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Bayesian Latent Variable Co-kriging Model in
Remote Sensing for Quality Flagged
Observations
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Jonathan HOBBS

Remote sensing data products often include quality flags that inform users whether the
associated observations are of good, acceptable or unreliable qualities. However, such
information on data fidelity is not consistently considered in remote sensing data analy-
ses. Motivated by observations from the atmospheric infrared sounder (AIRS) instrument
on board NASA’s Aqua satellite, we propose a latent variable co-kriging model with
separable Gaussian processes to analyze large quality-flagged remote sensing data sets
together with their associated quality information. We augment the posterior distribution
by an imputation mechanism to decompose large covariance matrices into separate com-
putationally efficient components taking advantage of their input structure. Within the
augmented posterior, we develop a Markov chain Monte Carlo (MCMC) procedure that
mostly consists of direct simulations from conditional distributions. In addition, we pro-
pose a computationally efficient recursive prediction procedure. We apply the proposed
method to air temperature data from the AIRS instrument. We show that incorporating
quality flag information in our proposed model substantially improves the prediction
performance compared to models that do not account for quality flags.

Supplementary materials accompanying this paper appear online.

Key Words: Co-kriging; Gaussian process; Markov chain Monte Carlo; Remote
sensing; Separable covariance function.

1. INTRODUCTION

Remote sensing technology provides a wealth of information for understanding geo-
physical processes with unprecedented spatial and temporal coverage. Remote sensing data
provide indirect information on these geophysical quantities of interest, which are typically
estimated or inferred from instrument spectra (Susskind et al. 2003). The heterogeneous
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nature of the Earth’s atmosphere and surface contributes to remote sensing data records
with variable quality, which is often documented by the product development teams and
included as quality flags associated with observations in remote sensing data products (e.g.,
Thrastarson et al. 2021). These quality flags, instead of providing quantitative uncertainty
measures for the observations, indicate whether data are of good, acceptable or unreliable
qualities. When the remote sensing data products are used in a wide range of downstream
analyses, these quality flags are usually treated in a dichotomous way: Data flagged as unre-
liable are removed, while the remaining data, no matter how they may be flagged differently
(e.g., good or acceptable), are combined directly (e.g., Zhu et al. 2015; Ma and Kang 2020b;
Tian et al. 2020; Waliser et al. 2020). This practice ignores the delicate quality difference
between observations with different quality flags.

Our work is motivated by data products from the atmospheric infrared sounder (AIRS)
instrument on board NASA’s Aqua satellite. The AIRS instrument collects radiance spectra,
termed Level 1 data products, across the globe in the infrared portion of the spectrum. A
retrieval algorithm is used to infer atmospheric quantities such as temperature and humid-
ity from the spectra at 45kmx 45km spatial resolution, called the Level 2 data products
(Susskind et al. 2003). Note that the AIRS Level 2 data products include a quality flag
(QF) variable: QF value of 0 indicates observations of very good quality, QF value of 1
indicates observations of acceptable quality, and QF value of 2 is deemed to be bad or unre-
liable. AIRS data products have been used by weather prediction centers around the world
to improve weather forecasts (Lu and Zhang 2019). They are also used to assess the skill of
climate models and in applications ranging from volcanic plume detection (Prata and Lynch
2019) to drought forecasting (Behrangi et al. 2016). Although data with QF value 2 are
removed from such analyses, AIRS data with QF values of 1 and 0 are combined without
further consideration of their quality difference indicated by their QF values (e.g., Tian et al.
2020; Waliser et al. 2020). In this work, we focus on AIRS Level 2 air temperature data
at 100 different vertical pressure levels which we refer to as 3D (longitude, latitude and
vertical atmospheric pressure level) air temperature observations. Previous work (Cohen
2003; Wunch et al. 2011) has mainly focused on determining the quality flag from the
observed satellite data and then analyzing the populations separately. Instead, our work here
focuses on using the information from quality-flagged remote sensing data to build a unified
statistical model that allows for inference from all available data.

Since the quality flags indicate variable fidelity associated with remote sensing obser-
vations, a natural statistical model to explore the dependencies of successive fidelity lev-
els is the autoregressive co-kriging model (Kennedy and O’Hagan 2000). Essentially, this
autoregressive co-kriging method considers a scalar and an additive discrepancy to model
observations with a sequential fidelity order. Several important variations of this model
have been proposed. Qian and Wu (2008) consider the scale discrepancy as a function of
the input space by casting it as a Gaussian process (GP) which produces nonstandard con-
ditional posteriors. Perdikaris et al. (2017) relax the autoregressive structure by using deep
learning ideas to introduce nonlinear relationships, but the computational cost to train the
model is significantly increased. Konomi and Karagiannis (2021) propose a Bayesian aug-
mented hierarchical co-kriging procedure which makes possible the analysis of non-nested
input and non-stationary output. These methods rely on Gaussian processes and do not scale
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well with large data sets. Meanwhile, these methods are initially designed for deterministic
computer models and thus do not include a term for measurement errors which is highly
recommended in spatial statistics (Cressie 1993; Stein 1999).

