

2003; Wunch et al. 2011) has mainly focused on determining the quality flag from the52

observed satellite data and then analyzing the populations separately. Instead, our work here53

focuses on using the information from quality-flagged remote sensing data to build a unified54

statistical model that allows for inference from all available data.55

Since the quality flags indicate variable fidelity associated with remote sensing obser-56

vations, a natural statistical model to explore the dependencies of successive fidelity lev-57

els is the autoregressive co-kriging model (Kennedy and O’Hagan 2000). Essentially, this58

autoregressive co-kriging method considers a scalar and an additive discrepancy to model59

observations with a sequential fidelity order. Several important variations of this model60

have been proposed. Qian and Wu (2008) consider the scale discrepancy as a function of61

the input space by casting it as a Gaussian process (GP) which produces nonstandard con-62

ditional posteriors. Perdikaris et al. (2017) relax the autoregressive structure by using deep63

learning ideas to introduce nonlinear relationships, but the computational cost to train the64

model is significantly increased. Konomi and Karagiannis (2021) propose a Bayesian aug-65

mented hierarchical co-kriging procedure which makes possible the analysis of non-nested66

input and non-stationary output. These methods rely on Gaussian processes and do not scale67
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well with large data sets. Meanwhile, these methods are initially designed for deterministic68

computer models and thus do not include a term for measurement errors which is highly69

recommended in spatial statistics (Cressie 1993; Stein 1999).70

Spatial statistical methods for big data have been evolving over the past two decades due71

to emergence of massive spatial data sets. Banerjee (2017) and Heaton et al. (2019) provide a72

good overview of these methods with comparisons. Briefly we distinguish between low-rank73

approximation methods (Banerjee et al. 2008; Cressie and Johannesson 2008), approximate74

likelihood methods (Stein et al. 2004; Gramacy and Apley 2015), sparse structures (Lindgren75

et al. 2011; Nychka et al. 2015; Ma and Kang 2020a; Peruzzi et al. 2020), multiple-scale76

approximation (Sang and Huang 2012; Katzfuss 2017) and lower-dimensional conditional77

distributions (Vecchia 1988; Stein et al. 2004; Datta et al. 2016; Katzfuss and Guinness78

2021). Directly applying these methods within the autoregressive co-kriging framework for79

multi-fidelity remote sensing data is complicated. In particular, when the locations of data80

at different fidelity levels are not nested, the likelihood function no longer benefits from81

the Markovian property assumed in the model, making it complex to apply the methods82

aforementioned for massive spatial data (Konomi and Karagiannis 2021). Recently, Cheng83

et al. (2021) have extended the nearest neighbor Gaussian process (NNGP) to analyze multi-84

level data sets by introducing a nested NNGP reference set for each level. Although this85

method can handle multi-fidelity data, its way to define the reference sets makes it more86

appropriate when low-fidelity data are observed homogeneously over the spatial domain,87

but not suitable for the AIRS data described in Sect. 2 when the observations with the same88

QF values are clustered spatially.89

In this paper, we propose a latent variable co-kriging model with separable Gaussian90

processes, which is able to account for multi-fidelity remote sensing data with measurement91

errors. Noticing that for AIRS Level 2 data products the latitude and longitude of observa-92

tion locations are fixed across different vertical pressure levels, we adopt a multiplicative93

(separable) covariance function for the horizontal and vertical dimensions. Such a multi-94

plicative (separable) covariance function is widely used in spatial statistics (Banerjee et al.95

2014) and uncertainty quantification for computer experiments (Gramacy 2020). For AIRS96

air temperature data, the resulting covariance matrix can be decomposed into a Kronecker97

product of a purely horizontal (i.e., latitude and longitude) correlation matrix and a purely98

vertical (i.e., pressure level) correlation matrix. This can alleviate the computational bot-99

tleneck related to Gaussian process likelihood evaluation and spatial prediction (Genton100

2007; Rougier 2008; Bilionis et al. 2013; Guillas et al. 2018; Ma et al. 2019). However, the101

introduction of the different QF values as well as missing data destroys this Kronecker prod-102

uct representation of the separable covariance structure. To facilitate efficient inference, we103

introduce an imputation mechanism within the Markov chain Monte Carlo (MCMC) pro-104

cedure to take advantage of the latent variable representation and the data structure, which105

enables us to decompose the large covariance matrices into two separate computationally106

efficient components. Moreover, we propose a computationally efficient Monte Carlo recur-107

sive prediction procedure to make spatial prediction at high fidelity level. The proposed108

prediction procedure relies on a Student t process where we integrate uncertainty regarding109

the unknown “missing data” and parameters. We apply this proposed method to analyze110

level 2 AIRS air temperature data. Extensive numerical results demonstrate that compared111
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to methods that ignores the different QF values of data, our method provides more accurate112

predictions but also remains computationally efficient.113

The rest of the paper is organized as follows. In Sect. 2, we introduce the quality-flagged114

AIRS 3D air temperature data studied in this work. Section 3 presents the latent variable co-115

kriging model. In Sect. 4, we give details on Bayesian inference including spatial prediction116

by constructing an augmented posterior using imputation of latent variables. In Sect. 5, we117

apply the proposed method to analyze the AIRS air temperature data and demonstrate its118

inferential advantages compared to methods ignoring the quality flags. We offer conclusions119

and discussion in Sect. 6.120

2. DESCRIPTION OF THE AIRS AIR TEMPERATURE DATA121

The atmospheric infrared sounder (AIRS) instrument on board NASA’s Aqua satellite122

measures radiance spectra in infrared channels along the satellite’s polar orbit. These infrared123

channels are sensitive to thermal emission from the atmosphere. The AIRS retrieval algo-124

rithm first obtains cloud properties and effective cloud-cleared radiance (CCR) and then125

uses CCR to further infer atmospheric properties including temperature and humidity at126

different vertical pressure levels at 45 km × 45 km spatial resolution. A single 45 km ×127

45 km areal unit is known as a field of regard (FOR) in Susskind et al. (2003). AIRS Level128

2 data are further sectioned into pieces called granules. Each granule is roughly 2250km129

× 1650 km and thus contains ns = 1350 FORs horizontally at each pressure level. There130

are a total of n p = 100 pressure levels in AIRS support data products. Therefore, within131

a granule, there are potentially 1350 × 100 = 135, 000 in the three-dimensional domain132

(horizontally and vertically).133

It has been noted that heterogeneity of clouds yields substantial variability in the radiance,134

resulting in varying quality of the retrievals. Therefore, most retrieved remote sensing data135

for atmospheric properties including air temperature are accompanied by a quality flag136

(QF) variable. The AIRS convention is that QF values of 0 indicate best quality data, mostly137

retrieved under a clear-sky condition, values of 1 indicate acceptable quality, and values of138

2 are deemed bad quality. The AIRS Level 2 products we analyze in this paper are extracted139

from the AIRS Version 6 retrieval support product (Kahn et al. 2014). Further details on the140

data products have been recently documented for the AIRS Version 7 products (Thrastarson141

et al. 2021).142

In this paper, we focus on the 3D (longitude, latitude and pressure level) Level 2 air143

temperature data product from AIRS, and we choose to focus on a specific granule over the144

subtropical eastern Pacific Ocean. This region’s weather variability spans multiple cloud145

regimes that present multiple challenges for remote sensing. Therefore, the region corre-146

sponding to this particular granule has been chosen to be the study region in works assessing147

retrievals from AIRS and other instruments such as the MAGIC validation campaign (Zhou148

et al. 2015; Kalmus et al. 2015). Figure 1 displays the air temperature in our study region at149

two different pressure levels, together with their associated QF values. Note that the pres-150

sure levels are ordered in increasing values of pressure, with higher pressures closer to the151

surface, while lower pressure levels correspond to higher altitudes in the atmosphere. The152
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Figure 1. Top: AIRS retrieved temperature (units are Kelvin) on two different pressure levels, a pressure level

10 (P = 1.2972 hPa) and b pressure level 90 (P = 958.5911 hPa). Bottom: Retrieved temperature quality flag on

two different pressure levels, c pressure level 10 (P = 1.2972 hPa) and d pressure level 90 (P = 958.5911 hPa) .

number of observations with QF value of 1 (i.e., acceptable quality) and 2 (i.e., bad quality)153

increases as we move from low to high pressure levels. Panels (c) and (d) in Fig. 1 show154

that there are a lot more observations with QF value 1 and 2 at pressure level 90 (pressure155

level value P = 958.5911 hPa) compared to those at pressure level 10 (pressure level value156

P = 1.2972 hPa). Meanwhile, it is clear that observations with the same QF values form157

spatial clusters instead of being distributed uniformly in the region, which is expected as158

lower-quality observations do not occur randomly but are related to heterogeneous cloud159

properties at medium or fine spatial scales. Because observations with QF value of 2 are not160

reliable data, we treat them as missing values in our analysis. For simplicity, we will refer161

to air temperature data with QF value of 1 as low-fidelity observations and those with QF162

value of 0 as high-fidelity observations.163
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3. THE LATENT VARIABLE CO-KRIGING MODEL164

Let x = (s, p) ∈ X = S × P represent the input space with the s = (s1, s2) ∈ S ⊂ R
2

165

denoting the longitude and latitude of the FOR centers and p ∈ P ⊂ R denoting the166

pressure level values. Let {(zL(x), zH (x)) : x ∈ X } represent the observation of low fidelity167

(QF value 1, subscript L) and high fidelity (QF value 0, subscript H ). We assume the data168

observed at input x is contaminated by additive random noise: zL(x) = yL(x) + εL(x) and169

zH (x) = yH (x) + εH (x). Specifically, we model the measurement error of the low fidelity170

as εL(x) ∼ N (0, τ 2
L) and the measurement error of the high fidelity as εH (x) ∼ N (0, τ 2