Spatial statistical methods for big data have been evolving over the past two decades due
to emergence of massive spatial data sets. Banerjee (2017) and Heaton et al. (2019) provide a
good overview of these methods with comparisons. Briefly we distinguish between low-rank
approximation methods (Banerjee et al. 2008; Cressie and Johannesson 2008), approximate
likelihood methods (Stein et al. 2004; Gramacy and Apley 2015), sparse structures (Lindgren
et al. 2011; Nychka et al. 2015; Ma and Kang 2020a; Peruzzi et al. 2020), multiple-scale
approximation (Sang and Huang 2012; Katzfuss 2017) and lower-dimensional conditional
distributions (Vecchia 1988; Stein et al. 2004; Datta et al. 2016; Katzfuss and Guinness
2021). Directly applying these methods within the autoregressive co-kriging framework for
multi-fidelity remote sensing data is complicated. In particular, when the locations of data
at different fidelity levels are not nested, the likelihood function no longer benefits from
the Markovian property assumed in the model, making it complex to apply the methods
aforementioned for massive spatial data (Konomi and Karagiannis 2021). Recently, Cheng
etal. (2021) have extended the nearest neighbor Gaussian process (NNGP) to analyze multi-
level data sets by introducing a nested NNGP reference set for each level. Although this
method can handle multi-fidelity data, its way to define the reference sets makes it more
appropriate when low-fidelity data are observed homogeneously over the spatial domain,
but not suitable for the AIRS data described in Sect. 2 when the observations with the same
QF values are clustered spatially.

In this paper, we propose a latent variable co-kriging model with separable Gaussian
processes, which is able to account for multi-fidelity remote sensing data with measurement
errors. Noticing that for AIRS Level 2 data products the latitude and longitude of observa-
tion locations are fixed across different vertical pressure levels, we adopt a multiplicative
(separable) covariance function for the horizontal and vertical dimensions. Such a multi-
plicative (separable) covariance function is widely used in spatial statistics (Banerjee et al.
2014) and uncertainty quantification for computer experiments (Gramacy 2020). For AIRS
air temperature data, the resulting covariance matrix can be decomposed into a Kronecker
product of a purely horizontal (i.e., latitude and longitude) correlation matrix and a purely
vertical (i.e., pressure level) correlation matrix. This can alleviate the computational bot-
tleneck related to Gaussian process likelihood evaluation and spatial prediction (Genton
2007; Rougier 2008; Bilionis et al. 2013; Guillas et al. 2018; Ma et al. 2019). However, the
introduction of the different QF values as well as missing data destroys this Kronecker prod-
uct representation of the separable covariance structure. To facilitate efficient inference, we
introduce an imputation mechanism within the Markov chain Monte Carlo (MCMC) pro-
cedure to take advantage of the latent variable representation and the data structure, which
enables us to decompose the large covariance matrices into two separate computationally
efficient components. Moreover, we propose a computationally efficient Monte Carlo recur-
sive prediction procedure to make spatial prediction at high fidelity level. The proposed
prediction procedure relies on a Student t process where we integrate uncertainty regarding
the unknown “missing data” and parameters. We apply this proposed method to analyze
level 2 AIRS air temperature data. Extensive numerical results demonstrate that compared
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to methods that ignores the different QF values of data, our method provides more accurate
predictions but also remains computationally efficient.

The rest of the paper is organized as follows. In Sect. 2, we introduce the quality-flagged
AIRS 3D air temperature data studied in this work. Section 3 presents the latent variable co-
kriging model. In Sect. 4, we give details on Bayesian inference including spatial prediction
by constructing an augmented posterior using imputation of latent variables. In Sect. 5, we
apply the proposed method to analyze the AIRS air temperature data and demonstrate its
inferential advantages compared to methods ignoring the quality flags. We offer conclusions
and discussion in Sect. 6.

2. DESCRIPTION OF THE AIRS AIR TEMPERATURE DATA

The atmospheric infrared sounder (AIRS) instrument on board NASA’s Aqua satellite
measures radiance spectra in infrared channels along the satellite’s polar orbit. These infrared
channels are sensitive to thermal emission from the atmosphere. The AIRS retrieval algo-
rithm first obtains cloud properties and effective cloud-cleared radiance (CCR) and then
uses CCR to further infer atmospheric properties including temperature and humidity at
different vertical pressure levels at 45 km x 45 km spatial resolution. A single 45 km x
45 km areal unit is known as a field of regard (FOR) in Susskind et al. (2003). AIRS Level
2 data are further sectioned into pieces called granules. Each granule is roughly 2250km
x 1650 km and thus contains ny; = 1350 FORs horizontally at each pressure level. There
are a total of n,, = 100 pressure levels in AIRS support data products. Therefore, within
a granule, there are potentially 1350 x 100 = 135, 000 in the three-dimensional domain
(horizontally and vertically).