H ).171

For the latent low- and high-fidelity processes yL(x) and yH (x), we assume that they are172

linked via the latent variable autoregressive co-kriging model as follows:173

yL(x) = hL(x)T βL + wL(x),174

yH (x) = ρyL(x) + δH (x) (1)175

= ρyL(x) + hH (x)T βH + wH (x),176
177

where ρ represents a constant scalar discrepancy and δH (x) represents the additive discrep-178

ancy between yL(x) and yH (x). Here, hL(·) and hH (·) are pH and pL known covariates to179

describe the mean structure of yL(x) and δH (x), respectively. Utilizing the structure of the180

observations, we use a tensor product of separate basis functions for the spatial locations181

and the pressure level values. Suppose, we wish to use mL ,p basis functions to capture the182

pressure dependence of the lower fidelity mean: hL ,p = {hL ,p,1(p), . . . , hL ,p,mL ,p
(p)}.183

We choose also mL ,s basis functions to capture the spatial dependence of the mean:184

hL ,s = {hL ,s,1(s), . . . , hL ,s,mL ,s
(s)}. These can be, for example, any polynomial basis func-185

tion of the model or any suitable functions. The global basis functions for the low and high186

fidelity level are formed from the tensor products: hL = hL ,s ⊗hL ,p and hH = hH,s ⊗hH,p.187

Thus, the number of bases function is now mL = mL ,smL ,p and m H = m H,sm H,p for the188

low and the high level, respectively. This strategy allows the construction of separate basis189

functions, in lower dimensions, with the help of the tensor product. Correspondingly, βL190

and βH are the unknown vectors of coefficient vectors. Finally, we model the latent wH (·)191

and wL(·) as mutually independent Gaussian processes: wL(·) ∼ G P(0, σ 2
L RL(·, ·; θL))192

where σ 2
L is the variance and RL(·, ·; θL) is a correlation function with parameters θL at193

fidelity level L . Similarly, wH (·) ∼ G P(0, σ 2
H RH (·, ·, θH )), but independent of wL(·).194

Note that we can generalize the scalar discrepancy to be a polynomial function of pressure195

and space. However, this may increase the parametric space significantly and we have not196

observed accuracy differences in our application. The simple Markovian condition with197

constant scalar parameter translates to the conditional representation of the coregionalization198

covariance function (Banerjee et al. 2014).199

We define σ 2 = (σ 2
L , σ 2

H ), τ 2 = (τ 2
L , τ 2

H ), and β = (βL ,βH ), θ = (θL , θH ). A direct200

Bayesian inference can be computationally costly when the number of the observations is201

large. The computational complexity of the likelihood is O(n3
s n3

p) flops, and the parameters202

of the model cannot be expressed in closed form. For more details, see Supplementary203

Material S1.204
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To overcome this computational issue, we assume that the covariance function can be205

expressed in a multiplicative (separable) form RL(x, x′; θL) = RL ,s(s, s′; θL ,s)RL ,p(p, p′;206

θL ,p) and RH (x, x′; θH ) = RH,s(s, s′; θH,s)RH,p(p, p′; θH,p). This multiplicative (sepa-207

rable) model requires the specification of correlation functions for space and atmospheric208

pressure for each of the two fidelity levels: L and H . To ensure the well conditioning of209

the correlation matrices involved in the calculations, we add nugget effects for the spatial210

component and for the atmospheric pressure component. In the literature, these values are211

usually fixed based on a cross-validation exploration and they are expected to be typically212

small (of the order of 10−6). In practice, considering these parameters as unknown and213

estimating them from the data not only improves the stability of the computations but also214

can lead to better predictive accuracy as shown in our application.215

Based on a preliminary study on AIRS data, for both levels of fidelity, we choose a216

product exponential correlation function:217

R·,s(s, s′|θ·,s) = exp

(

−

2
∑

i=1

∣

∣si − s′
i

∣

∣

φ·,i,s

)

+ g2
·,sδ(s, s′) (2)218

R·,p(p, p′|θ·,p) = exp

(

−

∣

∣p − p′
∣

∣

φ·,p

)

+ g2
·,pδ(p, p′), (3)219

220

where θ·,s = (φ·,s, g2
·,s), θ·,p = (φ·,p, g2

·,p), φ·,1,s controls the spatial dependence strength221

in longitude, φ·,2,s controls the spatial dependence strength in latitude, and φ·,p controls the222

spatial dependence strength in the pressure level values. Also g2
·,s accounts for the nugget223

effect in the spatial component and g2
·,p accounts for the nugget effect in the atmospheric224

pressure component. More intricate covariance functions such as the Matérn family (Cressie225

1993; Stein 1999; Banerjee et al. 2014) or non-stationary models (Paciorek and Schervish226

2006; Konomi et al. 2014) can also be used within the proposed latent variable co-kriging227

model.228

Despite this flexible and general representation of the separable covariance function,229

the covariance matrix of the observations or the latent variables cannot be represented as230

a Kronecker product of separate components. This is simply because none of the input231

combinations of low- and high-fidelity data can be represented as a tensor product. The232

presence of missing data for both quality flags destroys the Kronecker product representation233

of the covariance matrices and makes the computations impossible in practice.234

4. BAYESIAN INFERENCE235

We make computations and practical implementation possible by constructing an aug-236

mented posterior which is based on the imputation of latent variables. The augmented237

posterior takes advantage of the tensor product of the locations and the pressure level values238

in a granule. Based on this augmented posterior, we are also able to construct a MCMC pro-239

cedure with mostly closed-form conditional distributions for parameter inference as well as240

a computationally efficient recursive prediction procedure.241
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4.1. AUGMENTED POSTERIOR242

Let {DH , DL , DM } be the observed input location set of QF 0, QF 1 and QF 2, respectively.243

The union of these three input D̃ = DH
∪ DL

∪ DM represents a granule and is defined in244

a grid format. In addition, assume the {zH , zL , zM } be the observed output set of quality245

flag 0, quality flag 1 and quality flag 2, respectively. Assume sets of points D̊L such that246

D̊
L

= DH
∪ DM is defined as the relative complement of DL in D̃. Further, assume sets of247

points D̊H such that D̊
H

= DL
∪ DM is defined as the relative complement of DH in D̃.248

Let z̊L = zL(D̊L) and z̊H = zH (D̊H ) be the missing output values of the temperature at249

the corresponding input points in the low-fidelity (quality flag 1) and high-fidelity (quality250

flag 0) data, respectively. We refer to { z̊L , D̊
L
} and { z̊H , D̊

H
} as the missing data set. We251

also refer to { z̃L , D̃} and { z̃H , D̃} as the complete data set of the low and high fidelity level,252

respectively.253

Assume that w̃L is the latent variables of the low fidelity level (QF 1) obtained in D̃ and254

w̃H is the latent variables of the high fidelity level (QF 0) obtained in D̃. The covariance255

function of both w̃L and w̃H is defined in a grid where we can take advantage of the256

Kronecker product representation of the separable covariance function. For simplicity in257

the formulation below, let & = (θ ,β, ρ, σ 2, τ 2), w̃ = (w̃L , w̃H ), and z̃ = ( z̃L , z̃H ). We258

assign a prior distribution on the parameter (&, w̃), such as:259

p(&, w̃) = p(βL , σ 2
L)p(θL)p(ρ,βH , σ 2

H )p(θH )p(τ 2
L)p(τ 2

H )p(w̃L |θL)p(w̃H |θH ).260

The GP parameters are assumed a priori independent of each other for different fidelity261

level data. Within each fidelity level, we choose non-informative priors for hyper-parameters262

(βL , σ 2
L) and ((βH , ρ), σ 2

H ) and φ·,s ,φ·,p, g2
·,s , and g2

·,p are considered to be independent263

truncated Gamma distributions.264

The joint posterior distribution of the above model given observations z = (zL , zH ) is:265

p(&, w̃, z̊|z) ∝ p( z̊|&, w̃, z)p(z|&, w̃)p(w̃|θ)p(&)266

= f ( z̃L |θL ,βL , τ 2
L , w̃L) f ( z̃H |θH ,βH , ρ, τ 2

H , w̃H , w̃L) (4)267

× p(&L)p(w̃L |θL)p(&H )p(w̃H |θH ),268
269

where the conditional distributions f ( z̃L |·) and f ( z̃H |·) are independent multivariate Gaus-270

sian probability density functions. The joint posterior distribution of w̃ can be factorized in271

two parts, because the proposed augmentation artificially creates the same design for both272

latent variables. The Markovian condition induces the required conditional independence.273

Given the independent specification of the prior, it is easy to see that the augmented posterior274

is also factorized into two conditionally independent parts. Note that p(&, w̃, z̊|z) admits275

the posterior of interest p(&, w|z) as marginal by construction, and hence leads to the same276

Bayesian analysis.277
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4.2. MCMC SAMPLER278

We design a MCMC sampler, targeting the augmented posterior, that involves a279

random permutation scan of blocks updating [ z̊|z, θ , σ 2,β, τ 2], [w̃| z̃, θ , σ 2,β, τ 2],280

[β, σ 2, τ 2| z̃, w̃, θ ] from a direct Gibbs sampler with closed-form distributions, and281

[θ | z̃, w̃,β, σ 2, τ 2] from a Metropolis–Hastings (M–H) step. We are not only reducing282

computational complexity based on the covariance structure, but also are able to find283

closed-form conditional distributions for σ 2
L |θL , τ 2

L , w̃, σ 2
H |θH , τ 2

H , w̃, τ 2
L |σ 2

L , θL , z̃, w̃ and284

τ 2
H |σ 2

H , θH , z̃, w̃ and do not need a high-dimensional M–H that can slow down convergence.285

Details regarding the MCMC blocks are explained below.286

The full conditional posterior of w̃L is normal w̃L | . . . ∼ N

(

µw̃L
, Rw̃L

)

and w̃H is287

normal w̃H | . . . ∼ N

(

µw̃H
, Rw̃H

)

, where288

µw̃L
= Rw̃L

[ 1

τ 2
L

I(z̃L − HLβL) +
1

τ 2
H

I(ρ−1(z̃H − HH βH − w̃H ) − HLβL)