It has been noted that heterogeneity of clouds yields substantial variability in the radiance,
resulting in varying quality of the retrievals. Therefore, most retrieved remote sensing data
for atmospheric properties including air temperature are accompanied by a quality flag
(QF) variable. The AIRS convention is that QF values of 0 indicate best quality data, mostly
retrieved under a clear-sky condition, values of 1 indicate acceptable quality, and values of
2 are deemed bad quality. The AIRS Level 2 products we analyze in this paper are extracted
from the AIRS Version 6 retrieval support product (Kahn et al. 2014). Further details on the
data products have been recently documented for the AIRS Version 7 products (Thrastarson
et al. 2021).

In this paper, we focus on the 3D (longitude, latitude and pressure level) Level 2 air
temperature data product from AIRS, and we choose to focus on a specific granule over the
subtropical eastern Pacific Ocean. This region’s weather variability spans multiple cloud
regimes that present multiple challenges for remote sensing. Therefore, the region corre-
sponding to this particular granule has been chosen to be the study region in works assessing
retrievals from AIRS and other instruments such as the MAGIC validation campaign (Zhou
et al. 2015; Kalmus et al. 2015). Figure 1 displays the air temperature in our study region at
two different pressure levels, together with their associated QF values. Note that the pres-
sure levels are ordered in increasing values of pressure, with higher pressures closer to the
surface, while lower pressure levels correspond to higher altitudes in the atmosphere. The
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Figure 1. Top: AIRS retrieved temperature (units are Kelvin) on two different pressure levels, a pressure level
10 (P = 1.2972 hPa) and b pressure level 90 (P = 958.5911 hPa). Bottom: Retrieved temperature quality flag on
two different pressure levels, ¢ pressure level 10 (P = 1.2972 hPa) and d pressure level 90 (P = 958.5911 hPa) .

number of observations with QF value of 1 (i.e., acceptable quality) and 2 (i.e., bad quality)
increases as we move from low to high pressure levels. Panels (c) and (d) in Fig. 1 show
that there are a lot more observations with QF value 1 and 2 at pressure level 90 (pressure
level value P = 958.5911 hPa) compared to those at pressure level 10 (pressure level value
P = 1.2972 hPa). Meanwhile, it is clear that observations with the same QF values form
spatial clusters instead of being distributed uniformly in the region, which is expected as
lower-quality observations do not occur randomly but are related to heterogeneous cloud
properties at medium or fine spatial scales. Because observations with QF value of 2 are not
reliable data, we treat them as missing values in our analysis. For simplicity, we will refer
to air temperature data with QF value of 1 as low-fidelity observations and those with QF
value of 0 as high-fidelity observations.

:-9': Journal: 13253 Article No.: 00530 [ TYPESET [_]DISK [_JLE [_] CP Disp.:2023/1/20 Pages: 19 Layout: Special




164

165

166

167

168

170

171

172

173

178

179

180

181

182

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

B. A. KONOMI ET AL.

3. THE LATENT VARIABLE CO-KRIGING MODEL

Letx = (s, p) € X = S x P represent the input space with the s = (s1, 52) € S C R?
denoting the longitude and latitude of the FOR centers and p € P C R denoting the
pressure level values. Let {(z1 (X), zg (X)) : X € X'} represent the observation of low fidelity
(QF value 1, subscript L) and high fidelity (QF value 0, subscript H). We assume the data
observed at input x is contaminated by additive random noise: z7 (X) = yr(x) + €1 (x) and
zg(X) = yp(x) + €y (x). Specifically, we model the measurement error of the low fidelity
aser(x) ~ N(O, r%) and the measurement error of the high fidelity as ey (x) ~ N (0, 7:121).

For the latent low- and high-fidelity processes yy (x) and yy (x), we assume that they are
linked via the latent variable autoregressive co-kriging model as follows:

y(x) =h ()" B + wr (%),
YHX) = pyr (X) + S (X) (1)
= pyL(X) + hg )T By + wu (%),

where p represents a constant scalar discrepancy and 6 g (x) represents the additive discrep-
ancy between yr (x) and yg (x). Here, hy (-) and hg (-) are py and pp known covariates to
describe the mean structure of y; (x) and § g (x), respectively. Utilizing the structure of the
observations, we use a tensor product of separate basis functions for the spatial locations
and the pressure level values. Suppose, we wish to use m  , basis functions to capture the
pressure dependence of the lower fidelity mean: Ay , = {hg p.1(p),.. -7hL,p,mL’p (p)}.
We choose also my, ; basis functions to capture the spatial dependence of the mean:
hps ={hrs1(8),...,hL sm, ()} These canbe, for example, any polynomial basis func-
tion of the model or any suitable functions. The global basis functions for the low and high
fidelity level are formed from the tensor products: iy, = hy s®hy pandhy = hy s@hy p.
Thus, the number of bases function is now my, = my ;my, , and myg = my ;mpy,, for the
low and the high level, respectively. This strategy allows the construction of separate basis
functions, in lower dimensions, with the help of the tensor product. Correspondingly, S,
and B are the unknown vectors of coefficient vectors. Finally, we model the latent w (-)
and wy () as mutually independent Gaussian processes: wy (-) ~ G P(0, G%RL(‘, 5 61))
where crg is the variance and Ry (-, -; 01) is a correlation function with parameters 67, at
fidelity level L. Similarly, wgy (-) ~ G P (0, 0121, Ry (-, -, 0m)), but independent of wy (-).