]

(5)289

Rw̃L
=

( 1

τ 2
L

I +
1

τ 2
H

I +
1

σ 2
L

R−1
L,s ⊗ R−1

L, p

)−1
, (6)290

µw̃H
= Rw̃H

1

τ 2
H

In(z̃H − HH βH − ρ(HLβL + w̃L)), (7)291

Rw̃H
=

( 1

τ 2
H

I +
1

σ 2
H

R−1
H,s ⊗ R−1

H, p

)−1
. (8)292

293

The availability of w̃L and w̃H makes the computation of the missing variables easy294

since both [ z̊L |w̃L ,βL , τL ] and [z̊L |w̃L ,βL , τL ] follow independent normal distribution295

with constant diagonal variance. The conditional posterior π(β, ρ, σ 2, τ 2|z̃, w̃, θ) has the296

form:297

βL |z̃, w̃, σ 2, θ ∼ N

(

β̂L , V̂
∗

b,L

)

(9)298

(ρ,βH )|z̃, w̃, σ 2, θ ,βL ∼ N

(

(ρ̂, β̂H ), V̂
∗

b,H

)

(10)299

σ 2
L |w̃, σ 2, θ ,β ∼ I G

(

âσL
, b̂σL

)

(11)300

σ 2
H |w̃, σ 2, θ ,β ∼ I G

(

âσH
, b̂σH

)

(12)301

τ 2
L |z̃, w̃,β ∼ I G

(

âτL
, b̂τL

)

(13)302

τ 2
H |z̃, w̃,β ∼ I G

(

âτH
, b̂τH

)

, (14)303

304

where the hatted quantities are given in Supplementary Section S2 Eqs. (3)–(14). The condi-305

tional posterior p(θL |w̃L , σ 2
L) and p(θH | z̃, w̃, σ 2

H ) cannot be sampled directly. Conditional306

independence in (4) implies that θL and θH can be simulated by running in parallel two307
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Metropolis–Hastings algorithms each of them targeting distributions. These full conditional308

distributions are known up to some normalizing constant:309

p(θL |w̃L , σ 2
L ) ∝ p(g2

L )p(φL )σ−1
L |RL ,s |

−1/2|RL ,p|
−1/2exp

{

−
1

2σ 2
L

w̃T
L (R−1

L,s ⊗ R−1
L, p)w̃L

}

,310

p(θH |w̃H , σ 2
H ) ∝ p(g2

H )p(φH )σ−1
H |RH,s |

−1/2|RH,p|
−1/2exp

{

−
1

2σ 2
H

w̃T
H (R−1

H,s ⊗ R−1
H, p)w̃H

}

.311

312

In general, the whole sampler can be described as a Metropolis-within-Gibbs sampler. This313

is a computationally efficient sampler since avoids the inversion of big matrices and also314

most of the parameters are updated via a closed-form conditional distribution.315

4.3. PREDICTION316

Assume there is available a MCMC sample SN = (w̃, σ 2, θ , τ 2,β) generated from317

the MCMC sampler in Sect. 4.2. The central limit theorem can be applied to facilitate318

inference as the proposed sampler is aperiodic, irreducible, and reversible (Roberts and319

Rosenthal 2004). The proposed latent variable co-kriging model with separable covariance320

structure (LVCS) allows inference to be performed for the “missing” output ẙH at input321

points in D̊ H . Inference on ẙH can be particularly useful when the retrieval algorithm has322

been unable to generate reliable output due to the presence of clouds (QF = 2). The323

marginal posterior distribution of ẙH , along with its expectations, can be approximated324

via standard Monte Carlo (MC) using the generated samples { ẙH }. Alternatively, point325

estimates of ẙH at D̊ H can be approximated by the more accurate Rao–Blackwell MC326

estimator E( ẙH |zL , zH ) ≈
1
N

∑N
j=1 µ̊

( j)

H , where {µ̊
( j)

H } is the j th mean MCMC realization327

for ẙH .328

To retrieve the temperature values yH (D∗) at unmeasured input points D∗, we propose329

a Monte Carlo recursive prediction procedure which is able to facilitate fully Bayesian330

predictive inference on the output. We first obtain yL(D∗) and then use it to obtain yH (D∗).331

A direct prediction of yH (D∗) can be computationally not feasible since the prediction332

distribution of the quality flag 0 cannot be simplified as it happens for the joint prediction333

distribution. The conditional distribution [( yL(·), yH (·))|w̃L , w̃H , θ , σ 2,β, ρ] inherits a334

conditional independence similar to the likelihood due to the augmentation of the latent335

variable (ẘL , ẘH ). Hence, after integrating out β, ρ and σ 2 we have Student T processes336

(STP) for the conditional representation as:337

yL(·)|w̃L , θL ∼ STP
(

µ
∗
L(·|w̃L , θL), σ̂ 2

L R̂∗
L(·, ·|θL), 1 + ñ

)

; (15)338

yH (·)|yL(·), w̃, θH ∼ STP
(

µ∗
H (·|w̃, θH ), σ̂ 2

H R̂∗
H (·, ·|yL(·), θH ), 1 + ñ

)

, (16)339

340

where341

µ̂∗
L(x |w̃L , θL) = HL(x; w̃L)β̂L + RL(x, D̃)R−1

L (D̃, D̃)w̃L342

µ̂∗
H (x |w̃H , θH ) = µ̂∗

L(x |w̃L , θL) + HH (x; w̃H )β̂H + RH (x, D̃)R−1
H (D̃, D̃)w̃H343

344
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and345

R̂∗
L(x, x′|θL) = RL(x, x′) − RL(x, D̃)R−1

L (D̃, D̃)R⊤
L (x′, D̃)346

+
[

HL(x) − RL(x, D̃)R−1
L (D̃, D̃)HL(D̃)

]

ÂL347

×

[

HL(x′) − RL(x′, D̃)R−1
L (D̃, D̃)HL(D̃L)

]⊤

348

R̂∗
H (x, x′| yL , θH ) =RL(x, x′) − RH (x, D̃)R−1

L (D̃, D̃)R⊤
H (x′, D̃)349

+
[

L H (x; yL) − RH (x, D̃)R−1
H (D̃, D̃)L H (D̃; yL)

]

ÂH350

×

[

L H (x′; yL) − RH (x′, D̃)R−1
H (D̃, D̃)L H (D̃H ; yL)

]⊤

351

352

for x, x′ ∈ X , and ÂL = (HT
L R−1

L (D̃, D̃)HL)−1, L H (·; yL) =
[

HH (·), yL(·))
]

,353

ÂH = (LT
H R−1

H (D̃, D̃)L H )−1, R−1
L (D̃, D̃) = RL ,s ⊗ RL ,p, R−1

H (D̃, D̃) = RH,s ⊗ RH,p,354

RL(x, D̃) = (RL ,s(s, D̃) ⊗ RL ,p(p, D̃)), and RH (x, D̃) = (RH,s(s, D̃) ⊗ RH,p(p, D̃)).355

The proposed prediction procedure integrates uncertainty regarding the unknown “miss-356

ing data” and parameters. It is computationally preferable compared to a one-step prediction,357

based on the prediction distribution of the high fidelity only, because it allows the parallel358

inversion of smaller covariance matrices with sizes ns × ns and n p × n p while the others359

require the inversion of a large covariance matrix of size nsn p × nsn p . Moreover, it is able360

to recover the whole predictive distribution and its moments.361

5. DATA ANALYSIS AND RESULTS362

This section conducts a full analysis of the AIRS data set described in Sect. 2 using363

the proposed latent variable co-kriging model with separable covariance structure (LVCS).364

We compare LVCS with two alternatives that ignores the flag values: (a) the latent variable365

separable Gaussian process (SGP) model and (b) the non-separable additive approximate366

Gaussian process (AAGP) (Ma et al. 2019). The SGP is a special case of our model, assuming367

only one level and ignoring the quality flag information. SGP is an extended version of the368

separable model proposed in Bilionis et al. (2013), since we account for spatial error. For369

both SGP and AAGP, data with QF values 0 and 1 are combined to fit the corresponding370

model. Analyses are performed in MATLAB R2020a, on a computer with specifications371

(intelR i7-3770 3.4GHz Processor, RAM 8.00GB, MS Windows 64bit). In addition, we372

consider two variations for each of the three models: a) fix the variance of the nugget effects373

(g2
· ) within the correlation functions based on a cross-validation exploration and b) sample374

g2
· within the MCMC procedure as explained in Sect. 4.2.375

Each granule has 135, 000 estimated temperature values of three different quality flags.376

Since the vertical pressure levels for atmospheric variables increase in an exponential order,377

we take a logarithmic transformation of the pressure level values. In each specific FOR, the378

temperature is taken vertically at 100 distinct pressure level values. Pressure level values379

with non-available (NA) data are removed prior to the analysis. These pressure level values380
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are below the surface pressure and correspond to structurally missing/undefined data due to381

physical constraints.382

We start by testing our proposed model in a granule of August 1 of 2013 within the383

MAGIC validation campaign (Zhou et al. 2015). The last 4 of the distinct pressure levels384

have only NA data, so we consider only 96 distinct pressure levels in our analysis. Figure S1a385

shows the temperature as a function of the log of pressure level values for a collection of386

FORs with only QF 0, and Figure S1b shows the temperature as a function of pressure level387

values for FORs with variable quality flags. From these plots as well as Figure 1, one can388

observe that the QF 1 and 2 data are more common in higher vertical pressure levels (closer389

to the sea surface) within the vertical profile.390

To simulate a realistic missing data (i.e., with QF 2) scenario, we randomly select testing391

data in a block of input. Since missing observations are more common in higher vertical392

atmospheric pressure values (close to the sea surface), we only consider vertical atmospheric393

pressure values higher than 114.0070 hPa (pressure level greater than 47). Evaluation of394

predictive performance is based on mean squared prediction errors (MSPE), coverage prob-395

ability of the 95% equal tail credible interval (CVG(95%)), average length of the 95% equal396

tail credible interval (ALCI(95%)) and continuous rank probability score (CRPS) (Gneiting397

and Raftery 2007).398

Based on the relationship of the log pressure values with the data in Figure S1, we chose399

polynomial basis functions of degree three for the log pressure level. Since we do not observe400

a spatial structure of the mean of temperature given a pressure level, we chose a constant401

mean for the spatial basis. The basis functions of the complete data are created based on the402