Note that we can generalize the scalar discrepancy to be a polynomial function of pressure
and space. However, this may increase the parametric space significantly and we have not
observed accuracy differences in our application. The simple Markovian condition with
constant scalar parameter translates to the conditional representation of the coregionalization
covariance function (Banerjee et al. 2014).

We define 02 = (ag, oé), 2 = (tf, t%,), and B8 = (B, Br), 0 = (0, 0p). A direct
Bayesian inference can be computationally costly when the number of the observations is
large. The computational complexity of the likelihood is O(nfnf,) flops, and the parameters
of the model cannot be expressed in closed form. For more details, see Supplementary
Material S;.
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To overcome this computational issue, we assume that the covariance function can be
expressed in a multiplicative (separable) form Ry (x, X'; 0.) = R (s, §'; 0L s)RL, »(p, P
0r.p) and Ry (x,X';0p) = Ry s(s,8"; 0 s)Ru, p(p, p's Ou,p). This multiplicative (sepa-
rable) model requires the specification of correlation functions for space and atmospheric
pressure for each of the two fidelity levels: L and H. To ensure the well conditioning of
the correlation matrices involved in the calculations, we add nugget effects for the spatial
component and for the atmospheric pressure component. In the literature, these values are
usually fixed based on a cross-validation exploration and they are expected to be typically
small (of the order of 107°). In practice, considering these parameters as unknown and
estimating them from the data not only improves the stability of the computations but also
can lead to better predictive accuracy as shown in our application.

Based on a preliminary study on AIRS data, for both levels of fidelity, we choose a
product exponential correlation function:

2 /
s;i — S,
R. (s, 5'10.5) = exp (— Z u) R g%sa(s, s') 2)
i=1 7o
p—7r
R.,(p, p/|0.,p) = exp (—}(ﬁ—’) + g%pfs(l?, P, 3)
“p

where 6. ; = (¢. 5, g%s), 0., = (. p, g% p), ¢..1,s controls the spatial dependence strength
in longitude, ¢. » 5 controls the spatial dependence strength in latitude, and ¢. ;, controls the
spatial dependence strength in the pressure level values. Also g%s accounts for the nugget
effect in the spatial component and g% » accounts for the nugget effect in the atmospheric
pressure component. More intricate covariance functions such as the Matérn family (Cressie
1993; Stein 1999; Banerjee et al. 2014) or non-stationary models (Paciorek and Schervish
2006; Konomi et al. 2014) can also be used within the proposed latent variable co-kriging
model.

Despite this flexible and general representation of the separable covariance function,
the covariance matrix of the observations or the latent variables cannot be represented as
a Kronecker product of separate components. This is simply because none of the input
combinations of low- and high-fidelity data can be represented as a tensor product. The
presence of missing data for both quality flags destroys the Kronecker product representation
of the covariance matrices and makes the computations impossible in practice.

4. BAYESIAN INFERENCE

We make computations and practical implementation possible by constructing an aug-
mented posterior which is based on the imputation of latent variables. The augmented
posterior takes advantage of the tensor product of the locations and the pressure level values
in a granule. Based on this augmented posterior, we are also able to construct a MCMC pro-
cedure with mostly closed-form conditional distributions for parameter inference as well as
a computationally efficient recursive prediction procedure.
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4.1. AUGMENTED POSTERIOR

Let {D”, DX, DM} be the observed input location set of QF 0, QF 1 and QF 2, respectively.
The union of these three input D = DY uDL UDM represents a granule and is defined in
a grid format. In addition, assume the {zy, Z1, 2y} be the observed output set of quality
flag 0, quality flag 1 and quality flag 2, respectively. Assume sets of points D such that
D~ = DY UDM is defined as the relative complement of DL inD. Further, assume sets of
points D such that p” = pt upM is defined as the relative complement of D in D.
Letz;, =z, (ﬁL) and Zy = z H(ﬁH ) be the missing output values of the temperature at
the corresponding input points in the low-fidelity (quality flag 1) and high-fidelity (quality
flag 0) data, respectively. We refer to {Z, f)L} and {Zy, ]o)H} as the missing data set. We
also refer to {7, ﬁ} and {Zp, ﬁ} as the complete data set of the low and high fidelity level,
respectively.

Assume that w is the latent variables of the low fidelity level (QF 1) obtained in D and
wy is the latent variables of the high fidelity level (QF 0) obtained in D. The covariance
function of both w; and Wg is defined in a grid where we can take advantage of the
Kronecker product representation of the separable covariance function. For simplicity in
the formulation below, let ® = (0, 8, p, 02,13, W= (W, Wg),and Z = (Z1, Zy). We
assign a prior distribution on the parameter (®, W), such as:

p(©, W) = p(BL, o) p@L)p(o, Bu, o) pOr) p(t}) p(ti) p(WL10L) p (Wi 10m).