Kronecker product of these two bases. Based on an empirical study between three different403

covariance functions, the square exponential, exponential and the 5/2 Matérn, we chose404

the exponential covariance function. For all the tested days and models, the exponential405

covariance function gave the best prediction performance.406

We apply the same specifications for all three models, the proposed LVCS, the separable407

model, and the AAGP. To speed up computations in the AAGP, we specify a grid of knots:408

15 knots for pressure level, 8 knots for longitude and 6 for latitude. In total, we use 720409

knots for the predictive process part and the same specification for the separable part.410

For the Bayesian inference of the three models on the unknown parameters βL ,βH , we411

assigned independent Normal prior distributions with zero mean and large variances. We412

used inverse Gamma priors for the spatial and noise variances σ 2
L , σ 2

H , τ 2
L , τ 2

H as I G(2, 1).413

The range correlation parameters in space are assigned a uniform prior U (0, 100), and the414

range correlation parameters in logarithmic pressure level value a uniform prior U (0, 20).415

For all three models, we ran the MCMC sampler as described in Sect. 3 with 25, 000416

iterations where the first 5000 iterations were discarded as burn-in. For all the parameters of417

the three models, the MCMC converges within the first 2, 000 iterations. The convergence418

of the MCMC sampler for each parameter was assessed from their associated trace plots.419

Table 1 shows the results with the prediction performances for each model when we420

assume an unknown nugget effect (g2
· ) within the correlation functions as described in Sect. 3421

and when we fix it to 10−6. Based on the MSPE and CRPS, the proposed LVCS kriging422

gives better prediction results than the separable kriging and the AAGP for both fixed and423

random nugget effects cases. Making the nugget effect random improves the predictability424
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Table 1. Method comparisons

Model Nugget MSPE CRSP CVG 95% ALCI 95% Time (h)

SGP Fixed 0.2714 0.3011 84.9% 1.8113 3.973

Random 0.2503 0.2974 89.2% 1.9213 5.977

AAGP Fixed 0.2783 0.3361 91.7% 2.089 65.402

Random 0.2482 0.3361 92.3% 2.139 96.419

LVCS Fixed 0.1341 0.2323 92.9% 1.58 7.801

Random 0.1081 0.2270 96.1% 1.63 10.432
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Figure 2. Scatter plot of predicted values against held-out testing data for the last three pressure levels values

using two different models: a Separable model, and b the proposed latent variable co-kriging model with separable

covariance structure (LVCS) .

for all models. The proposed LVCS has smaller MSPE and CRPS than both the separable425

kriging and the AAGP kriging. Specifically, the MSPE of the proposed model is less than426

half of both AAGP and separable model. The LVCS has nominal coverage probability close427

to 0.95 and short interval length for the 95% credible interval. The separable model and the428

AAGP kriging have very similar MSPE which indicates that AIRS data have a separable429

covariance structure. The computational time for the AAGP is almost 10 times slower. It430

is worth pointing out that we can improve the computational time of AAGP by decreasing431

the number of predictive process knots. However, this may result in missing a potential432

non-separable small-scale variation.433

To better demonstrate the prediction benefit of accounting for the quality flag into our434

model, we plot the predicted temperature values against held-out temperature values for435

pressure level values between 750 hPa and 850 hPa using: (a) Figure 2a, the model which436

ignores the quality flag of the data, and (b) Fig. 2b, the proposed LVCS model which accounts437

for different quality flags. From these scatter plots, it is clear that accounting for the different438

quality of the retrievals improves predictions. Specifically the predicted temperature values439

of the proposed LVCS scattered in a narrower interval around the 45 degree straight red line.440

The fact that the predicted values when ignoring the fidelity level are still scattered around441

the 45 degree straight red line indicates that the flag one observations may be unbiased442

estimates of the temperature with bigger variance.443
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Figure 3. a AIRS air temperature data (units in Kelvin), b corresponding quality flag values, c predicted means

of the temperature with quality flag value 0, d prediction standard error .

Figure 4. a Predicted means of the temperature (units are Kelvin) at 265 hPa with quality flag value 0, b prediction

standard error .
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Table 2. MSPE (in Kelvin) for multiple dates of two different models (a) ignoring the quality flag and (b) the

proposed LVCS (which accounts for the quality flag)

Model Aug. 1 Aug. 4 Aug. 6 Aug. 8 Aug. 9

Ignoring quality flag SGP 0.2503 0.2963 0.6080 0.2668 0.2309

Proposed LVCS 0.1081 0.1603 0.2901 0.1203 0.0985

We can reconstruct the 3D observations with the high fidelity (quality flag 0). Given444

the MCMC sample from fitting the model, the reconstruction based on the quality flag 0445

data is automatic and does not require additional computational burden. Figure 3a shows446

the observed temperature values of mixed quality flags at vertical pressure level 827 hPa447

(pressure level 89). Figure 3b shows the corresponding quality flag values of the data based448

on the locations. Figure 3c shows the quality flag 0 predicted mean values of the temperature449

at vertical pressure level 827 hPa using the proposed recursive prediction procedure. The450

two images have a lot of similarities with more significant differences when the quality451

flag values are equal to 2 (Fig. 3b). Also the proposed procedure can take into account the452

parameter uncertainty as well as the nugget effects. Figure 3d shows the predictive variance453

of the predicted values. There is a clear association of the variance with the quality flag454

values and the spatial proximity as they are shown in Fig. 3b.455

Within the boundaries of a granule, we can also use the proposed procedure to predict456

the air temperature values at an unmeasured vertical pressure level different from those 100457

levels in AIRS data products, i.e., interpolating vertically and horizontally. Given the MCMC458

values obtained in fitting of the model, we can find the predictive distribution for any location459

and vertical pressure value. With 20, 000 posterior samples of model parameters, the total460

computing time to make prediction for a vertical pressure level at the specified granule461

locations is about 145.5 seconds based on MATLAB 2020 on a laptop with specifications462

described above. For example, Fig. 4a shows the predicted temperature and Fig. 4b shows463

the associated standard deviation for unmeasured vertical pressure level value 265 hPa which464

corresponds to pressure level between 60 and 61.465

Within the study region of the subtropical eastern Pacific Ocean, we repeat the proposed466

model and inference for five different granules on different days in August 2013. Two467

different models are considered: (a) the SGP which ignores the quality flag and (b) the468

proposed LVCS which accounts for the quality flag. Because the AAGP gives similar results469

to the SGP and it is computationally more expensive, we discard it from this analysis. This470

is also a strong evidence of the separable covariance structure between coordinates and471

atmospheric pressure for the AIRS observation. We follow the same computational strategy472

as explained above where the MCMC is run in a sequence for both models. Table 2 shows473

that the MSPE applying the LVCS is consistently almost half to the MSPE if we ignore474

the different flag quality. These results strengthen our modeling approach to account for475

different quality flags when we analyze AIRS temperature data sets.476
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6. CONCLUSIONS AND DISCUSSION477

In this paper, we propose a latent variable co-kriging model with separable Gaussian478

processes (LVCS) to analyze 3D AIRS air temperature data with different quality flags from479

NASA’s AIRS instrument. We propose an MCMC procedure with an imputation mecha-480

nism which takes advantage of the 3D input structure to facilitate efficient computation. By481

applying our method to the AIRS data, we demonstrate that incorporating the quality-flagged482

information into statistical modeling and data analysis can provide substantial inferential483

benefits. Unlike other methods for NASA’s AIRS mission in the literature (e.g., Tian et al.484

2020; Waliser et al. 2020), we allow for different fidelity and missing data. Our methodol-485

ogy provides a coherent framework for the combined use of remote sensing retrievals with486

variable quality in both the horizontal and vertical directions. This capability can bolster the487

utility of observations from AIRS and next-generation infrared sounder instruments, partic-488

ularly in challenging observing conditions such as the subtropical ocean regions illustrated489

in this work.490

Our LVCS model can be generalized for larger spatial data sets over multiple granules.491

For example, we may apply a computationally efficient method such as low-dimensional492

conditional approximation (e.g., Datta et al. 2016; Katzfuss and Guinness 2021) for both493

horizontal and vertical components in the separable covariance function. It is also possible494

to extend our method for multi-fidelity spatiotemporal remote sensing data by adding the495

temporal dependence and considering 4D data (longitude, latitude, vertical pressure level496

and time). Extending the LVCS modeling framework for multivariate multi-fidelity data497

could also prove to be fruitful.498

The current LVCS model assumes a linear relationship between low and high fidelity499

levels. One direction in future research is to extend this work by borrowing the idea of deep500

Gaussian process in Perdikaris et al. (2017) and Ming et al. (2021) so that we can incor-501

porate nonlinear dependence structure into the model. Future directions include extending502

the proposed method into a multivariate setting by using similar ideas to parallel partial503

autoregressive co-kriging Ma et al. (2022). In addition, the LVCS modeling framework can504

be applied in observing system uncertainty experiments (Hobbs et al. 2017; Turmon and505

Braverman 2019; Braverman et al. 2021; Ma et al. 2021), in particular when surrogates with506

different fidelity levels and computational efficiency are used to perform forward uncertainty507

propagation and inverse calibration for remote sensing data products.508

SUPPLEMENTARY MATERIAL509

Code for accessing the data used in this manuscript can be found in: https://github.510

com/L2UQ/airs_products. MATLAB code for the proposed method: The “JABES_LVCS”511

file contains the main code (written in MATLAB) to perform the proposed latent variable512

co-kriging methods described in the article.513
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