The GP parameters are assumed a priori independent of each other for different fidelity
level data. Within each fidelity level, we choose non-informative priors for hyper-parameters
Br, og) and (B, p), 0121) and . 5,9. p, g%s, and g%p are considered to be independent
truncated Gamma distributions.

The joint posterior distribution of the above model given observations z = (zz, zg) 1s:

PO, W, 2|z) x p(2|®, W, 2)p(z|®, W) p(W|0) p(®)
= f(ZL100, BL. T}, W) fGulOu, B, p, T, Wi, Wi) 4)

X p(OL)p(WL|0L)p(On) p(WH|0H),

where the conditional distributions f(Z|-) and f(Zg|-) are independent multivariate Gaus-
sian probability density functions. The joint posterior distribution of w can be factorized in
two parts, because the proposed augmentation artificially creates the same design for both
latent variables. The Markovian condition induces the required conditional independence.
Given the independent specification of the prior, it is easy to see that the augmented posterior
is also factorized into two conditionally independent parts. Note that p(®, W, Z|z) admits
the posterior of interest p(®, w|z) as marginal by construction, and hence leads to the same
Bayesian analysis.
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4.2. MCMC SAMPLER

We design a MCMC sampler, targeting the augmented posterior, that involves a
random permutation scan of blocks updating [ilz,O,az,ﬂ,rz], [WlZ,O,az,ﬂ,tz],
[ﬁ,az,tZIZ,W,O] from a direct Gibbs sampler with closed-form distributions, and
[0]Z, W, B, 0%, 2] from a Metropolis—Hastings (M—H) step. We are not only reducing
computational complexity based on the covariance structure, but also are able to find
closed-form conditional distributions for o%|0L, 1,'1%, w, o[%] |0g, r%l, w, ‘L'I% Iog, 07,7z, wand
7121 |0121 , 0, Z, wand do not need a high-dimensional M—H that can slow down convergence.
Details regarding the MCMC blocks are explained below.

The full conditional posterior of Wy is normal Wg|... ~ N([LWL, R‘;,L) and wy is

normal Wy | ...~ N(uWH, RWH), where

1 1
Ky, = RV”VL[T_zI(iL —HpBL) + T_ZI(P_l(iH —HyBu —wWn) — HL,BL)] )

L H
Ry, = (il L R )_1, (6)
rg 1:%, crg ’ P
1 N -
Ky, = Ry, r_zln (zy —HpBy — p(HLBL +WL)), (7)
H
Ro = (114 LRt @r71 ) 8
Wy — 2 + 2 ““H,s ® H,p : ()
H Og

The availability of Wy and wy makes the computation of the missing variables easy
since both [Z7|Wr, Br, Tr] and [Zr|Wr, B, T ] follow independent normal distribution
with constant diagonal variance. The conditional posterior 7 (8, p, o2, 12|i, w, 6) has the

form:
BLlz, W, 02,0 ~ N(ﬁL,V;L) 9)
(0. Bz, W, 02,0, B ~ N( (5. Br). VZ,H) (10)
o7 |W, 0%, 0,8~ IG(&UL,B(,L) (11)
on|w, 02,0, ~ 16(24(”,,13(,,1) (12)
w2z, W, B~ 16(%,%) (13)
2|z, W, B ~ IG(a,H,EfH), (14)

where the hatted quantities are given in Supplementary Section S, Eqgs. (3)-(14). The condi-
tional posterior p(0.|wr, ag) and p(Oy|z, W, 013) cannot be sampled directly. Conditional
independence in (4) implies that #; and @y can be simulated by running in parallel two
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Metropolis—Hastings algorithms each of them targeting distributions. These full conditional
distributions are known up to some normalizing constant:

. _ _ _ | _ 1 .~
pOLIWL. 07) o p(g})p(dr)or IRL 2R | 1/2exp{—ZU—zw{(RL}mRL},,)wL},
L

) _ _ _ oo P
pOuIWH, 05) & p(gh)p(br)oy IRus| ™ 2 Rp | l/zexp{—zg—zwz(RH}s ®RH1,,,>wH}.
H

In general, the whole sampler can be described as a Metropolis-within-Gibbs sampler. This
is a computationally efficient sampler since avoids the inversion of big matrices and also
most of the parameters are updated via a closed-form conditional distribution.

4.3. PREDICTION

Assume there is available a MCMC sample SN = (w, 62,0, 12, B) generated from
the MCMC sampler in Sect. 4.2. The central limit theorem can be applied to facilitate
inference as the proposed sampler is aperiodic, irreducible, and reversible (Roberts and
Rosenthal 2004). The proposed latent variable co-kriging model with separable covariance
structure (LVCS) allows inference to be performed for the “missing” output yz at input
points in 9 Inference on yu can be particularly useful when the retrieval algorithm has
been unable to generate reliable output due to the presence of clouds (QF = 2). The
marginal posterior distribution of yg, along with its expectations, can be approximated
via standard Monte Carlo (MC) using the generated samples {yg}. Alternatively, point
estimates of yp at 9" can be approximated by the more accurate Rao—Blackwell MC
estimator E(yg|zp, z) &~ % ijzl ﬂg), where {ﬂg)} is the jth mean MCMC realization
for yg.

To retrieve the temperature values yy (2*) at unmeasured input points Z*, we propose
a Monte Carlo recursive prediction procedure which is able to facilitate fully Bayesian
predictive inference on the output. We first obtain y; (2*) and then use it to obtain yg (Z%).
A direct prediction of yy(Z*) can be computationally not feasible since the prediction
distribution of the quality flag 0 cannot be simplified as it happens for the joint prediction
distribution. The conditional distribution [(yz(-), yg(-))|Wr, W, 6, a2, B, pl inherits a
conditional independence similar to the likelihood due to the augmentation of the latent
variable (#y, wy). Hence, after integrating out 8, p and o2 we have Student T processes
(STP) for the conditional representation as:

SLOBL, Oy ~ STP (W] (1, 0,), 67 RYC.100),1+7); (15)
SO, B 0 ~ STP (15 (18, 85), 53Ry (.1 (). 8, 14+7) . (16)
where

[} (x|wr,0r) = Hy (x; wr)BL + Rp(x, D)R; (D, D)W,
[ (x| @, 0) = [ (x|, 1) + Hy (x; W) Br + Ry (x, D)R, (D, D)Wy
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and
R} (x,x'|01) = R.(x,x") — R.(x, D)R; (D, D)R] (x', D)
+ |H(0) = R, DYR' (D, DYHL(D) | A,
r ~ -~ - T
x [HLG) — Ru', DR (D, D)HL(D1)
R}y (x,x'|yr,0n) =Rp(x,x) — Ry (x, D)R;' (D, D)R};(x', D)

+ [Ln s o) = R, DYRG (D, D)L (D: y)| An

r - ~ @8 - T
% [Lus y0) = Ru(x'. DYRG (D, D)Ly (D yu) |

for x,x' € X, and A, = (H/R;"(D,D)H)™", LyCiy) = [Hu(), y. ()],
Ap = (LLRy (D, D)Ly)~", R;'(D, D) =Ry ; @Ry », Ry (D, D) =Ry s @Ry,
Ri(x. D) = Ry s(s. D) ® Ry ,(p. D)), and Ry (x, D) = Ry (s, D) ® Ry (p. D)).

The proposed prediction procedure integrates uncertainty regarding the unknown “miss-
ing data” and parameters. It is computationally preferable compared to a one-step prediction,
based on the prediction distribution of the high fidelity only, because it allows the parallel
inversion of smaller covariance matrices with sizes ny X ny and n, x n, while the others
require the inversion of a large covariance matrix of size nyn, x ngn, . Moreover, it is able
to recover the whole predictive distribution and its moments.

S. DATA ANALYSIS AND RESULTS

This section conducts a full analysis of the AIRS data set described in Sect. 2 using
the proposed latent variable co-kriging model with separable covariance structure (LVCS).
We compare LVCS with two alternatives that ignores the flag values: (a) the latent variable
separable Gaussian process (SGP) model and (b) the non-separable additive approximate
Gaussian process (AAGP) (Maetal. 2019). The SGP is a special case of our model, assuming
only one level and ignoring the quality flag information. SGP is an extended version of the
separable model proposed in Bilionis et al. (2013), since we account for spatial error. For
both SGP and AAGP, data with QF values 0 and 1 are combined to fit the corresponding
model. Analyses are performed in MATLAB R2020a, on a computer with specifications
(intelR 17-3770 3.4GHz Processor, RAM 8.00GB, MS Windows 64bit). In addition, we
consider two variations for each of the three models: a) fix the variance of the nugget effects
(g%) within the correlation functions based on a cross-validation exploration and b) sample
g’ within the MCMC procedure as explained in Sect. 4.2.

Each granule has 135, 000 estimated temperature values of three different quality flags.
Since the vertical pressure levels for atmospheric variables increase in an exponential order,
we take a logarithmic transformation of the pressure level values. In each specific FOR, the
temperature is taken vertically at 100 distinct pressure level values. Pressure level values
with non-available (NA) data are removed prior to the analysis. These pressure level values
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are below the surface pressure and correspond to structurally missing/undefined data due to
physical constraints.

We start by testing our proposed model in a granule of August 1 of 2013 within the
MAGIC validation campaign (Zhou et al. 2015). The last 4 of the distinct pressure levels
have only NA data, so we consider only 96 distinct pressure levels in our analysis. Figure S1a
shows the temperature as a function of the log of pressure level values for a collection of
FORs with only QF 0, and Figure S1b shows the temperature as a function of pressure level
values for FORs with variable quality flags. From these plots as well as Figure 1, one can
observe that the QF 1 and 2 data are more common in higher vertical pressure levels (closer
to the sea surface) within the vertical profile.

To simulate a realistic missing data (i.e., with QF 2) scenario, we randomly select testing
data in a block of input. Since missing observations are more common in higher vertical
atmospheric pressure values (close to the sea surface), we only consider vertical atmospheric
pressure values higher than 114.0070 hPa (pressure level greater than 47). Evaluation of
predictive performance is based on mean squared prediction errors (MSPE), coverage prob-
ability of the 95% equal tail credible interval (CVG(95%)), average length of the 95% equal
tail credible interval (ALCI(95%)) and continuous rank probability score (CRPS) (Gneiting
and Raftery 2007).

Based on the relationship of the log pressure values with the data in Figure S1, we chose
polynomial basis functions of degree three for the log pressure level. Since we do not observe
a spatial structure of the mean of temperature given a pressure level, we chose a constant
mean for the spatial basis. The basis functions of the complete data are created based on the
Kronecker product of these two bases. Based on an empirical study between three different
covariance functions, the square exponential, exponential and the 5/2 Matérn, we chose
the exponential covariance function. For all the tested days and models, the exponential
covariance function gave the best prediction performance.

We apply the same specifications for all three models, the proposed LVCS, the separable
model, and the AAGP. To speed up computations in the AAGP, we specify a grid of knots:
15 knots for pressure level, 8 knots for longitude and 6 for latitude. In total, we use 720
knots for the predictive process part and the same specification for the separable part.
For the Bayesian inference of the three models on the unknown parameters B, By, we
assigned independent Normal prior distributions with zero mean and large variances. We
used inverse Gamma priors for the spatial and noise variances orf, 01%1, rz, rlzi as IG(2,1).
The range correlation parameters in space are assigned a uniform prior U (0, 100), and the
range correlation parameters in logarithmic pressure level value a uniform prior U (0, 20).
For all three models, we ran the MCMC sampler as described in Sect. 3 with 25, 000
iterations where the first 5000 iterations were discarded as burn-in. For all the parameters of
the three models, the MCMC converges within the first 2, 000 iterations. The convergence
of the MCMC sampler for each parameter was assessed from their associated trace plots.

Table 1 shows the results with the prediction performances for each model when we
assume an unknown nugget effect (g2) within the correlation functions as described in Sect. 3
and when we fix it to 1076, Based on the MSPE and CRPS, the proposed LVCS kriging
gives better prediction results than the separable kriging and the AAGP for both fixed and
random nugget effects cases. Making the nugget effect random improves the predictability
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Table 1. Method comparisons

Model Nugget MSPE CRSP CVG 95% ALCI 95% Time (h)
SGP Fixed 0.2714 0.3011 84.9% 1.8113 3.973
Random 0.2503 0.2974 89.2% 1.9213 5.977
AAGP Fixed 0.2783 0.3361 91.7% 2.089 65.402
Random 0.2482 0.3361 92.3% 2.139 96.419
LVCS Fixed 0.1341 0.2323 92.9% 1.58 7.801
Random 0.1081 0.2270 96.1% 1.63 10.432
288 288
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o c
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° °
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(a) (b)

Figure 2. Scatter plot of predicted values against held-out testing data for the last three pressure levels values
using two different models: a Separable model, and b the proposed latent variable co-kriging model with separable
covariance structure (LVCS) .

for all models. The proposed LVCS has smaller MSPE and CRPS than both the separable
kriging and the AAGP kriging. Specifically, the MSPE of the proposed model is less than
half of both AAGP and separable model. The LVCS has nominal coverage probability close
to 0.95 and short interval length for the 95% credible interval. The separable model and the
AAGTP kriging have very similar MSPE which indicates that AIRS data have a separable
covariance structure. The computational time for the AAGP is almost 10 times slower. It
is worth pointing out that we can improve the computational time of AAGP by decreasing
the number of predictive process knots. However, this may result in missing a potential
non-separable small-scale variation.

To better demonstrate the prediction benefit of accounting for the quality flag into our
model, we plot the predicted temperature values against held-out temperature values for
pressure level values between 750 hPa and 850 hPa using: (a) Figure 2a, the model which
ignores the quality flag of the data, and (b) Fig. 2b, the proposed LVCS model which accounts
for different quality flags. From these scatter plots, it is clear that accounting for the different
quality of the retrievals improves predictions. Specifically the predicted temperature values
of the proposed LVCS scattered in a narrower interval around the 45 degree straight red line.
The fact that the predicted values when ignoring the fidelity level are still scattered around
the 45 degree straight red line indicates that the flag one observations may be unbiased
estimates of the temperature with bigger variance.
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Figure 3. a AIRS air temperature data (units in Kelvin), b corresponding quality flag values, ¢ predicted means
of the temperature with quality flag value 0, d prediction standard error .
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Figure4. aPredicted means of the temperature (units are Kelvin) at 265 hPa with quality flag value 0, b prediction
standard error .
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Table 2. MSPE (in Kelvin) for multiple dates of two different models (a) ignoring the quality flag and (b) the
proposed LVCS (which accounts for the quality flag)

Model Aug. 1 Aug. 4 Aug. 6 Aug. 8 Aug. 9
Ignoring quality flag SGP 0.2503 0.2963 0.6080 0.2668 0.2309
Proposed LVCS 0.1081 0.1603 0.2901 0.1203 0.0985

We can reconstruct the 3D observations with the high fidelity (quality flag 0). Given
the MCMC sample from fitting the model, the reconstruction based on the quality flag O
data is automatic and does not require additional computational burden. Figure 3a shows
the observed temperature values of mixed quality flags at vertical pressure level 827 hPa
(pressure level 89). Figure 3b shows the corresponding quality flag values of the data based
on the locations. Figure 3c shows the quality flag O predicted mean values of the temperature
at vertical pressure level 827 hPa using the proposed recursive prediction procedure. The
two images have a lot of similarities with more significant differences when the quality
flag values are equal to 2 (Fig. 3b). Also the proposed procedure can take into account the
parameter uncertainty as well as the nugget effects. Figure 3d shows the predictive variance
of the predicted values. There is a clear association of the variance with the quality flag
values and the spatial proximity as they are shown in Fig. 3b.

Within the boundaries of a granule, we can also use the proposed procedure to predict
the air temperature values at an unmeasured vertical pressure level different from those 100
levelsin AIRS data products, i.e., interpolating vertically and horizontally. Given the MCMC
values obtained in fitting of the model, we can find the predictive distribution for any location
and vertical pressure value. With 20, 000 posterior samples of model parameters, the total
computing time to make prediction for a vertical pressure level at the specified granule
locations is about 145.5 seconds based on MATLAB 2020 on a laptop with specifications
described above. For example, Fig. 4a shows the predicted temperature and Fig. 4b shows
the associated standard deviation for unmeasured vertical pressure level value 265 hPa which
corresponds to pressure level between 60 and 61.

Within the study region of the subtropical eastern Pacific Ocean, we repeat the proposed
model and inference for five different granules on different days in August 2013. Two
different models are considered: (a) the SGP which ignores the quality flag and (b) the
proposed LVCS which accounts for the quality flag. Because the AAGP gives similar results
to the SGP and it is computationally more expensive, we discard it from this analysis. This
is also a strong evidence of the separable covariance structure between coordinates and
atmospheric pressure for the AIRS observation. We follow the same computational strategy
as explained above where the MCMC is run in a sequence for both models. Table 2 shows
that the MSPE applying the LVCS is consistently almost half to the MSPE if we ignore
the different flag quality. These results strengthen our modeling approach to account for
different quality flags when we analyze AIRS temperature data sets.
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6. CONCLUSIONS AND DISCUSSION

In this paper, we propose a latent variable co-kriging model with separable Gaussian
processes (LVCS) to analyze 3D AIRS air temperature data with different quality flags from
NASA’s AIRS instrument. We propose an MCMC procedure with an imputation mecha-
nism which takes advantage of the 3D input structure to facilitate efficient computation. By
applying our method to the AIRS data, we demonstrate that incorporating the quality-flagged
information into statistical modeling and data analysis can provide substantial inferential
benefits. Unlike other methods for NASA’s AIRS mission in the literature (e.g., Tian et al.
2020; Waliser et al. 2020), we allow for different fidelity and missing data. Our methodol-
ogy provides a coherent framework for the combined use of remote sensing retrievals with
variable quality in both the horizontal and vertical directions. This capability can bolster the
utility of observations from AIRS and next-generation infrared sounder instruments, partic-
ularly in challenging observing conditions such as the subtropical ocean regions illustrated
in this work.

Our LVCS model can be generalized for larger spatial data sets over multiple granules.
For example, we may apply a computationally efficient method such as low-dimensional
conditional approximation (e.g., Datta et al. 2016; Katzfuss and Guinness 2021) for both
horizontal and vertical components in the separable covariance function. It is also possible
to extend our method for multi-fidelity spatiotemporal remote sensing data by adding the
temporal dependence and considering 4D data (longitude, latitude, vertical pressure level
and time). Extending the LVCS modeling framework for multivariate multi-fidelity data
could also prove to be fruitful.

The current LVCS model assumes a linear relationship between low and high fidelity
levels. One direction in future research is to extend this work by borrowing the idea of deep
Gaussian process in Perdikaris et al. (2017) and Ming et al. (2021) so that we can incor-
porate nonlinear dependence structure into the model. Future directions include extending
the proposed method into a multivariate setting by using similar ideas to parallel partial
autoregressive co-kriging Ma et al. (2022). In addition, the LVCS modeling framework can
be applied in observing system uncertainty experiments (Hobbs et al. 2017; Turmon and
Braverman 2019; Braverman et al. 2021; Ma et al. 2021), in particular when surrogates with
different fidelity levels and computational efficiency are used to perform forward uncertainty
propagation and inverse calibration for remote sensing data products.

SUPPLEMENTARY MATERIAL

Code for accessing the data used in this manuscript can be found in: https://github.
com/L2UQY/airs_products. MATLAB code for the proposed method: The “JABES_LVCS”
file contains the main code (written in MATLAB) to perform the proposed latent variable
co-kriging methods described in the article.
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